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Abstract

Models with structured additive predictor provide a very broad and rich

framework for complex regression modeling. They can deal simultaneously

with nonlinear covariate effects and time trends, unit- or cluster-specific het-

erogeneity, spatial heterogeneity and complex interactions between covariates

of different type. In this paper, we propose a hierarchical or multilevel version

of regression models with structured additive predictor where the regression

coefficients of a particular nonlinear term may obey another regression model

with structured additive predictor. In that sense, the model is composed of

a hierarchy of complex structured additive regression models. The proposed

model may be regarded as an extended version of a multilevel model with non-

linear covariate terms in every level of the hierarchy. The model framework is

also the basis for generalized random slope modeling based on multiplicative

random effects. Inference is fully Bayesian and based on Markov chain Monte

Carlo simulation techniques. We provide an in depth description of several

highly efficient sampling schemes that allow to estimate complex models with

several hierarchy levels and a large number of observations within a couple of

minutes (often even seconds). We demonstrate the practicability of the ap-

proach in a complex application on childhood undernutrition with large sample

size and three hierarchy levels.

Keywords: Bayesian hierarchical models, kriging, Markov random fields,

MCMC, multiplicative random effects, P-splines



1 Introduction

The last years have seen enormous progress in Bayesian semiparametric regression

modeling based on Markov chain Monte Carlo (MCMC) simulation for inference.

Pioneering work has been done by Smith and Kohn (1996) and Smith and Kohn

(1997) who developed uni- and bivariate smoothers based on adaptive knot selection.

Related more recent approaches can be found in Chan, Kohn, Nott, and Kirby (2006)

and Cottet, Kohn, and Nott (2008). This paper is in the tradition of another branch

of the literature based on Bayesian roughness penalty approaches, see e.g. Fahrmeir

and Lang (2001), and Lang and Brezger (2004) for early references, and more recently

Jullion and Lambert (2007) and Panagiotelis and Smith (2008).

A particularly broad and rich framework is provided by generalized structured ad-

ditive regression (STAR) models introduced in Fahrmeir, Kneib, and Lang (2004)

and Brezger and Lang (2006). Models of similar complexity have been developed in

a mostly frequentist setting by Simon Wood (see e.g. Wood 2003 and Wood 2006)

and in Ruppert, Wand, and Carroll (2003), Rigby and Stasinopoulos (2005) or Rue,

Martino, and Nicolas (2009). STAR models assume that, given covariates, the dis-

tribution of response observations yi, i = 1, . . . , n, belongs to an exponential family.

The conditional mean µi = E(yi) is linked to a semiparametric additive predictor ηi

by µi = h(ηi) where h is a known response function. The predictor ηi is of the form

ηi = f1(zi1) + . . .+ fq(ziq) + x′

iγ, i = 1, . . . , n, (1)

where f1, . . . , fq are nonlinear functions of the (possibly multidimensional) covariates

z1, . . . , zq and x′γ is the usual linear part of the model. The functions fj comprise

usual nonlinear effects of continuous covariates as well as time trends and seasonal

effects, two-dimensional surfaces, varying coefficient terms and cluster- or spatial

effects. The nonlinear functions in (1) are modeled by a basis functions approach,

i.e. a particular nonlinear function f of covariate z is approximated by a linear

combination of basis or indicator functions:

f(z) =

K
∑

k=1

βkBk(z). (2)
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The Bk’s are known basis functions and β = (β1, . . . , βK)
′ is a vector of unknown re-

gression coefficients to be estimated. Specific examples for the choice of basis functions

and priors for the regression coefficients will be given in Section 2. Defining the n×K

design matrix Z with elements Z[i, k] = Bk(zi), the vector f = (f(z1), . . . , f(zn))
′

of function evaluations can be written in matrix notation as f = Zβ. Accordingly,

for the predictor (1) we obtain

η = Z1β1 + . . .+Zqβq +Xγ. (3)

In this paper, we propose a hierarchical or multilevel version of regression models with

structured additive predictor. Multilevel STAR models assume that the regression

coefficients βj of a term fj in (3) may themselves obey a regression model with

structured additive predictor, i.e.

βj = ηj + εj = Zj1βj1 + . . .+Zjqjβjqj
+Xjγj + εj . (4)

Here the terms Zj1βj1, . . . ,Zjqjβjqj
correspond to additional nonlinear functions

fj1, . . . , fjqj , Xjγj comprises additional linear effects, and

εj ∼ N(0, τ 2j I) (5)

is a vector of i.i.d. Gaussian random effects. To keep the paper in reasonable

length, we restrict ourselves to i.i.d. Gaussian random effects although more sophisti-

cated structures like the Bayesian LASSO (Park and Casella 2008), Dirichlet process

mixtures (Heinzl, Kneib, and Fahrmeir 2011) or spike and slab priors (Frühwirth-

Schnatter and Wagner 2011) can be implemented in a straightforward way. More-

over, a third level or even higher levels in the hierarchy are possible by assuming that

the second level regression parameters βjl, l = 1, . . . , qj , obey again a STAR model.

In that sense, the model is composed of a hierarchy of complex structured additive

regression models.

The two main goals of this paper are

• to provide a rich Bayesian framework for multilevel additive modeling including

generalizations of random slopes,
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• to discuss several highly efficient MCMC sampling schemes that utilize the hier-

archical structure and allow to estimate complex models with several hierarchy

levels and a large number of observations within a couple of minutes (often even

seconds),

We provide an implementation of the methodology within the software package

BayesX together with the full R interface R2BayesX.

A typical application of the proposed models are multilevel data where a hierarchy

of units or clusters grouped at different levels is given. As an example, we will an-

alyze survey data on child undernutrition in India. Undernutrition among children

is usually measured in form of a Z-score (variable zscore) that determines the an-

thropometric status of the child relative to a reference population of children known

to have grown well. A child whose Z-score is below -2 is typically regarded as un-

dernourished. In our analysis, we will distinguish three levels: Children (level-1) are

nested in districts (level-2) and districts are nested in states (level-3). In Section 5,

we will present results for a probit model that models the probability that a child is

undernourished, i.e. zscore < −2. The following three level hierarchical predictor is

used:

level-1: η = f 1(c age) + f2(c age)c sex + f3(ageb) + f 4(ageb)c sex+

f 5(educy) + f 6(educy)c sex + f 7(ai) + f 8(ai)c sex+

f 9(dist) + f10(dist)c sex + · · ·+ ε

= Z1β1 + · · ·+Z9β9 +Z10β10 + · · ·+ ε

level-2: β9 = f 9,1(m ai) + f 9,2(m educy) + f 9,3(dist) + f9,4(state) + ε9

= Z9,1β9,1 + · · ·+Z9,4β9,4 + ε9

level-2: β10 = f 10,1(m ai) + f 10,2(m educy) + f10,3(dist) + f 10,4(state) + ε10

