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Abstract

In an independent private value auction environment, we are interested in strategy-
proof mechanisms that maximize the agents’ residual surplus, that is, the utility
derived from the physical allocation minus transfers accruing to an external entity.
We find that, under the assumption of an increasing hazard rate of type distribu-
tions, an optimal deterministic mechanism never extracts any net payments from
the agents, i.e. it will be budget-balanced. Specifically, optimal mechanisms have
a simple “posted price” or “option” form. In the bilateral trade environment, we
obtain optimality of posted price mechanisms without any assumption on type dis-
tributions, thereby providing a rationale for confining attention to budget-balanced
mechanisms.

*We wish to thank seminar participants at the University of Bonn and especially Benny Moldovanu
for numerous insightful discussions. Drexl, Kleiner: Bonn Graduate School of Economics, University of
Bonn, Kaiserstr. 1, 53113 Bonn, Germany; drexl@uni-bonn.de, akleiner@uni-bonn.de



1 Introduction

Most parts of the mechanism design literature studying welfare maximization problems
focus on mechanisms implementing the efficient allocation. However, in general it is not
possible to implement the efficient allocation in dominant strategies using budget-balanced
mechanisms (Green and Laffont 1979). The same holds in the bilateral trade setting: No
efficient and budget-balanced mechanism exists that also respects individual rationality,
even if one considers the weaker notion of Bayes-Nash implementation (Myerson and
Satterthwaite 1983).

Given these results, we study the question of how to choose among different mech-
anisms that cannot attain both allocative efficiency and budget-balancedness. Since we
are concerned with welfare maximization, the social planner’s objective function should
consist of the agents’ aggregate utility and therefore include aggregate transfers. In other
words, it is natural to maximize what we call the residual surplus. This is the surplus,
or utility, the agents derive from the chosen allocation, reduced by the amount of money
that is burnt or lost to an external agency.

More specifically, we consider the auction of an indivisible good among two agents with
independent private values, which are distributed according to prior type distributions.
We consider strategy-proof mechanisms, where it is a dominant strategy for the agents
to reveal their valuation truthfully. Since the incentives do not depend on the priors of
the other agents, this ensures that truth-telling is robust to informational disturbances.
In order to achieve incentive compatibility, monetary payments may be imposed on the
agents, as long as neither individual rationality nor no deficit constraints are violated.
The aim is to identify among all strategy-proof mechanisms the one that provides the
largest ex-ante residual surplus for the agents. This means that payments which cannot
be redistributed to other agents are wasted. Our first result is that, under an increasing
hazard rate assumption on type distributions, the trade-off between allocative efficiency
and budget-balancedness is resolved completely in favour of a balanced budget (The-
orem 1). Hence, the optimal deterministic mechanism will never waste any payments,
thereby giving up large amounts of allocative efficiency. In fact, our proof method re-
veals that all mechanisms that allocate efficiently are worse than the simple mechanism
where the object is always given to one of the agents (Corollary 1). The optimal mech-
anisms can be implemented either as a “posted price” or an “option” mechanism: The
object is assigned to one of the agents unless both agents agree to trade at a prespe-
cified price (posted price mechanism) or unless the second agent uses his option to buy
the object at a fixed price from the first agent (option mechanism). Also, by imposing
individual rationality in the bilateral trade setting, we are able to establish optimality
of posted price mechanisms without any restrictions on type distributions (Theorem 2).
This provides an argument for the focus on budget-balanced mechanisms (see Myerson
and Satterthwaite 1983, Hagerty and Rogerson 1987). These results are interesting be-
cause the solution to this complex optimization problem is given by simple mechanisms
that are easy to implement in practice. Moreover, they do not rely on the burning of
money which is considered to be an unrealistic feature.

Our findings are related to a recent branch of the literature. Miller (2012) studies a

Note that the set of strategy-proof mechanisms is independent of the type distributions; they only
affect what the ex-ante optimal mechanism will be.



model of firms colluding in a Bertrand oligopoly. Efficiency considerations require the
oligopoly to allocate the market to the firm with lowest costs. Since costs are private
information, payments are required to incentivize their truthful revelation. On the other
hand, money that flows out of the cartel decreases the welfare of the firms. Miller studies
the question how a mechanism should be optimally designed to map costs into market
share allocations. He shows that under general conditions it is never optimal to allocate
market shares efficiently. We take up this question in our model and provide a simple
mechanism that improves upon efficient mechanisms. Lacking general statements about
the form of an optimal mechanism, Miller gives numerical evidence that for some type
distributions it is optimal to give up large amounts of efficiency in order to obtain a
balanced budget. However, other examples indicate that this observation does not hold for
general distributions. For the special case of a uniform distribution, Shao and Zhou (2008)
are able to completely characterize the optimal mechanism analytically, even allowing for
stochastic mechanisms. They show that a mechanism is optimal if and only if it is a convex
combination of simple posted price and option mechanisms.? Athey and Miller (2007)
examine a similar question in the repeated bilateral trade setting and obtain numerical
results suggesting that for many type distributions the optimal mechanism is a posted
price mechanism.

