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1 Introduction

Nowadays, there is intense discussion among researchers and policymakers on whether public
procurement can be used as an innovation policy tool (for overviews, see Edler and Georghiou,
2007; OECD, 2011). For instance, some major initiatives have been launched at the European level
to encourage public authorities to focus their procurement spending on innovative products and
services (EU, 2010). It is argued that such an increase in the size of innovative procurement markets
can ‘fill half of the EU-US R&D investment gap’ (EU, 2011, p. 3). Several European Member
States already set aside part of their procurement budget for purchasing innovative solutions
from the private sector (for example, Belgium, United Kingdom, the Netherlands), or—such as
Germany—plan to do so in the near future (BMWi, 2012).

The idea that demand can affect innovation is not new. John Stuart Mill pointed out the link
between market opportunities and innovation: ‘The labor of Watt in contriving the steam-engine
was as essential a part of production as that of the mechanics who build or the engineers who work
the instrument; and was undergone, no less than theirs, in the prospect of a remuneration from the
produce’ (Mill, 1848, p. 41). On the one hand, sales play important role in financing R&D. On the
other hand, the size of the (expected) market encourages private R&D and the commercialization
of new ideas (for instance, Gilfillan, 1935; Schumpeter, 1942).

The first comprehensive empirical evidence for the role of demand in innovation, which led to
the so-called the demand-pull hypothesis, was provided by Schmookler (1966). Using US data, he
showed that patents tend to lag behind real output. From this observation it was inferred that
inventive activities are driven by profit motives. Similarly, Griliches (1957) provides evidence that
technology adoption depends on market size. Moser (2005) analyzes innovation data from catalogs
of two 19th century World Fairs and finds that market size influences both the total number of
innovations and their distribution across industries. Acemoglu and Linn (2004) and Rosenberg
(1969) suggest that demand ‘steers’ firms to address certain problems. Also, endogenous-growth
theory acknowledges the importance of profit incentives and market size for innovation (Aghion
and Howitt, 1992; Romer, 1990; Young, 1998).

Yet, most of the experience concerning the influence of government demand on innovation stems
from US defense and space programs, often in so-called ‘big science initiatives.’ The argument is
that the US government guaranteed a market for products such as semiconductors, large passenger
jets, the Internet, and the GPS and thereby induced private-sector R&D investment on a large
scale (for instance, Cohen and Noll, 1991; Mowery, 2008; Nelson, 1982; Ruttan, 2006). Edquist
and Hommen (2000) report several cases of public procurement creating the initial market for
a number of products and services in Europe. This case-study evidence is complemented by
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econometric studies at the firm level that point toward a positive impact of government purchases
on corporate R&D (Draca, 2012; Lichtenberg, 1987, 1988) and firms’ sales with new products
(Aschhoff and Sofka, 2009).

Notably absent in the existing literature, however, is a discussion how the types of products
and services purchased by the government, and especially their technological content, affect firms’
innovative behavior. This lack of research reporting is surprising for a number of reasons. On
the one hand, there is evidence that public purchases are unevenly distributed across industries
(Marron, 2003; Nekarda and Ramey, 2010; Ramey and Shapiro, 1998). At the same time, Dalpé,
DeBresson and Xiaoping (1992), Geroski (1990), and Mazzucato (2011) indicate that the govern-
ment has often been a main (and early) customer of technology-intensive products, while Hart
(1998) argues that these products bear the greatest potential for the innovation stimulus of pro-
curement. On the other hand, Dalpé, DeBresson and Xiaoping (1992) and Nelson and Langlois
(1983) show that the government is a major driver of the development of industries in which it is an
important customer. Related to this, Cozzi and Impullitti (2010) provide descriptive evidence that
shifts in the composition of US public investment toward Equipment and Software are correlated
with the share of corporate R&D in the US GDP. However, although previous research suggests
that the technological content of public demand might influence the amount of R&D undertaken in
the economy, the existing evidence is rather anecdotal and the underlying mechanisms are largely
unclear.

In this paper, we econometrically establish a robust causal link between the technological
content of public procurement and private-sector R&D at the aggregate level. We embed our em-
pirical work in a theoretical model thats highlights the mechanism through which the allocation
of government purchases across industries affects firms’ R&D activities. The model builds upon
the traditional literature on endogenous growth with quality-improving innovation (Aghion and
Howitt, 1992; Grossman and Helpman, 1991a,b). However, it additionally incorporates the govern-
ment as a source of demand and explicitly allow government purchases to vary across heterogeneous
industries, differing in their technological content. In the theoretical analysis, technology-intensive
industries (hereafter high-tech industries) are modeled as industries in which the size of techno-
logical improvement (that is, quality jump) is higher than the economy-wide average (Cozzi and
Impullitti, 2010).

Our main theoretical result indicates that an increase in the share of public purchases in high-
tech industries stimulates private-sector R&D in the whole economy. The underlying mechanism
is as follows: In the model, higher quality jumps imply higher markups over marginal cost and,
thus, higher innovation rewards. Hence, a shift in government procurement toward high-tech
industries translates into larger expected profits for successful innovators in these industries, and
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firms respond by devoting relatively more resources to R&D. The increase in R&D is permanent,
because the marginal productivity in the R&D sector is decreasing, so that relatively more research
efforts are needed to innovate after the government increased the technological intensity of its
purchases.

Our model is related to that developed in Cozzi and Impullitti (2010), but is novel in several
regards. While Cozzi and Impullitti (2010) analyze the effects of the technological content of
public procurement on the formation of skills and the skill premium, we focus on its impact on
private-sector R&D. Moreover, we follow recent developments in the endogenous-growth literature
by explicitly modeling the heterogeneity of industries in their technological intensity (Minniti,
Parello and Segerstrom, Forthcoming). This allows us to derive an analytical expression for the
relationship between the technological content of government demand and private-sector R&D that
provides the basis for our empirical analysis.

We test the predictions of the theoretical model at the level of the US states for the period
1997–2009. In particular, we relate corporate R&D in a state to the share of procurement contracts
in high-tech industries allocated by the federal government to that state. Using administrative
data provided by the US General Services Administration (GSA), we construct a unique panel
dataset that contains all federal procurement prime contracts above the micropurchase threshold,
cross-classified by year, state, and type of industry (high-tech versus all others). Our measure of
corporate R&D is weekly hours worked in R&D-related occupations in the private sector, obtained
from the Current Population Survey.

To assess the relationship between the technological intensity of government purchases and
private-sector R&D, we apply both panel fixed effects (FE) and instrumental variable (IV) tech-
niques, the latter accounting for potential biases due to omitted variables and reverse causality.
In the IV approach, we use (changes in) the coincidence between a state governor’s party and the
party holding a majority in the Congress as a source of exogenous variation in the technological
content of federal procurement in a state. The instrument is based on the well-established re-
sult that local politicians use federal funds to reward their voters and to increase their re-election
chances (for instance, Aghion et al., 2009; Cohen, Coval and Malloy, 2011). Attracting procure-
ment contracts in high-tech industries is particularly appealing when seeking to maximize electoral
support, because these contracts receive more public attention than procurement in general does
(Cohen and Noll, 1991; Dalpé, 1994). However, to divert federal procurement contracts to their
states, governors need support from a ‘friendly’ party that holds the majority in the Congress
and, thus, in the committees authorizing and appropriating funds. Since both the timing and the
outcome of a Congressional election are exogenous to a specific state, the positive shock to the
amount of federal procurement in high-tech industries that a state experiences when its governor’s
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party and the party in control of the Congress become aligned is independent of private-sector
R&D investment decisions in that state.

The results of the empirical analysis support the predictions of the theoretical model. The FE
estimates indicate an elasticity of private R&D with respect to the share of federal procurement in
high-tech industries of approximately 0.026. Put differently, an increase by 1 standard deviation of
the high-tech share of procurement in an average state corresponds to an increase of approximately
81 thousand hours weekly worked in R&D in the private sector, which is equivalent to 1800 full-time
R&D employees. The results of the FE estimation are robust under a range of specifications. For
instance, we include detailed industry controls to account for changes in the within-state industry
composition. We also show that the observed pattern is not driven by influential outliers.

The IV approach yields point estimates of the procurement high-tech share of the same magni-
tude as the FE coefficients, but with far larger standard errors. Taking into account that exogeneity
tests provide no evidence for endogeneity of the technological content of procurement and the loss
in efficiency that IV estimates typically entail, we conclude that the FE results provide unbiased
estimates of the impact of the technological intensity of public procurement on corporate R&D.

The remainder of the paper is organized as follows. Section 2 introduces the theoretical model
that illustrates the mechanisms through which the technological content of government purchases
influences corporate R&D investment. In Section 3, we discuss the specification and estimation
issues in the empirical assessment of the model’s implications. In Section 4, we describe the data
and the construction of the key variables. Section 5 presents our empirical findings. Section 6
summarizes, and concludes with implications for policy and research.

2 The Model

We develop a quality-ladder model of endogenous growth to link the technological intensity of
public procurement to corporate R&D at the aggregate level. We extend earlier models in this
tradition (for instance, Aghion and Howitt, 1992; Grossman and Helpman, 1991a,b) by explicitly
accounting for both the government as an additional source of demand, and the heterogeneity of
industries in terms of their quality jumps (see Cozzi and Impullitti, 2010, for a similar approach).
In particular, to overcome the symmetric treatment of industries, we assume the size of the quality
jump after a successful innovation to be probabilistic and industry-specific. In line with recent
work by Minniti, Parello and Segerstrom (Forthcoming), the realization of each R&D race is drawn
independently from a Pareto distribution. Modeling the size of the quality jump to obey a Pareto
distribution is supported by the empirical literature on the distribution of patent values (Harhoff,
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Scherer and Vopel, 2005; Scherer, 1965).1

The economy in the model is closed and consists of two sectors: a final goods (or manufacturing)
sector and a research sector. To avoid unnecessary complications, and to highlight the basic forces
at work, labor is the only input factor used in both sectors and is not further differentiated. There
is a continuum of industries in the unit interval indexed by ω ∈ [0, 1], with each industry producing
exactly one consumption good (or product line). The outputs of the different industries substitute
only imperfectly for each other. The set of commodities is fixed over time. Innovation is vertical,
improving the quality of a consumption good, which requires the R&D efforts of firms targeted
at that particular product. Let the discrete variable j ∈ {0, 1, 2, ...} denote the quality level. An
innovation in industry ω leads to a quality jump from j to j + 1. The quality increments, denoted
by λ, are independent of each other. Thus, an improvement in one industry does not induce an
improvement in another industry.

On the consumer side, each household is modeled as a dynastic family whose size grows at an
exogenous rate n. Household members’ labour supply is inelastic with respect to their wage. The
total number of individuals at time t = 0 is normalized to unity. Thus, the working population at
time t equals L(t) = ent. The inter-temporal preferences of a representative household are given
by:

U(t) =
ˆ ∞

0
ente−ρt log u(t)dt, (1)

where ρ denotes the rate of time preference, and log u(t) represents the flow of utility per
household member at time t. An individual’s instantaneous utility is represented by:

log u(t) =
ˆ 1

0
log

jmax(ω,t)∑
j=0

λj(ω, t)d(j, ω, t)
 dω, (2)

where d(j, ω, t) is the consumption of quality j in product line ω at time t. Therefore, the
utility derived by an individual from consumption equals the sum of the quality-weighted amounts
of consumption in all industries ω ∈ [0, 1]. The preferences in (2) imply that a consumer enjoys 1
unit of good ω that was improved j times as much as λj(ω, t) units of the same good as if it had
never been improved; λ(ω, t) > 1. The logarithmic functional form in (2) is chosen for simplicity
and does not affect the main results.

