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Abstract

We suggest a new class of cross-sectional space-time models based on local AR models
and nearest neighbors using distances between observations. For the estimation we use a
tightness prior for prediction of regional GDP forecasts. We extend the model to the model
with exogenous variable model and hierarchical prior models. The approaches are
demonstrated for a dynamic panel model for regional data in Central Europe. Finally, we find
that an ARNN(1, 3) model with travel time data is best selected by marginal likelihood and
there the spatial correlation is usually stronger than the time correlation.

Keywords
Dynamic panel data, hierarchical models, marginal likelihoods, nearest neighbors, tightness
prio, spatial econometrics

JEL Classification
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1 Introduction

We propose a space-time model for predicting regional business cycles from
a Bayesian point of view. Since the seminal work by Anselin (1988), spatial
interaction has become one of the concerns in economics. Therefore, the spatial
dependencies are modeled in several econometric models. However, the concerns
are moved to space-time model (see e.g. Banerjee et al., 2003).

Analyzing regional business cycles by regional models have become an im-
portant issue in recent time, as the phenomenon of non-convergence has gained
more attention in the debate of regional convergence in an enlarged European
Union. Therefore, we approach this problem from a new econometric perspec-
tive using a new class of space-time models, the AR nearest neighbor models.
Kakamu and Wago (2005) have pointed out that the spatial interaction plays
an important role in regional business cycle analysis in Japan.

The goal of this paper is to construct a model for predicting regional business
cycle and to model the regional GDP dynamics of 227 regions in six countries
of central Europe during the period 1995 to 2001. Furthermore, we use the
concept of nearest neighbors (NN) and propose the tightness prior. Our results
show that the spatial correlations are high and the serial correlations are small.

The rest of this paper is organized as follows. In Section 2, we will explain
the autoregressive nearest neighbor model for regional modeling. In Section 3,
we describe the computational strategy by the MCMC method and the model
selection procedure and generalize the basic model to the one with exogenous
variables and the hierarchical prior models. In Section 4, we will analyze the
GDP growth in 227 regions across six countries in central Europe. Finally, some

conclusions are given in Section 5.

2 Regional ARNN modeling

We consider a dynamic panel data matrix Y of order (N x T'), where usually
the time dimension T is much smaller than the cross-section dimension N. Let

y; denote the ¢t-th column of Y, then we define the k-nearest neighbor matrix



as Wi = NN(1) until W,, = NN(n) where W denotes the (N x N) 0-1 matrix
with a 1 in each row indicating the nearest neighbor (NN) for each region, i.e.
for each row. Thus, W} denotes the matrix of the k-th nearest neighbors for

each region.

2.1 Some properties of ARNN processes

Definition 1: The ARNN(p,n) processes
We consider a dynamic N x T panel data matrix and using the time lag
operator L, defined by Ly; = y;_1 and the NN weight matrices Wy, ---, W, of

a vectorized time series y = vecY the ARNN(p, n) process is given by
B(LoW)ys =uy, fort =1,---,T,
where w¢, is a white noise process and the ARNN polynomial is given by
BLoW)=(1=pB(L)oW)=(1=pF(L)Wy = Bn(L)Wy)
This implies the following decomposition of the ARNN process

B(LoW))y; = (1= B(L) o W)y, =
(1 - 51(L)W1 - ﬁn(L)Wn)yt =
ye — Bu(L)y; — -+ Bu(L)yf"

with y* = W,y;. We define the extension of the spatial operator to include the

pure AR operator.
BOLoW)=(1—=pB%L)oW) = (1= Bo(L) = Si(L)Wi — - = Bp(L)Wy)

Definition 2: Stationary ARNN model
a) Stationarity condition: The ARNN(p, n) process is stationary if the pure

AR(p) polynomial of the ARNN polynomial has all roots outside the unit circle.

Bo(L) =1 — 1oL — BagL? — -+ — BpoL?,

b) The ARNN(p,n) process is called NN-stationary if the n spatial sub-

processes yi = Wiy, i = 1,--+,n are also stationary and the roots of the p



polynomials lie outside the unit circle:
Pr(L) =1- il - Bigl? — -+ = i L", for i=1,--,p.

Note that the evaluation of the ARNN polynomial follows a matrix scheme:

BLoW)ys=1—=B(L)o W)y = (1—=pB1(L)W1— - Bu(L)Wp)y:
= (1—=pBulWi—- = LWy — -
_ﬂpleWI - 6anan)yt = Ug.

2.2 Estimation of ARNN processes

The dependent variable is given by the most recent observed cross section col-
umn of matrix Y, i.e. y = y;. Now we define a spatial AR model for each

region

y = Broyi-1+ LuuWiyi—1 + BraWayr—1 + -+ + B Wanye—1 + -+
+BpoYt—p + Bpt Wiyt—p + Bp2Woyr—p + -+ + BpnWay—p + u,
= W1, W1ye—1, Woye—1, -, Ways 1) b1 + - -
+(Yt—ps WiYt—ps Wolt—p, -+, Wale—p) Bp + 1,

= XP"vecB+u, u~N(0,0%Iy), (1)
where the (N x (n + 1)p) regressor matrix is given by

le’n = (yt—laytl—lv e 7y?—17 Tty yt—p7yt1—pa e 7y?—p)7 (2)

with y¥_ ; = Wkys—; that is the k-th nearest neighbor of the time lag j.

