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Abstract  

In this paper we analyze the small sample properties of full information and limited 

information estimators in a potentially misspecified DSGE model. Therefore, we 

conduct a simulation study based on a standard New Keynesian model including price 

and wage rigidities. We then study the effects of omitted variable problems on the 

structural parameters estimates of the model. We find that FIML performs superior 

when the model is correctly specified. In cases where some of the model characteristics 

are omitted, the performance of FIML is highly unreliable, whereas GMM estimates 

remain approximately unbiased and significance tests are mostly reliable. 
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Zusammenfassung  

In diesem Beitrag analysieren wir die Eigenschaften von verschiedenen Schätzern in 

einem potenziell fehlspezifizierten DSGE-Modell in kleinen Stichproben. Hierfür wird 

eine Simulationsstudie auf Basis eines neukeynesianischen Standardmodells durch-

geführt. Es werden die Effekte von verschiedenen Fehlspezifikationen auf die Schätzer 

der strukturellen Parameter untersucht. Diese Studie zeigt, dass Full Informnation 

Maximum Likelihood überlegen ist, wenn das Modell korrekt spezifiziert ist. In Fällen, 

in denen einige Modelleigenschaften verändert werden, ist diese Methode jedoch höchst 

unzuverlässig, während Ansätze mit begrenzter Information (hier GMM) unverzerrt 

bleiben und auch Signifikanztests zuverlässiger sind. 
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Carlo, DSGE 

JEL-Klassifikation: C26; C36; C51; E17 

 

 

 



Effects of Incorrect Specification on the Finite
Sample Properties of Full and Limited

Information Estimators in DSGE Models∗

Sebastian Giesen† Rolf Scheufele‡

April 22, 2013

Abstract
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1 Introduction

The choice of a specific estimator for estimating parameters in structural macroe-

conometric models has been disputed for several decades (see Theil, 1971, Ch. 10

for a summary). Typically, one can differentiate between two different classes of

methods: full information or limited information methods. Full information meth-

ods provide the complete range of statistical properties associated with the model

under investigation. Normally, this is preferable in terms of efficiency, given a

correctly specified model (see e.g. Cragg, 1967, for an early contribution). Limited

information methods do not require a fully specified model, instead it is enough

to set up certain moment conditions to estimate the parameters of interest. Thus,

there is the classical trade-off between efficiency and the sensitivity to model mis-

specification known from simultaneous equation models (see Cragg, 1968; Hale,

Mariano and Ramage, 1980).

Today, New Keynesian DSGE models became the workhorse macroeconomic mod-

els used for policy analysis and forecasting (e.g. Smets and Wouters, 2007;

Schorfheide, 2011). This model class, as opposed to simultaneous equation sys-

tems, typically involves rational expectations as well as non-linearities in the struc-

tural model parameters. However, the choice among full and limited information

econometric techniques to estimate New Keynesian models has still to be made.

First attempts to estimate DSGE models relied on limited information methods

(e.g. Christiano and Eichenbaum, 1992), mainly because limited information meth-

ods are less computationally demanding. Another important advantage of limited

information techniques is that it can be applied to study certain aspects of a model

and leaving apart those of little interest (e.g. it can be applied in a single equations
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framework), which has become quite popular (see Gaĺı and Gertler, 1999; Clarida,

Gaĺı and Gertler, 2000; Eichenbaum and Fisher, 2007). The standard estima-

tion technique in this setting is Generalized Methods of Moments (GMM) (see

Canova, 2007, Ch. 5, for GMM estimation of DSGE models).

In recent years, the availability of computational power and the increasing popular-

ity of Bayesian techniques strongly simplified the estimation of these models by full

information methods, which are based on the likelihood of the state-space solution

of the log-linearized DSGE model (see e.g. Ireland, 2004; An and Schorfheide, 2007)

and thus become standard in applied research and policy institutions (e.g. central

banks). Most recently, there is also growing interest in the econometric aspects

of these models. One major concern has been potential identification difficulties

(Canova and Sala, 2009; Iskrev, 2010; Andrews and Mikusheva, 2011; Dufour,

Khalaf and Kichian, 2012; Guerron-Quintana, Inoue and Kilian, 2012). The is-

sue of weak identification is not only relevant for full information techniques, but

may be also evident in limited information settings (see e.g. Dufour, Khalaf and

Kichian, 2006; Kleibergen and Mavroeidis, 2009).

In this paper, we concentrate on another econometric aspect of New Keynesian

DSGE models: the consequences of potential misspecification. We therefore inves-

tigate the properties of limited (GMM) and full information (FIML) techniques

in a standard (and potentially misspecified) DSGE model with nominal price and

wage rigidities (as in Erceg, Henderson and Levin, 2000). Several forms of misspec-

ification are taken into account. First, we look at the consequences of estimating

a model with price rigidities but omit nominal wage rigidities. Second, we omit

price indexation in the Phillips curve. Finally, we investigate the case of misspec-

ified shocks (missing autocorrelation) in the IS curve. In a simulation study we
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document the properties of the different estimation techniques for point estimates

and standard significance tests.

The paper is closely related to Ruge-Murcia’s (2007) work, who compares the

properties of different estimators in a stylized RBC model. Instead, we look at a

New Keynesian DSGE model which forms the basis of todays macroeconometric

models. Additionally, Lindé (2005) as well as Jondeau and Le Bihan (2008) also

take into account model misspecification. While Jondeau and Le Bihan (2008) look

at misspecification within one equation of interest, we look at the consequences

of misspecification in the whole system. Lindé (2005) only takes into account

quite moderate degrees of misspecification (mainly the misspecification of shocks

and lagged persistence). Both, Lindé (2005) and Jondeau and Le Bihan (2008)

compare ML with GMM, but use the standard two-step GMM estimator in a single

equation set-up. Instead of doing so, we propose the continuous-updating GMM

(CUGMM) as advocated by Hansen, Heaton and Yaron (1996), which does much

better in finite-samples and DSGE type relations. Furthermore, we apply GMM

to a multi-equation framework, to estimate all relevant relationships jointly.