Another strand of the literature studies the expected residual surplus of Bayesian
incentive compatible mechanisms, but with the additional assumption that it is not pos-
sible to redistribute any payments among the agents (Hartline and Roughgarden 2008,
Condorelli 2012). This simplifies the analysis to a great extent since methods similar to
those in Myerson (1981) can be applied. Interestingly, one of the results is that for a large
class of type distributions (those which exhibit an increasing hazard rate) it is optimal to
always assign the object to the same agent. However, the assumption of no redistribution
of payments is crucial, since otherwise the results do not hold and (to the best of our
knowledge) no method for tackling the optimization problem analytically is known so far.

Focusing on the efficient allocation, an interesting question is which part of the Vick-
rey payments can be redistributed to the agents without losing incentive compatibility
(Cavallo 2006). Starting with a budget-balanced mechanism, Tatur (2005) examines by
how much allocative inefficiency can be reduced when allowing a given budget deficit. He
does this in a bilateral trade setting with a large number of buyers and sellers.

We present our basic model for the auction environment in Section 2 and characterize
incentive compatible mechanisms in Section 3. The optimization problem is solved in
Section 4. In Section 5, we study this mechanism design problem in the bilateral trade
context and conclude in Section 6. All proofs are relegated to the appendix.

2 After the completion of this paper, we were made aware of a new version of the paper by Shao and
Zhou (2012) in which they tackle the general problem. In contrast to our paper, they restrict themselves
to environments where both agents’ types are distributed according to the same distribution function,
which allows them to focus on symmetric mechanisms. While we restrict attention to individually rational
mechanisms, they do not impose this but emphasize that the optimal mechanism is individually rational.
However, in the general case with ex ante asymmetric agents, this observation does not hold and individual
rationality has to be imposed. In addition, they require a slightly more restrictive assumption on the
distribution of types. Corollary 1 as well as Theorem 2 regarding the bilateral trade setting analyzed by
Myerson and Satterthwaite (1983) have no counterpart in their paper.



2 Model

An indivisible object is auctioned among two agents. Each agent i = 1,2 has a valuation
x; for the object. Valuations are drawn independently from X; = [0, Z;] according to
distribution functions F; with corresponding densities f;. We denote by X = X; x X
the product type space and by F' the joint distribution on X. For notational convenience,
when concentrating on agent i, we will write (z;, x_;) for z = (1, 29) € X.

If agent i is given a payment of p; (usually negative), his utility is x; + p; for winning
the object, and p; if the other agent gets the object.

Mechanisms

Due to the Revelation Principle we shall focus on truthfully implementable direct revela-
tion mechanisms for selling the object.

Definition 1. A mechanism M is a tuple (d,p), where d : X — {0,1}? and p : X — R?
are measurable functions, such that dy(z) + da(z) = 1.

The interpretation is that d;(x) = 1 if and only if agent ¢ gets the object. If the agents
report z, then agent i receives as payment the component p;(x) of p(x). Note that with
this definition we restrict attention to deterministic allocation rules.

Equilibrium Concept

We consider strategy-proof mechanisms where truthful reporting is a dominant strategy
for both agents. Therefore, we define the following notion of incentive compatibility:

Definition 2. A mechanism M is incentive compatible (IC) if for every agent i and for
each x; € X;, r; € X,

di(xi,r—;) - xi + pi(@i, r—i) = di(rg, r—) - i + pi(ri, r—3)
holds for each r_; € X_;.

This definition is independent of the distribution of valuations, which reflects the
robustness of strategy-proof mechanisms as compared to mechanisms that are Bayes-Nash
incentive compatible. Although the set of mechanisms we consider does therefore not
depend on F', the next section shows that the distributions determine which mechanism
is optimal.

Objective and Further Constraints

/e aim at finding the mechanism that maximizes the sum of agents’ ex ante (expected)
residual surplus, that is, utility derived from the physical allocation minus aggregate
payments. A natural constraint is that the mechanism has to be ex post no-deficit (ND),
that is, for every type profile z, we require pi(x) + po(x) < 0. Also, the mechanism
has to be ex post individually rational (IR), that is, for all type profiles x, we require
di(z)z; + pi(x) > 0,4 = 1,2. Summarizing, we want to solve the following optimization
problem:



max f () + daf)es + pa(a) + po()| dF () (1)

M=(d,p)
s.t. M satisfies IC, ND and IR.

We say that a mechanism is optimal if it solves problem (1).

