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Summary

In this paper we establish a full information maximum likelihood approach to esti-

mating the sample selection model with endogenous covariates. We also provide a test

for exogeneity which indicates whether endogeneity is in fact a matter or not. In contrast

to other methods proposed in the literature which deal with sample selection and endo-

geneity, our approach is computationally simple and provides exact asymptotic standard

errors derived from common maximum likelihood theory. A Monte Carlo study and an

empirical example are presented which indicate that not accounting for endogeneity in

sample selection models may lead to severely biased parameter estimates.

1I would like to thank Olaf Hübler, Patrick Puhani and my colleagues at the Institute for Labor Eco-
nomics for helpful discussion and comments.
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1. Introduction

The purpose of this paper is to establish a full information maximum likelihood (FIML)

approach to estimating the sample selection model with endogenous covariates. Addi-

tionally, a test for exogeneity is provided which indicateswhether endogeneity is in fact

a matter or not.

Pioneered by Heckman (1979), the sample selection model, also known as Heckman

model or Type II Tobit model (Amemiya, 1985), has been used asa state-of-the-art model

for correcting ordinary least squares estimates for a potential selection bias. A leading

example is given by wage regressions for women, where only a non-random part of the

entire population of women is working and, thus, included inthe sample. As it is well

known, not accounting for the non-randomness of the sample induces biased parameter

estimates. The most commonly employed methods to estimate these models are Heck-

man’s two-step approach and maximum likelihood.2 Both approaches involve the primary

regression equation (the equation of interest) and a selection equation of the Probit type

which controls for the sample selection mechanism.

However, in most studies using the sample selection model covariates are treated as

exogenous. In the cross section case, few attempts have beenmade to account for pos-

sibly endogenous covariates. Exceptions are Wooldridge (2010, ch. 19) and Chib et

al. (2009). Wooldridge (2010) essentially proposed a two-stage least squares approach,

where fitted values from a first stage regression of the endogenous covariate(s) on instru-

mental variables are inserted into the primary regression equation (which includes the

inverse Mill’s ratio term). Semykina and Wooldridge (2010)used the same methodology

when considering panel data models incorporating the simultaneous presence of endo-

geneity and sample selection. Further estimators for panelsample selection models with

endogeneity have been proposed by Vella and Verbeek (1999) and Das, Newey and Vella

(2003). While Vella and Verbeek (1999) considered conditional moment and conditional

2See Vella (1998) for an account of various methods to estimate models with sample selection bias.
Puhani (2000) discusses the usefulness of the two-step approach.
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maximum likelihood estimation, Das, Newey and Vella (2003)suggested nonparametric

estimators. Back in the cross section setting, Chib et al. (2009) employed a full informa-

tion maximum likelihood framework in a Bayesian setup, where estimation involves use

of the Gibbs sampler.

In this paper, we will focus on the cross section case. The main advantage of Wool-

dridge’s (2010) two stage least squares estimator is given by its computational simplicity.

A drawback, however, is that due to the inclusion of the (estimated) inverse Mills ratio

term the standard errors have to be adjusted, e.g. by applying bootstrapping techniques.

As usual in Bayesian estimation, the estimator proposed by Chib et al. (2009) requires

the incorporation of prior information and may, thus, be more appropriate in finite sam-

ples. Yet the disadvantage of this class of estimators is that they are computationally very

demanding.

A common drawback of the approaches by Wooldridge (2010) andChib et al. (2009)

is that both fail to account for endogeneity in the selectionequation as well. This may be a

serious problem since in many applications of the sample selection model, most explana-

tory variables are included into the primary equationand into the selection equation. The

importance of accounting for endogeneity in both equationswill be further investigated

in this paper by a series of Monte Carlo simulations.

Our proposed estimation framework generalizes the cross section approaches of Wool-

dridge (2010) and Chib et al. (2009) by accounting for endogeneity not only in the pri-

mary equation but in the selection equation as well. Furthermore, since we employ a

full information maximum likelihood framework, our estimator is asymptotically effi-

cient (provided that the distributional assumptions are correct) and we do not have to ad-

just standard errors (e.g., by bootstrapping techniques).This distinguishes our approach

from Wooldridge (2010). Finally, our approach is less computationally demanding than

that of Chib et al. (2009).