Our results suggest that full information procedures should be used with caution.

Clearly, FIML is dominant when it comes to estimating the model under the

null hypothesis (without misspecification). Parameter estimates are unbiased and

quite precise. Moreover, confidence intervals are very reliable in this case, i.e.

they provide at least the pre-specified coverage (even in smaller samples). GMM

estimates (based on CUGMM) turn out to be less efficient in that case, but remain

unbiased. Estimated standard errors are also reliable in most cases and under the

proposed model.

In the case of model misspecification the performance of FIML worsens substan-
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tially. When nominal wage rigidities are ignored, all parameters are heavily biased

and confidence intervals are totally unreliable. More milder forms of misspecifica-

tions result in slightly better estimates, but even in the case of misspecified shocks,

FIML estimates turn out to be biased and some parameter estimates are far from

their true value.

GMM estimates based on CUGMM remain roughly unbiased in all considered

cases, although estimated standard errors get slightly less reliable. In general,

our results suggest that if one has not very strong beliefs in the usefulness of

all aspects of the model, one should stick to limited information methods. In

particular, CUGMM applied to multi-equations does a good job in finite samples

and is much less sensitive to model misspecification than FIML based on the

Kalman filter. Therefore, the classical trade-off between efficiency and potential

biases due to misspecification of the different estimation strategies remain valid

for standard DSGE models.

The remainder of the paper is organized as follows. The subsequent section

presents the model structure. Section 3 discusses the different estimation strate-

gies. Section 4 outlines the simulation setup. Section 5 shows our results and

Section 6 concludes.

2 The Model Economy

Our starting point is a stylized New Keynesian Dynamic Stochastic General Equi-

librium (DSGE) model, the workhorse structural macroeconomic model for short-

term analysis. Those models are well established in the academic literature (see

e.g. Christiano, Eichenbaum and Evans, 2005; Smets and Wouters, 2007) and one
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of the main tools for policy analysis in central banks and policy institutions.

To make things transparent and as simple as possible, we consider a small scale

DSGE inspired by Erceg et al. (2000) that incorporates both nominal price and

wage rigidities. In particular, we stick to a model version which has been suc-

cessfully analyzed empirically by Rabanal and Rubio-Ramirez (2005) by means

of Bayesian techniques. The theoretical framework consists of inter-temporally

optimizing households and firms. Monopolistically competitive firms face nominal

price rigidities (Calvo pricing). This implies an equation linking price inflation to

the gap between real wages and the marginal product of labor. Also households

have monopolistic power and set nominal wages in staggered contracts. Nominal

wage rigidities translate into a relation linking wage inflation to the gap between

the real wage and the marginal rate of substitution of consumption for leisure.

The remaining model elements comprise a standard Euler equation for aggregate

output as well as an interest rate reaction function reflecting monetary policy.

In the following we present the model structure that can be derived by a log-linear

approximation around the steady-state symmetric equilibrium with zero price and

wage inflation rates (see Erceg et al., 2000; Rabanal and Rubio-Ramirez, 2005, for

a detailed derivation).

2.1 The Full Model Structure

The model comprises an Euler equation:

yt = Etyt+1 − σ(rt − Et∆pt+1 + Etgt+1 − gt), (1)

where yt describes output, rt denotes the nominal interest rate, ∆pt is the inflation
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rate, gt describes a preference shock and the parameter σ is the intertemporal

elasticity of substitution.

Then we have a production function and real marginal costs which are written as

yt = at + (1− δ)nt, (2)

mct = wt − pt + nt − yt, (3)

where at is a technology shock, nt denotes hours worked and δ is the capital share

parameter. mct denotes marginal costs given by the wage share of national income

(w − p reflect real wages).

The marginal rate of substitution and real wage growth is given by

mrst = gt +
1

σ
yt + γnt, (4)

where mrst is the marginal rate of substitution and γ is the elasticity of labor

supply. Real wage growth results from wage inflation minus price inflation.

The interest rate reaction function is characterized by

rt = ρrrt−1 + (1− ρr)(γπ∆pt + γyyt) +mst, (5)

where ρr is the interest rate smoothing parameter, γπ and γy describe the response

of the monetary authority to deviations of inflation and output from their steady-

state values, and mst is a monetary shock.
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The Phillips curve and nominal wage growth are described as

∆pt = γb∆pt−1 + γfEt∆pt+1 + κp(mct + λt) (6)

∆wt = βEt∆wt+1 + κw(mrst − (wt − pt)), (7)

where λ describes the mark-up shock and γb, γf , κp and κw can be written in

terms of the structural parameters β, ω, θp, θw, and ε̄; which denote the discount

parameter, the price indexation parameter, the Calvo parameters for prices and

wages and the steady state markup, respectively. In formal terms:

γb = ω/(1 + ωβ) (8)

γf = β/(1 + ωβ) (9)

κp =
(1− δ)(1− θpβ)(1− θp)/(θp(1 + δ(ε̄− 1)))

1 + ωβ
(10)

κw =
(1− θw)(1− βθw)

θw(1 + φγ)
. (11)

The structural shocks are specified as follows:

at = ρaat−1 + εat (12)

gt = ρggt−1 + εgt (13)

mst = εmst (14)

λt = ελt . (15)

In here, ρi describes the autoregressive parameters (for i = a, g) and the innova-

tions εit are assumed to follow Gaussian normal distributions with mean zero and

variance σ2
i for i = a, g,ms, λ. The innovations are assumed to be uncorrelated
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with each other.

2.2 The Estimated Model under Misspecification

In order to analyze the effects of misspecification, we estimate several models

under wrong structural assumptions. Three different forms are taken into account:

omitted wage rigidities, omitted price indexation and misspecified shock processes.

In all types of misspecification the model is simulated under the true model, but

estimated under wrong assumptions.

For the case where we omit nominal wage rigidity from the model (flexible wages

case) the corresponding equation (7) is substituted by:

wt − pt = mrst, (16)

such that real wages are always equal to the marginal rate of substitution.