The coefficients in the columns of B, like 8 = (S0, -+, B1n) is the (n +
1)-dimensional spatial AR regression vector. The whole regression coefficient
matrix is now given by (n + 1) X p matrix B = (8 ---, 8,).

For the prior distribution of the regression coefficients we assume a tightness
covariance matrix and we assume linear decreasing variance factors across the

diagonal of the covariance matrix:

Din = diag(1/i,1/i,1/i2,---,1/in), (3)



so that for each time lag i we think that the coefficients are similar and can make
the same tightness distributional assumption for the regression coefficients: the
i-th column vector 3; of the matrix B follows a distribution with center 0 and

a variance that is closer to zero, the higher the lag order is:
Bi ~ N(0,72D;y,), fori=1,---,p ()

where each D;,, is a diagonal n X n—matrix whose elements form a decreasing
sequence, that is, a closer region can have more coefficient variation than a on
than a region that is farther away.

We write the simple Bayesian ARNN(p,n) model in the compact matrix

form given by
y=XP"vecB+u, u~N(0,0%1Iy). (5)

Then, the likelihood function is as follows;

1 ee
L(y|XP", vecB,0?) = —— - 6
(y| X7", vecB, o°) 27m2N exp< 202), (6)

where the residuals are calculated e = y — X" vecB and the prior information

follows a normal gamma model or is specified independently as
vecB ~ N(0,72P ® D), 0% ~ G (1. /2, M /2), (7)

where P = diag(1,1/2,---,1/p) and G~'(a,b) denotes inverse gamma distribu-
tion with parameters a and b.
In order to obtain a NN-stationary solution (see definition 2), tThe roots of

the polynomials

1 — BroL — BaoL? — -+ = BpoL?,
1—B11L — B1al? — - = B1,, L™,
1- ﬁplL - ﬁp2L2 - ﬁann7

are are required to be outside the unit circle.
Given the prior density p(vecB,o?) = p(vecB|o?)p(c?) and the likelihood

function given in (6), the joint posterior distribution can be expressed as

p(vecB, o2y, XP'") = p(vecB, 0?) L(y|vecB, o2, XP'™). (8)



As the joint posterior distribution given by (8) can be simplified, we can now
use MCMC methods. The Markov chain sampling scheme is constructed from
the full conditional distributions of vecB and o2.

For vecB given o2, it can be easily obtained by Gibbs sampler (see Gelfand

and Smith, 1990). It rely on
vecB|o?, y, XP" ~ N (vecBa, Lux), 9)

where vecB,, = %, (0 2XP"y), 8, = (0 2XPY XP" 4 57171 and B, =
72P ® D,,. However, It may not be sampled within the desired interval (—1,1)
and/or not satisfy stability conditions, that is, that all roots of the polynomials
are outside the unit circle. Then we will reject the sample with probability one.

Given vecB, the full conditional distribution of o2 follows
o?|vecB, y, XP" ~ G (1hn /2, Man /2), (10)

where vy, = v + N and A\, = M\ + €le.
Table 1 shows the simulation results of ARNN(1,2) using 6000 iterations
and discarding the first 1000 iterations. The simulated data are generated as

follows:
1. Set N =50
2. Generate coordinate data from x2(8) and x2(6), respectively.
3. Generate y; from N(0,0.521y).

4. Generate y; from

0.8yt71 + 0-6W1yt71 + 0'1W2yt71 + u, u ~ N(07 052]’]\[)7 t = 27 S 5.
We use the hyper-parameters as follows:
7 = 0.01, v, =2, A =0.01.

From the table, we find that the posterior means are estimated around true

value and the MSEs are very small.



2.3 Model selection

As we have to choose the lag and nearest neighbor order, model selection is one
of the important issues in ARNN model. Familiar order selection is done by

information criteria like AIC and BIC. They are calculated as follows;

AIC(vecB,0?) = —2In(L(y|XP", vecB,o2)) + 2k,

BIC(vecB,0?) = —2In(L(y|X?",vecB,0?)) + kIn(N),

where k is the number of parameters.

However, if we also want to compare the validity of the nearest neighbor
matrix, that is, we choose the distance when we use the different distances in
making weight matrix, it is difficult to compare the models by AIC or BIC.

In a Bayesian framework, alternative models are usually compared by marginal
likelihoods and/or by Bayes factors. Then, we calculate the marginal likelihood
by Chib’s (1995) method. The formula is in Appendix.