The estimation framework established in this paper is in thespirit of the estima-

tors for the Tobit model with endogenous covariates as provided by Smith and Blundell
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(1986) and the Probit model with endogenous covariates as provided by Rivers and Vuong

(1988); see also Newey (1987). The proposed test for exogeneity is in line with Smith

and Blundell (1986) and Rivers and Vuong (1988).

Besides developing the estimator and proposing some tests for exogeneity and for the

absence of sample selection bias, we also provide Monte Carlo evidence on the conse-

quences of (falsely) assuming exogeneity of covariates when, in fact, these are endoge-

nous. The Monte Carlo simulations indicate that the bias maybe substantial.

We further provide an empirical application to the estimation of a wage equation for

married women. This is the classical example for sample selection bias, and has also been

investigated by Chib et al. (2009) and Wooldridge (2010). Inthis example, we conjecture

that the variable education may be endogenous, since it may be affected by unobserved

variables such as ability, which itself affects the wage andthe probability of labor market

participation.

The paper is structured as follows. In section 2, the sample selection model with en-

dogenous covariates is developed. Section 3 establishes the full information maximum

likelihood estimation framework. In section 4, tests for exogeneity and for the absence

of sample selection bias are proposed. Section 5 contains the results of the Monte Carlo

simulations designed to indicate the bias of not accountingfor endogeneity. Section 6 con-

tains the empirical application to the estimation of a wage equation for married women.

Finally, section 7 gives conclusions.
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2. The Sample Selection Model with Endogenous Covariates

The model is given by

y∗i = X1iβ1+X2iβ2+Ciβ3+ui ≡ Xiβ +ui (2.1)

z∗i =W1iγ1+W2iγ2+Ciγ3+vi ≡Wiγ +vi (2.2)

X2i = [X1i,W1i ]∆1+Z1i∆2+ ε1i ≡ Z̃1i∆+ ε1i (2.3)

W2i = [X1i,W1i ]Λ1+Z2iΛ2+ ε2i ≡ Z̃2iΛ+ ε2i (2.4)

Ci = [X1i ,W1i ]ϒ1+Z3iϒ2+ ε3i ≡ Z̃3iϒ+ ε3i (2.5)

zi = 1(z∗i > 0) (2.6)

yi = y∗i 1(zi = 1) (2.7)

i = 1, . . . ,n.

The first equation is the primary equation (equation of interest), where the latent depen-

dent variabley∗i is related to a(1×K1)-vector of exogenous explanatory variables,X1i, to

a(1×K2)-vector of endogenous explanatory variables only includedin the primary equa-

tion but not in the selection equation,X2i , and to a(1×P)-vector of endogenous explana-

tory variables included in the primary and the selection equation,Ci . The second equation

is the selection equation, where the latent variablez∗i is related to a(1× L1)-vector of

exogenous explanatory variables,W1i , to a (1× L2)-vector of endogenous explanatory

variables,W2i only included in the selection equation but not in the primary equation, and

to Ci. In equations (2.3) to (2.5) it is assumed that the endogenous explanatory variables

can be explained by a(1×M1)-vector, a(1×M2)-vector and a(1×M3)-vector of instru-

mental variables,Z1i , Z2i andZ3i , respectively. Equation (2.6) expresses that only the sign

of z∗i is observable. Finally, equation (2.7) comprises the selection mechanism, i.e. the

latent variabley∗i is only observed if the selection indicatorzi is equal to one. Equations
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(2.1), (2.2), (2.6), and (2.7) build up the framework of the sample selection model without

endogeneity as presented in many textbooks (e.g., Davidsonand MacKinnon, 1993, pp.

542-543). The additional feature in equations (2.3) to (2.5) is that some of the covariates

(X2, W2 andC) in the primary and the selection equation are endogenous, i.e. correlated

with the error termsu andv. We assume that for each of these endogenous variables there

exist instrumental variablesZ1, Z2 andZ3 which are not correlated with any error term in

the model. For proper identification, the selection equation is supposed to contain at least

one explanatory variable which is not included in the primary equation.