Second, we estimate a model without price indexation (a pure forward-looking

price equation). In this model the Phillips curve equation (6) reduces to

∆pt = βEt∆pt+1 + κ∗p(mct + λt) (17)

with

κ∗p = (1− δ)(1− θpβ)(1− θp)/(θp(1 + δ(ε̄− 1))). (18)

Finally, we look at an even lighter from of misspecification where the first order

autoregressive coefficient of the preference shifter shock gt in the IS curve is esti-
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mated as an i.i.d. process. Hence, we substitute equation (13) by setting gt = εgt ,

with εgt being normally distributed with mean zero and variance σ2
g .

2.3 Model Solution

The above outlined linearized model equations represent a dynamic system that

describe the joint determination of the endogenous variables. This model structure

consists of

AEtYt+1 = BYt + C0Xt + C1Xt+1, (19)

where Yt and Xt denote the endogenous variables and exogenous (i.e. shocks)

system variables, respectively.1

The rational expectations solution to this system can be found using standard

procedures (we made use of the methods provided by King and Watson, 2002; King

and Kurmann, 2005). The resulting solution can be written in state space form

according to

Zt = ΠSt

St = MSt−1 +Get, (20)

where Zt is a 15 × 1 dimensional vector containing all relevant variables of the

system (contemporaneous endogenous variables, predetermined variables and the

shocks). St is of dimension 7× 1 and includes the predetermined variables (∆pt−1,

1Yt and Xt are given by Yt = (yt, ∆pt, ∆wt, rt, nt, mct, mrst, (w−p)t, ∆pt−1, rt−1, (w−
p)t−1)′ and Xt = (gt, λt, mst, at)

′. The matrices A, B, C0 and C1 are described in Appendix
A.1.
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rt−1, (w−p)t−1)′ and the four shocks (at, gt, mst, λt)
′. et contains the underlying

structural shocks of the economy (εat , ε
g
t , ε

ms
t , ελt )

′. The matrices Π, M and G

are functions of the structural parameters and are obtained using the solution

algorithm.

3 The Estimation Techniques

3.1 Maximum Likelihood

The full information set up is concerned with estimating the described DSGE

model by means of Maximum Likelihood (ML). Therefore, equation 20 is slightly

modified to setting up the likelihood function and to estimate the structural pa-

rameters of the model. In particular, the Kalman filter is used for this purpose (see

e.g. Ireland, 2003; Ireland, 2004; Adolfson and Lindé, 2011, for a similar strategy).

For the observation equation we take output, the inflation rate, nominal wage

growth and interest rate as vector dt = (yt,∆pt,∆wt, rt)
′ of observables. Note that

the model has four structural shocks which implies that at least 4 variables can be

used for estimating the model.2 Therefore, the observation equation (see eq. 20)

can be reformulated for estimation as:

dt = hZt = hΠSt = HSt, (21)

2Due to the problem of stochastic singularity, DSGE models using ML cannot be estimated
with more observable variables than structural shocks. Therefore, one has either to omit addi-
tional observables or to include error terms to the observation equation. We opt for the first al-
ternative and include the four most prominent variables in line with Rabanal and Rubio-Ramirez
(2005).
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where h = [I, 0] is a selection matrix with I being a 4×4 identity matrix and dt is of

size 4×1. Next, we can evaluate the likelihood function L({dt}Tt=1 |Υ), whereas the

vector Υ contains the structural model parameters, given the sample of observa-

tions {dt}Tt=1. Following Rabanal and Rubio-Ramirez (2005) and due to potential

identification difficulties, we only estimate a subset of the entire model parameters

denoted by Υ′ = [σ, ρr, γπ, γy, θp, ω, θw, ρg, ρa, σg, σl, σm, σa]
′. The remaining model

parameters β,ε̄, φ, δ and γ are calibrated.

The ML estimator of Υ is obtained as:

Υ̂ml = max
Υ

T∑
t=1

logL(dt|Υ). (22)

The Kalman filter algorithm with its subsequent updating and forecasting of St

is conducted along the lines outlined by Hamilton (1994) Chapter 13. Under

standard regularity conditions Υ̂ml is consistent and

T
1
2 (Υ̂ml −Υ0)

d→ N
(

0,−=−1
)
, (23)

where plimT→∞T
−1= = = and = describes the Hessian matrix associated with

logL({dt}Tt=1 |Υ). Υ0 are the true parameter values. This implies a covariance

matrix

Σ = E

[
∂2 logL({dt}Tt=1 |Υ)

∂Υ∂Υ′

]−1

, (24)

which is evaluated at Υ̂ml. Therefore, the standard errors of Υ̂ml are given by the

square root of the diagonal elements of Σ̂ml. Note that ML estimation requires

an expression for the final solution of the model (a linearized rational expectation
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solution) which is not required for limited information techniques.

3.2 GMM

As an alternative to the full information method, we subsequently present the

estimation of the model’s structural parameters by limited information methods,

namely Generalized Methods of Moments (GMM). Estimation by GMM does not

require a rational expectations solution to the model (given by eq. 20).3 Instead,

certain moment conditions are enough to obtain parameter estimates for GMM.

Additionally, we do not have to consider all aspects (i.e. equations) of a model.

A (limited) information subset of equilibrium conditions is sufficient to investigate

certain features of a model. It is even possible to estimate one single equation

by forming appropriate moment conditions and to ignore all other aspects of the

model.