= Z10,1β10,1 + · · ·+Z10,4β10,4 + ε10

level-3: β9,4 = f 9,4,1(gdp) + ε9,4 = Z9,4,1β9,4,1 + ε9,4

level-3: β10,4 = f 10,4,1(gdp) + ε10,4 = Z10,4,1β10,4,1 + ε10,4

(6)

The level-1 equation consists of possibly nonlinear smooth effects of the child’s age

(variable c age), the mother’s age at birth (ageb), the mother’s educational attain-
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ment measured through the years of education (educy) and an asset index (ai) measur-

ing the household’s wealth. The asset index is derived using a principal components

analysis based on the possession of household assets and dwelling characteristics. The

latter two covariates are measured as differences from the district mean education level

and wealth index. Since a main scientific question is on possible gender differences

we include interaction terms between the covariates and gender (c sex ) given in effect

coding and with males as the reference category. The dots indicate that there are

further covariate effects in the level one equation which are estimated but not shown

in this paper. Altogether there are 18 smooth terms in the level-1 equation. District-

specific spatial heterogeneity is modeled through the two level-2 equations containing

the average asset index per district (m ai) and the average education years per dis-

trict (m educy). Spatial heterogeneity beyond the available district specific covariates

is modeled through the smooth spatial effects f9,3(dist), f10,3(dist) and state-specific

spatial effects f9,4(state), f10,4(state) modeled through the level-3 equations of the

model. The level-3 effects f9,4,1(gdp), f10,4,1(gdp) are nonlinear effects of the gross do-

mestic product per capita within states. The second level-2 equation in combination

with the second level-3 equation models a complex nonlinear random “slope” effect

of gender.

In principle the model (6) can be reexpressed in a reduced form as a usual STAR

model as in (1). Then the predictor would contain the nonlinear covariate effects

of all hierarchy levels as well as an additive composition of the i.i.d district and

state specific random effects. However, the hierarchical formulation provides several

distinct advantages compared to the reduced form:

• From an interpretational perspective, the hierarchical formulation provides an

interesting decomposition of the random effects.

• Most importantly, Bayesian inference based on MCMC simulations is almost

revolutionized through the hierarchical formulation as it allows for well-behaved

(in terms of mixing) and very fast samplers that would be impossible in the

reduced formulation.
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• Finally, models going beyond the i.i.d. random effects (5) (which is our goal for

future research) circumvent a simple reexpression of model (6) in reduced form.

Multilevel STAR models are also the basis for generalized random slopes or multi-

plicative random effects of the form

(1 + αci)f(zi) = f(zi) + αcif(zi), (7)

where the possibly nonlinear function f of a covariate z is scaled by a cluster spe-

cific factor (1 + αc) with respect to clusters c ∈ {1, . . . , C}. Treating such models

in full details is beyond the scope of this paper. An application of generalized ran-

dom slope modeling is given in a marketing paper that analyzes the impact of price

changes on a brands sales using the technology presented here, see Lang, Steiner, and

Wechselberger 2012.

The rest of the paper is organized as follows: Section 2 discusses modeling of covariate

effects and corresponding priors. Sections 3 and 4 are devoted to MCMC inference.

Section 5 presents the results for the case study on undernutrition in India. The final

Section 6 concludes and points out directions for future research.

2 Effect modeling and priors

Effect modeling and priors depend on the covariate or term type. We distinguish two

types of priors: “direct” or “basic” priors for the regression coefficients βj (or βjl in

a second level equation) and compound priors (4). We first describe the general form

of “basic” priors. Subsections 2.2– 2.4 give specific examples for effect modeling using

specific design matrices and forms of the basic prior. Subsection 2.5 shows how the

basic priors can be used as building blocks for the compound priors.

2.1 General form of basic priors

In a frequentist setting, overfitting of a particular function f = Zβ is avoided by

defining a roughness penalty on the regression coefficients, see for instance Wood
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(2006) in the context of structured additive regression. In a Bayesian framework a

standard smoothness prior is a (possibly improper) Gaussian prior of the form

p(β|τ 2) ∝

(

1

τ 2

)rk(K)/2

exp

(

−
1

2τ 2
β′Kβ

)

· I(Aβ = 0), (8)

where I(·) is the indicator function. The key components of the prior are the penalty

matrix K, the variance parameter τ 2j and the constraint Aβ = 0.

The structure of the penalty or prior precision matrix K depends on the covariate

type and on prior assumptions about smoothness of f , see Subsections 2.2– 2.4 for

specific examples. With one notable exception for Gaussian random fields (kriging),

the penalty matrix in our examples is rank deficient, i.e. rk(K) < K, resulting in a

partially improper prior.

The amount of smoothness is governed by the variance parameter τ 2. A conjugate

inverse Gamma prior is employed for τ 2 (as well as for the error variance parameter

σ2 in models with Gaussian responses), i.e. τ 2 ∼ IG(a, b) with small values such as

a = b = 0.001 for the hyperparameters a and b resulting in an uninformative prior on

the log scale. Alternative priors for τ 2 have been discussed in Gelfand (2006).

The term I(Aβ = 0) imposes required identifiability constraints on the parameter

vector. A straightforward choice is A = (1, . . . , 1), i.e. the regression coefficients are

centered around zero. A better choice in terms of interpretability and mixing of the

resulting Markov chains is to use a weighted average of regression coefficients, i.e.

A = (a11, . . . , a1K). As a standard we use a1k =
∑n

i=1Bk(zi), k = 1, . . . , K, resulting

in the more natural constraint
∑n

i=1 f(zi) = 0. Additional constraints such as sum to

zero constraints
∑n

i=1 f
′(zi) = 0 on the derivatives can be defined by adding a second

row to A and by setting a2k =
∑n

i=1B
′

k(zi).

2.2 Continuous covariate effects

For a continuous covariate z, our basic approach for modeling a smooth function f

are P-splines introduced in a frequentist setting by Eilers and Marx (1996) and in a

Bayesian version by Lang and Brezger (2004). P-splines assume that the unknown

functions can be approximated by a polynomial spline which can be written in terms
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of a linear combination of B-spline basis functions. Hence, the columns of the design

matrix Z are given by the B-spline basis functions evaluated at the observations

zi. Lang and Brezger (2004) propose to use first or second order random walks as

smoothness priors for the regression coefficients, i.e.

βk = βk−1 + uk, or βk = 2βk−1 − βk−2 + uk, (9)

with Gaussian errors uk ∼ N(0, τ 2) and diffuse priors p(β1) ∝ const, or p(β1) and

p(β2) ∝ const, for initial values. This prior is of the form (8) with penalty matrix

given by K = D′D, where D is a first or second order difference matrix. Locally

adaptive variants of the basic P-splines approach have been proposed e.g. in Yue,

Speckman, and Sun (2012). The Bayesian P-splines approach can be generalized to

two-dimensional smoothing for modeling interactions by assuming that the unknown

surface is the tensor product of one-dimensional B-splines, see Lang and Brezger

(2004) for details.