The representative household maximizes lifetime utility (1) subject to the following inter-

1 These results are very applicable to our model, because we assume that a patent is granted for each successful
innovation. In a methodological framework related to ours, Jones (2005) and Kortum (1997) model the realization
of new ideas (interpreted as productivity levels or production techniques) to be Pareto-distributed.
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temporal budget constraint:

B(0) +
ˆ ∞

0
w(s)e−

´ t
0 [r(τ)−n]dτds−

ˆ ∞
0

e−
´ t

0 [r(τ)−n]dτT (s)ds

=
ˆ ∞

0
e−
´ t

0 [r(τ)−n]dτc(s)ds,

where B(0) is the ex ante endowment of asset holdings of a representative household, w(t) is the
individual wage rate, T (t) is a per capita lump-sum tax, and c(t) is the flow of individual consumer
expenditures. Under the assumption that when a household member is indifferent between two
quality vintages, the higher-quality product is bought, then the household maximization problem
yields the following static demand function:

d(j, ω, t) =


c(t)

p(j,ω,t) j = jmax(ω, t)
0 otherwise

 , (3)

where p(j, ω, t) is the price of product ω with quality j at time t.
The dynamic optimization problem, that is, the allocation of lifetime expenditures over time,

consists of maximizing the discounted utility (1) subject to (2), (3), and the inter-temporal budget
constraint. The solution of the optimal control problem obeys the Keynes-Ramsey rule:

ċ(t)
c(t) = r(t)− ρ. (4)

Because preferences are homothetic, aggregate demand in industry ω at time t is given by
D(j, ω, t) = d(j, ω, t)L(t).

At any point in time, only one firm possesses the technology to produce 1 unit of the highest-
quality product using 1 unit of manufacturing labor, Y = LY . The best-practice firm has a quality
advantage of λ over the next best firm in the industry. The optimal strategy for the quality leader
is to set a limit price pL(ω, t) that prevents any other firm in the industry from offering its product
without losses. The highest price the quality leader can set to capture the entire industry market
is their lead over the next best quality follower, implying pL(ω, t) = λ(ω, t)w = λ(ω, t). If the
quality leader sets a price above the limit price, they will immediately lose all of their customers.

Government procurement is financed by lump-sum tax revenues and is strictly non-negative
in all industries at any point in time. The government budget is assumed always to be balanced.
Denoting per capita public demand in industry ω at time t by G(ω, t), the quality leader in each
industry earns a profit flow:
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π (ω, t) = [λ (ω, t)− 1]×
[
c(t)L(t)
λ (ω, t) + L(t)G (ω, t)

λ (ω, t)

]
, (5)

where λ(ω, t)
[
c(t)L(t)
λ(ω,t) + L(t)G(ω,t)

λ(ω,t)

]
corresponds to the total demand (sales to private and public

customers) in industry ω. The factor [λ (ω, t)− 1] is the markup over the marginal cost, with
λ(ω, t) being the degree of monopoly power.

There is free entry into R&D, so firms can devote their research effort to developing products
in any industry. It is important to notice, however, that firms target their R&D resources only to
industries in which they are not the current quality leader; this is so that they do not cannibalize
their current monopoly rents (Arrow, 1962). Labor is the only input used in R&D, and it can
be freely allocated between manufacturing and research, implying that all workers earn the same
wage w = 1. The aim of each firm’s R&D efforts is superior quality and to monopolize the market
by achieving a patent of infinite patent length. All firms have access to the same R&D technology.
In industry ω at time t, a firm employing li(ω, t) units of labor in R&D faces a Poisson arrival rate
of innovation, Ii(ω, t), equal to:

Ii(ω, t) = Ali(ω, t)
X(ω, t) , (6)

where A > 0 is a given technology parameter, and X(ω, t) is a function that captures the
exogenously given industry-wide difficulty of conducting R&D.

The innovation process in (6) is stochastic, with Ii(ω, t)dt being the instantaneous probability
of winning the R&D race and thus becoming the next quality leader. We follow Jones (1995) and
Segerstrom (1998) in assuming that the R&D difficulty in an industry grows at a rate proportional
to the arrival of innovation (‘no scale effect’ property):

Ẋ(ω, t)
X(ω, t) = µI(ω, t), (7)

where I(ω, t) = ∑
i Ii(ω, t) denotes the industry-wide instantaneous arrival rate of the innova-

tion, µ > 0 is an exogenously given parameter that captures the scientific opportunities in the
economy, and X(ω, 0) = X0 for all ω.

Once a firm succeeds in finding an innovation, the size of that innovation is drawn from a
Pareto distribution with a shape parameter of 1/κ, κ ∈ (0, 1), and a scale parameter equal to
1 (Minniti, Parello and Segerstrom, Forthcoming). The probability density function of a Pareto
distribution with these properties reads:
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g(λ) = 1
κ
λ−

1+κ
κ , λ ∈ [1,∞). (8)

For analytical tractability, we assume that the initial distribution of λ values is given by g(λ) at
t = 0, and it does not change over time as the R&D dynamics start and successfully innovating firms
draw new values of λ. Notice further that X(ω, t) = X0 for all ω implies that I(ω, 0) = I0. Hence,
a symmetric equilibrium path must exist along which I(ω, t) = I(t) and X(ω, t) = X(t) for all ω.
As is common in the literature on quality-improving innovation and growth, in the further analysis
we focus on this symmetric equilibrium.

The government allocates procurement across industries according to the following rule (Cozzi
and Impullitti, 2010):

G(ω, t) = Ḡ+ γε(ω, t), 0 ≤ γ ≤ 1, (9)

where

Ḡ ≡
ˆ 1

0
G(ω)d(ω),

ε ≡

 −ε1 for λ (ω, t) < 1
1−κ

ε2 for λ (ω, t) ≥ 1
1−κ

,

0 < ε1 < Ḡ,

0 < ε2 < Ḡ.

In (9), Ḡ denotes the average per capita public procurement, that is, the amount of public
demand a quality leader in industry ω will receive if the government spreads its expenditures G(ω)
evenly across industries.2 The parameter γ determines the technological content of procurement.
In particular, γ indicates the portion of government demand in industries with quality jumps above
or below the average in the economy. An equal treatment of all industries occurs for γ = 0. γ > 0
implies that public purchases in industry ω will be higher (lower) than in the symmetric case if the
quality improvement in this industry is greater (smaller) than the average economy-wide quality
increment. For simplicity, we assume that once an industry experiences a quality jump above
(below) the economy-wide average and γ 6= 0 holds, the government spends more (less) in this
industry, irrespective of how far above (below) the average the quality jump is in this industry.

2 Because there is a continuum of industries indexed on the unit interval, average values in the model equal total
values.
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It is straightforward to show that the strictly positive values ε1 and ε2, which indicate how much
government purchases in ‘low-jump’ or ‘high-jump’ industries deviate from the average, cannot be
chosen independently (see Appendix A.1). As the distribution of the λ values does not change
over time, there is always the same share of industries with quality increments above or below the
average. Moreover, to highlight the effects of the technological content of government purchases,
we assume that Ḡ is constant (unless otherwise noted).

Under the assumption of no arbitrage on the stock market, and using (9) to solve for the
expected profits earned by a successful innovator (see Appendix A.2), we obtain the following
expression for the discounted value of the expected profit flow of a firm winning an R&D race:

υe(ω, t) =
κ

1+κL(t)[c(t) + Ḡ+ γΓ]
r(t) + I(t)− ẋ(t)

x(t) − n
, (10)

where Γ ≡ ε2
(
1
/[

1− (1− κ)1/κ
]
− 1

)
> 0 and x(t) ≡ X(t)/L(t) is a measure of the rela-

tive, that is, population-adjusted, R&D difficulty. Because the RHS of (10) does not contain any
industry-specific variables, υe(ω, t) = υe(t) is the average market valuation of a successful innova-
tion in the economy. In (10), the effect of ‘creative destruction’ is revealed; the more research that
occurs in an industry, the shorter, ceteris paribus, is the duration of the accruing monopoly profits
and the smaller are the incentives to innovate. By subtracting the rate of population growth, n,
in the denominator of (10), we also take into account that aggregate consumer markets and, thus,
profits earned by a successful innovator increase with a growing population.

Equation (10) already highlights the market-size effect in innovation: the greater Ḡ is, that is,
the larger the government market is for a new product, the more profitable it is to be the producer of
that good. Another important implication of (10) is that the profitability of a successful innovation
in the economy increases in γ. In other words, it is not only the size of government demand that
matters for the valuation of a successful innovator, but also how government expenditures are
distributed across industries. Specifically, the more that the government purchases in industries
with relatively high quality jumps, the higher the rewards for successful innovation activities
become on average. However, although there is a positive effect of the market size on expected
firm value, it is still not clear whether there will also be more research effort to acquire this position.
As we will show below, an increase in the size of the government market that affects all industries
symmetrically will not stimulate additional R&D in this economy.

The R&D equilibrium condition can be derived from the condition for profit maximization in
R&D and (10) as:
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x(t)
A

=
κ

1+κ

[
c(t) + Ḡ+ γΓ

]
r(t) + I(t)− ẋ(t)

x(t) − n
, (11)

while the resource constraint (that is, the labor-market clearing condition) of the economy reads
(see Appendix A.3):

1 = c(t) + Ḡ− γκΓ
1 + κ

+ I(t)x(t)
A

. (12)

The labor-market equilibrium in (12) holds for all t in and outside the equilibrium, because
factor markets clear instantaneously.

Along the balanced-growth path (see Appendix A.4), all endogenous variables develop at a
constant (although not necessarily at the same) rate and the research intensity, I(t), is common
across industries. Using these results, as well as (6) and (A.12), the amount of labor devoted to
R&D in the steady state can be derived as:

(
LI
L

)∗
= κn (1 + γΓ)
n (1 + κ− µ) + µρ

. (13)

Equation (13) reveals the main result of the model; namely, that a positive relationship exists
between the technological content of government procurement, measured by γ, and the relative
amount of private-sector R&D in the economy.3 An increase in the share of procurement in
industries with above-average quality jumps, γ, instantly raises the expected value of becoming a
quality leader. This occurs because higher quality jumps imply higher markups over marginal cost
and, thus, higher rewards for successful innovation activities (see (10) and (A.8)). Firms respond
by investing more heavily in R&D, and the economy-wide corporate R&D increases. Since the
returns to knowledge in the R&D technology in (6) are diminishing, the increase in private R&D
leveraged by a shift in the composition of government purchases toward high-tech industries must
be permanent to maintain constant rates of technological change and economic growth along the
balanced-growth path.4

The steady-state level of aggregate corporate R&D is not affected by the absolute amount of
per capita government demand expenditures Ḡ. This is because when the government increases

3 Since economic growth in our model is entirely driven by firms’ R&D investment, a positive relationship between
γ and the macroeconomic growth rate is trivially established. However, as we are interested in the question of
whether government market size affects innovation, we focus on the impact of an increase of γ on private-sector
R&D.