System of equations set up: To take into account more aspects of the model,

the GMM framework can be augmented by additional equilibrium conditions of

the analyzed DSGE model (see e.g. Christiano and Eichenbaum, 1992; Fuhrer,

Moore and Schuh, 1995; Burnside and Eichenbaum, 1996; Ruge-Murcia, 2007,

for GMM applications in a multiequation framework). Even when interest lies

exclusively on some model parameters, e.g. the NKPC parameters θp and ω, due

to cross equation restrictions and contemporaneous correlations of the error terms,

one would expect efficiency gains by augmenting the information set (i.e. by using

additional moment conditions). Therefore, it would be natural to use the complete

3In principle, the estimation strategy is closely related to McCallum’s (1976) approach for
estimating rational expectations models.
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set of Euler equations of the model and to estimate the same parameter vector Υ

as with ML. We can basically refer to equation 19 (i.e. the system of equations)

that represents the collection of expectational difference equations that depend

non-linear on the structural parameters. For the GMM system estimation, we

slightly modify the original system to form the orthogonality conditions for GMM,

which can be expressed as:

Et−1 {h(Υ,wt)} = Et−1 {[Ψ(Yt+1, Yt, Yt−1)] zt−1} = 0. (25)

The vector Yt contains all necessary observable variables of the model which is

Yt = (yt,∆pt,∆wt, rt, nt, (w − p)t)
′ and thus include two additional observable

variables more compared to ML estimation. Ψ(Yt+1, Yt, Yt−1) includes all available

moment conditions of the model which equals

Ψ(Yt+1, Yt, Yt−1) = PYt −QYt+1 −RYt−1, (26)

where the matrices P , Q and R are of dimension 6× 6 in our case and contain all

structural parameters Υ of the model.4 The instrument set consists of predeter-

mined variables of our system up to lag two, which implies 12 instruments given by

zt−1 = [Yt−1, Yt−2]′. Furthermore, we take the same instrument set for each equa-

tion, which implies that h(Υ,wt) consists of 72 moment conditions (6 equations

4In this setting we can take into account 6 observable variables (see Appendix A.2 for the
model structure). In general it is also possible to estimate any sub-system of these equation.
Additionally, one may reduce the number of variables by means of equation wise substitution.
However, this may imply a loss of information which would translate into less efficient estimates.
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using 12 instruments for each relation). Note also that we do not specify a certain

parametric form of the error terms as it is done in the ML case. Instead, we can

allow for flexible forms of autocorrelation and heteroscedasticity by employing a

HAC estimator.

Single equation set up: Applying GMM within a single equation framework is

by far the most frequent application, even for DSGE type relations (see e.g. Gaĺı

and Gertler, 1999; Clarida et al., 2000; Gaĺı, Gertler and López-Salido, 2001; Fuhrer

and Rudebusch, 2004). The single equation estimation strategy is simply a special

case of the equations (25) and (26), where each equation is estimated separately. As

instruments (zt−1) we include the same set of variables as in our system estimation.

Irrespectively whether applied to a single equation or to a multiple equation sys-

tem, the GMM estimator solves the quadratic minimization problem

Υ̂GMM = min
Υ

[
1

T

T∑
t=1

h(Υ,wt)

]′
W

[
1

T

T∑
t=1

h(Υ,wt)

]
, (27)

where wt contains either all model variables Yt (including potential leads and lags)

or just the variables of interest in the single relation together with the instrument

set zt−1. W is a positive-definite weighting matrix. The optimal weighting ma-

trix is the inverse of the variance covariance matrix Ω. To allow h(Υ,wt) to be

autocorrelated and heteroskedastic, a consistent estimate of Ω is given by

Ω̂ = Γ̂0 +
s∑

v=1

(
1− v

s+ 1

)
(Γ̂v + Γ̂

′

v), with (28)
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Γ̂v =
1

T

T∑
t=v+1

h(Υ̂,wt)h(Υ̂,wt−v)
′, (29)

where the estimator for Ω is due to Newey and West (1987).5

Hansen (1982) has shown that this estimator

Υ̂GMM
d→ N

(
Υ0, (DΩ−1D′)−1

)
, (30)

where D is a gradient matrix estimated at Υ̂, given by D̂ = ∂h(Υ,wt)
∂Υ′

|Υ=Υ̂. Then

standard errors for significance tests can be obtained using the square root of the

diagonal elements of Ω̂.

It is important to note that the optimal weighting matrix W = Ω̂−1 depends on Υ

and therefore Hansen (1982) proposed a multi-step procedure (two steps were often

found to be sufficient) to arrive at the final GMM estimates. This two-step GMM

(2GMM) estimator minimizes the objective function (27) using an identity matrix

in the first step and afterwards it is re-optimized using the updated weighting

matrix W = Ω̂(Υ̂1)−1 which is based on the parameter estimates of the first step

Υ̂1.6 Since it is often found that the 2GMM estimator performs poorly in finite

samples and exhibit substantial bias (see Hansen et al. (1996)), we employ the

continuous-updating GMM estimator (CUGMM) as our baseline estimator. This

estimator optimizes the objective function entirely along with the corresponding

5In this application we set the bandwidth s = [T 1/3]. In principle one could try to improve
the HAC estimation by automatic bandwidth selection and/or prewhitening (see e.g. Den Haan
and Levin, 1997). However this requires other choices to make and turned out to be less robust
compared to applying the standard procedure of Newey and West given a fixed bandwidth.

6Due to problems of scaling we find it more convenient to work with the initial weighting
matrix as W 1 = (IN ⊗ Z ′Z)−1 which reduces the computational time markedly.
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weighting matrix. The additional advantage of the CUGMM estimator is that it

is unaffected by transformations of the orthogonality conditions.

4 Monte Carlo Simulation

To investigate the performance of the various estimation procedures, we take the

DSGE model as outlined above and generate a sequence of observable variables.

More precisely, we solve the model and take the matrices Π, M and G (see equation

20) to construct our data generating process. Let Zt = [Yt, Xt]
′ denote the data

matrix comprising the endogenous variables Yt and the exogenous variables Xt,

such that our data can be constructed from:

Zt = ΠM tS0 + Π
{
Get +MGet−1 + ...+M t−1Ge1

}
, (31)

with S0 describing the initial state vector and et, ..., e1 be vectors of normally

distributed shock realizations.

From this, we generate artificial samples of length 1000 + T (T = 400 and T =

100). The first 1000 observations are discarded to avoid sensitivity with respect to

the initial state vector. To reach convergence of the parameter distributions, we

calculate 2500 different data samples. We fix the structural parameters at values

that are in line with the literature (we use similar values as Rabanal and Rubio-

Ramirez, 2005, obtained in their analysis). Table 1 presents the values used for

the model simulations.