This approach can also be use to test for outliers. We simply extend the
univariate ARNN model by an additive dummy variable Dy, k = 1,---,n. We
write the simple Bayesian ARNN(p, n) with outliers which follows a space-time

pattern like the dependent variable:
y= Xf’nVGCB +Dk7+ua ak = 17' N, U NN(0702[N)7 (11)

and then we can test or calculate the marginal likelihoods.

3 Extension of ARNN(p,n) model

3.1 The ARXNN(p,n) model

We can extend the univariate ARXNN(p,n) model by extending the regressor
matrix by another exogenous variable, which follows also a space-time pattern

as the dependent variable.

y = XP"vecB; + X5 " vecBy +u, u ~ N(0,0%Iy). (12)



Now the second regressor matrix X3"" is built up in the same way from the

observed exogenous N x T panel matrix X as for the first variable X" i.e.,
Xpn — 1 n 1 n
2 = (xtfhxtfla L1 Tt—py Ly 7xt7p>7

with xf_j = Wya—; that is the k-th nearest neighbor of the time lag j.
This model can be easily estimated by MCMC. Let Z and vecB be (X" X2y

and vec(B1, By), respectively and change the prior distribution as
N(0,72P ® D)

where D = diag(D,,, D,,). If we replace X1"" and D,, in (9) and (10) by Z and
D, we can use the same MCMC sampling methods.

Table 2 shows the simulation results of ARXNN(1,2) using 6000 iterations
and discarding the first 1000 iterations. The simulated data are generated as

follows:
1. Set N =50
2. Generate coordinate data from x2(8) and x2(6), respectively.
3. Generate z; from N(0,Iy) fort =1,---,T.
4. Generate y; from N(0,0.5%1y).

5. Generate y; from

0.8y;—1 +0.6W1y;—1 +0.1Wsy;—1 +0.324—1 +0.2W1ixs 1 + 0.1 W1 4+ u,
u~N(0,05%Iy), t=2,---,5.

We use the same hyper-parameters as ARNN(p, n) model in the previous section.
From the table, we can also find that the posterior means are estimated around

true value and the MSEs are very small.

3.2 Hierarchical ARNN(p,n) model

Note that because the dependent variable is essentially a multivariate dynamic

matrix observation we can specify the model similar to a SUR system with a



hierarchical prior for the coefficients. We assume that the cross sections are

correlated across time for each year, i.e.,

vecB ~ N (0,2 ®72D,), 02~ G (Vge/2, Aox/2),
72 G (Vr/2,M00/2), BT~ Wi, S,).

Then, we can estimate the model from the following full conditional distri-

butions: !

vecB|o?, 72,2, y, X"~ N(vecBi, Hyv), (13)
o?lvecB, 73, %y, XD~ G (Vown /2, Aon /2), (14)
7'2|VecB,02,Z,y,Xf’n ~ g—l(yT**/Z/\T**/Q), (15)
Yt veeB, 02, 72, y, XU~ W(Nis, Six), (16)

where vecB,, = H(c 2XP"y), H,, = {o 2XP" X" 4 7=2(S @ D7)},
Vosi = N4Vos, Agux = €'e+ Ao, € = y— XV "vecB, vy = p(n+1) 41, Arss =
vecB' (X ® D,,) " tvecB + A, Nus = n + 1+ 1, and S.w = (B'D,;'B + S;71)~ L

Table 3 shows the simulation results of hierarchical ARNN(2,2) using 6000
iterations and discarding the first 1000 iterations. The simulated data are gen-

erated as follows:
1. Set N =50

2. Generate coordinate data from x2(8) and x2(6), respectively.

0.5 0.2
3. Suppose 02 =0.05, 72 =0.5 and ¥ =

0.2 04

4. Generate vecB from N(0,% ® 72D,,)
5. Generate y; from N(0,02%Iy).
6. Generate yp from [yy, Wiy, Wo,y1]51 +u, u~ N(0,0%1y).

7. Generate y, from [y,—1, Wiye—1, Wo, ys—1,yr—2, Wiyi—2, Wa, y¢—2|vecB +
ug,  up ~N(0,0%y).

1The derivation of full conditional distributions are in Appendix A.



We use the following hyper-parameters.
Vox = 0.01, Ao =0.01, vrx =0.01, A =0.01, n.=p+1, S =S5, (17)

where S is also tightness prior, S = diag(1,1/2,---,1/p).
From the table, we can also find that the posterior means are estimated

around true value and the MSEs are very small.

3.3 Hierarchical ARXNN(p,n) model

Next, we will consider the hierarchical ARXNN(p,n) model. We assume like
the hierarchical ARNN(p, n) model that the cross sections are correlated across

time for each year, i.e.,

VeCBl NN(Oazl ®712D7l)a 7-12 ~ gil(VTl*/Qv)‘Tl*/2)7 Zl_l ~ W(nl*vsl*)7
VeCB2 NN(OaZQ & 7—22D7l)5 7—22 ~ gil(l/7'2*/2a)‘7'2*/2)7 E2_1 ~ W(772*7S2*),

0% ~ G Vgu /2, Aons/2).