3 Characterization of Incentive Compatibility

The aim of this section is to give a characterization of incentive compatibility in order
to simplify problem (1). The conditions characterizing incentive compatible mechanisms
involve a monotonicity and an integrability condition. We first define monotonicity.

Definition 3. The allocation function d is monotone if d; is non-decreasing in x; for
i=1,2.

Now given a monotone allocation function d, define the following functions for i = 1, 2:
g.i(.?[?_.i) = mf{:r:t : di(x,h x_i) — 1}

If there is no z; such that d(z;,z_;) = 1, then we set g;(z_;) = Z;. Note that if d
is monotone, these functions define d almost everywhere. The following lemma gives a
characterization of incentive compatibility.

Lemma 1. A mechanism M = (d,p) is incentive compatible, if and only if the following
two conditions are satisfied:

1. The allocation rule d is monotone.
2. Fori=1,2letx_; € X_; be given. Then for all z; < x} € X,

ooy gile) fdi(zi,xo) =0 and di(xh, ) =1
pilti, 7-i) — i@} w-i) = { 0 otherwise.

(2)

The straightforward proof can be found in Appendix C. The interpretation of condi-
tion (2) is that an agent who receives the object is punished by paying a higher amount
compared to the case where he would not have gotten the object. The punishment has
to make the agent’s marginal type g;(z_;) indifferent between receiving and not receiving
the object.

It follows from Lemma 1 that if a mechanism satisfies IC, payments have the following
form:

Pi(zi, 2_i) = qi(r—) — gi(x—i)di(xi, )

with some functions ¢; : X_; — R. This can be interpreted as a payoff-equivalence result:
Payments are completely determined by the allocation as soon as one fixes the payment
for some type x;. Or, in other words, once the allocation is fixed, the only freedom
that is left regarding the payment scheme, is to give the agent an additional payment
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that is independent of his type. These additional payments can serve as a possibility to
redistribute certain amounts of payments to another agent, as e. g. in Cavallo (2006).?
The simplified formulation of problem (1) is the following:

max ]); [ch (2)[x1 — g1(xa)] + do(x)[xe — go(1)] + u (22) + Q2($1)]dp(ll?) (3)

M=(d.q)

s.t. M satisfies IR and ND, and d is monotone.

We will write U(M) = Ul(d, q) for the above integral and from now on only consider
mechanisms that are IC, IR and ND.

4 The Optimal Auction

In this section, we present the first main result of this paper: if we impose an increasing
hazard rate condition on the type distributions, then the optimal mechanism is always
budget-balanced. Specifically, it turns out that the optimal mechanism takes one of two
simple forms:

Either it is a posted price mechanism which by default allocates the object to one
of the agents (agent 1, say) and changes the allocation if and only if both agents agree
to trade at a prespecified price a, i.e. agent 1 reports a valuation below a fixed price a
and agent 2 reports a valuation above a. If agent 2 is allocated the object, he makes a
payment a to agent 1, otherwise no transfers accrue.

Or it is an option mechanism where the good is allocated by default to agent 1, but
agent 2 has the option to buy the object at price a. Hence, if agent 2’s valuation is above
the strike price a, he buys the object and pays a to agent 1 (see also Shao and Zhou 2008).

Formally, these two mechanisms are defined as follows:

Definition 4. A mechanism M = (d,p) is a posted price mechanism with default agent
1 and price a, if

dy(z) =1, p(z) = (a,—a) if z1 < a and 3 > a,
do(z) =0, p(x) = (0, 0) otherwise.

M is an option mechanism with default agent 1 and price a, if

do(x) =1, p(x)
dy(x) =0, p(x)

(a'a _a') %f Ty = a,
(0, 0) otherwise.

Similarly, one can define posted price and option mechanisms with default agent 1. If
we do not specify the agent or price we just say that M is option or posted price.

3We note here that the additional assumption that p;(x) < 0 for i = 1,2, which is implicitly assumed in
Hartline and Roughgarden (2008) and Condorelli (2012), together with ND and IR implies that ¢;(x_;) =
0 for i =1, 2. This reduces the complexity of the payment-scheme to a great extent, since then payments
are completely determined through the allocation. In fact, by looking at the proof of our main result,
one can see that with this simplification results analogous to those in the papers just mentioned can
be proved. Thus, if positive transfers to the agents were not possible, then the increasing hazard rate
condition implies that it is optimal to always assign the object to the same agent, thereby completely
ignoring valuations.



(a) (b)

Figure 1: Illustration of the proof of Theorem 1

Both classes of mechanisms are parameterized by the price a and it is easy to check that
all these mechanisms are budget-balanced as well as incentive compatible and individually
rational.