For both GMM and FIML, we employ the Chris Sims optimizer CSMINWEL.
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Table 1: Calibrated Parameters

parameter calibrated value upper bound lower bound

σ 0.20 0.01 0.99
ε̄ 11.0 —
φ 6.20 —
β 0.99 —
ω 0.25 0.01 0.99
γ 2.20 —
δ 0.36 —
θp 0.65 0.01 0.99
γπ 1.10 1.01 2.00
ρr 0.74 0.01 0.99
θw 0.30 0.01 0.99
γy 0.40 0.01 0.99
ρg 0.80 0 0.99
ρa 0.75 0 0.99
σg 4.30 positive
σl 9.00 positive
σms 0.35 positive
σa 1.30 positive

Notes: The parameters β, ε̄, φ, δ and γ are not part of the estimated parameter

vector Υ′. Thus, there is no need to specify any boundaries.

Additionally, we work with parameter restrictions as displayed in Table 1. We save

the point estimates along with the standard errors from each estimation round.

In the first step we obtain the results for the model under the null hypothesis

(i.e. estimation is based on the true model structure). The second step consists of

introducing certain types of misspecification in the estimation step.
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5 Results

In the following, we discuss the small-sample properties of limited and full esti-

mation under different settings. First, we present the results under the null, i.e.

when the model is correctly specified. Next, we turn to the model estimates un-

der misspecification. In all cases we compare the point estimates with their true

values to investigate the consistency properties. Therefore, we present means and

medians as well as their corresponding average bias. Mean square errors (MSE)

are computed to summarize the precision of the estimators for each parameter.

To compare the performance of the whole system, we also provide a multivariate

accuracy measure, which is the trace MSE (TMSE).

Besides point estimation, we are also interested in how well the asymptotic stan-

dard errors match the true variability of the estimates in finite samples. To decide

whether the estimated standard errors are reliable, we compare the average asymp-

totic standard error (ASE) with the standard error (SD) of the empirical parameter

distribution from our Monte Carlo experiment. Whenever SD is larger than ASE

this indicates that the asymptotic formula for the standard error understates the

true variability of the estimate in small samples.

Finally, the tables report the size of a standard t-test. The size is the proportion

of times that the null hypothesis that a parameter takes the true value is rejected

by using a t-test with a nominal size of 5 percent. For a test to be reliable, the

effective size (as displayed in the table) should be close to (or at least not larger

than) the nominal size (in our case: 0.05).
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5.1 Estimation of the True Model

FIML estimation: The full information results under the correctly specified

model turn out to be quite precise (see Table 2 and Figure 1 in the Appendix).

The estimators match closely their true values and the MSEs are extremely small,

even for the smaller sample size of T = 100. All distributions turn out to be

symmetric and look approximately normal. The only exception is γπ, where in a

number of cases the lower bound is hit and therefore the distribution is somehow

truncated. The estimated standard errors turn out to be larger than the empirical

ones which implies that the effective size is even smaller than the nominal sizes.

Therefore, standard tests turn out to be conservative.

The results are line with those of Ruge-Murcia (2007) and Adolfson and Lindé

(2011) who also document quite promising results for FIML in their Monte Carlo

studies. We find no indication of potential identification problems (as documented

by Canova and Sala, 2009; Iskrev, 2010) that might adversely affect the ML estima-

tion. Even in small samples FIML provide reliable point estimates and confidence

intervals.7

System GMM estimation: The baseline limited information results under the

correctly specified model (based on the systems GMM estimator) are clearly infe-

rior compared to full information estimation (Table 3 and Figure 5 in the Appendix

for a graphical representation). Obviously, the dispersion of the point estimates

is substantially larger compared to FIML (see SD and MSEs). In some cases the

distribution is skewed and clearly deviates from normality. However, the CUGMM

7Due to the conservativeness of the confidence intervals based on asymptotic standard errors,
there might be room for improved (i.e. more efficient) standard errors. Maybe bootstrapping
could offer some further improvements.
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Table 2: FIML Estimates (correct specification)

true mean median bias MSE ASE SD size

T = 400
σ 0.20 0.2010 0.1999 0.0010 0.0004 0.0594 0.0189 0.0000
ρr 0.74 0.7391 0.7400 -0.0009 0.0003 0.0540 0.0172 0.0000
γπ 1.10 1.1025 1.0982 0.0025 0.0049 0.0920 0.0699 0.0008
γy 0.40 0.4036 0.4000 0.0036 0.0093 0.0341 0.0966 0.0000
ω 0.25 0.2483 0.2484 -0.0017 0.0006 0.0775 0.0247 0.0000
θp 0.65 0.6494 0.6497 -0.0006 0.0001 0.0246 0.0106 0.0000
θw 0.30 0.2997 0.2998 -0.0003 0.0003 0.0411 0.0169 0.0004

TMSE: 0.0159

T = 100
σ 0.20 0.2046 0.2000 0.0046 0.0013 0.0949 0.0364 0.0000
ρr 0.74 0.7381 0.7401 -0.0019 0.0010 0.0980 0.0309 0.0000
γπ 1.10 1.1269 1.0997 0.0269 0.0154 0.1319 0.1212 0.0008
γy 0.40 0.4070 0.4004 0.0070 0.0227 0.0464 0.1505 0.0000
ω 0.25 0.2415 0.2440 -0.0085 0.0023 0.1344 0.0475 0.0000
θp 0.65 0.6462 0.6486 -0.0038 0.0004 0.0424 0.0200 0.0000
θw 0.30 0.2976 0.2983 -0.0024 0.0010 0.0650 0.0309 0.0000