Then, we can estimate the model from the following full conditional distri-

butions: 2

2 2 2 Py
VeCBi|VeCB7i,O' a7-177—27217 227y7X1 7X2 ~ N(VGCBi**aHi**)a
2 2 .2 p,n p,n -1
o“|vecBy, vecBe, 71,75, X1, Yo, y, X7, X3 ~ G (Voss /2y Ao /2),
2 2 2 P 3P -1
77, [vecBy, vecBa, 0%, 72, 31, 30, y, X717, X5 ~ G Wran /2 Aryin [ 2),

¥ vecBy, vecBa, 02, 72, 75, % i, y, XV XD~ W(isks Sins),s (18)

where vecB_; and ¥ _; are the other indices that are not 7, respectively, vecB; =
Hio(072XP™ (y — XPvecB_;)), Hipy = (0 2XP™ XP" 4 772(S,@ D,,) 1),
Vs = N + Vgs, Aoux = €'e + Ao, € = y — X7"vecBy — X5 vecBa, vruw =
N4 14 Vrw, Aryss = veeBL(Z; ® Dy) 7 tvecB; + Aryxy Miss = 1+ 1 + 1, and
Siww = (BID;'B; + S, )71

Table 4 shows the simulation results of hierarchical ARXNN(2,2) using 6000
iterations and discarding the first 1000 iterations. The simulated data are gen-

erated as follows:

2The derivation of full conditional distributions are also in Appendix B.



1. Set N =50

2. Generate coordinate data from x?(8) and x?(6), respectively.

0.5 0.2
3. Suppose 02 = 0.05, 72 = 0.5, 75 = 0.5 and ¥; = and
0.2 04
04 0.2
5 =
0.2 0.3

4. Generate vecB; and vecBs from N(0,%; ® 72D,,) and N (0,32 ® 72D,,),

respectively.
5. Generate x; from N'(0,Iy) fort =1,---,T.
6. Generate y; from N(0,0%1y).

7. Generate yo from [y, Wiyr, Wa, y1]B1 + [0, Whzy, Wo, m1]y1 +u,  u ~

N(0,02Iy), where ~; is the first column of vecBs.

8. Generate y; from [ys—1, Wiys—1, Wa, yr—1, Yt—2, Wiye—2, Wa, ys—o]vecB; +

2
(@1, Wrai—1, Wa, B4—1, Tp—o, Wixi_o, Wa, z4_o]vecBotuy,  up ~ N(0,0%1Iy).

From the table, we can also find that the posterior means are estimated

around true value and the MSEs are very small.

4 Empirical results

4.1 Data set

First, we will explain the data set. We use the growth rates of Gross Domestic

Product (GDP) of 227 regions in central Europe from 1995 to 2001. We use GDP

in real term (1995 = 100), take log from and we use centered, i.e., de-meaned

data: GDP;, — GDP, where GDP = N1 Zf\;l GDP;;. The endogenous vari-

able, population is transformed by logarithms and de-meaning. To construct

nearest neighbors, we need some kind of distance metrices between the regions.

As we mentioned in the previous section, we want to compare different type of

weight matrices. First of all, we use the coordinate data of the cell centers and

secondly, we use travel time data to construct the nearest neighbor matrix.

10



4.2 The results of the ARNN estimation

For the tightness prior distributions, the hyper-parameters are specified as fol-

lows;
7 = 0.01, v, =2, A, =0.01.

We ran the MCMC algorithm, using 6000 iterations and discarding the first
1000 iterations.

First of all, we have to choose the numbers of lags and neighbors and weight
matrix. Table 5 shows the results of the AIC, BIC estimation, log marginal
likelihood and the acceptance rate. From Table 5 we see that both AIC and BIC
are minimal for the values p =4 and n =1 and p = 1 and n = 1, respectively,
when we use the coordinate data. However, when we use as distance metric
the travel time data, both the AIC and BIC criteria take the minimum for the
values of p = 1 and n = 3. Therefore, we can not say which model is the best by
AIC or BIC. When we compare the marginal likelihood of p = 1 and n = 3 with
coordinate data to the version with travel time data, we find that ARNN(1,3)
with travel time data is the best model in ARNN. Furthermore we can see that

the acceptance rate becomes smaller as the numbers of p and n increases.

4.3 The results of the ARXNN estimation

For the tightness prior distributions, we use the same hyper-parameter in the
previous subsection. We ran the MCMC algorithm, using 6000 iterations and
discarding the first 1000 iterations.

First of all, we also have to choose the numbers of lags and neighbors and
weight matrix. Table 6 shows the results of the AIC, BIC estimation, marginal
likelihood and the acceptance rate. From Table 6 we see that both AIC and
BIC are minimal for the values p = 1 and n = 1, when we use the coordinate
data. However, when we use as distance metric the travel time data, the AIC
and BIC criteria take the minimum for the valuesof p=1andn =3 and p=1
and n = 1, respectively. Therefore, we can not say which model is the best in

this class of model. When we compare the marginal likelihood, we find that

11



ARXNN(1,1) using travel time data is the best model.