To complete the model, it is assumed that the vector of error terms(ui ,vi ,ε ′1i,ε
′
2i ,ε

′
3i)

′

is distributed according to

























ui

vi

ε ′1i

ε ′2i

ε ′3i

























∼ NID













0,



















σ2
u ρσuσv

ρσuσv σ2
v






Ω′

Ω(J×2) Σ(J×J)

























, (2.8)

where NID denotes “normally and independently distributed”, J ≡ K2+L2+P, and the

distribution should be interpreted as conditional on all exogenous variables (the condi-

tioning has been omitted for the ease of notation). The covariance matrix of the error

terms consists of four parts. The upper left part is the covariance matrix attributed to the

error terms of the primary and selection equation, respectively, whereσ2
u andσ2

v denote

the variances ofu andv, andρ denotes the correlation coefficient. If there was no concern

about endogeneity, inference would be based solely on this part of the covariance matrix,

as it is common in the standard sample selection model. However, the (potential) pres-

ence of endogeneity is indicated by the(J×2)-matrix Ω, which captures the influence

of unobserved factors which jointly affect the dependent variables in equation (2.1) and

(2.2) and the endogenous explanatory variables. Note that endogeneity is absent if and

only if Ω is equal to the null matrix. Finally, the error terms attributed to the endogenous
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explanatory variables have covariance matrixΣ whose dimension is(J×J).

Note that it is assumed that the distribution of the endogenous covariates can be rea-

sonably approximated by a normal distribution, which favors continuous regressors and

excludes binary regressors.

3. Full Information Maximum Likelihood Estimation

First, note that the conditional distribution of(ui ,vi)
′ given(ε1i ,ε2i ,ε3i) is given by







ui

vi







∣

∣

∣

∣

∣

∣

∣

ε1i ,ε2i ,ε3i ∼ NID

(

Ω′Σ−1
[

ε1i ,ε2i,ε3i

]′
,B

)

(3.1)

where

B≡







σ2
u ρσuσv

ρσuσv σ2
v






−Ω′Σ−1Ω. (3.2)

Define

Ψ ≡











ψ11
(1×K2)

ψ12
(1×L2)

ψ13
(1×P)

ψ21
(1×K2)

ψ22
(1×L2)

ψ23
(1×P)











(2×J)

≡ Ω′Σ−1 (3.3)

Γ ≡







σ̃2 ρ̃σ̃

ρ̃σ̃ 1






≡







σ2
u ρσuσv

ρσuσv σ2
v






−Ω′Σ−1Ω, (3.4)

where the lower right element ofΓ has been set equal to unity due to normalization.

Therefore, equation (3.1) can be recast as







ui

vi







∣

∣

∣

∣

∣

∣

∣

ε1i ,ε2i ,ε3i ∼ NID













ψ11ε ′1i +ψ12ε ′2i +ψ13ε ′3i

ψ21ε ′1i +ψ22ε ′2i +ψ23ε ′3i






,







σ̃2 ρ̃σ̃

ρ̃σ̃ 1












, (3.5)
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which resembles the (unconditional) joint error distribution of the sample selection model

without endogeneity (except for the non-zero means).3

Then, the likelihood function can be written as the product of a conditional distribution

which resembles the (unconditional) likelihood function of the sample selection model

without endogeneity and the joint distribution of the errorterms (ε1,ε2,ε3). Thus, the

log-likelihood function is given by

l(θ) = ∑
zi=0

log{Φ(−Wiγ −ψ21ε ′1i −ψ22ε ′2i −ψ23ε ′3i)}

+ ∑
zi=1

log{σ̃−1φ(σ̃−1(yi −Xiβ −ψ11ε ′1i −ψ12ε ′2i −ψ13ε ′3i))}

+ ∑
zi=1

log{Φ((1− ρ̃2)−1/2[Wiγ +ψ21ε ′1i +ψ22ε ′2i +ψ23ε ′3i

+ ρ̃σ̃−1(yi −Xiβ −ψ11ε ′1i −ψ12ε ′2i −ψ13ε ′3i)])}

− n
2

log|Σ|− 1
2

n

∑
i=1

[

ε1i ε2i ε3i

]

Σ−1
[

ε1i ε2i ε3i

]′
, (3.6)

whereθ ≡ (β ′,γ ′, ρ̃ , σ̃ ,vec(Ψ)′,vech(Σ)′,vec(∆)′,vec(Λ)′,vec(ϒ)′)′,

ε1i = X2i − Z̃1i∆ (3.7)

ε2i =W2i − Z̃2iΛ (3.8)

ε3i =Ci − Z̃3iϒ, (3.9)

Φ(·) denotes the standard normal cumulative distribution function andφ(·) the standard

normal probability density function.