2.3 Spatial effects

Assume now that z represents the location a particular observation pertains to. If

exact locations are available, z =
(

z(1), z(2)
)

′

is two-dimensional and the components

z(1) and z(2) correspond to the coordinates of the location. In this case the spatial

effect f
(

z(1), z(2)
)

could be modeled by two-dimensional extensions of P-splines as

described in Lang and Brezger (2004). An alternative approach widely used in the

geostatistics literature (e.g. Kamman and Wand 2003) is to model the spatial effect

by stationary Gaussian random fields (kriging). Here f(z) = f
(

z(1), z(2)
)

= βz is

assumed to follow a zero mean stationary Gaussian field with variance τ 2 and isotropic

covariance function Cov(βz, β
′

z
) = C(||z− z′||). For a finite number of design points,

the prior is of the form (8) with penalty matrix K = C where C[k, s] = C(||zk−zs||),

1 ≤ k, s ≤ n. The design matrix is given by Z = C. A widespread choice for the

covariance is the Matern family of covariance functions. One of the practical problems

with Gaussian random fields is that the number of parameters is equal or close to the

number of observations n. For that reason the random field is often approximated by
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defining a representative subset of knots of the set of distinct locations, see Kamman

and Wand (2003) for details. The R function cover.design in the package fields

provides a convenient tool for obtaining the reduced design. However, as pointed out

by Hennerfeind, Brezger, and Fahrmeir (2006), Bayesian inference based on MCMC

simulations can be extremely slow because the penalty matrix as well as the design

matrix cross product Z ′Z are full matrices, i.e. the typical sparse matrix structure

can not be exploited for efficient computation. We will circumvent the problem by

using a reparametrization of the regression coefficients such that the resulting penalty

and cross product matrix are diagonal, see Section 4 for details.

Another alternative for modeling smooth spatial effects are Markov random fields

(MRF) as described e.g. in Brezger and Lang (2006). MRF’s are particularly useful

if a geographical map is given and exact locations are not available.

2.4 Modeling interactions through varying coefficients

In our case study on stunting in India we are particulary interested in gender dif-

ferences, which are modeled by interactions with the covariate c sex . Interactions

as in (6) are specific varying coefficient terms (Hastie and Tibshirani 1993). More

generally, suppose that the effect of a covariate z(2) is assumed to vary with respect

to another covariate z(1). The interaction between z(2) and z(1) can be modeled by a

predictor of the form

η = . . .+ z(1) g(z(2)) + . . . ,

where g is a function of z(2) which in turn is the effect modifier of z(1). If the effect

modifier is the location either given as the coordinates or as a spatial index we have

a space varying effect of z(1) (for instance Gamerman et al. 2003).

Independent of the specific type of the effect modifier, the interaction term z(1) g
(

z(2)
)

can be cast into the general framework by defining

f
(

z(1), z(2)
)

= z(1) g
(

z(2)
)

. (10)

The overall design matrix Z is given by diag(z
(1)
1 , . . . , z

(1)
n )Z(2) where Z(2) is the usual

design matrix for P-Splines, tensor product P-splines, spatial effects etc.
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Varying coefficient terms are also the key for MCMC based inference in the generalized

random slope terms (7). It can be shown that for fixed scaling parameters or fixed

regression coefficients, the term (7) is technically identical to a varying coefficients

term and MCMC updating is done by repeatedly obeying this varying coefficients

structure. Details can be found Lang, Steiner, and Wechselberger (2012).

2.5 Compound priors

In many cases the compound prior (4) is used if a covariate zj ∈ {1, . . . , K} is a

unit- or cluster index and zij indicates the cluster observation i pertains to. Then the

design matrix Zj is a n×K incidence matrix with Zj [i, k] = 1 if the i-th observation

belongs to cluster k and zero otherwise. The K× 1 parameter vector βj is the vector

of regression parameters, i.e. the k-th element in β corresponds to the regression

coefficient of the k-th cluster. Using the compound prior (4) we obtain an additive

decomposition of the cluster-specific effect. The covariates zjl, l = 1, . . . , qj , in (4)

are cluster-specific covariates with possible nonlinear cluster effect. By allowing a full

STAR predictor (as in the level-1 equation) a rather complex decomposition of the

cluster effect βj including interactions is possible. A special case arises if cluster-

specific covariates are not available. Then the prior for βj collapses to βj = εj ∼

N(0, τ 2j I) and we obtain a simple i.i.d. Gaussian cluster-specific random effect with

variance parameter τ 2j .

Another special situation arises if the data are grouped according to some discrete ge-

ographical grid and the cluster index zij denotes the geographical region observation

i pertains to. For instance, in our application on child undernutrition in Section 5

for every observation the district of the households residence is given. Then the com-

pound prior (4) models a complex spatial heterogeneity effect with possibly nonlinear

effects of region-specific covariates zjl.

In a number of applications, geographical information and spatial covariates are given

at different resolutions. For instance, in our case study on child undernutrition, the

districts (level-2) are nested within counties (level-3). This allows to model a spatial
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effect over two levels in the form

βj = Zj1βj1 + Zj2βj2 + . . .+ εj,

βj1 = Zj11βj11 + Zj12βj12 + . . .+ εj1.

Here, the first covariate zj1 in the district-specific effect is another cluster indicator

that indicates the county in which the districts are nested. Hence, Zj1 is another

incidence matrix and βj1 is the vector of county-specific effects modeled through the

level-3 equation.

We finally point out that the compound priors are not necessarily restricted to ran-

dom effects modeling as described above. For instance, Zjβj in (3) may comprise a

smooth spatial term modeled by radial basis functions centered at the unique loca-

tions (as in classical kriging). The common assumption of a Gaussian random field

for the regression coefficients βj implies that parameters in close proximity are more

alike than others. However, in many spatial applications the definition of locational

similarity may be given by a bunch of similar locational characteristics (e.g. soil con-

ditions) and less by spatial proximity in the narrow sense. This could be modeled

using the compound prior (4) by regressing the coefficients βj (nonparametrically)

on location specific covariates.

3 MCMC Inference based on the original

parametrization

We first discuss direct MCMC schemes based on the original parametrization of the

previous sections. In Section 4, we provide an MCMC scheme which uses an alterna-

tive parametrization that results in diagonal precision matrices.

3.1 Gaussian responses

We first describe a Gibbs sampler for models with Gaussian errors. For the sake

of simplicity, we restrict the presentation to a two level hierarchical model with one
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level-2 equation for the regression coefficients of the first term Z1β1. That is, the

level-1 equation is y = η + ε with predictor (3) and errors ε ∼ N(0, σ2W−1) with

diagonal weight matrix W = diag(w1, . . . , wn). The level-2 equation is of the form

(4) with j = 1. Inference for models with more than two hierarchy levels or more

level-2 equations is straightforward (and of course fully supported by our software),

see also Section 5 for applications of three level models.