4.4 The results of the hierarchical ARNN estimation

For the tightness prior distributions, the hyper-parameters are specified as fol-

lows;
Vos = 0.01, Ay =0.01, v, =0.01, A\, =0.01, n.=p+1, S.=85.

We ran the MCMC algorithm, using 6000 iterations and discarding the first
1000 iterations.

First of all, we also have to choose the numbers of lags and neighbors and
weight matrix. Table 7 shows the results of the marginal likelihood and the
acceptance rate. In hierarchical model, as we cannot evaluate by AIC or BIC,
we will compare the models by marginal likelihood. From Table 7, when we
compare the marginal likelihood, we find that the the hierarchical ARNN(3,2)
model with travel time data is the best model in the class of hierarchical ARNN

model.

4.5 The results of the hierarchical ARXNN estimation

For the tightness prior distributions, the hyper-parameters are specified as fol-

lows;

Vos = 0.01, gy = 0.01, vy, =0.01, Ar, = 0.01, vy, = 0.01,

)\7—2* = 001, M« =p+ 1, Sl* = 57 M2 =P+ ]., SQ* =8.

We ran the MCMC algorithm, using 6000 iterations and discarding the first
1000 iterations.

First of all, we also have to choose the numbers of lags and neighbors and
weight matrix. Table 8 shows the results of the marginal likelihood and the
acceptance rate. From Table 8, when we compare the marginal likelihood, we
find that the the hierarchical ARXNN(3,4) model with travel time data is the
best model in the class of hierarchical ARNN model.

12



4.6 Posterior means

Table 9 shows the posterior means and standard deviations of ARNN(1,3)
model. From the result, we find that the serial correlation is not significant
and small. On the other hand, the spatial correlation is larger than serial cor-
relation and NN(3) is significant. It implies that the economic activity affects

even the third neighbors.

5 Conclusion

This paper has defined a new class of spatio-temporal models, and we estimated
the autoregressive nearest neighbor (ARNN) model from a Bayesian point of
view and proposed the tightness prior for the model. We derived the joint
posterior distribution and proposed MCMC methods to estimate the parameters
of the model and extended to the model with exogenous variables. We examined
the regional GDP dynamics of 227 regions in six countries of central Europe
during the period 1995 to 2001. Our results show a high spatial correlation and

a rather small serial (time) correlation in the estimation of regional GDP.

Appendix A: Calculation of marginal likelihood

The calculation of marginal likelihood from the Gibbs output is shown in Chib
(1995) in detail. However, we will sketch the calculation way, briefly.

Under model My, let L(y|0x, M) and p(0| M) be likelihood and prior for
the model, respectively. Then, the marginal likelihood of the model is defined

as

m(y) = / L(y)0h. Mi)p(6c| M) (19)

As the marginal likelihood can be written as:

_ L(y|Ok, My)p(0r| My,)
mly) = p(Oxly, My) ’ (20)

Chib (1995) suggests to estimate the marginal likelihood from the expression

logm(y) = log L(y|0%, M) + log p(65 | My,) — log p(6% |y, My), (21)

13



where 6} is a particular high density point (typically the posterior mean or the
ML estimate). He also provides a computationally efficient method to estimate
the posterior ordinate p(f5|y, M) in the context of Gibbs sampling.

The method in our model is as follows: In ARNN model, for example, we
set 0, = (vecB,0?) and estimate the posterior ordinate p(6j|y, Mj) via the

decomposition
p(05 |y, My,) = p(vecB*|0*?, y)p(o*?|vecB*, ). (22)

p(vecB*|0*2,y) and p(c*?|vecB*,y) are calculated from the Gibbs output as

follows:

iter

1
Zp (vecB* |V6CBS§Z), ng*))? (23)

iter

p(vecB*|o*?, y)

iter

sz (072l /2, 02 /2), (24)

p(c*?|vecB*, y)

where, it should be noted, vecB%) 29 and A9 are produced as a by-product

kk 9

of the sampling.

Appendix B: Hierarchical ARNN(p,n) model

Posterior distribution of hierarchical ARNN (p,n) model is written as

p(vecB, 0?2, 72|y, XV") o L(y|vecB, o2, XV"™)p(vecB, 02, 7%, %),

o L(y|vecB, o2 XP™)p(vecB| 72, £)p(a?)p()p(X),
. (02)_% exp{ _ (y = XP"vecB)'(y — X{""vecB) }

202
/ -1
><|E®T2Dn|7%exp _ vecB (X ® D)™ vecB
272
Vo A
2\—(%2*=+1) AL
X(U ) ’ exp{ 20’2}
e A
2y —(“F=+1) A7
<() o - 5z
s—p—1 1
><|E_1|77 2 exp{ — Qtr(Z_IS’*_l)}. (25)