Our assumption on type distributions is the following:

Condition (HR). The hazard rates of the type distributions are monotone. That is, the

__Jilzi)

functions hi(x;) = TRGy are non-decreasing in x; € [0, ;) fori=1,2.
T T

Theorem 1. Given condition (HR), there is a posted price or an option mechanism which
solves the optimization problem (3).

The proof (which can be found in Appendix A) can be sketched as follows: We first
show the important auxiliary result that either an option mechanism or a posted price
mechanism is optimal in M, the class of mechanisms whose allocation functions are
step functions (Lemma 2). We then argue that the welfare of a given mechanism can be
approximated arbitrarily well by a mechanism in My (Lemma 3). The Theorem then
follows by the following observation: Suppose there is a mechanism M being strictly
better than the best option or posted price mechanism, and denote the welfare difference
by e. It follows from Lemma 3 that there is a mechanism in the class M whose welfare
is within 5 of U (M), thus being better than the best option or posted price mechanism.
But this contradicts Lemma 2, hence there cannot be a mechanism being better than the
best option or posted price mechanism.

To show Lemma 2, i.e. that an option or posted price mechanism is optimal within
My, we start with an arbitrary step function mechanism and manipulate it to end up with
an option or posted price mechanism that is welfare-superior. To illustrate the arguments,
we consider the mechanism shown in Figure 1a. The Figure shows the product type space
and an allocation function that assigns the object to agent 1 for report profiles below
the solid line and to agent 2 for profiles above the solid line. In Step 1, we argue that
the maximal possible redistribution payments ¢; are easy to determine: in the example
shown, agent 2 receives no redistribution, while the redistribution to agent 1 is completely
determined through the allocation. Using this observation, we argue in Step 2 that



changing the allocation to the one shown in Figure 1b does not increase money burning,
but increases allocative efficiency and hence aggregate welfare. To finish the argument, we
study the effects of shifting steps in the set [, shown as the shaded area in Figure 1b, while
fixing redistribution payments (Step 3). Our condition on the hazard rate ensures that
each step should optimally be moved to either the lowest or the highest possible position.
Hence, proceeding iteratively, we obtain either an option mechanism or a posted price
mechanism, proving Lemma 2.

A consequence of the theorem is that, given the increasing hazard rates of the agents’
type distributions, finding the best mechanism reduces to finding the best posted price
and option mechanisms and comparing these two. For example, if the agents have the
same distribution function, all option and posted price mechanisms with the same strike
price yield the same welfare and therefore the best mechanism is characterized by the
strike price a® satisfying

a* = E[zy] = E[zy).

Our intermediate results (see the proof of Lemma 2) also allow for a refined judgement
of the welfare implied by the efficient allocation. Miller (2012) showed, under very general
conditions, that the efficient allocation rule is never part of the optimal mechanism. We
can strengthen this statement in our context by providing a mechanism that improves
upon all efficient mechanisms. Surprisingly, this improvement can be achieved using an
extremely simple mechanism:

Corollary 1. Given condition (HR), every mechanism that allocates efficiently is dom-
inated by a mechanism that always allocates the good to one of the agents.

More precisely, a mechanism that is better than every efficiently allocating mechanism
can be found simply by comparing the agents’ type distributions, giving the good to the
agent with the higher expected valuation and completely ignoring any reported types.

While optimal mechanisms for distributions obeying condition (HR) are very simple,
the following example shows that if the condition is not satisfied the optimal mechanism
need not be of the form stated in Theorem 1. The example also illustrates the role of
(HR) in establishing the result.

Example 1. Let the distribution function of two symmetric agents be given as

f(2) ={ 0.9 ifx; <05

0.1 otherwise.

Due to the sharp jump downwards at 0.5, [ does not satisfy condition (HR). The op-
timal posted price mechanism (which is as good as the optimal option mechanism) has a
strike price of a* = 0.275, attaining a social welfare of 0.0718. However, the following
mechanism M attains a higher social welfare of 0.0741: Set

do(z)=1 < (x2>a" andxy <a*) or (x93 > 0.5 and z, < 0.5),
and set ga(x1) =0, as well as

G‘1(5E2) = { 0 Wxzsa

a*  otherwise.



0.275 0.275

» L) > I

(a) Optimal posted price mechanism. (b) Mechanism M.

Figure 2: Mechanisms presented in Example 1

This mechanism and the best option mechanism are depicted in Figure 2. One can see that
the allocation of mechanism M is more efficient. Because the induced higher payments
cannot be redistributed, payments of (0.5 — 0.275) = 0.225 are lost for type profiles in the
shaded area in Figure 2b. But still, since type profiles x with xy,xs = 0.5 appear so rarely
(with density 0.01), this does not counter the positive effect due to the better allocation.
In this sense, an increasing hazard rate ensures that lost payments can never be weighed
out by an improved efficiency of the allocation.