Based on usual conditional independence assumptions, the posterior is proportional

to

L(y |β1, . . . ,βq,γ, σ
2)

q
∏

j=1

[

p(βj | τ
2
j ) p(τ

2
j )
]

p(γ) p(σ2)

q1
∏

j=1

[

p(β1j | τ
2
1j) p(τ

2
1j)

]

p(γ1) p(τ
2
1 ),

(11)

where L(·) denotes the likelihood which is the product of individual likelihood con-

tributions.

The parameters are updated in blocks where each vector of regression coefficients βj

(β1l in a second level of the hierarchy) of a particular term is updated in one (possibly

large) block followed by updating the regression coefficients γ, γ1 of linear effects

and the variance components τ 2j , τ 21l, σ2. Simultaneously updating the regression

coefficients βj (β1l) and the corresponding variance component τ 2j (τ 21l) is possible

and sometimes useful, see Rue and Held (2005) or Brezger and Lang (2006).

The full conditionals for the regression coefficients β1 with the compound prior (4)

and the coefficients βj, j = 2, . . . , q, β1l, l = 1, . . . , q1 with the basic prior (8) are all

multivariate Gaussian. The respective posterior precision Σ−1 and mean µ is given

by

Σ−1 = 1
σ2

(

Z ′

1WZ1 +
σ2

τ2
1

I
)

, Σ−1µ = 1
σ2Z

′

1Wr + 1
τ2
1

η1, (β1 compound prior),

Σ−1 = 1
σ2

(

Z ′

jWZj +
σ2

τ2j
Kj

)

, Σ−1µ = 1
σ2Z

′

jW r, (βj level-1 equation),

Σ−1 = 1
τ2
1

(

Z ′

1lZ1l +
τ2
1

τ2
1l

K1l

)

, Σ−1µ = 1
τ2
1

Z ′

1l r1, (β1l level-2 equation),

(12)

where r is the current partial residual and r1 is the “partial residual” of the level-2

equation. More precisely, r1 = β1− η̃1 and η̃1 is the predictor of the level-2 equation
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excluding the current effect of z1l.

MCMC updates of the regression coefficients take advantage of the following key

features:

Sparsity: Design matrices Zj,Z1l as well as their cross products Z ′

jWZj ,Z
′

1lZ1l

and associated penalty matrices Kj ,K1l and posterior precision matrices in (12)

are often sparse. The sparsity can be exploited for highly efficient computation of

cross products (Section 3.3), Cholesky decompositions of posterior precision matrices

and for fast solving of relevant linear equation systems. In some cases, appropriate

reordering of the parameters is required. The parameters may be reordered accord-

ing to the reverse Cuthill-McKee algorithm or the (approximate) minimum degree

algorithm, see Davis (2006) for a recent reference.

Reduced complexity in the second or third stage of the hierarchy: Updating

the regression coefficients β1l, l = 1, . . . , q1, in the second (or third level) is done

conditionally on the parameter vector β1. This facilitates updating the parameters

for two reasons. First the number of “observations” in the level-2 equation is equal

to the length of the vector β1 and therefore much smaller than the actual number

of observations n. Second the full conditionals for β1l are Gaussian regardless of the

response distribution in the first level of the hierarchy.

Number of different observations smaller than sample size: In most cases

the number mj of different observations z(1), . . . , z(mj) in Zj (or m1l in Z1l in the

level-2 equation) is much smaller than the total number n of observations. The

fact that mj ≪ n may be utilized to considerably speed up computations of the cross

products Z ′

jWZj, Z
′

1lZ1l, the vectors Z
′

jW r, Z ′

1l r1 and finally the updated vectors

of function evaluations f j = Zjβj, f 1l = Z1lβ1l. Details will be given in Section 3.3.

Note that efficient computation of cross products and function evaluations contributes

at least as much to computational efficiency as the sparse matrix algorithms to solve

relevant linear equation systems.
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3.2 Non-Gaussian responses

The non-Gaussian case can often be traced back to Gaussian regression models via

data augmentation as has been proposed for the first time in the seminal paper by

Albert and Chib (1993) for parametric probit models. Since then other data aug-

mentation schemes for logit models (Holmes and Held 2006, Frühwirth-Schnatter

and Frühwirth 2010), Poisson regression (Frühwirth-Schnatter, Frühwirth, Held, and

Rue 2009) and certain types of Gamma regression models (Frühwirth-Schnatter,

Frühwirth, Held, and Rue 2009) have been developed. We very briefly illustrate

the concept for probit models, i.e. yi ∼ B(1,Φ(ηi)) where Φ is the cdf of a standard

normal distribution. Introducing latent variables Ui = ηi + ǫi with ǫi ∼ N(0, 1), we

obtain yi = 1 if Ui > 0 and yi = 0 if Ui < 0. The posterior of the model augmented by

the latent variables depends now on the extra parameters Ui and additional sampling

steps for updating the Ui’s are required. Sampling the Ui’s is relatively easy and fast

because the full conditionals are truncated normal distributions, i.e. Ui | · ∼ N(ηi, 1)

truncated at the left by 0 if yi = 1 and truncated at the right if yi = 0. The advantage

of defining a probit model through the latent variables Ui is that the full conditionals

for the regression parameters are almost unchanged with the responses yi in (12) re-

placed by the latent variables Ui. The other data augmentation approaches mentioned

above work similar and are only slightly more complex.

In cases where data augmentation is not possible the regression parameters of the

level-1 equation can be updated using Metropolis-Hastings steps with IWLS proposals

as described for simple STAR models in Brezger and Lang (2006). The tricks for

computationally improved MCMC sampling summarized in the previous subsection

and detailed in the following subsections can still be used with minor modifications.

3.3 Efficient computation of Z ′WZ and Z ′W r

We describe efficient computation for a particular varying coefficient term

f(z) = f
(

z(1), z(2)
)

= z(1) g(z(2)) (13)

15



in the level-1 or level-2 equation with design matrix

Z = diag
(

z
(1)
1 , . . . , z(1)n

)

Z(2) = DZ(2)

where D = diag
(

z
(1)
1 , . . . , z

(1)
n

)

. Computation for a pure additive term, i.e. D = I,

arises as a special case.

Denote by z
(2)
(1) < z

(2)
(2) < · · · < z

(2)
(m) the m ordered different observations of z(2). Com-

pute the index vector ind with elements ind[i] ∈ {1, . . . , m} denoting the category

of the i-th observation, i.e. if z
(2)
i = z

(2)
(j) then ind[i] = j. The index vector ind is re-

quired to match the sorted observations of z(2) with the response observations which

can not be sorted directly because different model terms would result in different

sorting.