Then, the full conditional distribution of vecB is as follows:

— XP"vecB) (y — X" vecB) }

Y
p(vecB|o?, 7%, %, y, XP™) exp{( 502

14



vecB' (¥ ® D,,) " 'vecB
X expy — 972 )

o< N(vecBuu, Hux), (26)

where vecB,, = H,, (0" 2X"" y) and H,, = {o2XP" XP"47-2(Z®D, )1}~

The full conditional distribution of o2 is as follows:

— XP"vecB)'(y — X1 vecB)
202

p(o?|vecB, 72,5, y, XP") o (6%)" 7 exp b
1

_(Yox Aos
X(0'2) ( 2 +1)exp{ — 202}7

X G (Vonn /2, Aosn /2), (27)

where Vowx = N + Vg, Agsx = €'€ + A and e =y — X" vecB.

The full conditional distribution of 72 is as follows:

vecB' (X @ D,,) " tvecB }

p(T%|vecB, 0%, 5, y, XP") o Z®7-2Dn|_§exp{— 53
-

A
><(72)‘“+1)6XP{ - 272}

g\ pnt1) vecB' (X @ D,,) " vecB
x (79) Z . expy — 52

Ars
X (r2) =5+ exp{ B 272}

< G Wran /2, Aran [2), (28)

where vy = p(n + 1) + V7, and Aruw = vecB' (X ® D,,) " tvecB + ..

Finally, the full conditional distribution of ¥ is as follows:

B'(Z D ~lvecB
p(X" vecB, 0%, 7%, y, XP") o Z®72Dn|_;exp{ vecB'( ® n)vec }

x|zt = exp{ - ftr }
—1 kL 1 -1 1
x |E7H T2 exp fitr( B'D;'B)
|2 exp{ }
o W(nix, Sie) (29)

where N, =n + 1+, and S, = (B'D,; !B+ S;1)~!
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Appendix C: Hierarchical ARXNN(p,n) model

Posterior distribution of hierarchical ARXNN (p,n) model is written as
p(veCBla VeCB27 02? 7—127 7-22) Zla Z2|y7 Xfmv Xg,n)
o L(y|vecBy,vecBy, o%y, XV, X2 p(vecBy, vecBy, 0%, 72, 75, %1, ¥2),

oc  L(ylvecB, o%)p(vecBi|7{, £1)p(vecBa|73, Xo)p(o®)p(71 )p(m3)p(51)p(52),
o (02)7% exp{ _ (y = XP"vecBy — X§"vecBy)'(y — X" vecB; — X3""vecBy) }

202

B} (Z1 @ D,)~'vecB
x|S1 ® 72D, |72 eXp{ _ vecBi (24 (8;72 )~ vec 1}
i

; By (82 ® Dy,)~'vecB
><E2<8>7'22Dn|_2exp{—VeC 2(X2 ® Dy) " 'vec 2}

27'22
Vo Aos
x(0?)~(E= D) exp{ B }

202

Vry* )\
2\—(—=+1) T1*
X 2 —
(9) exof - 525 |
Vro* )\
2\ —(—2=+1) _ N\Tax
X 2
(T2) exp{ 27_22 }
x‘zl—l‘m*gpfl exp{ _

X ‘22—1 ‘ nz*;pfl exp{ _

tr(E#S;})}

N = N =

tr(zglsg,})}. (30)
Then, the full conditional distribution of vecB; for i = 1,2 is as follows:

2 2 2 p,n p;n
p(VeCBi|VeCB_i,U 77—177-27217227:(}’)(1 7X2 )

{ (y — XP"vecB; — XP"vecBs) (y — X" vecB; — X2 vecBs) }
X expi —

202
ey, -1 _
X |5 ® 72D, "2 exp{ _ veeBi (3 © D2n) vecB; }
27;
o< N (vecBiwx, Hixs), a1

where vecB; = Hi**(o_QXf’"/(y — XP"vecB_;)) and Hj.. = (U_QXf’n/sz’n +
7 2(Zi @ Dp)™H 7L

The full conditional distribution of o2 is as follows:

2 2 2 P ypn
p(o”|vecBy, vecBa, 71,75, 51, Xo, y, X777, X5)

x (o%)¥ exp{ _ (y— X{"vecBy — Xé”nvech)’(Qy — XP"vecB; — X "vecBs) }
o

X(O_Z)f(l’g* +1) exp{ . )\a'; }

20
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X G WVonn /2, Aoin /2),

where Vosx = N + Vgsy Aows = €€+ Apw and e = y — XP"vecB; — X" vecBs.

Then, the full conditional distribution of 77 for i = 1,2 is as follows:

p(12, |vecBy, vecBy, 02, 72,, %1, 8a, y, XD, XD
vecB,(X; ® D,,) " !vecB;
272

x |%; ®7'i2Dn|*% exp{ —

X(Tiz)*(yfzi* +1) exp{ _ A }

272
_np vecB.(X; ® D)~ vecB;
x T expy — 972
- A
21— (L 41) ATk
X (Tz ) 2 exp{ 27-2,2 }
X G (Urien /2 Arinn/2), (33)

where Uy =1+ 1+ vru and Ay, = vecB(X; ® D,,) " tvecB; + A ..