4 It is important to notice, however, that the positive influence of γ on the R&D labor share, LI(t)/L(t),
also holds outside the steady state. From the resource constraint (12), it follows that LI(t)/L(t) = 1 −[
c(t) + Ḡ− γκΓ

]
/ (1 + κ).
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its demand, it takes away resources from the private sector. From (A.13) it follows that, in
the equilibrium, procurement reduces private-sector consumption one-for-one, that is, dc∗/dḠ =
−1. Therefore, a symmetric increase in government procurement spending that equally affects all
industries does not stimulate additional R&D in the economy.

Equation (13) indicates a number of further determinants of the equilibrium share of R&D
employment. First, it can easily be shown that the growth in total market size, n, positively
affects R&D. Moreover, the larger the average size of innovations is, that is, the greater is κ, and
therefore the higher the limit price that a successful innovator can charge, the more is spent, in
relative terms, on R&D. Finally, equation (13) indicates that investment in R&D is also affected by
the technological research opportunities µ. The smaller µ is, the better the technological research
opportunities are (see (7)),5 the higher is the equilibrium R&D employment.

3 Empirical Specification and Estimation Issues

The main result of our theoretical analysis in Section 2 is that an increase in the technological
content of public procurement, measured as the share of procurement in high-tech industries,
increases the economy-wide returns to successful R&D, and, consequently, the incentives to invest
in R&D. Ideally, we would like to test the implications of the model in a cross-country setting over
time. However, reliable international data on government purchases by industry are not widely
available. To the best of our knowledge, only the United States provides high-quality administrative
data on federal procurement, cross-classified by year, industry, and place of performance.6 Using
these data, we construct a unique panel dataset that allows us to test our model’s predictions at
the level of the US states in the period 1997–2009.

The empirical model used to assess the impact of the technological content of government
procurement on private R&D is derived from equation (13). Adding other potential determinants
of private-sector R&D, state and time fixed effects, and log-transforming, equation (13) yields:

logR&D−EMPLi,t = β1 logHIGH−TECH−SHAREi,t−1 + β2X i,t + ξi + νt + ui,t, (14)

where R&D−EMPLi,t, measured as the number of weekly hours worked in R&D occupations in

5 Note that (ρ− n) > 0 is needed to ensure the convergence in (1).
6 For a number of European countries, public procurement data can be obtained from tender information published

in the Official Journal of the European Union. However, there only exists a compulsory requirement to publish
tenders in this journal for procurements being tendered on a Europe-wide scale. Since the share of Europe-wide
tenders greatly differs across Member States, these data are not suitable for cross-country comparisons.
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the private sector in state i in year t, is our indicator for corporate R&D. In fact, in the theoretical
model (see equation (13)), an increase in the technological content of public procurement causes
an increase in the share of resources that private firms allocate to R&D. However, to not impose
a specific structure on the error term, ui,t, we use the absolute value of state-wide weekly hours
worked in R&D occupations in the private sector as our outcome variable. To be consistent with
the model, we include the number of hours worked in all private-sector occupations (that is, the
denominator in equation (13)) on the RHS of equation (14).7

HIGH−TECH−SHAREi,t−1, defined as federal procurement in high-tech industries as a share
of total federal procurement in the private sector in state i at time t−1, measures the technological
intensity of procurement (γ in equation (9)). The procurement indicator is lagged by one period to
account for the fact that contracts might effectively start some time after they have been signed,
and also to avoid immediate feedback effects (Draca, 2012).

The vectorX i,t contains a set of state-level control variables. For instance, the theoretical model
suggests that the size of the total market (that is, private and public demand) affects corporate
R&D. To proxy total market size, we use three alternative indicators: the level of the GDP, the
population, and the GDP per capita (Moser, 2005; Sokoloff, 1988). Additionally, we include the
state-wide hourly earnings of R&D workers to rule out the possibility that any positive correlation
between the high-tech intensity of procurement and private-sector R&D is an artifact of unobserved
wage dynamics. Moreover, adding an earnings control allows us to account for possible confounding
effects of government policies affecting the wages of R&D workers (Goolsbee, 1998). The state fixed
effects, ξi, pick up all kinds of unobserved time-invariant state-specific factors that might influence
private-sector R&D. Likewise, the year fixed effects, νt capture macroeconomic conditions that
equally affect all states. These include factors such as business cycles, changes in (national and
global) demand and market conditions, or national policy changes. The year dummies also account
for the proportion of technological opportunities (µ in the theoretical model) that is common to
all states.

A straightforward way to assess the impact of the technological content of public procurement
on private-sector R&D employment is to estimate equation (14) by OLS; because we account for
state and time fixed effects, we will refer to this specification as panel fixed-effects (FE) estimation.
However, drawing causal inferences on the basis of a simple FE estimation of equation (14) is
not foolproof. Specifically, there might be further unobserved factors that are correlated with
both private-sector R&D and the technological intensity of government procurement, or that may
even jointly determine them. For instance, the amount of federal procurement contracts in high-
7 In Section 5.2, we show that all our results continue to hold when corporate R&D employment is expressed as

a share of total employment.
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tech industries might depend on a variety of unobserved time-variant state-specific characteristics
(for example, state-specific policy changes and regulations, taxes, subsidies, and so on) that are
also systematically related to private-sector R&D. Moreover, reverse causality problems arise if,
for example, the government perceives a firm’s R&D intensity as a signal of its capabilities to
perform a procurement contract (Lichtenberg, 1988). If these confounding factors are not captured
by the included control variables—or by the fixed effects—the FE estimates on the impact of
the technological content of public procurement on corporate R&D might be biased, while the
direction of the bias is not clear. To address these endogeneity concerns, we additionally apply
an instrumental variable (IV) approach that uses an exogenous variation in the share of federal
procurement in high-tech industries over time, and across states, to identify its effect of private-
sector R&D (see Section 5.3 for the details). In both approaches, FE and IV, standard errors are
clustered by state to address potential serial correlation problems.8

4 Data and Variable Construction

4.1 Technological Intensity of Public Procurement

Our indicator for the technological content of government procurement is constructed as the share
of federal non-R&D procurement in high-tech industries in total federal non-R&D procurement
in a state and year. We obtain administrative data on US federal procurement from the Federal
Procurement Data System—Next Generation (FPDS-NG), provided by the GSA. In the United
States, federal agencies are required, by the Federal Acquisition Regulation, to report directly to the
FPDS—NG all prime contract actions above the micropurchase threshold of $2,5009 for companies
that are separate legal entities (Goldman, Rocholl and So, 2010). Procurement contracts awarded
by non-federal public entities (for example, state and local agencies) are not included in the data.10

8 In case of AR(1) serial correlation and if strict exogeneity holds, the FGLS estimator using the Prais-Winsten
transformation is asymptotically more efficient than the FE estimator (Wooldridge, 2002b). However, when T
is small and strict exogeneity does not hold, FGLS tends to exacerbate a potential bias in the FE estimator
(Wooldridge, 2002a). Hence, we prefer the FE estimator with clustered standard errors.

9 The threshold was $25,000 before 2004. To check whether this change in the reporting obligations affects our
results, we created a dummy variable taking the value of 1 after the new reporting threshold came into force. The
inclusion of the dummy variable—entering the regressions separately and interacted with all other variables—
leaves the results reported below unaffected. Thus, we decided not to include a control for the change in the
reporting threshold in our main specifications.

10 Procurement by non-federal public agencies (that is, state and local agencies) may constitute a significant part
of total public procurement (Audet, 2002). However, non-federal public procurement data are not provided
at a level of detail necessary for our analysis. Moreover, there is no evidence of systematic differences in the
technological content of purchases by federal and non-federal public agencies (Coggburn, 2003). Finally, federal
procurement is more likely to be independent of state-level characteristics than non-federal procurement, thereby
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The information contained in the FPDS-NG procurement data covers, inter alia, the contract
volume (in current USD), award and completion dates, the place of performance, whether or not
a contract is primarily for R&D, Federal Product and Service Code (PSC), and, since 2001, the
NAICS-classified industry to which a contract can be assigned. The FPDS-NG database contains
more than 32 million contract actions between 1978 and 2009.11

We only use federal non-R&D procurement contracts to construct the indicator for the tech-
nological content of procurement, because we are interested in the effect of demand created by
the government on the R&D decisions of private companies. Federal R&D procurement, instead,
essentially means that firms conduct R&D by the order of the government (David, Hall and Toole,
2000; GSA, 2005). Moreover, R&D procurement is typically idiosyncratic and the results of fed-
erally funded research are not always applicable to the private market (Kanz, 1993; Lichtenberg,
1989, 1990). For these reasons, R&D procurement is less suited to capturing the market-size effect
of public demand on private R&D.

To assign procurement contracts to high-tech and all other industries, respectively, we use the
NAICS information available in the FPDS-NG data. According to the Federal Acquisition Regula-
tion, the NAICS codes best describe the principal nature of the product or service being acquired
(GSA, 2005, p. 19.1-3). As mentioned above, the FPDS-NG database contains information on
the PSC and NAICS codes to which each procurement contract can be assigned. However, while
PSC information is available for the entire observation period, NAICS codes are not fully avail-
able for contracts prior to 2001. To assign procurement to NAICS-classified industries in cases
where NAICS codes were originally not reported, and, on that basis, to obtain a consistent time
series also for the years before 2001, we developed a PSC-NAICS concordance based on contract
data from 2001 to 2009 for which both classifications are consistently provided. If more than one
NAICS code corresponds to a PSC, each of the respective NAICS industries receives a share of
the contract’s gross value that equals its frequency of occurrence.

We use the gross value of procurement contracts, that is, the number of dollars initially obligated
by an action. Deobligations are not subtracted because it seems reasonable to assume that they
were not foreseeable at the date of the contract signature, and, thus, are not factored in by firms
in their R&D decisions. Contract values are converted from current into constant USD using the
Government Consumption Expenditures and Gross Investment Price Index, with base year 2000,
as a deflator. The price-index data are provided by the Bureau of Economic Analysis (BEA).

reducing the problem of endogeneity discussed in Section 3.
11 Although the US federal procurement data have been used before (for instance, Draca, 2012; Lichtenberg, 1988),

this is the first study that does not focus on a specific sub-sample of the data but considers all administrative
procurement records.
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Finally, to identify high-tech industries, we apply the definition of the Bureau of Labor Statis-
tics (BLS) (Hecker, 2005).12 Table A.1 provides an overview of the NAICS-classified high-tech
industries. All remaining private sector industries are classified as non-high-tech. Since our anal-
ysis focuses on private sector industries only, we exclude federal procurement in the public sector
(NAICS 92).