We can now decompose the design matrix in Z = DPZ̃, where

• Z̃ is the m×K reduced design matrix for the different and sorted observations

z
(2)
(1) , . . . , z

(2)
(m), i.e. Z̃[s, k] = Bk

(

z
(2)
(s)

)

, s = 1, . . . , m, k = 1, . . . , K,

• P is a n × m permutation matrix, which reverts the sorting, i.e. P [i, s] =

I(ind(i) = s). Note that P is defined for presentation purposes and will not

be computed explicitly.

For the vector of function evaluations we obtain f = Zβ = DPZ̃β.

Computation of Z ′WZ

We get

Z ′WZ = Z̃
′

P ′D′WDPZ̃ = Z̃
′

W̃ Z̃,

where W̃ = P ′D′WDP = diag(w̃1, . . . , w̃m) and the “reduced” weights w̃s, s =

1, . . . , m, are given by

w̃s =
∑

i : ind[i]=s

(

(z
(1)
i

)2

wi. (14)

The weights w̃s can be computed by first initializing w̃s = 0 followed by a simple

loop: For i = 1, . . . , n add
(

(z
(1)
i

)2

wi to w̃ind[i]. Hence, the computation of the cross

product Z ′WZ is reduced to the computation of the cross product Z̃
′

W̃ Z̃ where
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the dimension of Z̃ is much more favorable in terms of computational costs than the

dimension of the original design matrix Z. Note that the reduced design matrix Z̃ is

still a sparse matrix. The sparsity can be exploited for efficient computation by using

standard algorithms for sparse matrix multiplications as for example given in Davis

(2006), Chapter 2.8. However, since Z̃ usually remains constant during the MCMC

run an even faster algorithm is possible:

Efficient computation of Z̃
′

W̃ Z̃

We store Z̃
′

W̃ Z̃ in sparse matrix format. Although the particular sparse matrix

storage format differs from implementation to implementation there is always a vector,

C say, that stores the nonzero entries of Z̃
′

W̃ Z̃. Let nz be the number of nonzero

entries of Z̃
′

W̃ Z̃, i.e. the dimension of C. Suppose that the t-th entry C[t] of C

corresponds to the element in the r-th row and l-th column of Z̃
′

W̃ Z̃. Then we have

C[t] =

m
∑

s=1

w̃sZ̃[s, r]Z̃[s, l],

where most of the products Z̃[s, r]Z̃[s, l] are zero because either Z[s, r] or Z[s, l] or

both are zero. We now store the nonzero products Z̃[s, r]Z̃[s, l] required to compute

C[t] in the auxiliary vector h1, the corresponding index s in the auxiliary vector h2

and the position of the first element in h1 corresponding to C[t] in the (nz + 1)× 1

index vector h3. The last element h3[nz + 1] in h3 is the dimension of C. Then C[t]

is efficiently computed as

C[t] =

h3[t+1]−1
∑

s=h3[t]

w̃h2[s]h1[s].

Computation of Z ′Wr

For Z ′Wr we obtain

Z ′Wr = Z̃
′

P ′D′Wr = Z̃
′

r̃,

where the m× 1 vector r̃ = (r̃1, . . . , r̃m)
′ of “reduced” partial residuals is given by

r̃s =
∑

i : ind[i]=s

z
(1)
i wi ri. (15)
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The r̃s are computed by first initializing r̃s = 0 followed by the loop: For i = 1, . . . , n

add z
(1)
i wi ri to r̃ind[i]. Once the reduced partial residual vector r̃ is computed, the

product Z̃
′

r̃ is obtained via sparse matrix-vector multiplications.

Remarks

1. Indicator functions: A particularly simple expression for Z ′WZ and Z ′Wr

is obtained if the Bk(z) are indicator functions, i.e. Bk(z) ∈ {0, 1} and for a

particular value z we have Bk(z) = 1 for exactly one k ∈ {1, . . . , K}. Typical

examples are Markov random fields for modeling spatial heterogeneity or P-

splines of degree 0 (simple random walk priors). Another example arises if the

effect Z1β1 with compound prior for β1 models cluster- or individual-specific

heterogeneity. In this case covariate z1 ∈ {1, . . . , K} corresponds to a cluster

index and Z1 is an incidence matrix with elements either 0 or 1. In all examples

the cross product Z ′WZ reduces to the diagonal matrix W̃ = diag(w̃1, . . . , w̃m)

and the product Z ′Wr reduces to r̃.

2. Binning: The efficiency of the formulae for computing Z ′WZ and Z ′Wr de-

pends on the number m of different observations in the covariate vector z(2). For

large m, a simple device for increasing computational efficiency is to perform

binning of the data. For continuous z(2) a very simple solution is rounding the

data to a certain degree. Alternatively we may group the data according to an

equidistant grid. Suppose that the support of the data is the interval [a, b] and

that we want to replace the observations z
(2)
1 , . . . , z

(2)
n by a grid of m equally

spaced design points

a+ δ/2 = z
(2)
(1) < z

(2)
(2) < . . . < z

(2)
(m) = b− δ/2.

Here δ = (b−a)/m is the grid width. It is natural to replace a value z(2) by the

design point which is closest in absolute value to z(2). Define for every value

z(2) the index h = floor((z(2) − a)/δ). Then we obtain z
(2)
new = a+ δ/2 + h · δ.

To give an example, computing time is reduced by approximately 40 to 70

percent (depending on the response distribution) for a simple model with one
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nonlinear function modeled by P-splines and 1000 different covariate observa-

tions.

3.4 Algorithm for updating regression parameters of nonlin-

ear effects

On the basis of the preceding subsections we are now ready to describe an algo-

rithm for updates of the regression parameters of nonlinear terms. We restrict the

presentation to Gaussian responses. Adapting the algorithm for non-Gaussian re-

sponses using data augmentation or IWLS proposals as sketched in subsection 3.2 is

straightforward.