TMSE: 0.0441

Note: Mean is the arithmetic average of the estimated parameter values. ASE is the

average asymptotic standard error; Median and SD are the median and standard

deviation of the empirical parameter distribution; Size is an estimate of the actual

size of the t−test with nominal size of 5 per cent of the null hypothesis that the

parameter takes its true value; and MSE is the mean squared error of the parameter

estimates. TMSE (trace MSE) is a multivariate generalization of the MSE.
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Table 3: System GMM Estimates (correct specification)

true mean median bias MSE ASE SD size

T = 400
σ 0.20 0.1827 0.1851 -0.0173 0.0037 0.1241 0.0584 0.0108
ρr 0.74 0.7163 0.7351 -0.0237 0.0069 0.1647 0.0797 0.0332
γπ 1.10 1.1014 1.0999 0.0014 0.0016 0.1344 0.0396 0.0092
γy 0.40 0.4001 0.4002 0.0001 0.0060 0.0560 0.0776 0.0156
ω 0.25 0.2389 0.2455 -0.0111 0.0054 0.2547 0.0726 0.0076
θp 0.65 0.7249 0.6799 0.0749 0.0154 0.6748 0.0992 0.0076
θw 0.30 0.3616 0.3297 0.0616 0.0223 0.1590 0.1361 0.2561

TMSE: 0.0614

T = 100
σ 0.20 0.2083 0.1891 0.0083 0.0179 0.1073 0.1335 0.0756
ρr 0.74 0.7128 0.7394 -0.0272 0.0192 0.1530 0.1359 0.0736
γπ 1.10 1.1096 1.1000 0.0096 0.0076 0.1255 0.0869 0.0128
γy 0.40 0.4039 0.4001 0.0039 0.0154 0.0699 0.1243 0.0320
ω 0.25 0.2601 0.2488 0.0101 0.0152 0.2366 0.1229 0.0344
θp 0.65 0.7078 0.6728 0.0578 0.0222 0.5925 0.1375 0.0408
θw 0.30 0.3790 0.3280 0.0790 0.0416 0.2472 0.1881 0.2105

TMSE: 0.1392

Note: See Table 2
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point estimates are approximately unbiased. Although, the median seems to be

closer to the true value compared to the mean (which is not surprising, as long as

the CUGMM estimator has no moments, see Hansen et al., 1996). Furthermore,

standard significance tests are mostly reliable, even under the small sample size

of T = 100. The only exception is the test for θw, where larger overrejections are

detected. Therefore, given the model structure and the prefixed values of some

parameters, we find no indication that identification problems invalidates standard

hypothesis tests.

When we employ the standard two-step GMM (2GMM) estimator instead of

CUGMM to estimate the system, this results in considerable parameter biases

(see Figure 8). Even for the larger sample size (T = 400), the estimates of the

structural parameters turn out to be highly unreliable. In particular the Taylor

rule parameters are far from their true value. We can therefore confirm the results

of Tauchen (1986) and Kocherlakota (1990) who also find considerable parameter

bias of 2GMM in small to moderate sample sizes. In our situation, this suggests

that the 2GMM estimator is inappropriate for estimating new Keynesian sticky

price models. One explanation may be the inclusion of too many instruments,

where some of them are redundant. It is well known that the bias of the 2GMM

increases with additional irrelevant instruments, whereas CUGMM does not. This

might be one explanation why we find CUGMM to be approximately unbiased and

can be recommended in this setting.8

Single equation GMM estimation: Estimating the individual equations sep-

arately by CUGMM, gives satisfactory results (see Table 4). Clearly — compared

8The bias of the 2GMM estimator, although at a more moderate degree, is also found in the
single equation setup.
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Table 4: Single Equation GMM Estimates

Eq true mean median bias MSE ASE SD size

T = 400
σ IS 0.20 0.3091 0.3178 0.1091 0.0264 0.1334 0.1206 0.2768
ρr TR 0.74 0.7347 0.7330 -0.0053 0.0005 0.4988 0.0216 0.0000
γπ TR 1.10 1.1004 1.1001 0.0004 0.0001 0.3332 0.0113 0.0008
γy TR 0.40 0.4012 0.4008 0.0012 0.0012 0.3480 0.0343 0.0008
ω PC 0.25 0.2605 0.2596 0.0105 0.0007 1.2233 0.0265 0.0000
θp PC 0.65 0.6482 0.6472 -0.0018 0.0008 1.7194 0.0279 0.0000
θw WC 0.30 0.3410 0.2041 0.0410 0.0803 0.5548 0.2805 0.0616

T = 100
σ IS 0.20 0.2673 0.2822 0.0673 0.0414 0.2653 0.1922 0.2684
ρr TR 0.74 0.7212 0.7259 -0.0188 0.0055 0.8397 0.0719 0.0032
γπ TR 1.10 1.1013 1.1001 0.0013 0.0012 0.5707 0.0339 0.0008
γy TR 0.40 0.4020 0.4006 0.0020 0.0049 0.6055 0.0702 0.0004
ω PC 0.25 0.2756 0.2519 0.0256 0.0145 1.9186 0.1178 0.0068
θp PC 0.65 0.6570 0.6530 0.0070 0.0088 3.1762 0.0938 0.0112
θw WC 0.30 0.4700 0.3300 0.1700 0.1441 1.1628 0.3395 0.0928

Note: See Table 2. The parameter estimates are obtained form different single

equation models: the dynamic IS curve (IS), the Taylor rule (TR), the Phillips

curve (PC) and the wage curve (WC).
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to FIML — the estimates are more dispersed. Generally, the parameter estimates

are more sensitive in comparison with the system estimation approach. However,

the parameters of the Phillips curve and the Taylor rule are estimated with even

higher precision (which might explain why single equation estimation of these two

relationships has remained quite popular). For the IS curve and the wage equation,

single equation estimates are less reliable compared to their system GMM counter

parts. This loss of efficiency may come from ignoring the cross equation restriction

of σ, which shows up in both equations. Here, single equation estimates turn out

to be more biased. Estimated standard errors are close or larger than their true

value. Furthermore, it is important to recognize that single equation estimates are

per construction less prone to misspecification (since they ignore all other parts of

the model).