Geographically, federal procurement is assigned to the state in which a contract is performed.
We restrict our analysis to the 50 US states; federal procurement contracts performed outside the
United States and in the District of Columbia are excluded.13 Moreover, procurement contracts
are assigned to the year of the contract award. Our analysis covers the period 1997–2009 because
the NAICS classification applied to distinguish between high-tech and all other industries was
introduced in 1997.

4.2 Private-Sector R&D

To measure corporate R&D by state and year, we use data from the Current Population Survey
May and Outgoing Rotation Group samples (May/ORG CPS). The CPS contains comprehensive
information on various individual and labor-market characteristics, and is representative of the
civilian non-institutional population at the US state level (BLS, 2011; Bowler and Morisi, 2006).
We construct our measure of corporate R&D as the state-level sum of hours worked in the CPS
sample reference week (that is, the week before the survey) in R&D occupations in the private
sector. Following Autor, Katz and Kearney (2008) and Acemoglu and Autor (Forthcoming), we
restrict our sample to workers aged 16 to 64 who participate in the labor force on a full-time or
part-time basis, excluding self-employed persons. If workers have two or more jobs in the sample
reference week, we classify them in the job at which they worked the greatest number of hours
(Autor, Katz and Kearney, 2008).

12 The BLS classifies industries as high-tech if the percentage of science, engineering, and technical occupations in
total employment exceeds the average for all industries at least by a factor of 5 (Hecker, 2005). An alternative
classification of high-tech industries, based on R&D-expenditures, is provided by the BEA in its R&D Satellite
Account (Fraumeni and Okubo, 2005). However, due to a mistake in the classification methodology, a large part
of R&D before 2004 was erroneously attributed to the wholesale trade industry sector. In reality, this R&D
was mostly undertaken in pharmaceutical and computer manufacturing companies. Despite the fact that since
2004 the NSF has released a revised industry classification, the BEA still uses the unrevised methodology (NSF,
2007; Robbins et al., 2007).

13 We also exclude two individual contracts that clearly appear as outliers. One of these contracts was awarded
in Illinois in 2006, with a contract value of more than $68 billion, which is about 16 times the yearly average
value of all contracts awarded in that state between 1997 and 2009. The other outlier contract appeared in
Pennsylvania, also in 2006, being worth more than $55 billion. This is approximately 8 times the yearly average
of all contracts awarded in Pennsylvania in our period of observation. However, keeping both contracts in our
sample leaves all results unaffected. Results are available on request,

15



Prior to 2000, occupations in the May/ORG CPS samples were classified according to the 1990
Census Occupational Classification System (COCS), while since 2000 the Standard Occupational
Classification (SOC) is used. However, in the years 2000–2002, both occupational classification
systems are reported in the May/ORG CPS. To obtain a consistent time series, we use this overlap
to develop a concordance between the two systems, translating the 1990 COCS into the 2000 SOC
system. On that basis, we identify R&D occupations according to the job descriptions of detailed
occupations in the BLS Dictionary of Occupations (BLS, 2004).14 Table A.2 provides an overview
of R&D occupations used in the empirical analysis. To ensure representativeness, we use CPS
sampling weights for all calculations.15

4.3 Control Variables

Population data stem from BEA’s mid-year estimates. Data on the GDP—deflated by the GDP
deflator with base year 2000—are also provided by the BEA. Hourly wages of R&D workers are
calculated as the state-level sum of earnings of all wage and salary workers aged 16 to 64 in the
private sector. For workers paid by the hour, hourly wages are directly reported in the May/ORG
CPS. For non-hourly workers, the usual weekly earnings in the May/ORG CPS are divided by
hours worked in the survey reference week. Top-coded earnings observations are multiplied by
1.5 (Acemoglu and Autor, Forthcoming; Autor, Katz and Kearney, 2008). Wages are converted
into constant dollars, for the year 2000, by applying the chain-weighted (implicit) price deflator
for personal consumption expenditures (PCE). Finally, total hours worked in a state is measured
as the state-level sum of weekly hours worked by wage and salary workers, aged 16 to 64, in all
private-sector occupations, as reported in the May/ORG CPS.

5 Empirical Results

This section reports the results of our empirical investigation. In Section 5.1, we provide a graph-
ical impression of the relationship between the technological content of federal procurement and
14 Our classification of R&D occupations is closely related to the definition of technology-oriented workers provided

by the BLS (Hecker, 2005). However, we exclude occupations that only have a supporting function for R&D (for
example, managers who plan and coordinate R&D), social scientists, most health occupations, and (university)
teachers.

15 It is important to note that our analysis is unlikely to suffer from a measurement error resulting from the fact
that information in the May/ORG CPS is geo-coded at the place of residence of the surveyed households, while
information in the FPDS-NG is geo-coded at the location of the establishment performing the contract. The
selection of sample areas in the CPS is based on Metropolitan Statistical Areas (MSA), and only households in
MSAs are surveyed that do not cross state borders (BLS, 2011). For this reason, we are confident that the CPS
survey respondents rarely show cross-state commuting behavior.
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corporate R&D and perform our baseline regressions. In Section 5.2, we show the results of several
robustness checks. For instance, we check whether the observed pattern is robust to including de-
tailed industry controls and changes in the definitions of the variables of main interest. Finally, in
Section 5.3, we address potential endogeneity issues by instrumenting for the technological content
of public procurement, using changes in political conditions.

5.1 Basic Specifications

Figure 1 plots the share of federal procurement in high-tech industries against private-sector R&D,
using a pooled sample of all state-year observations. The slope of the fitted line provides a first
indication that a positive association between the two variables exists. The correlation between the
technological intensity of procurement and corporate R&D is 0.43, being statistically significant
at the 1 percent level.

Figure 1: Technological intensity of government demand and private-sector R&D
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Notes: Pooled cross section: 50 US states, 1997–2009. R&D employment is measured as the number of hours worked
per week in R&D occupations in the private sector. High-tech share is the share of federal non-R&D procurement
in high-tech industries in total federal non-R&D procurement performed in a state.
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Table 1 presents the results of an OLS estimation of equation (14).16 In Column (1), in addition
to accounting for state and year dummies, we include as control variables total hours worked in a
state and hourly earnings in R&D occupations. In line with the predictions of the theoretical model,
we find a positive and statistically significant relationship between the technological intensity of
federal procurement and private-sector R&D. The coefficient estimate indicates an elasticity of
private R&D with respect to the share of federal procurement in high-tech industries of 0.027.
Put differently, a 1 standard deviation increase in the share of federal procurement in high-tech
industries is associated with an increase in corporate R&D of approximately 81 thousand hours,
which corresponds to about 1800 full-time R&D workers.17

In Columns (2) to (4), we include three alternative control variables to capture the effect of
total market size in a state on private-sector R&D: the GDP, population, and the GDP per capita.
Since the correlation between total hours worked on the one hand, and the GDP, or population,
on the other is close to unity (see Table A.3), total hours worked are excluded from the regressions
in Columns (2) and (3) to avoid multicollinearity. Accounting for total market-size effects in
Columns (2) to (4) does not change our main result: the coefficient on the high-tech share of
federal procurement is virtually identical to that in Column (1) and remains highly significant.

In Column (5), we decompose the procurement high-tech share into federal procurement in
high-tech industries and in all other industries to rule out the possibility that our results are
simply an artifact of a negative relationship between low- and medium-tech procurement and
corporate R&D. This is clearly not the case. The estimated coefficient on federal procurement
in high-tech industries is positive and significant; the estimate for procurement in the remaining
industries is essentially 0 in magnitude and statistically insignificant. Thus, in accordance with
the mechanism identified in the model, the positive association between the high-tech share of
procurement and corporate R&D is driven by increases in procurement in high-tech industries.
In total, the results of the baseline estimations in Table 1 indicate that the technological content
of federal procurement performed in a state and private-sector R&D in that state are positively
associated.

16 Summary statistics and pairwise correlation of the variables are reported in Table A.3.
17 In our period of analysis, an average full-time R&D employee works 44.42 hours per week.
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Table 1: Technological intensity of government demand and private-sector R&D: Baseline results

Dependent Variable:
R&D Employment (log)

(1) (2) (3) (4) (5)

High-Tech Share (log, t-1) 0.027∗∗∗ 0.026∗∗∗ 0.026∗∗∗ 0.027∗∗∗
(0.009) (0.009) (0.009) (0.009)

Total Hours Worked (log) 0.411∗∗∗ 0.425∗∗∗ 0.410∗∗∗
(0.083) (0.073) (0.081)

GDP (log) 0.124
(0.092)

Population (log) 0.216
(0.131)

GDP Per Capita (log) -0.048
(0.086)

Procurement High-Tech (log, t-1) 0.022∗∗∗
(0.007)

Procurement All Other (log, t-1) -0.003
(0.012)

Hourly Earnings R&D (log) 0.761∗∗∗ 0.788∗∗∗ 0.785∗∗∗ 0.761∗∗∗ 0.764∗∗∗
(0.029) (0.031) (0.029) (0.028) (0.029)

State Fixed Effects Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes

Observations 650 650 650 650 650
R-squared (within state) 0.782 0.771 0.771 0.782 0.782
F -statistic 285.049 207.805 219.190 269.660 242.940

Notes: Results of an OLS estimation of equation (14). The sample consists of 650 observations, covering 50 US
states in the period 1997–2009. The dependent variable, R&D employment, is measured as the state-level sum
of weekly working hours in R&D occupations in the private sector (see Section 4). High-Tech Share, indicating
the technological intensity of procurement, is defined as the share of federal non-R&D procurement in high-tech
industries in total federal non-R&D procurement in a state. Total Hours Worked is measured as the state-level sum
of weekly hours worked in all occupations in the private sector. Hourly Earnings R&D is the state-level sum of
per-hour wages of workers in R&D occupations in the private sector. Robust standard errors (clustered by state)
are in parentheses. * 10 percent level of significance. ** 5 percent level of significance. *** 1 percent level of
significance.
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5.2 Robustness

In Table 2, we report the results from several robustness checks, verifying that the baseline findings
in Section 5.1 hold under a variety of alternative specifications and for changes in the definitions
of the main variables. In Column (1), we add linear time trends for each of the 50 states to
eliminate various factors potentially responsible for a spurious correlation between the high-tech
share of procurement and corporate R&D. For instance, the above results might simply reflect
a general increase of the R&D intensity in a state’s economy. In fact, an increasing number of
firms in high-tech industries may imply both more potential contractors for the federal high-tech
procurement, and more private-sector R&D. However, the results in Column (1) indicate that the
positive association between the technological intensity of federal procurement and corporate R&D
is robust to the inclusion of state-specific time trends. The estimate remains highly significant,
although its magnitude decreases somewhat compared to the baseline in Table 1.18 In Column
(2), we account more specifically for changes of a state’s industry structure as a potential source
of estimation bias. In particular, we include the GDP data for 53 different industries, obtained
from the BEA, as additional control variables. The results in Column (2) show that the positive
association between the procurement high-tech share and private-sector R&D is not driven by
unobserved sectoral dynamics.