We describe a generic algorithm for updating an arbitrary vector of regression coef-

ficients β regardless of the hierarchy level and its prior (compound prior (4) or basic

prior (8)). This means that we need to implement only one algorithm for updating

the regression coefficients of any hierarchy level. The input of the algorithm is a

(pseudo) “response” vector ỹ, a diagonal matrix of weights W̃ , a predictor η̃, a vec-

tor of regression coefficients β, a vector of function evaluations f , a (reduced) design

matrix Z̃ and its transpose Z̃
′

, an index vector ind, a cross product matrix Z ′WZ,

a vector Z ′Wr, a penalty matrix K and a precision matrix Σ−1. The specific values

passed to the algorithm depend on the respective model term, the hierarchy level and

the prior. For instance, ỹ = y, η̃ = η, W̃ = W when updating a parameter vector of

the level-1 equation and ỹ = β1, η̃ = η1, W̃ = I when updating a level-2 parameter

vector. Some of the input vectors and matrices are modified by the algorithm. The

algorithm is implemented using the following steps:

Algorithm (ỹ, W̃ , η̃, β, f , Z̃, Z̃
′

, ind, Z ′WZ,Z ′Wr,K, Σ−1):

1. Substract f from η̃: η̃ = η̃ − f and compute the partial residual: r = y − η̃.

2. Compute the cross product matrix Z ′WZ = Z̃
′

W̃ Z̃ and the vector Z ′Wr =

Z̃
′

r̃, based on the algorithms developed in Section 3.3. In models with Gaussian

errors it is sufficient to compute the cross product Z ′WZ once at the outset of
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the iterations because quantities involved remain constant. However, for non-

Gaussian responses and some extensions as generalized random slope modeling

defined in (7) the cross product has to be recomputed in every iteration of the

sampler.

3. Compute the posterior precision matrix Σ−1, see formula (12), and its Cholesky

decomposition: Σ−1 = LL′.

4. Sample β: First solve L′β∗ = u, where u is a vector of independent standard

Gaussians. It follows that β∗ ∼ N(0,Σ). Compute the mean µ by solving for

µ in (12) and add the mean µ to the previously simulated β∗. Finally correct

the unconstraint vector β∗ by

β = β∗ −ΣA′(AΣA′)−1Aβ.

This is done at negligible computational cost using steps 5-9 of algorithm 2.6

in Rue and Held (2005).

5. Update the vector of function evaluations f = Zβ = PZ̃β (or f = DPZ̃β for

varying coefficients terms). The first step is to compute the product f̃ = Z̃β

using sparse matrix - vector multiplications. Then the i-th element of f is given

by f [i] = f̃ [ind[i]] (or f [i] = z
(1)
i f̃ [ind[i]] for varying coefficients terms) .

6. Update the predictor: η̃ = η̃ + f

The generic algorithm is typically implemented as a function that takes the input

vectors and matrices of the algorithm as arguments and modifies parts of these quan-

tities. Since the algorithm updates parameter vectors of arbitrary hierarchy levels

estimation of complex multilevel models is easily obtained by subsequently calling

the function that implements the algorithm.
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4 MCMC Inference based on an alternative

parametrization

In this section we develop an alternative to the sampling scheme outlined in Section

3. The new scheme is particularly useful for situations where the design and penalty

matrix is not sparse as is for example the case for Gaussian random fields (kriging).

The alternative sampling scheme works with a transformed parametrization such that

the cross product of the design matrix and the penalty matrix of a nonlinear term are

diagonal resulting in a diagonal posterior precision matrix. In the context of spline

smoothing the resulting basis functions are known as the Demmler-Reinsch basis. For

pure additive models based on P-splines the Demmler-Reinsch basis has been used

for (frequentist) inference in Ruppert (2002).

We describe the alternative parametrization for a particular nonlinear function f with

design matrix Z = PZ̃ and parameter vector β with general prior (8).

Let Z ′WZ = Z̃
′

W̃ Z̃ = RR′ be the Cholesky decomposition of the cross product of

the design matrix and let QSQ′ be the singular value decomposition of R−1KR−T .

The diagonal matrix S = diag(s1, . . . , sK) contains the eigenvalues of R−1KR−T in

ascending order. The columns of the orthogonal matrix Q contain the corresponding

eigenvectors. Columns 1 through rk(K) form a basis for the vector space spanned by

the columns of R−1KR−T . The remaining columns are a basis of the nullspace.

Then the decomposition β = R−TQβ̄ yields

PZ̃β = PZ̃R−TQβ̄ = Z̄β̄,

where the transformed design matrix Z̄ is defined by Z̄ = PZ̃R−TQ. Note that Z̄

is a dense matrix in contrast to the sparse original design matrix Z.

We now obtain for the cross product

Z̄
′

WZ̄ = Q′R−1Z̃
′

P ′WPZ̃R−TQ = Q′Q = I

and for the penalty

β′Kβ = β̄
′

Q′R−1KR−TQβ̄ = β̄
′

Sβ̄,

21



with the new diagonal penalty matrix S given by the singular value decomposition

of R−1KR−T , see above.

Summarizing, we obtain the equivalent formulation f = Z̄β̄ for the vector of function

evaluations based on the transformed design matrix Z̄ and the transformed parameter

vector β̄ with (possibly improper) Gaussian prior

β̄ | τ 2 ∼ N(0, τ 2S−).

The advantage of the scheme is that the prior precision or penalty matrix S is di-

agonal resulting in a diagonal posterior precision matrix. More specifically, the full

conditional for β̄ is Gaussian with k-th element µk, k = 1, . . . , K, of the mean vector

µ given by

µk =
1

1 + λ sk
· uk,

where λ = σ2/τ 2 and uk is the k-th element of the vector u = Z̄
′

Wr with r the

partial residual. The covariance matrix Σ is diagonal with diagonal elements

Σ[k, k] =
σ2

1 + λ sk
.

For MCMC simulation the matrix products u = Z̄
′

Wr and f = Z̄β̄ must be

computed in every iteration of the sampler. The n ×K design matrix Z̄ is a dense

matrix that contains no zero elements. There is, however, a more efficient way to

compute the required quantities than by direct matrix multiplication.

To compute u we first note that u = Z̄
′

Wr = Q′R−1Z̃
′

P ′Wr. Since P ′Wr = r̃

is the reduced partial residual defined in Section 3.3 we get u = Q′R−1Z̃
′

r̃. Hence

u is obtained by first computing the product Z̃
′

r̃ using standard sparse matrix mul-

tiplications (or the even more efficient algorithm described in Section 3.3) and by

multiplying the result with the K×K matrix Q′R−1 which can be computed offline.

For computing the second product f = Z̄β̄ we note that f = Zβ and β = R−TQβ̄.

Hence f is obtained by first computing the untransformed β followed by step 5 of

the algorithm described in Section 3.4.

The main advantage of the alternative transformation is that it provides fast MCMC

inference even in situations where the posterior precision is relatively dense as is the
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case for many surface estimators. The prime example is a Gaussian random field

(kriging) which is almost intractable in the standard parametrization (see Henner-

feind, Brezger, and Fahrmeir 2006). Using the approach described in this section

MCMC inference for Gaussian random fields is extremely fast.

The main disadvantage of the sampling scheme is that it works only for fixed design,

i.e. the design matrix Z and the weights W must be constant during an MCMC run.

Otherwise the relatively costly singular value decomposition must be recomputed in

every iteration of the sampler. This excludes MH updates with IWLS proposals as

proposed in Brezger and Lang (2006).