5.2 Dropping Wage Rigidity

In the first case of misspecification, we omit nominal wage rigidity from the model

(flexible wages case). When we look at the results of the FIML procedure our

results change radically. This form of misspecification introduces large biases in

the parameter estimates (see Table 5 and Figure 2). In this case, the omission of

one model relation leads to inconsistent estimates everywhere in the model. All

relevant model parameters seem to be affected. In the ML case, σ for instance is

highly upward biased and often lays at the upper boundary. The distributions are

highly asymmetric, but still consider not much variation (as in the case of correct

specification). The large biases together with nonstandard distributions clearly

invalidates any hypothesis test. More observations do not help to circumvent any
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Table 5: FIML Estimates (ignoring wage rigidity)

true mean median bias MSE ASE SD size

T = 400
σ 0.20 0.8764 0.9427 0.6764 0.4832 0.2643 0.1602 0.7364
ρr 0.74 0.6681 0.6717 -0.0719 0.0068 0.0234 0.0401 0.7844
γπ 1.10 1.0010 1.0010 -0.0990 0.0098 0.0120 0.0000 0.9352
γy 0.40 0.3872 0.3859 -0.0128 0.0018 0.0053 0.0405 0.7088
ω 0.25 0.3040 0.2785 0.0540 0.0107 0.0123 0.0880 0.7080
θp 0.65 0.5245 0.5246 -0.1255 0.0162 0.0260 0.0213 0.9924

TMSE: 0.5284

T = 100
σ 0.20 0.8789 0.9459 0.6789 0.4860 0.2743 0.1584 0.7252
ρr 0.74 0.6678 0.6714 -0.0722 0.0068 0.0242 0.0393 0.7852
γπ 1.10 1.0010 1.0010 -0.0990 0.0098 0.0128 0.0000 0.9256
γy 0.40 0.3880 0.3860 -0.0120 0.0021 0.0054 0.0444 0.6992
ω 0.25 0.3054 0.2792 0.0554 0.0108 0.0128 0.0879 0.7112
θp 0.65 0.5248 0.5244 -0.1252 0.0161 0.0260 0.0216 0.9916

TMSE: 0.5316

Note: See Table 2.

Table 6: System GMM Estimates (ignoring wage rigidity)

true mean median bias MSE ASE SD size

T = 400
σ 0.20 0.1604 0.1816 -0.0396 0.0054 0.0774 0.0618 0.0084
ρr 0.74 0.7002 0.7048 -0.0398 0.0071 0.1531 0.0744 0.0256
γπ 1.10 1.1024 1.0998 0.0024 0.0023 0.1327 0.0476 0.0132
γy 0.40 0.4020 0.4058 0.0020 0.0062 0.0705 0.0784 0.0184
ω 0.25 0.2677 0.2508 0.0177 0.0072 0.0917 0.0832 0.1096
θp 0.65 0.6694 0.6571 0.0194 0.0046 0.1678 0.0651 0.0460

TMSE: 0.0328

T = 100
σ 0.20 0.1977 0.1897 -0.0023 0.0216 0.0831 0.1470 0.1012
ρr 0.74 0.6971 0.7281 -0.0429 0.0337 0.1744 0.1784 0.1273
γπ 1.10 1.1167 1.0999 0.0167 0.0122 0.1380 0.1092 0.0336
γy 0.40 0.4043 0.4005 0.0043 0.0211 0.0954 0.1452 0.0548
ω 0.25 0.2871 0.2515 0.0371 0.0322 0.1013 0.1757 0.1349
θp 0.65 0.6651 0.6550 0.0151 0.0215 0.1771 0.1460 0.1208

TMSE: 0.1423

Note: See Table 2
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of these problems. This result suggest that estimating an oversimplified model

can be very dangerous and may lead to wrong conclusions about the structural

parameters of the model.

Estimates based on GMM are much less affected by this form of misspecification

(see Table 6 and Figure 6). Many of the estimates remain approximately unbiased.

Interestingly, the precision of some parameter estimates remain more or less the

same. Therefore, including the wage curve does not much improve the estimation

precision. But, significance tests, at least in case of T = 100, suffer slightly from

the omitted wage equation. This kind of misspecification has practically only little

consequences on GMM estimation. The superiority of GMM under this form of

misspecification is not surprising since the specified moment conditions remain

valid. By omitting the wage equation, we just exclude some source of information.

5.3 Omitted Price Indexation

In this type of misspecification where price indexation is omitted, in contrast to

the case of omitted wage rigidities, the estimated model is a nested version of the

true model (where the indexation parameter ω is zero).

Under this form of misspecification FIML remains unreliable and most parameter

estimates exhibit substantial biases (see Table 7 and Figure 3). Only the param-

eters of the Taylor rule seem to be less affected by this type of misspecification.

For the Phillips curve and the wage curve, the omitted lagged inflation term leads

to a downward bias of the Calvo parameters θp and θw. While σ in the IS curve is

upward biased.

The GMM estimates remain again largely unaffected by this form of misspecifica-

27



Table 7: FIML Estimates (omitted price indexation)

true mean median bias MSE ASE SD size

T = 400
σ 0.20 0.5808 0.5746 0.3808 0.1498 0.2041 0.0697 0.1956
ρr 0.74 0.6995 0.6999 -0.0405 0.0019 0.0596 0.0171 0.0016
γπ 1.10 1.1190 1.1215 0.0190 0.0047 0.1101 0.0662 0.1488
γy 0.40 0.3333 0.3202 -0.0667 0.0091 0.0735 0.0683 0.0156
θp 0.65 0.5891 0.5892 -0.0609 0.0038 0.0287 0.0081 0.7024
θw 0.30 0.2219 0.2217 -0.0781 0.0062 0.0523 0.0112 0.0388

TMSE: 0.1750

T = 100
σ 0.20 0.5785 0.5734 0.3785 0.1650 0.3996 0.1474 0.0164
ρr 0.74 0.7002 0.7019 -0.0398 0.0028 0.1070 0.0351 0.0000
γπ 1.10 1.1360 1.1178 0.0360 0.0161 0.1211 0.1217 0.0948
γy 0.40 0.3416 0.3370 -0.0584 0.0210 0.1350 0.1328 0.0020
θp 0.65 0.5882 0.5887 -0.0618 0.0041 0.0544 0.0161 0.0184
θw 0.30 0.2257 0.2221 -0.0743 0.0062 0.0987 0.0256 0.0124

TMSE: 0.2151

Note: See Table 2.