5 Bilateral Trade

Myerson and Satterthwaite (1983) showed that one cannot implement the efficient alloc-
ation in the bilateral trade setting in a budget-balanced and individually rational way.
They provide a characterization of the optimal budget-balanced and individually rational
mechanism. In the same environment, Hagerty and Rogerson (1987) study the set of
dominant-strategy implementable mechanisms that are budget-balanced and individually
rational, showing that essentially only posted price mechanisms fulfill these conditions.
However, a priori it is not clear why one should restrict the search for the optimal mechan-
ism to mechanisms with a balanced budget. After all, it is conceivable that deviating from
a balanced budget could improve incentives and therefore lead to higher welfare of the
mechanism. However, the results in this section show that in the bilateral trade environ-
ment with general prior type distributions, the restriction to budget-balanced mechanisms
does not reduce aggregate welfare.

Let the model and notation be as in Section 2, but assume now that agent 1 (called
the “seller” from now on and indexed by ) is the owner of the good before participating
in the mechanism (whereas agent 2 is called the “buyer” and indexed by B). By a buyer
posted price mechanism (B-PP) we denote a posted price mechanism in which the buyer
gets the object if and only if he announces a type high enough, and the seller a type that
is low enough. Again, we are looking for a mechanism that maximizes the sum of the
expected utilities of the agents, taking monetary transfers into account. The fact that in
the bilateral trade setting the seller initially owns the good requires a stronger condition



for a mechanism to be individually rational: now the outside option for a seller is to
not participate in the mechanism and to keep the object. Hence, for a mechanism to be
individually rational,

ds(z) xg + ps(x) > xg and dp(x) xp + pp(z) >0 (IR7)

must hold for all z € X.
Thus, a mechanism is optimal if it solves

ﬁ}tr;%fp) ; [ds(x):x:g +dp(z)rp + ps(z) + pi (3’3)} dF(x) (4)

s.t. M satisfies IC, ND and IR’

Theorem 2. There is a B-PP mechanism that solves problem (4).

The proof can be found in Appendix B and is similar to the proof of Theorem 1 in
that for every given mechanism we construct a posted price mechanism that is welfare-
superior. Theorem 2 implies that the optimal mechanism is budget-balanced. Thus,
focusing on dominant-strategy implementation, this result provides a justification for
confining attention to budget-balanced mechanisms.

6 Discussion

We have studied the trade-off between efficiency and budget-balancedness in an inde-
pendent private values auction model. We incorporated this into the model by letting
the social welfare objective function include all payments, that is, by maximizing residual
surplus. We showed that, if one focuses on robust implementation in dominant strategies,
an increasing hazard rate condition on agents’ type distributions guarantees a resolution
of the trade-off completely in favor of a balanced budget. In addition, budget-balanced
mechanisms have a very simple form and can easily be implemented as posted price or
option mechanisms. Further, we showed that without any assumption on the prior dis-
tribution of types a posted price mechanism is optimal in the bilateral trade setting.
This provides a strong rationale for focusing on budget-balanced mechanisms, as done by
Myerson and Satterthwaite (1983) and Hagerty and Rogerson (1987).

The findings in this paper could be extended in a number of important ways. First,
allowing for stochastic mechanisms in our analysis is an important research avenue. Nu-
merical examples strongly suggest that in the auction environment, even if the distribu-
tions of types satisfy condition (HR), stochastic mechanisms can be strictly better than
the best deterministic ones: Figure 3 shows a distribution of types and the corresponding
optimal mechanism (obtained by numerically solving a discretized version of our model?).
This mechanism is not budget-balanced and improves strictly upon the best deterministic
mechanism. Unfortunately, the structure of this optimal mechanism suggests that an easy
analytical description of optimal stochastic mechanisms is not likely to be found with our
assumptions. Therefore, one approach is to find general additional conditions on type
distributions such that the designer cannot improve using stochastic mechanisms. Note
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(a) Optimal allocation. (b) Joint density.

Figure 3: An instance where the optimal mechanism is not deterministic, although the
densities exhibit an increasing hazard rate.

here, that Shao and Zhou (2008) have proved the sub-optimality of stochastic mechanisms
if types are distributed uniformly.

Another interesting question is how the result generalizes to a model including more
than two agents. We strongly believe that the optimal mechanism will still be budget-
balanced. An important argument for this is that, as the number of agents gets large, the
efficient allocation can be approximated in a budget-balanced way: in the spirit of McAfee
(1992), allocate efficiently while ignoring one agent who then receives all payments from
the other agents. This can be implemented by tentatively giving the object to one of the
agents and then simulating a second price auction with reserve price where this agent sells
the object to the remaining agents.

Studying optimal Bayesian incentive compatible mechanisms without imposing budget-
balancedness is another interesting topic for future research.