5 Case study on child undernutrition in India

In this section we apply our methodology to data on the determinants of child un-

dernutrition in India. The analysis is based on micro data from the second National

Family Health Survey (NFHS-2) from India which was conducted in the years 1998

and 1999. The sample is representative of the population and collectes detailed health

and anthropometric information on approximately 30000 children born in the 3 years

preceding the survey.

Using the methodology of this paper we estimated the probit model (6) described

in the introduction. The presentation is restricted to the most interesting covariates

from a statistical point of view. Note, however, that all relevant covariates (e.g. the

birth order or the household size) are included in our models but not discussed in

this methodological paper.

For the nonlinear effects of continuous covariates, cubic P-splines with 20 inner knots

have been specified. The smooth spatial effects f9,3(dist) and f10,3(dist) are modeled

either by Markov random fields or Gaussian random fields with 50 representative

knots (low rank kriging). The latter is estimated via the alternative parametriza-

tion outlined in Section 4 while all other terms can be estimated in the original

parametrization. The results for both approaches to spatial smoothing are similar

although kriging shows a substantially lower deviance information criterion (DIC)
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(Spiegelhalter, Best, Carlin, and van der Linde 2002) with a difference of more than

50 points. Surprisingly the difference is due to a reduced deviance for the kriging

model while the equivalent degrees of freedom of both modeling variants are almost

identical. This means that kriging produces a better fit with less parameters.

5.1 Hierarchical versus non-hierarchical formulation

We first compare the hierarchical formulation of the model as outlined in this paper

with a non-hierarchical version. In principle, a non-hierarchical reduced form could

be estimated using the technology outlined primarily in Lang and Brezger (2004) and

Brezger and Lang (2006). However, estimation of the full model (6) turned out to

be not feasible because of very slow mixing and corresponding numerical problems.

The comparison is therefore restricted to a main effects model with a reduced set of

covariates. Estimation of the hierarchical version of this reduced model takes between

25% and 50% (depending on the operating system and the compiler used) of the non-

hierarchical version (with the same number of iterations). Even more important is

the by far superior mixing of sampled parameters as is demonstrated through Figure

1. The figure shows for selected model terms the maximum autocorrelations of the

corresponding parameters for lag sizes between 1 and 50. While for the hierarchical

version the maximum autocorrelations decline rather quickly, we observe persistent

autocorrelation with the non-hierarchical version. The autocorrelation functions of

the hierarchical model suggest that 20000 to 30000 iterations after the burnin pe-

riod should be sufficient to obtain 1000 nearly uncorrelated samples if every 20th to

30th sample is used. On the other hand the autocorrelation functions for the non-

hierarchical version show that estimation of complex multilevel models using standard

MCMC technology is not feasible.

To be on the save side, the following results are based on 50000 iterations after

a burnin period of 3000 iterations. On modern personal computers estimation takes

between 10 and 20 minutes depending on the actual processor. Note that we have not

run parallel chains which would reduce computing time even further (approximately
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30-35% of the computing time of a single chain on a usual quad core processor). Note

also that in the model building phase 10000 iterations after the burnin period are

enough to obtain sufficiently accurate preliminary results.

5.2 Results for nonlinear covariate effects

Figures 2 and 3 show estimated nonlinear effects of all hierarchy levels. The results

rely on the modeling variant based on kriging for the smooth spatial effect. Shown are

the posterior means together with 95% pointwise and simultaneous credible bands.

The simultaneous credible intervals are based on a proposal by Krivobokova, Kneib,

and Claeskens (2010). Of the various interactions with gender, the varying effects

with the child’s age and mother’s age at first birth are “significant” in the sense

that at least the 95% pointwise credible intervals do not fully cover the zero line.

Therefore the presentation of interaction effects are restricted to c age and ageb. We

also completely omitted results for the gross national product per capita (gnp) in

the level-3 equations as the effects are practically zero. Although this result is quite

surprising, also other studies have failed to identify an effect of GDP per capita on

child undernutrition in India using large scale household survey data (Subramanyam,

Kawachi, Berkman, and Subramanian 2011).

The age effect (left panel of Figure 2) shows that the probability of being stunted in

India rapidly increases between age 0 and about 20 months after which it oscillates.

This is in line with findings from other studies and indicates that children are not born

chronically malnourished but develop this as a result of disease and inadequate nutri-

tional intake. The sudden improvement of the nutritional status around 24 months is

an artifact of the reference standard as at this age, children switch from being com-

pared to the better nourished reference children from the white, bottle-fed Fels study

(Ohio Fels Research Institute), to the worse nourished reference children derived from

a cross-section of the US population, see WHO (2002), p. 4 - 6. The interaction with

gender shows that females are less likely to be stunted than males up to the age of

20 months. This is in agreement with our expectations as male newborns are typi-
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cally more vulnerable than females. More surprising is the fact that after 20 months

the situation is reverted and female children are now more likely to be stunted than

male children. This suggests that males have better access to limited (food) resources

than females. This interesting finding supports the hypotheses among development

economists that male children have a cultural advantage in South Asians countries

because parents profit more from male offsprings (e.g. they are more beneficial after

retirement), see e.g. Klasen (1996) and Somerfelt and Arnold (1999).

The effects of all other covariates in the study are much weaker than the age effect.

An example is the effect of mother’s age at first birth. This effect shows a U-form,

i.e. children are most healthy if the mother’s age at first birth is around 25 years. For

younger and older mothers the probability of stunted children is increased (although

the effect is not strong). The interaction effect provides evidence that the more

problematic situation of old mother’s is more risky for females than for males. The

observation that “problematic situations” are riskier for females than males is also

supported by some of the other interaction effects. Albeit not significant, they all

point in the same direction that males are less affected by problematic situations

(e.g. regarding the household wealth) than females.

For modeling the household’s wealth and education effect we have used the multilevel

structure of the data and estimated for both covariates external effects at district level

by including the average wealth index and education years per district in the level-2

equation. At least for the wealth index such an external effect can be observed (top

left panel of Figure 3). Children who are born in a wealthier environment (district)

are less likely to be stunted than children living in poor districts. There is, however,

an additional household effect, see the bottom left panel of Figure 3. Children in

households which are wealthier than the district mean are less affected by stunting

(and vice versa). Regarding education an external district effect is not significant

although there is a tendency that children in districts with higher education level are

less likely to be stunted. The individual eduction effect is comparably strong and

shows that a higher education status goes along with better nourished children.
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5.3 Hierarchical spatial random effect

Figures 4 and 5 show results for the spatial random effects modeled through the level-

2 and level-3 equations. The kernel density estimates of Figure 4 provide insight into

the strength and importance of the various random effects. We first note that the

interaction random effects are much weaker than the main random effects. Moreover,

the district smooth effects and the uncorrelated district random effects are roughly of

equal size and dominate the state random effects which are almost negligible. Figure

5 shows maps of the spatial heterogeneity not explained by covariates for males and

females, respectively. Unexplained spatial heterogeneity is additively composed of the

district smooth and uncorrelated random effect and the state random effect. Overall,

unexplained heterogeneity is higher for females (see also in Figure 4 the right bottom

panel). Moreover, females exhibit a more pronounced spatial pattern with higher

probabilities of stunting in the north-west and lower probabilities in the south and

the north-east. For males we observe a similar pattern although the north-south

patterns are less distinct.