The FIML estimator of the sample selection model with endogenous covariates is thus

given by

θ̂ = argmax
θ

l(θ). (3.10)

3The approach undertaken here to accommodate the endogeneity problem has been called “control func-
tion approach” in the literature (see, e.g., Wooldridge, 2010, pp. 126-29).
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4. Testing for Exogeneity and the Absence of Sample Selection Bias

Both the presence of exogeneity as well as the absence of sample selection bias can

be tested relatively straightforwardly using Wald tests. For instance, if the null hypothesis

claims that there is no endogeneity at all (theΨ-matrix is the null matrix), the test statistic

will be given by

WΨ = vec(Ψ̂)′(Asy.Cov[vec(Ψ̂)])−1vec(Ψ̂)∼ χ2(2J), (4.1)

where Asy.Cov[vec(Ψ̂)] denotes the asymptotic covariance matrix of vec(Ψ̂). Under suit-

able regularity conditions (for instance, cf. Amemiya, 1985, pp. 120-127), this asymptotic

covariance can be obtained by using the fact that

√
n(θ̂ −θ0)

d−→ N (0,−H
−1), (4.2)

whereH = n−1E
(

∂ 2l(θ0)
∂θ∂θ ′

)

andθ0 is the true value of the parameter vector.

In a similar fashion it is possible to test significance of single elements of theΨ-matrix

as well as joint significance of some elements.

The Wald statistic for testing for the absence of sample selection bias (̃ρ = 0) is given

by

Wρ̃ =
ˆ̃ρ2

Asy.Var( ˆ̃ρ)
∼ χ2(1), (4.3)

which can be replaced by a simple significance test forρ̃ . The reason for employing̃ρ

instead ofρ to test for the absence of sample selection bias is motivatedby the consid-

eration thatρ̃ measures sample selectionafter controlling for endogeneity. Thus,̃ρ only

contains the part of the correlation betweenu andv which isnot due to the endogeneity

of some covariates.4

4This can also be deduced from the likelihood function (3.6).If ρ̃ = 0, then consistent parameter
estimation can be done by maximizing the likelihood function of both the primary equation and the selection
equation separately, after the endogeneity corrections have been included into these equations. However,
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5. Monte Carlo Results

In order to gauge the bias which occurs if one does not accountfor endogeneity, we

conducted some Monte Carlo simulations whose results are presented in table 1.

The first column of table 1 contains the specification. We distinguish between four

benchmark cases. In the first case, endogeneity is only present in the primary equation.

In particular, it is assumed that

y∗i = .2 +.4X1i +.9X2i +ui

z∗i = 1 +.7W1i +vi

X2i = .5 +1.5X1i −.2W1i +.7Z1i +ε1i

and

Cov[(ui,vi ,ε1i)
′] =













1

.9 1

.5 .4 2













.

Note that we have assumed a relatively high correlation between the primary and the

selection equation. Hence, we focus our attention on situations where sample selection

bias is indeed a problem.

In the second case, endogeneity is only present in the selection equation:

y∗i = .2 +.4X1i +ui

z∗i = 1 +.7X1i +.3W2i +vi

W2i = .5 +1.5X1i +.7Z2i +ε2i

unless the matrixΣ has a special structure, this approach will be inefficient ingeneral.
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and

Cov[(ui,vi ,ε2i)
′] =













1

.9 1

.5 .4 2













.

In the third case, there is one common variable in both equations which is endogenous:

y∗i = .2 +.4X1i +.9Ci +ui

z∗i = 1 +.7W1i +.3Ci +vi

Ci = .5 +1.5X1i −.2W1i +.7Z3i +ε3i

and

Cov[(ui,vi ,ε3i)
′] =













1

.9 1

.5 .4 2













.