In Columns (3) and (4), we test the robustness of the baseline outcomes with respect to the
measurement of procurement. In Column (3), we subtract the deobligations from the gross federal
contract values and use these net procurement values to construct our indicator for the techno-
logical content of procurement. By doing so, we explicitly account for cancellation or downward
adjustment of procurement contracts. In Column (4), we only consider those procurement con-
tracts for which NAICS information was originally available in the FPDS-NG data; that is, we do
not apply our PSC-NAICS concordance to assign missing NAICS codes to procurement contracts.
Overall, the results are robust to these changes for measuring procurement. In Column (3), the
results are virtually identical to those obtained in the baseline specifications in Table 1. In Column
(4), the estimated coefficient on the high-tech share of procurement, although remaining highly
significant, decreases considerably in size. The latter may be due to the fact that all observations
without original NAICS information are dropped in this specification. Thus, for the period 1997–
2000, the measure for the high-tech share of federal procurement relies on far fewer observations
than the measure based on assigned NAICS codes and thus is, presumably, less precise.

In Column (5), we restrict our sample to full-time R&D employees (that is, workers with
more than 35 hours per week) to check whether the baseline results are sensitive to changes in

18 The state-specific trends are jointly significant.
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the measurement of the dependent variable, corporate R&D. The estimated coefficient on the
share of federal procurement in high-tech industries is somewhat smaller in magnitude than in
the basic specification in Table 1, but it remains statistically significant. This decrease in the
coefficient suggests that firms react to an increase in public demand by mainly hiring part-time
R&D workers.19

19 In unreported regressions, we provide support for this conjecture. The elasticity of corporate R&D with respect
to the procurement high-tech share is about 4 times higher for part-time R&D workers than for full-time R&D
employees.
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Table 2: Technological intensity of government demand and private-sector R&D: Robustness
checks

Dependent Variable:
R&D Employment (log)

(1) (2) (3) (4) (5)
State Industry With Original Full-Time
Trend Structure Deob NAICS Only

High-Tech Share (log, t-1) 0.020∗∗ 0.023∗∗∗ 0.026∗∗∗ 0.010∗∗∗ 0.017∗∗
(0.010) (0.008) (0.008) (0.003) (0.006)

Total Hours Worked (log) 0.492∗∗∗ 0.524∗∗∗ 0.411∗∗∗ 0.394∗∗∗ 0.244∗∗∗
(0.130) (0.123) (0.084) (0.078) (0.055)

Hourly Earnings R&D (log) 0.736∗∗∗ 0.753∗∗∗ 0.761∗∗∗ 0.762∗∗∗ 0.836∗∗∗
(0.036) (0.029) (0.029) (0.030) (0.020)

State Fixed Effects Yes Yes Yes Yes Yes
Time Fixed effects Yes Yes Yes Yes Yes

Observations 650 650 650 646 650
R-squared (within state) 0.803 0.804 0.781 0.785 0.856
F -statistic 284.232 276.659 557.982

Notes: Robustness tests of the baseline estimation of equation (14) are presented in Table 1. In Column (1),
linear state-specific time trends are included to eliminate sources of spurious correlations between the procurement
high-tech share and private-sector R&D. In Column (2), we add the GDP of 53 detailed industries, obtained from
the BEA, to control more rigorously for changes in the local industry structure. If possible, we use GDP data at
the 3-digit NAICS level. When the BEA does not provide GDP data at this level of detail, we consider the 2-digit
classification instead. From this sample, we drop eight industries with missing values due to disclosure limitations.
GDP data are deflated by the GDP deflator (base year: 2000). In Column (3), we construct our measure for the
high-tech intensity of procurement using the net value of the federal procurement contracts; that is, we subtract
deobligations from the initial gross value of contracts. In Column (4), the measure of the high-tech intensity of
procurement is based on contracts for which NAICS information was originally available in the FPDS-NG data;
we do not apply the PCS-NAICS concordance to assign missing NAICS codes to procurement contracts. In this
specification, the number of observations reduces to 646 because the raw data do not contain any of the NAICS
codes classified as high-tech in Maine in 1998, in Vermont in 1996 and 1997, and in Wyoming in 1997. In Column
(5), we only use information on working hours and wages for full-time employees (that is, wage and salary workers
with at least 35 hours per week). Robust standard errors (clustered by state) are in parentheses. * 10 percent level
of significance. ** 5 percent level of significance. *** 1 percent level of significance.

We also test whether the observed pattern is driven by influential outliers. Figure 2 plots the
residuals of private-sector R&D against the residuals of the share of federal procurement in high-
tech industries, after removing state and year fixed effects (see also Acemoglu and Linn, 2004).
The figure suggests that there are no specific observations strongly influencing the relationship
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between corporate R&D and the technological content of federal procurement.

Figure 2: Outlier detection
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Notes: Sample: 50 US states, 1997–2009. Residuals are obtained from OLS regressions of the log of private-sector
R&D and the log of the share of federal procurement in high-tech industries on state and year dummies. The fitted
line maps a log-linear relationship between the R&D residuals and procurement’s technological content residuals;
the shaded area represents 95 percent confidence bound.

Finally, one may object that our results are simply picking up differences between high-tech and
other procurement with respect to procedural aspects associated with awarding federal procure-
ment contracts. For instance, Lichtenberg (1988) provides evidence that competitively awarded
procurement contracts elicit substantial firm R&D investment, while procurement contracts not
being exposed to competition have no or even a negative effect on corporate R&D. Our results,
however, are unlikely to be driven by differences in the competitive nature of high-tech vis-à-vis
other procurement contracts. A two-sided t-test reveals that the quantity of competitively awarded
procurement, relative to procurement being awarded in non-competitive procedures, does not dif-
fer between high-tech and other industries (p = 0.564).20 In fact, the ratio of competitively to
20 If a procurement contract in the FPDS-NG data was awarded using one of the following procedures, we classify

it as competitive: Full and Open Competition; Full and Open Competition after Exclusion of Sources; Follow On
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non-competitively awarded procurement is approximately 5:1 for both procurement types.
In sum, the robustness analysis provides added confidence in our baseline results in Table 1.

The positive association between the technological content of public procurement and private-
sector R&D holds across different model specifications with respect to changes in the definitions
of the variables of interest, and is not influenced by high-leverage observations.21

5.3 Instrumental Variable Estimation

To be able to draw causal inferences from the results in sections 5.1 and 5.2 about the impact
of the technological content of federal procurement on private-sector R&D, changes in the share
of government purchases in high-tech industries must be truly exogenous. Although we account
for permanent differences between states, and for spurious correlations between federal high-tech
procurement and corporate R&D resulting from similar trends, a state’s economic strength, and its
industry structure, our results might still be subject to omitted-variable bias or reverse causality.
Omitted-variable bias might arise if there are unobserved, time-variant factors that are correlated
with both federal procurement and corporate R&D, or that even jointly determine them. For
instance, there might be (changes in) regulations that affect both private-sector R&D and high-tech
procurement. Moreover, reverse causality will confound our estimates if the number of government
contracts in high-tech industries that a state receives is influenced by the amount of private-sector
R&D undertaken in that state. In fact, there is some evidence that the government perceives a
firm’s R&D efforts as a signal of its capabilities to perform procurement contracts (Lichtenberg,
1988). Overall, given the large number of potentially confounding factors, both the strength and
the direction of the bias are not clear a priori.

To assess the unbiased effect of the technological content of federal procurement on corporate
R&D, we apply an IV approach that uses an exogenous part of the variation in the technolog-
ical content of federal procurement across states and over time. Following the literature that
uses political conditions to isolate exogenous variation in the distribution of government spending
(among others, Aghion et al., 2009; Cohen, Coval and Malloy, 2011; Draca, 2012; Fishback and
Kachanovskaya, 2010), our instrument relies on the idea that local politicians can influence the
number of federal high-tech procurement contracts performed in their states. We argue that if a

to Competed Action; Competed under Simplified Acquisition Threshold; and Competitive Delivery Order. Ac-
cordingly, non-competitive award procedures are: Not Available for Competition; Not Competed; Not Competed
under Simplified Acquisition Threshold; and Non-Competitive Delivery Order.

21 We also performed the above analysis using the share of hours worked in R&D occupations in total weekly hours
worked as dependent variable (see Table A.4) and using hours worked in non-R&D occupations as a control
variable instead for total hours worked (Table A.5). The results indicate that our findings are robust to these
changes.
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governor is affiliated with the same party that has a majority in the Congress, the state receives
more procurement contracts, particularly in high-tech industries.

Our instrument is based on the well-established result that politicians channel federal pro-
curement to their constituency in order to ‘reward’ voters for their support and to increase their
chances in future elections (Arnold, 1979; Levitt and Snyder, 1997; Shepsle and Weingast, 1981;
Stein and Bickers, 1994). As it is generally difficult to deliver a direct monetary payback, politi-
cians attempt to divert specific investments or procurement contracts for their states (for instance,
Aghion et al., 2009; Atlas et al., 1995; Cohen, Coval and Malloy, 2011; Levitt and Snyder, 1997;
Mayer, 1995).22 For instance, Hoover and Pecorino (2005) report interventions by members of
the House of Representatives to prevent the Department of Defense or the Pentagon from taking
away military procurement projects from their constituency. Newspaper accounts also refer to
government procurement as ‘pork barrel’ spending (Wheeler, 2004).

To channel federal procurement to their own state, a governor needs support from the party
in control of the Congress (the House, the Senate, or both), which, according to Article I of the
US Constitution, holds the ‘power of the purse’ and is the main locus of the ‘distributive game’
(Larcinese, Rizzo and Testa, 2006). The party controlling the Congress is entitled to significant
agenda-control power, as it receives a majority in committees authorizing and appropriating funds,
and it selects their chairmen (Fenno, 1973). Following Grossman (1994) and Shor (2005), a party
can be seen as a coalition of individuals who collectively contribute to the achievement of a common
goal and then distribute the benefits to the coalition members. In this line of reasoning, the party
that constitutes a majority in the Congress has an incentive to be well-disposed toward governors
of the same party, for example, by shaping a procurement solicitation in such a way that the
likelihood to be awarded the contract increases for companies in friendly governors’ states. These
governors, in return, invest their political capital to support (the re-election of) the providing
Congressmen. The allocation of federal funds to a governor of the opponent party, in contrast,
generates a ‘leakage’ effect, entailing reduced benefits from procurement spending (Dasgupta,
Dhillon and Dutta, 2004).

However, not all types of procurement spending are equally well-suited to satisfy the strategic
considerations of politicians. We argue that the gains from which politicians hope to benefit when
diverting federal procurement to local high-tech industries are higher than those provided by other
types of procurement, because the former yield higher perceived electoral profits. In fact, as voters
consider the contribution of politicians to the local economy in their election decisions (Arnold,

22 Dalpé (1994) argues that gaining electoral support through procurement is considered as particularly promising
by policymakers, because procurement decisions are more often publicized than are other types of government
spending.
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1979), measures to stimulate the local economy receive much public attention and contribute to the
politicians’ prestige. Promoting high-tech industries appears promising in this respect, because it
is regarded by the general public as raising the economy’s long-term international competitiveness,
which secures or creates jobs. This implies that politicians favor technology-intensive procurement
projects to be undertaken in their states (Cohen and Noll, 1991; Dalpé, 1994).