A  Proof of Theorem 1

The theorem follows from two lemmas. First we define what a step function is.

Definition 5. A step function is a function @ : X1 — Xo that can be written as

n
Y2 = Z: ﬁjXAjv
j=1

where 1 < By < -+ < (8, € Xy, Aq,..., A, is an ordered partition of X, and x4 denotes
the indicator function of a set A. A step function is simple, if the sets A; have the form
Al = [01 Oél], AZ = (ah a?]l A An = (a)n—lj a'n,]-

The allocation rule d associated with the step function s is defined through

dz(xl,xg) =1 p=1 Ty = ’502(271).

1The instance as well as the source code for computing the optimal mechanism can be obtained from
the authors upon request.
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Note that if d is associated with the step function s, then g, = 5. Similarly we can
then define a step function for agent 1 through ¢, = ¢g;. This will be used in the following
proofs.

The first lemma says that, under (HR), option or posted price mechanisms are optimal
step function mechanisms, that is, within the class of all mechanisms whose allocation
rule is associated with a step function (My,), posted price and option mechanisms yield
the highest residual surplus.

Lemma 2. Assume condition (HR) and let M = (d,q) be any mechanism where d is
associated with the step function ¢o. Then there exists a mechanism M’ that is posted
price or option such that U(M') > U(M).

Proof. The proof consists of three steps, where we constructively manipulate M in order
to end up with the desired mechanism M.

Step 1: Let 8; and A; (j =1,...,n) be given by y,. We first argue that, without loss
of generality, we can assume 3; > 0. For if 8; = 0 and A; = {0}, we could set 8, = /3,
without reducing U(M ), where without loss of generality 2 > 0. If 8, = 0 and A, # {0},
we could switch the roles of the agents and then describe d in terms of a step function
with [, > 0.

It then follows that ga(x1) = 0, Vz; € X;. To see this, pick some x;. Then £ > 0
implies ¢;(0)d;(z1,0) = @wa(x)d2(z1,0) = 0. From ND it follows that ¢;(0) + g2(x;) < 0.
Also, IR for agent 2 at (z1,0) implies go(z) > 0, and IR for agent 1 at (0,0) implies
q1(0) > 0, and therefore go(z1) = 0.

Next, we can assume that

q1(r2) = min {@1(22)dy (21, 22) + @o(21)da (21, 22) } (5)

always holds, since by ND this relation always holds with < and changing it to equality
does not reduce U(M). In this way, the complete payment-scheme is determined through
the allocation d.

Step 2: We distinguish two cases. If sup A; > 5, we do nothing and go directly to
Step 3. Otherwise, we modify and improve the mechanism in the following way:

We set dy(z1,29) = 1 and dy(xy,29) = 0 for 1 < 1,29 > ;. This will change the
functions ;, while g, remains unchanged, and ¢; adjusts according to (5). We claim that
U(M) did not decrease during this operation. To see this, take some x € X and look at
the effects due to the change in allocation and payments. Let B C X be the set of types
where the allocation changed,

By = {(z1,22) € X\ B: qi(x3) changed, z; < 3}
By :={(z1,22) € X\ B : qi(x2) changed, x; > p;}
= {(z1,22) € X 1 po(z1) changed, xy > Ty VZy s.t. q(Z2) changed}.

These sets are depicted in Figure 4a. Then we know that the integrand in (3) did not
change for types outside these sets. The allocation only changed in B, where we have
x1 < x9 and dy(z) = 1, and therefore the allocation effect is positive. So we only need to
concentrate on payments. Consider the case where € (. Here, ¢;(z2) did not change
and @,(z1) was reduced. Therefore, the effect is non-negative. The case = € By is like the
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(a) Sets as defined in the proof (b) Situation after the object is
of Lemma 2. assigned to agent 2 in the set B.

Figure 4

one above, except that ¢;(x2) increased, so the effect is non-negative. If x € By, nothing
changed for agent 2 and q;(z2) — ¢1(x2) = 0 before and after the change, so there is no
effect in this case. Finally, for x € B, agent 2 had to pay nothing before and now has to
pay (31, whereas agent 1 used to pay nothing and now receives 31, so the net effect is zero.

Step 3: From now on, we only change d(z) for z € R := {(x1,22) € X : 21,22 > (1 }.
Looking at (5), one sees that ¢;(x) will never be affected by those changes and therefore
we can completely ignore the functions ¢; from now on. We show that either always giving
the object to agent 1 (posted price) or always giving it to agent 2 (option) in R does not
decrease U(M). This will complete the proof.

Since we can ignore the functions ¢;, changing d on a null set will not affect the value
U(M) and therefore we can from now on assume that ¢ is simple and that oy = 31 (c.f.
Figure 4b). Leaving a; and f3; fixed, we give a procedure that removes the second step
(i. e. the first step contained in R) without decreasing U/(M). The procedure distinguishes
two cases.