Finally, in the fourth case it is assumed that both equationsinclude an endogenous

variable which is exclusive for each equation:

y∗i = .2 +.4X1i +.9X2i +ui

z∗i = 1 +.7X1i +.3W2i +vi

X2i = .5 +1.5X1i +.7Z1i +ε1i

W2i =−2 +1.8X1i +.6Z2i +ε2i

and

Cov[(ui,vi ,ε1i,ε2i)
′] =



















1

.9 1

.5 .4 2

.4 .5 1 2



















.
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Throughout,X1i , Z1i , Z2i andZ3i , i = 1, . . . ,n, are scalars which have been simulated

from a standard normal distribution. For each of the four cases, these random numbers

have been drawn once and kept fixed during simulation. In total, each simulation en-

compasses 1000 repetitions in which parameter estimates have been computed. Table 1

presents the mean of these estimates over the repetitions, along with the corresponding

standard deviations.

In order to gauge the finite-sample performance of the estimator outlined in section 3,

table 1 contains simulation results for different sample sizes. For each sample size, table

1 displays the results for the FIML estimator presented in section 3 (“IV”) and contrasts

these results with those obtained when using the ordinary estimator for the sample selec-

tion model which does not account for endogeneity (“non-IV”). To save space, only the

estimates for the parameters of the primary equation and selection equation are presented.

In specification (i) where there is only one endogenous variable included in the pri-

mary equation, the IV estimator performs well with respect to the estimates of the primary

equation, even forn= 100. However, the estimates for the selection equation are upward

biased in finite samples; this property is common in all specifications (i)-(iv). In spec-

ification (ii) where there is only one endogenous variable inthe selection equation, the

estimator for the primary equation does well forn ≥ 200. This is also true for specifi-

cation (iii) with a common endogenous variable in both equations. When each equation

contains an exclusive endogenous variable (specification (iv)), good results are obtained

for n≥ 500.

On the contrary, in most cases the non-IV estimator yields severely biased estimates

of the parameters of the primary equation among all specifications. For instance, for a

sample size ofn= 1000 the bias ranges from 13 to 248.1 percent. However, the estimates

of the selection equation are sometimes relatively close totheir true values (specifications

(i) and (iii)). This notwithstanding, note especially thatthe estimates of the parameters of

the main equation are severely biased even if endogeneity isonly present in the selection

equation (specification (ii)). This result, which is due to the nonlinearity of the underlying
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model, has not gained much attention in the literature yet.

Overall, the results show that the FIML-IV estimator from section 3 outperforms the

ordinary estimator for the sample selection model, especially with respect to the param-

eters in the primary equation and in case of large sample sizes. Moreover, the results

indicate that the bias in the parameter estimates may be substantial if one does not ac-

count for endogeneity.

6. Empirical Application

In the following, we employ the labor supply data used by Mroz(1987) as well as data

from the German Socio-Economic Panel (GSOEP) of 2008 to givetwo examples where

the methods developed in this paper can be applied.

For both data sets, we estimated a wage equation for married women. However, as

a wage equation can only be fitted to the subsample of women whoare actually work-

ing, a simple regression with the women’s wage as the dependent variable may yield

inconsistent parameter estimates due to the possibility ofsample selection. Hence, the

appropriate model to estimate the wage equation should be a sample selection model. A

variable which is commonly included as an explanatory variable is education. However,

there might be some background variables like ability whichcannot be observed and,

thus, are captured within the error terms. These variables are likely to affect not only

wages and labor force participation, but education as well.Therefore,a priori education

should not be regarded as exogenous. The consequences of falsely treating an endoge-

nous variable like education as exogenous have been illustrated in the preceding section;

hence, estimates from the ordinary sample selection model may be severely biased.

We estimated the following model: The primary equation contains the natural loga-

rithm of the hourly wage as its dependent variable; explanatory variables are experience,

experience squared and education. The selection equation includes experience, experi-

ence squared, non-wife income, age, number of children ageduntil 6 years of age in the

household, number of children aged 6 years or older in the household and education.
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Since education is treated as endogenous, instrumental variables are needed for estima-

tion. Following Wooldridge (2010), we chose mother’s education, father’s education and

husband’s education as instrumental variables for education.5 Means and standard devia-

tions of these variables are presented in table 2.

Results for the data of Mroz are shown in table 3, while table 4presents the results

for the GSOEP data. In both tables, estimation results for the ordinary sample selection

model (“non-IV”) and the sample selection model with endogeneity (“IV”) are given. The

first part of these tables contains the parameter estimates for the variables of the primary

equation, as well as estimates of the selection parameterρ̃ and the endogeneity param-

eterψ11. This last parameter indicates whether endogeneity of education is relevant in

the primary equation. The second part presents the parameter estimates for the selec-

tion equation. Additionally included is the endogeneity parameterψ21, which indicates

whether endogeneity of education is relevant in the selection equation. Finally, the third

part includes the parameter estimates of the exogenous variables and instrumental vari-

ables with respect to education. In analogy with the instrumental variables terminology,

this part has been labeled “first stage”.