A number of previous studies show that the distribution of federal spending is indeed influenced
by political factors. Using Indian data, Dasgupta, Dhillon and Dutta (2004) find that states
governed by the party that also controls the federal government receive more grants. Similarly,
Martin (2003) suggests that politicians strategically allocate federal spending to the areas providing
them the highest returns on their ‘investments.’ Balla et al. (2002), in a study of academic earmarks,
report that districts represented by members of the majority party in the House receive more funds
than those represented by members of the minority party do. Alvarez and Saving (1997) generalize
this finding to other types of federal funds. Levitt and Snyder (1995) study federal assistance
programs and find that a Democratic majority in Congress is associated with higher spending for
districts mainly populated by Democratic voters. Goldman, Rocholl and So (2010) show that a
firm’s likelihood of being awarded a government contract is influenced by its connection to the
party in control of the House or the Senate.

Our instrument is constructed as a dichotomous variable that takes the value of 1 in states whose
governors are affiliated with the majority party in the Congress and 0 otherwise.23 We relate the
share of federal procurement in high-tech industries in a state at time t to the coincidence between
the state governor’s party and the majority party in the Congress two years earlier (that is, at time
t-2 ); this is to account for the fact that current federal procurement budgets have normally been
appropriated in previous budgetary years (Alvarez and Saving, 1997; Elis, Malhotra and Meredith,
2009; Larcinese, Rizzo and Testa, 2006).24

To be a valid instrument, the coincidence between the governor’s party and the party holding
the majority in the Congress has to meet two conditions. First, the instrument must not itself be
related to (past and future) private-sector R&D in the state. One concern is that the outcome
of gubernatorial elections is related to the state’s economic conditions and, thus, private-sector
R&D. However, the outcome of a Congressional election can be considered independent of the
characteristics of specific states, and our instrument indicates the party coincidence at the state
and federal level. Moreover, the timing of Congress and gubernatorial elections is exogenous. Still,
23 In our period of analysis, the majority party in the Senate was the same as in the House, given that the Vice

President breaks a tied vote in the Senate.
24 Assuming different time lags between party coincidence and the high-tech share of procurement leads to quali-

tatively similar results as those reported below. See Table A.6 for results with one-year and three-year lagged
instruments.
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one may voice the objection that the instrument is invalid because it simply reflects the geographical
distribution of firms’ lobbying activities, as a consequence of firms expecting a higher impact of
their lobbying if they are backed by a governor whose requests are met with great interest in the
Congress. However, using data from the Center for Public Integrity on lobbying spending by state
in the period 1997–2006,25 we find no evidence for a relationship between lobbying expenditures
and the instrument.26 This result provides added support for the exogeneity of the instrument.

Second, the instrument has to explain (part of) the supposedly endogenous explanator, that
is, it must be relevant. To provide evidence in favor of our instrument’s relevance, we separately
regress the levels of federal procurement in high-tech industries and all other industries, respec-
tively, on our instrument. The results are reported in Table 3. In Column (1), we show that when
a governor’s party and the Congress majority party become aligned, the state receives more federal
procurement in high-tech industries. At the same time, the amount of procurement in industries
other than high-tech is unaffected by the coincidence of the governor’s party and the party holding
majority in the Congress (Column (2)).

25 Unfortunately, we were not able to obtain state lobbying data for years after 2006. Moreover, some states do
not publish information on their firms’ lobbying spending throughout the entire observation period, and five
states (Alabama, Arkansas, New Hampshire, New Mexico, and Rhode Island) do not publish any spending data
related to lobbying. In total, we use 365 observations.

26 Results are available on request.
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Table 3: Coincidence between the governor’s party and the Congress majority and the distribution
of federal procurement

(1) (2)
High-Tech All Other
Industries Industries

Coincidence Gov-Congress (t-2) 0.172∗∗ -0.039
(0.068) (0.034)

Total Hours Worked (log) -1.081 0.204
(0.800) (0.393)

Hourly Earnings R&D (log) -0.080 -0.155
(0.185) (0.093)

Time fixed effects Yes Yes
State fixed effects Yes Yes

Observations 650 650
R-squared (within state) 0.608 0.828
F -statistic 36.060 101.066

Notes: Results of OLS regressions with state and year fixed effects (50 US states). The period of analysis is
1996–2008 because High-Tech Share itself enters equation (14) with a one-year lag. Coincidence Gov-Congress is
a binary variable taking the value of 1 if a state governor belongs to the majority party in the Congress and 0
otherwise. Coincidence Gov-Congress is measured two years before High-Tech Share to account for delays between
the appropriation of federal funds and actual procurement spending. Robust standard errors (clustered by state)
are in parentheses. * 10 percent level of significance. ** 5 percent level of significance. *** 1 percent level of
significance.

The results of the IV estimation of the impact of the technological content of federal procure-
ment on corporate R&D are presented in Table 4. In Columns (1) and (2), we report the results of
the first and second stage of a two-stage least squares (2SLS) estimation. Columns (3) and (4) con-
tain the results of Fuller’s (1977) version of the Limited Information Maximum Likelihood (LIML)
estimator, which is more robust than 2SLS in the presence of potentially weak instruments.27

As shown in Column (1), the share of federal procurement in high-tech industries increases by
approximately 13 percent when a state governor’s party coincides with the party holding majority
in the Congress. The F -statistic of the excluded instrument equals 7.2, which indicates that the
instrument is indeed a relevant predictor of the technological content of federal procurement.28

27 Weak instruments can lead to inconsistencies in the IV estimates and tend to exacerbate the finite-sample
bias from which IV approaches suffer (Bound, Jaeger and Baker, 1995). Moreover, in the presence of weak
instruments, the conventional asymptotic approximations used for hypothesis tests and confidence intervals are
usually unreliable (Stock, Wright and Yogo, 2002).

28 In case of a single endogenous regressor, an F -statistic larger than 10 is typically required for inferences based
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In Column (2), the IV coefficient on the high-tech share of federal procurement is quantitatively
similar to the FE estimate reported in Table 1, but it is no longer significant because the standard
error is considerably larger than in the baseline. However, a Durbin-Wu- Hausman χ2 test for
exogeneity provides no sign of endogeneity for the high-tech share of federal procurement (p =
0.960), implying that there is no bias from omitted variables or reverse causality in the FE regres-
sions. Taking further into account that the IV estimator is generally less efficient than the FE
estimator, we conclude that the FE results in Table 1 provide unbiased estimates for the effect of
the technological content of procurement on company R&D.

Finally, there is no indication that the 2SLS results suffer from a weak-instrument problem. On
the one hand, the LIML estimation, presented in Columns (3) and (4), delivers similar results as
the 2SLS regressions. On the other hand, we construct the Moreira (2003) conditional likelihood
ratio 95% confidence interval, which is robust to weak instruments. This confidence interval is
reasonably close to those obtained from 2SLS and LIML estimations, respectively, which indicates
that the confidence intervals in Table 4 are not biased.’s

on the 2SLS estimator to be considered as reliable (for a discussion, see Staiger and Stock, 1997 and Stock,
Wright and Yogo, 2002). However, this threshold value was derived for non-clustered standard errors. If we use
Huber-White robust standard errors instead of clustered standard errors, the first-stage F -statistic is 18.10.
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Table 4: Technological intensity of government demand and private-sector R&D: IV estimates

(1) (2) (3) (4)
2SLS 2SLS LIML LIML

First Stage Second Stage First Stage Second Stage

Coincidence Gov-Congress (t-3) 0.129∗∗ 0.129∗∗
(0.048) (0.048)

High-Tech Share (log, t-1) 0.025 0.025
(0.057) (0.053)

Total Hours Worked (log) -0.736 0.410∗∗∗ -0.736 0.410∗∗∗
(0.546) (0.095) (0.546) (0.094)

Hourly Earnings R&D (log) - 0.028 0.761∗∗∗ -0.028 0.761∗∗∗
(0.130) (0.029) (0.130) (0.029)

Robust 95% Confidence Interval (-0.067, 0.191) (-0.067, 0.191)

Time Fixed Effects Yes Yes Yes Yes
State Fixed Effects Yes Yes Yes Yes

Observations 650 650 650 650
F -statistic (excluded instrument) 7.200 7.200
R-squared (within state) 0.056 0.782 0.056 0.782
F -statistic 1.590 290.030 1.590 290.140
Durbin-Wu-Hausman test p-value 0.960 0.960

Notes: Results from 2SLS and LIML estimation of the effect of the technological content of federal procurement
on private-sector R&D. The instrument is a binary variable taking the value of 1 if the state governor belongs to
the party holding majority in the Congress and 0 otherwise. The instrument measures the coincidence between
the governor’s party and the party holding a majority in the Congress two years before procurement contracts are
awarded, taking into account delays between the appropriation of federal funds and actual procurement spending.
In the LIML estimation, the user-specified constant (alpha) is set to 1. Fuller’s (1977) modification of the LIML
estimator is used, which ensures that the estimator has finite moments. Robust confidence intervals are calculated
using conditional likelihood ratio tests developed by Moreira (2003), in which iid error terms are assumed. Robust
standard errors (clustered by state) are in parentheses. Small-sample adjustment of the standard errors has been
made. * 10 percent level of significance. ** 5 percent level of significance. *** 1 percent level of significance.

6 Conclusions

This paper addresses the question of whether the technological content of government purchases
can stimulate private-sector R&D at the aggregate level. We first develop a theoretical model
that aids our understanding of the mechanisms through which the composition of public demand
may stimulate corporate R&D, and then we test the model’s predictions empirically. The model
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builds upon the traditional literature on endogenous growth with quality-improving innovation
but, additionally, it incorporates the government as a source of demand, and it explicitly allows
for the government purchases to vary across industries that differ with respect to their technological
intensity. The main result of the model is that an increase in the share of government purchases in
high-tech industries stimulates corporate R&D activities in the economy. This is because a shift
in government procurement toward high-tech industries translates into larger expected profits for
successful innovators and higher incentives for firms to invest in R&D.

We test the predictions of the model at the level of the US states for the period 1997–2009.
We exploit administrative data provided by the US GSA to construct a unique panel dataset that
contains all federal non-R&D procurement prime contracts above the micropurchase threshold,
cross-classified by year, state, and type of industry (high-tech versus all other). The technological
intensity of procurement is measured as the state-level share of federal non-R&D procurement in
high-tech industries in total federal non-R&D procurement. Our indicator for corporate R&D is
the number of weekly hours worked in R&D occupations in the private sector. To assess the impact
of the technological content of federal procurement on corporate R&D, we apply both FE and IV
estimation, the latter accounting for potential endogeneity problems due to omitted variables and
reverse causality.