Finally, the full conditional distribution of ¥; for i = 1, 2 is as follows:

p(Ei_1|vecB1,vecB2,o2,712,722,E_i,y,Xf’”,Xg’n)
vecB;(X; @ D,,) " tvecB; }

2
27;

x |Z;® Ti2Dn|7% exp{ —

Nix —P—1

3 exp{ - ;tr(Ei_lSi_*l)}

x|o;t

2
27;

1
xS exp{ - tr(z;lBgDnlBi)}

Nix —P—1

3 exp{ - ;tr(Ei_lSi_*l)}
XX W(ni**, Si**), (34)

x |5t

where e = n + 1+ iy and Siwe = (B}D;,'B; + S;,1) L.
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Table 1: Simulation result of ARNN(1,2): Posterior means, standard deviations

(in parenthes) and MSE

\ True value Estimated MSE

AR(1) 0.800 0.797 0.009
(0.092)

NN(1) 0.600 0.631 0.014
(0.116)

NN(2) 0.100 0.113 0.016
(0.126)

o? 0.500 0.693 0.058
(0.145)

Table 2: Simulation result of ARXNN(1,2): Posterior means, standard devia-

tions (in parenthes) and MSE

\ True value Estimated MSE

AR(1) 0.800 0.682 0.024
(0.099)

NN(1) 0.600 0.739 0.036
(0.129)

NN(2) 0.100 0.113 0.012
(0.107)

XAR(1) 0.300 0.308 0.006
(0.080)

XNN(1) 0.200 0.416  0.058
(0.108)

XNN(2) 0.100 -0.035 0.044
(0.160)

o2 0.500 0.433 0.013
(0.093)
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Table 3: Simulation result of hierarchical ARNN(2,2): Posterior means, stan-
dard deviations (in parenthes) and MSE

| True value Estimated MSE

AR1 0.061 0.061 0.013
(0.115)
NN(1) —0.177 0.056  0.076
(0.145)
NN(2) 0.372 0.249  0.058
(0.208)
AR2 0.489 0.488 0.014
(0.117)
NN(1) —0.391 —0.171  0.072
(0.153)
NN(2) 0.368 0.112 0.121
(0.236)
o? 0.050 0.041  0.000
(0.007)
72 0.500 1.202  0.855
(0.601)
True value
0.500 0.200
0.200 0.400
Estimated
0.409 0.019
0.019 0.807
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Table 4: Simulation result of hierarchical ARNN(2,2): Posterior means, stan-
dard deviations (in parenthes) and MSE

[True value Estimated MSE[ [True value Estimated MSE
AR1 0.327 0.269 0.019 | XARL1 0.422 0.467  0.004
(0.127) (0.049)
NN(1) 0.076 —0.048  0.028 | XNN(1) 0.653 0.623  0.007
(0.111) (0.076)
NN(2) —0.286 —0.139  0.037 | XNN(2) 0.016 0.030 0.010
(0.125) (0.100)
AR2 0.147 0.179 0.010 | XAR2 0.211 0.194 0.007
(0.097) (0.080)
NN(1) —0.015 0.040 0.011 | XNN(1) 0.293 0.340  0.012
(0.088) (0.097)
NN(2) 0.334 0.238  0.019 | XNN(2) 0.288 0.326 0.011
(0.100) (0.099)
72 0.500 1.205 0.878 | 72 0.500 1.201  0.890
(0.618) (0.631)
o? 0.050 0.074 0.001 | o2
(0.013)
True value True value
0.500 0.200 0.400 0.200
0.200 0.400 0.200 0.300
Estimated Estimeted
0.394 —0.015 0.562 0.116
—0.015 0.716 0.116 0.857
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Table 5: Information criteria, marginal likelihood and acceptance rate of ARNN
model

Distance
n o p AIC BIC log marginal acceptance
1 1 -983.282 -973.007* 483.884* 1.000
1 2 -981.478 -964.353 480.812 1.000
1 3 -982.957 -958.982 479.853 0.999
1 4 -985.098* -954.273 479.298 0.999
1 5 -982.756 -945.081 476.577 1.000
2 1 -982.801 -969.102 483.298 1.000
2 2 -979.153 -955.178 479.082 0.999
2 3 -980.105 -945.855 477.951 0.999
2 4 -981.487 -936.963 477.385 0.999
2 5 -977.401 -922.602 474.404 0.999
3 1 -982.634 -965.509 483.290 0.994
3 2 -977.811 -946.986 478.757 0.990
3 3 -977.052 -932.528 477.332 0.992
3 4 -978.127 -919.903 476.940 0.966
3 5 -974.992 -903.068 474.637 0.967
Travel time
n o p AlIC BIC log marginal acceptance
1 1 -983.587 -973.312 484.178 1.000
1 2 -981.473 -964.348 480.953 1.000
1 3 -979.029 -955.054 478.239 0.999
1 4 -975.583 -944.759 475.357 0.999
1 5 -973.190 -935.516 472.725 1.000
2 1 -986.741 -973.041 485.256 0.991
2 2 -983.220 -959.245 481.208 0.998
2 3 -983.758 -949.509 479.828 0.997
2 4 -979.252 -934.727 476.914 0.998
2 5 -974.037 -919.238 473.639 0.995
3 1 -992.228% -975.103* 487.698* 0.945
3 2 -985.071 -954.247 482.422 0.940
3 3 -984.264 -939.740 481.164 0.959
3 4 -985.198 -926.974 480.513 0.939
3 5 -978.328 -906.404 476.929 0.934
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Table 6: Information criteria, marginal likelihood and acceptance rate of
ARXNN model