First, consider table 3. The results show significance of education in the primary

and the selection equation. Moreover, the instrumental variables for education employed

in the “first stage” are highly significant. The remaining variables possess the expected

signs. However, the estimates ofρ̃ , ψ11 andψ21 are not significantly different from zero,

indicating that there is neither a selection bias nor an endogeneity bias present.6 These

results are in line with those obtained by Wooldridge (2010). In this case, therefore,

applying OLS to the wage equation would be sufficient.

We now turn to the results for the GSOEP data (table 4). In thisexample, there is

indeed evidence for sample selection bias. In both the “non-IV” and “IV” setting, the

estimate ofρ̃ is substantial in absolute value and highly significant. Moreover, after en-

dogeneity in the education variable has been controlled for, the coefficient of education

5For the appropriateness of these instrumental variables, cf. the discussion in Card (1999), pp. 1822-26.
6In addition, joint significance ofψ11 andψ21 is rejected as well (p-value of 0.1907).
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in the primary equation changes from 0.069 to 0.1051. In the selection equation, the co-

efficient of education becomes insignificant. In this case, the endogeneity parametersψ11

andψ21 are highly significant, thus providing evidence for the endogeneity of education.

To summarize, the estimation results for the GSOEP data clearly show the importance

of controlling not only for sample selection bias but for theendogeneity of covariates as

well. In this example, the returns to education would have been severely underestimated

if one did only control for sample selection bias but not for endogeneity, thus confirming

the results of section 5.

7. Conclusion

In this paper we have developed a full information maximum likelihood estimation

framework for the sample selection model with endogenous covariates. Moreover, we

have established straightforward tests for exogeneity andthe absence of sample selection

bias.

Drawbacks of this estimation framework are that it crucially depends on the normal-

ity assumption and that it, therefore, does not encompass binary endogenous covariates.

However, modifications of normality would complicate the structure of the likelihood

function and thus take away some simplicity of the approach undertaken here, so these

issues have been ignored.

The main benefits of the framework are its simplicity and its asymptotic efficiency,

provided the distributional assumptions are satisfied. Moreover, in contrast to two stage

least squares approaches, no standard error adjustment is necessary.

As the Monte Carlo results of section 5 and the empirical examples from section 6

have shown, falsely ignoring endogeneity of covariates in sample selection models leads

to severely biased parameter estimates. This underlines the necessity to employ appro-

priate econometric models to account for these issues. Thispaper is an attempt to do

so.
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Table 1: Monte Carlo Results
Spec. Param. n= 100 n= 200 n= 500 n= 1000

IV non-IV IV non-IV IV non-IV IV non-IV

β1 = .2 .2397
(.1500)

.1409
(.1498)

.2031
(.0968)

.0934
(.0887)

.2028
(.0556)

.1168
(.0529)

.2014
(.0416)

.0988
(.0381)

β2 = .4 .4019
(.2439)

−.0191
(.1535)

.3947
(.1532)

.0396
(.0983)

.4023
(.0945)

.0338
(.0664)

.3988
(.0621)

.0379
(.0413)

(i) β3 = .9 .8991
(.1396)

1.1570
(.0781)

.9020
(.0933)

1.1412
(.0525)

.8978
(.0567)

1.1415
(.0347)

.9007
(.0381)

1.1404
(.0220)

γ1 = 1 1.1316
(.2492)

1.0201
(.1993)

1.1043
(.1467)

1.0101
(.1270)

1.1016
(.0867)

1.0086
(.0758)

1.0995
(.0625)

1.0087
(.0553)

γ2 = .7 .8567
(.2445)

.7483
(.2169)

.7895
(.1337)

.7067
(.1264)

.7724
(.0815)

.6744
(.0795)

.7688
(.0574)

.6707
(.0564)

β1 = .2 .3068
(.2070)

.6661
(.2250)

.2234
(.1203)

.6784
(.1531)

.2000
(.0597)

.6719
(.1178)