The results of the empirical analysis indicate a positive impact of the technological content of
government purchases on corporate R&D, which supports the main insight from the theoretical
model. According to the results of the FE estimation, a 1 standard deviation increase in the share
of federal procurement in high-tech industries is associated with an increase of approximately 81
thousand weekly working hours in R&D occupations in the private sector; this is equivalent to 1800
full-time R&D workers. The results are robust under a range of different specifications, including
additional control variables (for example, linear state-specific time trends, or detailed controls
for the local industry structure), and alternative definitions of the dependent and independent
variables. The results of the IV approach support the findings from the FE estimation. The IV
coefficient is of similar magnitude to the FE result, but the standard errors are considerably larger,
reflecting the lower efficiency of the IV estimates as compared to our baseline estimates. Since tests
for exogeneity provide no sign of endogeneity of the procurement high-tech share, we conclude that
the FE findings provide unbiased estimates of the effect of the technological content of government
purchases on private-sector R&D.

Can changes in the technological content of government procurement be used by policymakers
to stimulate private R&D? This research question has a substantial degree of policy relevance, since
there is an intense discussion among researchers and policymakers on whether public procurement
can be utilized as an innovation policy tool (Edler and Georghiou, 2007, and the references cited
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therein). Our results give rise to the idea that the government, as a customer, indeed plays
an important role for the innovative behavior of firms, whether this is actively sought or not.
In particular, one consequence to be drawn from our analysis is that policymakers and public
administration should not be agnostic about the impact of public purchases on private R&D. If
high-tech and low-tech solutions for the same problem are available, public authorities should
take into account that purchasing the high-tech solution may yield the additional benefit of an
increase in corporate R&D. Hence, not only through procurement contracts dedicated to R&D
a government can influence private-sector innovation activities, but also through its allocation of
non-R&D procurement across industries.

However, is the responsiveness of private-sector R&D to changes in the technological intensity
of government demand sufficient to advise policymakers to co-opt procurement into the innovation
policy portfolio? First and foremost, the fundamental aim of public procurement is to ensure that
the government can sustain, or even improve, its core functions. The deliberate use of public
procurement as an innovation policy tool implies that public demand is distorted, which may
come at substantial social costs. On the one hand, there is less transparency in the procurement
process when factors other than the (quality-adjusted) price are the main decision criteria. On the
other hand, changes in the technological content of government demand, by affecting the relative
attractiveness of private-sector R&D investment in different fields, may well guide the direction of
search away from socially beneficial technologies, or may even contribute to a lock-in into inferior
technologies (Arthur, 1989; Cowan, 1990). No less important is the fact that reasonable policy
advice requires a comparison of procurement with other innovation policy tools, such as R&D
subsidies, or R&D tax credits (for instance, David, Hall and Toole, 2000; Wilson, 2009). These
issues need to be resolved before the suitability of public procurement for furthering the objectives
of innovation policy can be definitely judged.
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A Appendix

A.1 Determining the Unique Ratio Between ε1 and ε2

In this Appendix, we derive the relation between ε1 and ε2 for the public demand rule in (9) to be
feasible. Recall that, by definition, the following holds:

´ 1
0 G (ω)dω ≡ Ḡ. Substituting the public

demand rule for G(ω) yields:

1ˆ

0

∞̂

1

(
Ḡ+ γε

)
dλdω

=
1ˆ

0


∞̂

1

Ḡg(λ)dλ+ γ


1

1−κˆ

1

−ε1g(λ)dλ+
∞̂

1
1−κ

ε2g(λ)dλ


 dω, (A.1)

where g(λ) is the Pareto density function with a scale parameter equal to one and a share
parameter equal to 1/κ. According to (8), we can express g(λ) as 1/κλ−(1+κ)/κ, which allows us to
rewrite (A.1) as:

1ˆ

0


1
κ
Ḡ

∞̂

1

λ−
1

1−κdλ+ γ

κ


1

1−κˆ

1

−ε1λ
− 1

1−κdλ+
∞̂

1
1−κ

ε2λ
− 1

1−κdλ


dω.

Solving the integral above gives:

1ˆ

0

G(ω)dω = Ḡ+ γ
{
ε1
[
−1 + (1− κ) 1

κ

]
+ ε2 (1− κ)

1
κ

}
. (A.2)

By definition, the RHS of (A.2) is equal to Ḡ. It is now straightforward to show that this
relationship determines the unique ratio between ε1 and ε2, which is equal to:

ε1

ε2
= (1− κ) 1

κ

1− (1− κ) 1
κ

. (A.3)

Because the RHS of (A.3) is strictly positive, but smaller than one, it follows that ε1 < ε2.
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A.2 Expected Profit Stream of an Industry Leader

Taking into account (5), the expected value of the profit flow to the winner of an R&D race in
industry ω at time t can be written as (suppressing time and industry arguments for notational
convenience):

πe =
∞̂

1

λ− 1
λ

L (c+G)g(λ)dλ. (A.4)

Substituting for the Pareto density function, g(λ), and for public demand spending, G(ω), by
using (8) and (9), equation (A.4) becomes:

πe =
∞̂

1

L

κ

λ− 1
λ

λ−
1+κ
κ

(
c+ Ḡ+ γε

)
dλ. (A.5)

The term (λ− 1) (1/λ)λ−(1+κ)/κ can be simplified to (λ− 1)λ−2−1/κ. Hence, solving the inte-
gral (A.5) yields:

πe = κ

1 + κ
L
{
c+ Ḡ+ γ

[
ε1
(
−1 + 2 (1− κ)

1
κ

)
+ ε22 (1− κ)

1
κ

]}
. (A.6)

Using (A.3) in Appendix A.1 to eliminate ε1, the integral above boils down to:

πe = κ

1 + κ
L

[
c+ Ḡ+ γε2

(
1

1− (1− κ) 1
κ

− 1
)]

. (A.7)

Notice that 0 < 1− (1− κ)1/κ < 1 for all κ ∈ (0, 1) and, thus, 1
/[

1− (1− κ)1/κ
]
> 1, leaving

the term in round brackets on the RHS of (A.7) positive. Rearranging (A.7) eventually allows us
to write the expected profit stream as:

πe = κ

1 + κ
L
(
c+ Ḡ+ γΓ

)
, (A.8)

where Γ ≡ ε2
(
1
/[

1− (1− κ)1/κ
]
− 1

)
> 0. Because the RHS of (A.8) does not depend on

industry-specific variables, πe is to be interpreted as the average expected profits of an industry
leader.
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A.3 Labor-Market Equilibrium

Labor demand in manufacturing equals aggregate demand from both private and public consumers
(recall that the production function in manufacturing reads Y = LY and that we assume market
clearing). The total employment in manufacturing is then given by:

LY (t) =
1ˆ

0

[
c(t)L(t)
λ (ω, t) + G (ω)L(t)

λ (ω, t)

]
dω

=
1ˆ

0

L(t)

c(t)
∞̂

1

λ−1g (λ)dλ+
∞̂

1

G (ω)λ−1g (λ)dλ

 dω.
Using the Pareto density function given in (8), as well as the public demand rule as specified

in (9) and (A.3), the total employment necessary to satisfy private and public demand can be
calculated as:

LY (t) = L(t)c(t) + Ḡ− γκΓ
1 + κ

.

An equation for the R&D labor can be derived from solving (6) for the R&D input of a firm in
industry ω and then aggregating over the continuum of industries ω ∈ [0, 1]. Noting further that
the industry-level innovation rate I(ω, t) is the same across industries at each point in time, R&D
labor becomes:

LI(t) = I(t)X(t)
A

.

Labor-market clearing implies that L(t) = LY (t)+LI(t) is always fulfilled, which, when slightly
rewritten, gives (12).
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A.4 Existence and Uniqueness of the Steady State

Here, we solve for the steady state of the economy, in which all endogenous variables grow at a
constant (although not necessarily at the same) rate and research intensity I(t) is common across
industries. We already established in the main text that a constant growth rate constrains I,
ẋ/x, and ċ/c to be constant over time, while the latter implies r(t) = ρ. Equations (7), (11), and
(12) represent a system of three equations in three unknowns x, c, and I. Solving this system of
equations allows us to uniquely determine the steady-state values for all endogenous variables.

We first derive an expression for the equilibrium research intensity, I∗. Taking the logarithm
of the RHS of (6) and differentiating with respect to time while using (7) yields:

I∗ = n

µ
. (A.9)

According to equation (A.9), the research intensity in the steady-state is completely pinned
down by the population growth rate, n, and the difficulty of R&D, µ.

Having determined the equilibrium value of I, we are now in the position to solve for the
steady-state values of x and c. Given (A.9) and that r = ρ holds along the steady state, the R&D
equilibrium condition (11) can be written as:

x(t)
A

=
κ

1+κ

[
c(t) + Ḡ+ γΓ

]
ρ+ n

(
1
µ
− 1

) . (A.10)

The resource constraint (12) becomes:

1 = c(t) + Ḡ− γκΓ
1 + κ

+ n

ηA
x(t). (A.11)

Equation (A.10) is an upward sloping line in the (c, x) space while (A.11) is a downward sloping
linear function in the (c, x) space. The necessary and sufficient condition for both lines to have
a unique and positive intersection is given by Ḡ < 1. Solving the system of linear equations in
(A.10) and (A.11) by applying Cramer’s rule uniquely determines the steady-state values of x and
c as:

x∗ = Aκµ(1 + γΓ)
n(1 + κ− µ) + µρ

, (A.12)

c∗ = µρ(1 + κ+ γκΓ− Ḡ)− n[Ḡ(1 + κ− µ) + (1 + κ)(µ− 1) + γκµΓ]
n(1 + κ− µ) + µρ

. (A.13)
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Finally, we calculate the steady-state growth rate of the economy. Because we refrain from
capital accumulation, the concept of growth in the model relates to growth in each individual’s
utility. This property is shared by all Schumpeterian growth models in which firms’ R&D efforts
are directed toward increasing the product quality, and the per capita consumption does not change
in equilibrium. However, even if the amount of goods consumed per person remains constant, the
individual utility in (2) augments when R&D turns out to be successful. To obtain an explicit
expression for the utility growth rate, we substitute for consumer demand in (2) by using (3):

log u(t) =
1ˆ

0

log
[

c(t)
λ (ω, t)

]
dω +

1ˆ

0

jmax (ω, t) log [λ (ω, t)] dω, (A.14)

where
´ 1

0 j
max (ω, t)dω is a measure of the number of quality improvements aggregated over all

industries, ω ∈ [0, 1]. The index jmax increases when firms are successful in innovating and engage
in R&D in all industries throughout time in any steady-state equilibrium. In each industry ω, the
(Poisson distributed) probability of exactly m improvements within a time interval of length τ can
be calculated as:

f(m, τ) = (Iτ)m e−Iτ
m! ,

Following Davidson and Segerstrom (1998),
´ 1

0 j
max (ω, t)dω then equals tI. Taking this and

(A.9) into account, differentiating (A.14) with respect to time yields the following steady-state
growth rate of the per capita utility:29

u̇(t)
u(t) ≡ g∗ = n

µ
κ. (A.15)

This completes the characterization of the steady state of this economy.