5.4 Model choice

Some final remarks regarding model choice are in order. General tools for model choice

are pointwise and simultaneous credible intervals for the nonlinear effects as well as

Bayesian goodness of fit criteria, particularly the DIC. Also beneficial for model choice

is the detailed hierarchical modeling of spatial heterogeneity. For instance, the kernel

densities of Figure 4 suggest that the interaction random effect can be restricted to a

level-2 equation with a smooth and/or uncorrelated district effect. The spatial main

effect could possibly be restricted to the level-2 equation omitting the level-3 states

equation. To reduce the complexity of the full interaction model (6) we could in a

first step exclude the smooth nonsignificant interactions (in terms of 95% pointwise

credible intervals) which slightly reduces the DIC by approximately 15 points. A

further reduction of the DIC is obtained by more parsimonious random effects. The

best model (in terms of the DIC) is given by a full main effects spatial random effect
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including the level-3 equation and a reduced spatial interaction with a simple i.i.d.

Gaussian district random effect. In this model the DIC reduces by approximately 25

points compared to the full interaction model. Further reduction of the main effects

spatial random effect to a level-2 equation shows almost identical DIC.

6 Conclusion

This paper proposes a multilevel version of STAR models by assuming that the re-

gression coefficients of a particular nonlinear term obey another regression model with

structured additive predictor. The proposed model may be regarded as an extended

version of a multilevel model with nonlinear covariate terms in every level of the hier-

archy. Our model framework also comprises proposals for generalizations of random

slopes by assuming a common functional form that is scaled by cluster specific scaling

factors. We have developed highly efficient MCMC schemes for simulation-based in-

ference. The algorithms utilize the hierarchical structure of the models and rigorously

exploit the sparsity of design matrices, cross products and penalty matrices. Thereby

a considerable gain in numerical efficiency, reduction in computing time and mixing

of Markov chains is achieved compared to non-hierarchical versions of the models.

The methodology of this paper is the basis for a number of extensions that we plan

for future research:

• First of all, we plan to extend multilevel STAR models tomultivariate responses,

in particular multicategorical regression and seemingly unrelated regression.

• We also plan to model other parameters than the mean of the distribution in the

spirit of generalized additive models for location, scale and skewness (GAMLSS,

Rigby and Stasinopoulos 2005).

• Another interesting (albeit rather challenging) field is to model hyperparameters

in dependence of covariates, e.g. the variance parameter τ 2 in the general prior

(8) or the weights in the penalty matrix of a Markov random field. Preferably,
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the specification of a full STAR model should be possible for these hyperparam-

eters. This allows for modeling locally adaptive functions or complex covariate

driven spatial neighborhood definitions.

• We finally want to develop methodology for automatic model choice and variable

selection in the spirit of Belitz and Lang (2008) in a frequentist setting and

Scheipl, Fahrmeir, and Kneib (2011) in a Bayesian approach via spike and slab

priors.
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Figure 1: Maximum autocorrelations for selected effects.
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Figure 2: Effect of child’s age and mother’s age at first birth by gender. Shown is the

posterior mean together with 95% pointwise and simultaneous credible intervals.
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2011-05 Martin Gächter, Peter Schwazer, Engelbert Theurl: Entry and exit of
physicians in a two-tiered public/private health care system

2011-04 Loukas Balafoutas, Rudolf Kerschbamer, Matthias Sutter: Distribu-
tional preferences and competitive behavior forthcoming in
Journal of Economic Behavior and Organization

2011-03 Francesco Feri, Alessandro Innocenti, Paolo Pin: Psychological pressure
in competitive environments: Evidence from a randomized natural experiment:
Comment

2011-02 Christian Kleiber, Achim Zeileis: Reproducible Econometric Simulations

2011-01 Carolin Strobl, Julia Kopf, Achim Zeileis: A new method for detecting
differential item functioning in the Rasch model

http://econpapers.repec.org/paper/innwpaper/2011-09.htm
http://econpapers.repec.org/paper/innwpaper/2011-09.htm
http://econpapers.repec.org/paper/innwpaper/2011-08.htm
http://econpapers.repec.org/paper/innwpaper/2011-08.htm
http://econpapers.repec.org/paper/innwpaper/2011-07.htm
http://econpapers.repec.org/paper/innwpaper/2011-07.htm
http://econpapers.repec.org/paper/innwpaper/2011-06.htm
http://econpapers.repec.org/paper/innwpaper/2011-06.htm
http://econpapers.repec.org/paper/innwpaper/2011-05.htm
http://econpapers.repec.org/paper/innwpaper/2011-05.htm
http://econpapers.repec.org/paper/innwpaper/2011-04.htm
http://econpapers.repec.org/paper/innwpaper/2011-04.htm
http://econpapers.repec.org/paper/innwpaper/2011-03.htm
http://econpapers.repec.org/paper/innwpaper/2011-03.htm
http://econpapers.repec.org/paper/innwpaper/2011-03.htm
http://econpapers.repec.org/paper/innwpaper/2011-02.htm
http://econpapers.repec.org/paper/innwpaper/2011-01.htm
http://econpapers.repec.org/paper/innwpaper/2011-01.htm


University of Innsbruck

Working Papers in Economics and Statistics

2012-07

Stefan Lang, Nikolaus Umlauf, Peter Wechselberger, Kenneth Harttgen, Thomas
Kneib

Multilevel structured additive regression

Abstract
Models with structured additive predictor provide a very broad and rich frame-
work for complex regression modeling. They can deal simultaneously with nonlinear
covariate effects and time trends, unit- or cluster-specific heterogeneity, spatial he-
terogeneity and complex interactions between covariates of different type. In this
paper, we propose a hierarchical or multilevel version of regression models with
structured additive predictor where the regression coefficients of a particular non-
linear term may obey another regression model with structured additive predictor.
In that sense, the model is composed of a hierarchy of complex structured additive
regression models. The proposed model may be regarded as an extended version of
a multilevel model with nonlinear covariate terms in every level of the hierarchy.
The model framework is also the basis for generalized random slope modeling based
on multiplicative random effects. Inference is fully Bayesian and based on Markov
chain Monte Carlo simulation techniques. We provide an in depth description of se-
veral highly efficient sampling schemes that allow to estimate complex models with
several hierarchy levels and a large number of observations within a couple of mi-
nutes (often even seconds). We demonstrate the practicability of the approach in a
complex application on childhood undernutrition with large sample size and three
hierarchy levels.
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