.2001
(.0395)

.6962
(.0642)

β2 = .4 .3082
(.1726)

.0520
(.1892)

.3818
(.1170)

.0181
(.1426)

.4009
(.0561)

.0340
(.1012)

.4000
(.0411)

.0128
(.0584)

(ii) γ1 = 1 1.1567
(.2989)

.9346
(.2554)

1.1254
(.1853)

.8766
(.1623)

1.1021
(.1085)

.8544
(.1093)

1.0967
(.0743)

.8541
(.0690)

γ2 = .7 .8226
(.5229)

.2775
(.3628)

.7896
(.3142)

.2177
(.2517)

.7743
(.1624)

.2391
(.1646)

.7708
(.1143)

.2292
(.0994)

γ3 = .3 .3685
(.3325)

.6418
(.2152)

.3451
(.1895)

.6291
(.1403)

.3316
(.0897)

.5854
(.0826)

.3250
(.0672)

.5851
(.0513)

β1 = .2 .2681
(.1695)

.1575
(.1742)

.2113
(.0987)

.0981
(.1015)

.2010
(.0588)

.0825
(.0570)

.2005
(.0431)

.0863
(.0392)

β2 = .4 .3874
(.2270)

.0147
(.1553)

.4091
(.1554)

.0145
(.1031)

.4007
(.0963)

.0327
(.0631)

.4012
(.0635)

.0348
(.0440)

(iii) β3 = .9 .8858
(.1339)

1.1484
(.0829)

.8893
(.0957)

1.1739
(.0588)

.8992
(.0592)

1.1724
(.0346)

.8977
(.0403)

1.1664
(.0238)

γ1 = 1 1.1446
(.2707)

1.0109
(.2044)

1.1222
(.1637)

.9984
(.1346)

1.1044
(.0969)

.9923
(.0861)

1.0987
(.0630)

.9819
(.0561)

γ2 = .7 .8557
(.2600)

.7658
(.2334)

.8053
(.1556)

.7422
(.1520)

.7760
(.0877)

.7292
(.0872)

.7711
(.0582)

.7180
(.0576)

γ3 = .3 .3569
(.1622)

.4696
(.1385)

.3380
(.0834)

.4160
(.0756)

.3324
(.0501)

.4256
(.0455)

.3286
(.0349)

.4216
(.0313)

β1 = .2 .4320
(.3394)

.3423
(.2752)

.2554
(.2044)

.2899
(.1967)

.1995
(.0835)

.2248
(.0876)

.1988
(.0601)

.2260
(.0649)

β2 = .4 .2738
(.3803)

.0267
(.2147)

.3687
(.2173)

.0735
(.1532)

.4053
(.1219)

.1103
(.0819)

.3994
(.0818)

.1036
(.0603)

(iv) β3 = .9 .8887
(.1856)

1.0489
(.0747)

.8965
(.1063)

1.0462
(.0480

.8983
(.0651)

1.0516
(.0304)

.9010
(.0429)

1.0514
(.0209)

γ1 = 1 1.2063
(.5953)

1.5246
(.39175)

1.1415
(.4180)

1.5172
(.2665)

1.0920
(.2316)

1.4562
(.1525)

1.0882
(.1597)

1.4517
(.1111)

γ2 = .7 .8397
(.5378)

.4488
(.2963)

.7793
(.3654)

.4218
(.1890)

.7665
(.2137)

.4216
(.1099)

.7599
(.1391)

.4254
(.0805)

γ3 = .3 .3724
(.2849)

.5504
(.1572)

.3450
(.1935)

.5326
(.1060)

.3281
(.1062)

.5056
(.0604)

.3278
(.0719)

.5041
(.0426)
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Table 2: Descriptive Statistics

Mroz GSOEP 2008

Variable Mean Std.dev. Mean Std.dev.
log wage 4.1777 3.3103 2.1304 0.4775
exper 10.6308 8.0691 17.1184 8.6946
educ 12.2869 2.2802 12.8439 2.6118
nwifeinc 20.1290 11.6348 33.9573 20.6718
age 42.5379 8.0726 43.8712 7.4560
kidslt6 0.2377 0.5240 0.2142 0.5043
kidsge6 1.3533 1.3199 0.5847 0.8524
motheduc 9.2510 3.3675 9.4564 0.9952
fatheduc 8.8088 3.5723 9.7009 1.3346
huseduc 12.4914 3.0208 13.0674 2.8157