29 Notice that the first integral on the RHS of (A.14) is constant along the balanced-growth path. We further
exploit the fact that quality jumps follow a Pareto distribution; thus, using (8),

´ 1
0 log [λ (ω, t)] dω = κ.
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Table A.1: High-tech industries

4-digit NAICS code Description

3254 Pharmaceutical and medicine manufacturing
3341 Computer and peripheral equipment manufacturing
3342 Communications equipment manufacturing
3344 Semiconductor and other electronic component manufacturing
3345 Navigational, measuring, electro-medical, and control instruments manufacturing
3364 Aerospace product and parts manufacturing
5512 Software publishers
5161 Internet publishing and broadcasting
5179 Other telecommunications
5181 Internet service providers and Web search portals
5182 Data processing, hosting, and related services
5413 Architectural, engineering, and related services
5415 Computer systems design and related services
5417 Scientific research-and-development services
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Table A.2: Definition of R&D occupations

1990 Census Code Description 2000 SOC Description
44 Aerospace Engineers 15-1011 Computer and information scientists,

research
45 Metallurgical and Materials Engineers 15-1011 Computer and information scientists,

research
46 Mining Engineers 15-1021 Computer programmers
47 Petroleum Engineers 15-1031 Computer software engineers,

applications
48 Chemical Engineers 15-1032 Computer software engineers, systems

software
49 Nuclear Engineers 15-1041 Computer support specialist
53 Civil Engineers 15-1051 Computer systems analysts
54 Agricultural Engineers 15-1081 Network systems and data

communications analysts
55 Electrical and Electronic Engineers 15-2021 Mathematicians
56 Industrial Engineers 15-2031 Operations research analysts
57 Mechanical Engineers 15-2090 Miscellaneous mathematical science

occupations
58 Marine and Naval Architects 17-2011 Aerospace engineers
59 Engineers, n.e.c. 17-2021 Agricultural engineers
63 Surveyors and Mapping Scientists 17-2031 Biomedical engineers
64 Computer Systems Analysts and

Scientists
17-2041 Chemical engineers
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1990 Census Code Description 2000 SOC Description
65 Operations and Systems Researchers and

Analysts
17-2051 Civil engineers

68 Mathematical Scientists, n.e.c. 17-2061 Computer hardware engineers
69 Physicists and Astronomers 17-2071 Electrical engineers
73 Chemists, Except Biochemists 17-2072 Electronics engineers, except computer
74 Atmospheric and Space Scientists 17-2081 Environmental engineers
75 Geologists and Geodesists 17-2111 Health and safety engineers, except

mining safety engineers and inspectors
76 Physical Scientists, n.e.c. 17-2112 Industrial engineers
77 Agricultural and Food Scientists 17-2121 Marine engineers and naval architects
78 Biological and Life Scientists 17-2131 Materials engineers
79 Forestry and Conservation Scientists 17-2141 Mechanical engineers
83 Medical Scientists 17-2151 Mining and geological engineers,

including mining safety engineers
185 Designers 17-2161 Nuclear engineer
213 Electrical and electronic technicians 17-2171 Petroleum engineers
214 Industrial engineering technicians 17-2199 Engineers, all other
215 Mechanical engineering technicians 19-1010 Agricultural and food scientists
216 Engineering technicians, n.e.c. 19-1013 Soil and plant scientists
218 Surveying and mapping technicians 19-1021 Biochemists and biophysicists
223 Biological technicians 19-1022 Microbiologists
224 Chemical technicians 19-1023 Zoologists and wildlife biologists
225 Science technicians, n.e.c. 19-1029 Biological scientists, all other
229 Computer programmers 19-1031 Conservation scientists
233 Tool programmers, numerical control 19-1042 Medical scientists, except epidemiologists
235 Technicians, n.e.c. 19-2012 Astronomers and physicists
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1990 Census Code Description 2000 SOC Description
19-2021 Atmospheric and space scientists
19-2031 Chemists
19-2041 Environmental scientists and specialists,

including health
19-2042 Geoscientists, except hydrologists and

geographers
19-2099 Physical scientists, all other
19-4011 Agricultural and food science technicians
19-4021 Biological technicians
19-4031 Chemical technicians
19-4041 Geological and petroleum technicians
19-4051 Nuclear technician
19-4099 Life, physical, and social science

technicians, all other
27-1021 Commercial and industrial designers
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A.5 Summary Statistics and Further Robustness

Table A.3: Descriptive statistics and pairwise correlation of variables

Descriptive statistics Pairwise correlation (variables in logs)
Mean Std. Dev. Min Max 1) 2) 3) 4) 5) 6) 7) 8) 9)

1) Employment in R&D

occupations in the private sector

(millions weekly hours)

4.339 5.216 0.115 36.113 1

2) Employment total in the

private sector (millions weekly

hours)

75.406 81.269 5.608 456.439 0.966 1

3) Employment in R&D

occupations in the private sector

(% in total corporate

employment)

5.281 1.703 1.205 10.070 0.612 0.385 1

4) Hourly earnings in R&D

occupations in the private sector

(millions $2000)

3.136 4.073 0.577 30.020 0.995 0.952 0.635 1

5) Federal non-R&D

procurement in high-tech

industries (billions $2000)

1.500 2.659 0.003 17.708 0.753 0.743 0.411 0.768 1

6) Federal non-R&D

procurement in all other

industries (billions $2000)

2.077 2.742 0.033 25.894 0.691 0.744 0.191 0.702 0.784 1

7) High-tech procurement share

(%)
32.957 19.624 1.520 84.563 0.424 0.354 0.426 0.433 0.702 0.117 1

8) GDP (billions $2000) 207.531 247.729 15.178 1,576.801 0.960 0.986 0.407 0.955 0.768 0.771 0.363 1

9) Population (millions) 5.793 6.355 0.489 36.962 0.954 0.997 0.357 0.941 0.752 0.764 0.345 0.985 1

10) GDP per capita ($) 34,726 6,639 21,736 59,399 0.203 0.124 0.346 0.252 0.231 0.179 0.169 0.267 0.096

Notes: The number of observations is 650 (50 US states, 1997–2009). Employment in R&D occupations in the private sector is the state-level
sum of weekly hours worked of part-time and full-time employees in R&D occupations in the private sector. Employment total in the private
sector is measured as the state-level sum of weekly hours worked in all occupations in the private sector. Hourly earnings in R&D occupations
in the private sector is the state-level sum of per-hour wages of workers in R&D occupations in the private sector. CPS sampling weights are
used when calculating employment and earnings. High-tech procurement share is federal non-R&D procurement in high-tech industries as a
share of total federal non-R&D procurement in the private sector.

50



Table A.4: Robustness checks: Using R&D employment share as dependent variable

Dependent Variable:
R&D Employment Share (log)

(1) (2) (3) (4) (5) (6)
Base- State Industry With Original Full-Time
line Trend Structure Deob NAICS Only

High-Tech Share (log, t-1) 0.032∗∗∗ 0.022∗∗ 0.024∗∗ 0.030∗∗∗ 0.010∗∗ 0.025∗∗∗
(0.009) (0.010) (0.009) (0.009) (0.004) (0.008)

Hourly Earnings R&D (log) 0.714∗∗∗ 0.723∗∗∗ 0.741∗∗∗ 0.714∗∗∗ 0.712∗∗∗ 0.764∗∗∗
(0.023) (0.035) (0.028) (0.023) (0.025) (0.020)

State Fixed Effects Yes Yes Yes Yes Yes Yes
Time Fixed effects Yes Yes Yes Yes Yes Yes

Observations 650 650 650 650 646 650
R-squared (within state) 0.752 0.792 0.793 0.752 0.753 0.801
F -statistic 225.926 227.766 167.389 302.248

Notes: The dependent variable is the share of hours in R&D occupations in total hours in all occupations in the private sector. Column (1)
corresponds to Column (1) in Table 1. Columns (2) to (6) correspond to Columns (1) to (5) in Table 2. Robust standard errors (clustered by
state) are in parentheses. * 10 percent level of significance. ** 5 percent level of significance. *** 1 percent level of significance.
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Table A.5: Robustness checks: Using hours worked in non-R&D occupations as control

Dependent Variable:
R&D Employment (log)

(1) (2) (3) (4) (5) (6)
Base- State Industry With Original Full-Time
line Trend Structure Deob NAICS Only

High-Tech Share (log, t-1) 0.026∗∗∗ 0.020∗ 0.023∗∗∗ 0.025∗∗∗ 0.011∗∗∗ 0.016∗∗
(0.009) (0.010) (0.008) (0.009) (0.004) (0.006)

Hours Worked Non-R&D (log) 0.271∗∗∗ 0.168 0.226∗ 0.270∗∗∗ 0.259∗∗∗ 0.155∗∗∗
(0.077) (0.123) (0.122) (0.077) (0.071) (0.050)

Hourly Earnings R&D (log) 0.781∗∗∗ 0.749∗∗∗ 0.768∗∗∗ 0.781∗∗∗ 0.781∗∗∗ 0.850∗∗∗
(0.028) (0.035) (0.028) (0.028) (0.029) (0.020)

State Fixed Effects Yes Yes Yes Yes Yes Yes
Time Fixed effects Yes Yes Yes Yes Yes Yes

Observations 650 650 650 650 646 650
R-squared (within state) 0.775 0.798 0.797 0.775 0.779 0.853
F -statistic 243.545 243.060 247.980 536.498

Notes: Hours worked in non-R&D related occupations are used instead of total hours worked to control for the labor supply in a state. Column
(1) corresponds to Column (1) in Table 1. Columns (2) to (6) correspond to Columns (1) to (5) in Table 2. Robust standard errors (clustered
by state) are in parentheses. * 10 percent level of significance. ** 5 percent level of significance. *** 1 percent level of significance.
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Table A.6: Technological intensity of government demand and private-sector R&D: IV estimates
with other lag structure

(1) (2) (3) (4)
One lag One lag Three lags Three lags

First Stage Second Stage First Stage Second Stage

Coincidence Gov-Congress (t-2) 0.094∗
(0.048)

Coincidence Gov-Congress (t-4) 0.103∗∗
(0.039)

High-Tech Share (log, t-1) 0.032 0.029
(0.079) (0.059)

Total Hours Worked (log) -0.715 0.414∗∗∗ -0.668 0.412∗∗∗
(0.549) (0.106) (0.540) (0.940)

Hourly Earnings R&D (log) - 0.024 0.761∗∗∗ -0.048 0.761∗∗∗
(0.132) (0.029) (0.127) (0.029)

Robust 95% Confidence Interval (-0.123, 0.761) (-0.112, 0.303)

Time Fixed Effects Yes Yes Yes Yes
State Fixed Effects Yes Yes Yes Yes

Observations 650 650 650 650
F -statistic (excluded instrument) 3.820 7.190
R-squared (within state) 0.044 0.781 0.047 0.782
F -statistic 1.380 276.380 1.610 274.670
Durbin-Wu-Hausman test p-value 0.955 0.974

Notes: Results from 2SLS estimation with the instrument being lagged one period (Columns (1) and (2)) or three
periods (Columns (3) and (4)) behind the potentially endogenous regressor. Robust standard errors (clustered by
state) are in parentheses. * 10 percent level of significance. ** 5 percent level of significance. *** 1 percent level of
significance. If Huber-White robust standard errors are used instead of clustered errors, the excluded instrument
is significant at the 1 percent level for both lags and the F -statistic is equal to 9.260 (one lag) and 13.350 (three
lags). LIML estimation provides results similar to those presented here.
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