Distance
n o p AIC BIC log marginal acceptance
1 1 -979.813* -962.688* 480.573* 1.000
1 2 -977.009 -946.184 476.076 0.999
1 3 -976.139 -931.615 473.369 1.000
1 4 -974.514 -916.290 470.553 0.999
1 5 -969.193 -897.269 466.663 0.999
2 1 -977.538 -953.563 479.065 0.999
2 2 -971.813 -927.289 473.122 0.999
2 3 -969.424 -904.350 469.679 0.999
2 4 -965.585 -879.961 466.032 0.999
2 5 -956.251 -850.077 460.965 0.999
3 1 -975.695 -944.870 478.469 1.000
3 2 -967.569 -909.345 471.671 1.000
3 3 -961.022 -875.398 467.190 0.999
3 4 -955.043 -842.020 463.246 0.999
3 5 -945.377 -804.954 458.445 0.999
Travel time
n o p AlIC BIC log marginal acceptance
1 1 -988.260 -971.135* 485.086* 1.000
1 2 -983.461 -952.636 479.803 0.999
1 3 -976.823 -932.298 474.582 1.000
1 4 -970.202 -911.978 469.858 0.999
1 5 -964.357 -892.433 465.814 0.999
2 1 -988.191 -964.217 484.470 0.999
2 2 -981.514 -936.990 478.340 0.999
2 3 -979.574 -914.500 474.701 0.999
2 4 -969.580 -883.956 468.702 0.999
2 5 -958.648 -852.474 463.207 0.999
3 1 -988.650* -957.826 484.913 1.000
3 2 -979.076 -920.852 477.832 0.999
3 3 -975.893 -890.269 474.295 0.999
3 4 -972.646 -859.623 471.066 0.999
3 5 -957.881 -817.458 464.510 0.999
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Table 7: Marginal likelihood and acceptance rate of hierarchical ARNN model

Distance Travel time
n p log marginal acceptance log marginal acceptance
1 2 469.643* 1.000 469.784 1.000
1 3 469.201 1.000 467.589 1.000
1 4 469.414 0.999 465.470 0.999
1 5 467.887 0.999 464.038 0.999
2 2 468.352 1.000 470.315 0.997
2 3 467.325 0.999 469.164 0.999
2 4 466.761 0.999 466.221 0.999
2 5 463.801 0.999 462.952 0.995
3 2 468.226 0.999 471.355%* 0.980
3 3 466.216 0.997 469.761 0.981
3 4 465.720 0.925 469.263 0.927
3 5 463.029 0.942 464.795 0.881
4 2 468.186 0.898 470.870 0.934
4 3 465.845 0.760 468.785 0.877
4 4 465.804 0.605 467.858 0.641
4 5 461.961 0.614 462.642 0.599

Table 8: Marginal likelihood and acceptance rate of hierarchical ARXNN model

Distance Travel time
n p log marginal acceptance log marginal acceptance
1 2 464.105 1.000 464.003 1.000
1 3 464.013 0.999 461.824 0.999
1 4 464.485 0.999 460.160 0.999
1 5 465.588* 0.999 462.509 0.999
2 2 463.133 1.000 465.519 0.994
2 3 462.038 0.999 465.545 0.997
2 4 462.016 0.999 462.945 0.995
2 5 461.472 0.999 462.972 0.985
3 2 463.135 0.997 466.643 0.971
3 3 461.812 0.996 467.936 0.970
3 4 461.251 0.947 468.885* 0.907
3 5 460.214 0.965 466.867 0.853
4 2 463.589 0.897 466.759 0.911
4 3 461.922 0.789 467.710 0.857
4 4 461.041 0.648 468.510 0.595
4 5 461.519 0.629 465.823 0.545
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Table 9: Empirical result of ARNN model with travel time data: Posterior
means and standard deviations (in parenthes)

\ ARNN(1,3)

AR1 0.02189
0.06656

NN1 -0.12883
0.11309

NN2 -0.07791
0.18462

NN3 0.43697
0.15925

o? 0.00076
0.00007
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