Sample size 753 2143
No. of obs. with wage>0 428 1561
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Table 3: Estimation of a Wage Equation for Married Women - Mroz

non-IV IV

Primary Equation

const −0.5527∗∗ (0.2604) −0.2786 (0.3139)
exper 0.0428∗∗∗ (0.0149) 0.0449∗∗∗ (0.0151)
expersq −0.00008∗∗ (0.0004) −0.0009∗∗ (0.0004)
educ 0.1084∗∗∗ (0.0149) 0.0849∗∗∗ (0.0218)
ρ̃ 0.0141 (0.1491) 0.0248 (0.1492)
ψ11 0.0413 (0.0290)

Selection Equation

const 0.2664 (0.5090) 0.6084 (0.6522)
exper 0.1233∗∗∗ (0.0187) 0.1261∗∗∗ (0.0191)
expersq −0.0019∗∗∗ (0.0006) −0.0019∗∗∗ (0.0006)
nwifeinc −0.0121∗∗ (0.0049) −0.0105∗ (0.0053)
age −0.0528∗∗∗ (0.0085) −0.0543∗∗∗ (0.0087)
kidslt6 −0.8674∗∗∗ (0.1187) −0.8620∗∗∗ (0.1190)
kidsge6 0.0359 (0.0435) 0.0316 (0.0438)
educ 0.1313∗∗∗ (0.0254) 0.1046∗∗ (0.0406)
ψ21 0.0425 (0.0502)

“First Stage”

const 5.3947∗∗∗ (0.5826)
exper 0.0577∗∗∗ (0.0219)
expersq −0.0008 (0.0007)
nwifeinc 0.0147∗∗ (0.0058)
age −0.0051 (0.0098)
kidslt6 0.1269 (0.1298)
kidsge6 −0.0700 (0.0511)
motheduc 0.1307∗∗∗ (0.0224)
fatheduc 0.0951∗∗∗ (0.0212)
huseduc 0.3489∗∗∗ (0.0233)

*, ** and *** indicate significance at 1%, 5% and 10%, respectively. Standard errors in parentheses.
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Table 4: Estimation of a Wage Equation for Married Women - GSOEP 2008

non-IV IV

Primary Equation

const 1.3279∗∗∗ (0.1066) 0.8969∗∗∗ (0.1212)
exper −0.0048 (0.0069) −0.0083 (0.0067)
expersq 0.0002 (0.0002) 0.0003∗ (0.0002)
educ 0.0690∗∗∗ (0.0046) 0.1051∗∗∗ (0.0075)
ρ̃ −0.6512∗∗∗ (0.0710) −0.6890∗∗∗ (0.0578)
ψ11 −0.0598∗∗∗ (0.0099)

Selection Equation

const 0.4917 (0.3240) 1.3767∗∗∗ (0.3844)
exper 0.1728∗∗∗ (0.0160) 0.1714∗∗∗ (0.0161)
expersq −0.0019∗∗∗ (0.0004) −0.0019∗∗∗ (0.0004)
nwifeinc 0.0127∗∗∗ (0.0017) 0.0156∗∗∗ (0.0019)
age −0.0834∗∗∗ (0.0074) −0.0802∗∗∗ (0.0073)
kidslt6 −0.5693∗∗∗ (0.0827) −0.5040∗∗∗ (0.0810)
kidsge6 0.0193 (0.0380) 0.0222 (0.0377)
educ 0.1032∗∗∗ (0.0145) 0.0183 (0.0261)
ψ21 0.1259∗∗∗ (0.0315)

“First Stage”

const 1.1016∗ (0.5962)
exper 0.0264 (0.0203)
expersq −0.0011∗∗ (0.0005)
nwifeinc 0.0002∗∗∗ (0.0000)
age 0.0037 (0.0087)
kidslt6 0.3709∗∗∗ (0.1041)
kidsge6 −0.1051∗ (0.0546)
motheduc 0.2870∗∗∗ (0.0531)
fatheduc 0.3442∗∗∗ (0.0399)
huseduc 0.3664∗∗∗ (0.0179)

*, ** and *** indicate significance at 1%, 5% and 10%, respectively. Standard errors in parentheses.
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