(a) B2 = B1. We vary as on the interval [aq, a3] and look at how U(M) changes. The
part of U(M) that depends on «y is the following:

[

/cf (z9 — Bo)dFy(xy) + /"T’l(xl — 052)dF1(:1’31)] dFy(z»)

[25] R ]

o ad} a3
_ / I: Iﬁngl(:El) =+ / BSdFl(il)‘| dFQ(C.CQ)
. Jog

Az LJog
Differentiating with respect to as using Leibniz’ rule yields
3 Iz
f [fl(az)(xQ - 52) - [1 - Fl(az)}]dpz(@) + fl(az)[ﬁs - ﬁz]dp2(3?2)-
B 33

If we pull the factors that do not depend on x; and x5 out of the integrals and write
constants C', Cy and C for the integrals (which do not depend on ay) we get

Ch filaz) — Ca[1 = Fi(og)] + Cs fi(az).
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Assuming C5[1 — Fy(ag)] > 0 (if either Cy = 0 or 1 — Fi(az2) = 0, we set a3 = a3 without
reducing U), we can divide by C3[1 — Fi(az)] and get that the derivative is non-negative
if and only if

- hq((l‘g) -1 2 0,

where C' = (C) + C3)/Cy > 0. Because hy(as) is non-decreasing by condition (HR), it
follows that /(M) is increased by either setting a = a; or o = a. In either case, delete
step 2 from the step function, and in the latter case set 3 = 3;. We then have decreased
the number of steps by one and the procedure ends.

(b) B2 > (1. We vary 3, on the interval [3;, f3]. Similar arguments as above establish
that U(M) is increased by setting 35 = 3; or 85 = f3. In the former case we can go to
case (a) above, and in the latter case we can drop step 2 from the step function. Thus
we either end up in case (a) or have decreased the number of steps by one.

Iteratively applying this procedure establishes the lemma. O

The next lemma enables us to approximate any mechanism with mechanisms from the
class M.

Lemma 3. For every mechanism M = (d,q) and for everye > 0 there exists a mechanism
M = (d,q) characterized by a step function such that U(M) — U(M) < .

Proof. Let the mechanism M = (d,q) and ¢ > 0 be given and let g,(x2) and go(z;) be
defined as above. Define D; := {x € X : d;(z) = 1} as the set of type profiles where agent
i gets the object. Since g is a monotone function it can be approximated uniformly by
a monotone step function ¢,. Denote the allocation rule associated with ¢ by d. By
choosing the step width small enough the approximation can be done such that for given
0 >0,
g1 = ¢1llo <& and  [|g2 — ¢2lfec <&

holds. The approximation can be chosen such that g;(z_;) = Z; implies ¢;(z_;) = &; and
@9 can be chosen such that ¢y < go, implying that Dl C D.

Without loss of generality, we can assume that gs(x;) = 0 (see Step 1 in the proof
of Lemma 2). By construction of ¢, and since M satisfies ND, we can define functions
Gi(z_;) such that gx(x1) = 0, 0 < Gi(z2) < inf, {@1(x2)di(z1,22) + @o(z1)da(21, 22)}
Vg € Xy and ||§1 — ¢1|ee < 0. We then have:

U(d.q) - U(d.q) < / () — da(2) dF ()
+]1; xy — g1(z2) dF(x) —

+ [ 0 dF(z)+ / To — go(z1) dF(z) + [ 6 dF(x)
ﬁz\Dz o Do
< 50.

Hence, by choosing 0 < £, it follows that U(d,q) — U(d,§) < e. W
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Now we can put everything together, proving the theorem.

Proof of Theorem 1. Without loss of generality, we restrict ourselves to posted price mech-
anisms for agent 2. We first establish that [/ maps the set of all posted price mechanisms
to a compact subset of R. Let a = min{a‘"l,:fg} and let a € [0,a] be some price for a
posted price mechanism M,. Then U(M,) can be written as

U(M,) // xod ' (z / f&ﬁdf / ] v dF(x

Due to the continuity of F', this function is continuous with respect to a. Since [0, @] is
compact, so is {U(M,) |a € [0,a]} and therefore there exists an a* such that U(M,«) is
maximal among all posted prices.

Next, assume that the theorem is false, i.e. there exists a mechanism M and ¢ > 0
such that U(M) > U(M,-) + . Then apply Lemma 3 to M and ¢ to get a mechanism
M = (d,§) € My with U(M) > U(M,+). This contradicts Lemma 2, establishing the
theorem. ]

B Proof of Theorem 2

The proof consists of two steps. First, we set the stage by showing properties that any
mechanism M always has. Then, we improve M, making it a B-PP mechanism.

Step 1: Preparation Note first that (IR’) implies that dg(xg, xp) = 1 for all zg > zp:
Summing the two individual rationality constraints we get (1 — dg(zs,zp))(xp — xg) +
ps(xs, zp) + pe(rs,zp) = 0. The no deficit constraint together with zg > xp imply that
the inequality can hold only if ds(zg,zp5) = 1.

It follows that gg(xg) = 0, Vxg € Xg. To see this, pick some xg. Then gg(0)dg(zg,0) =
gp(xs)dp(zs,0) = 0 because dg(zs,zp) = 1 for all g > xp. From ND it then follows
that gs(0) +gp(zs) < 0. Also, IR’ for the buyer at (zg,0) implies gg(zs) > 0, and IR for
the seller at (0,0) implies gs(0) > 0, and therefore gg(zg) = 0.

Next, we can assume that

gs(wp) = min {9s(zp)ds(zs, xp) + gp(zs)dp(rs. v5)} (6)

always holds, since by ND this relation always holds with < and changing it to equality
does not reduce U(M). In this way, the complete payment-scheme is determined through
the allocation d.

We now show that because of IR’, ds(zg, x5) = 1 whenever zg, x5 > gp(0). So take
some z with xg, x5 > gp(0) and assume on the contrary that dg(z) = 0. At the profile
(0,zp) we have gs(xp)ds(0,25) + gp(0)dg(0,25) = g(0) which, using (6), implies that
qs(zp) < gp(0). So the payoff for the seller at x is

0-zs+gs(zp) < gp(0) < zs,
which contradicts individual rationality for the seller at point z.

Step 2: Improving the mechanism If the allocation function of this mechanism does
not already correspond to a B-PP mechanism, we modify and improve the mechanism in
the following way, making it a B-PP mechanism and completing the proof.
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We set dp(rs,xp) = 1 and dg(zs,xp5) = 0 for xs < gp(0),z5 > gp(0). Letting
qs adjust according to (6), this new mechanism corresponds to a B-PP mechanism and
we claim that U(M) did not decrease during this operation. To see this, note that
ps(x) + pp(xz) < 0 by ND and this inequality holds with equality in a B-PP mechanism.
Hence, the effect of changing the mechanism on aggregate payments is non-negative. Since
the allocation only changed for x such that xg > xg and the new allocation rule prescribes
dp(x) = 1 for such = the allocation effect of changing the mechanism is positive. Hence,
this operation increased U(M ), completing the proof. O

C Proof of Lemma 1

Necessity: Let any allocation d be given. We first prove that d; (and similarly dy) is
non-decreasing. Fix zy and let z; < x| with dy(x;,25) = 1 and assume to the contrary
that dy(z}, z3) = 0. Then, by incentive compatibility for agent 1, we get

r1+ pi(wy, 22) > 04 pi(a), x2) > @) + pi(wr, 22),

or equivalently x; > 2/, which is a contradiction.

Now we prove that (2) holds for agent 1. Take any x;, = € X, such that dy(z;,z5) = 1
and d, (7}, z2) = 1, and assume without loss of generality that pi(z},x2) > pi(z1, 22).
Then we get by incentive compatibility for type

r1 + p1(x1, 22) > 1 + pr(a], x2) > 21 + 121, 22),

a contradiction. Therefore, p;(z}, x2) = pi(x1, z2) must hold. The argument is the same
for the case where dy(z1,22) = 0 and dy(2},22) = 0. So take any z;, x| € X; such
that dy(xzy,x9) = 0, dy (2], 22) = 1 and assume without loss of generality that p;(x;,z5) —
pi(x}, 22) > g1(x2). Then there exists a type z € X; with the property that p;(zq, z2) —
p(x), z2) > 2 > gi(x2). From zf > gi(z2) it follows that d(z/,z2) = 1 and therefore
by the case shown above py (2!, x5) = pi(z}, x2). Rearranging, this gives us pi(xy,z5) >
x| + pi(2], z5), a contradiction to incentive compatibility for type z/.

Sufficiency: Let x5 € X5. We are done if we can show that for any pair x; < z{, type
x1 does not want to report x| and vice versa. The cases dy(z1,x2) = 1, dy(z),25) = 1 and
di(zy, x3) = 0, di(x}, z3) = 0 are obvious, so let dy(x1,z5) = 0, dy(z), z5) = 1 (the other
case is not possible due to monotonicity). Monotonicity also tells us that z; < g1(x2) < .
We then have the following inequalities:

)+ pr(x), x2) > gi(x2) + pi(2), 22) = pi(21, 22)
pi(z1, x9) = g1(x2) + p1 (2], x2) = 1 + pr (2], 22)

Here, the equalities stem from (2). These inequalities imply that no type x| wants to
report x; and vice versa. O
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