Table 8: System GMM Estimates (omitted price indexation)

true mean median bias MSE ASE SD size

T = 400
σ 0.20 0.1792 0.1831 -0.0208 0.0030 0.1208 0.0510 0.0096
ρr 0.74 0.7159 0.7346 -0.0241 0.0064 0.1606 0.0766 0.0448
γπ 1.10 1.1019 1.0998 0.0019 0.0023 0.1192 0.0481 0.0128
γy 0.40 0.3986 0.4002 -0.0014 0.0056 0.0624 0.0748 0.0176
θp 0.65 0.7017 0.6693 0.0517 0.0126 0.0893 0.0996 0.0620
θw 0.30 0.3684 0.3341 0.0684 0.0247 0.1455 0.1417 0.2353

TMSE: 0.0741

T = 100
σ 0.20 0.2116 0.1891 0.0116 0.0172 0.0936 0.1308 0.0908
ρr 0.74 0.7171 0.7379 -0.0229 0.0147 0.1422 0.1192 0.0932
γπ 1.10 1.1071 1.1000 0.0071 0.0064 0.1074 0.0799 0.0172
γy 0.40 0.3990 0.4004 -0.0010 0.0111 0.0726 0.1053 0.0296
θp 0.65 0.6902 0.6659 0.0402 0.0199 0.1076 0.1352 0.1437
θw 0.30 0.3766 0.3189 0.0766 0.0428 0.2929 0.1923 0.2097

TMSE: 0.1122

Note: See Table 2
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tion (see Table 8 and Figure 7). This result might be surprising since in contrast to

the case where we estimated a flexible wage model, this form of model misspecifi-

cation implies invalid moment conditions (as a lagged inflation term is included in

the instrument set, although it should be included in the equation). However, the

results are in line with Gaĺı and Gertler (1999) who also estimate a Phillips curve

with and without a lagged inflation term, but the results for θ hardly changed.

There is even an improvement of the precision of the estimate for θp, since ω could

not be estimated correctly even under the true model. Therefore, we can conclude

that for limited information methods it is sufficient to use a forward looking term

in the Phillips curve. The indexation term, although significant, has practically

no implications for the model.

5.4 Misspecified Shocks

Finally, we look at an even lighter form of misspecification where the first order

autoregressive coefficient of the disturbance term is omitted. When estimating

this model, we find that the biases in the FIML estimation remain a problem

(see Table 9 and Figure 4). But the parameters are affected to various degrees.

The parameters in the price and wage relations remain approximately unbiased

(which is in line with Lindé, 2005, who find that misspecified shocks have no

quantitative impact on FIML parameter estimates of the Phillips curve), while

the IS relation with the estimate for σ is affected the most. Also the inflation

response parameter γπ and the interest smoothing parameter ρr in the Taylor

rule are biased downward. However, this form of misspecification has by far the

smallest implication. But inference seems to be a problem for the parameters in
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Table 9: FIML Estimates (misspecified shock)

true mean median bias MSE ASE SD size

T = 400
σ 0.20 0.1205 0.1172 -0.0795 0.0068 0.0504 0.0216 0.2032
ρr 0.74 0.6971 0.6982 -0.0429 0.0022 0.0445 0.0178 0.0708
γπ 1.10 1.0013 1.0010 -0.0987 0.0098 0.0256 0.0054 0.9928
γy 0.40 0.4013 0.4167 0.0013 0.0038 0.0141 0.0619 0.2848
ω 0.25 0.1791 0.1760 -0.0709 0.0065 0.1046 0.0388 0.0048
θp 0.65 0.6442 0.6449 -0.0058 0.0002 0.0156 0.0110 0.0012
θw 0.30 0.2913 0.2901 -0.0087 0.0006 0.0307 0.0238 0.0880

TMSE: 0.0299

T = 100
σ 0.20 0.1284 0.1277 -0.0716 0.0058 0.0897 0.0267 0.0000
ρr 0.74 0.6937 0.6959 -0.0463 0.0031 0.0812 0.0305 0.0040
γπ 1.10 1.0067 1.0010 -0.0933 0.0097 0.0517 0.0321 0.4680
γy 0.40 0.4025 0.4180 0.0025 0.0074 0.0248 0.0861 0.0196
ω 0.25 0.1769 0.1845 -0.0731 0.0083 0.1703 0.0547 0.0000
θp 0.65 0.6410 0.6433 -0.0090 0.0005 0.0317 0.0208 0.0004
θw 0.30 0.2824 0.2790 -0.0176 0.0010 0.0559 0.0257 0.0052

TMSE: 0.0359

Note: See Table 2.
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the IS curve and the Taylor rule which turn out to be largely unreliable. Per

construction, this form of misspecification leaves the GMM estimates unaffected

since we left the error process unspecified in our GMM strategy.

6 Conclusion

In this paper, we systematically investigated GMM and FIML under several forms

of model misspecification. We employed a standard New Keynesian model in-

cluding nominal price and wage rigidities (as in Erceg et al., 2000; Rabanal and

Rubio-Ramirez, 2005). By estimating the correct model structure, we can show

that FIML provides superior results in small samples. While GMM also provides

unbiased estimates (when using a CUGMM estimator), the dispersion of this esti-

mator is larger but standard asymptotic theory for inference works satisfactory in

most cases. However, when the misspecified model is estimated, FIML estimates

are substantially biased and significance tests highly unreliable. At the same time,

CUGMM remains roughly unbiased. Hence, this paper partly rehabilitates the use

of limited information methods for evaluating DSGE models. We find that they

are mainly unaffected by typical model misspecifications which can be of great

advantage in practice where model uncertainty is high. In particular, the use of

the CUGMM estimator results in mostly unbiased estimates. Furthermore, it is

often advantageous to evaluate several model equations simultaneously by using

a system-based CUGMM estimator. In general, this paper suggests that limited

information methods should be used at least as supplementary tools in the empir-

ical evaluation of DSGE models, since the blind use of full information techniques

might lead to wrong conclusions about the structural parameters of a model.

31



A Appendix

A.1 Model Matrices

Note that the linearized model can be cast in the form:

AEtYt+1 = BYt + C0Xt + C1Xt+1, (32)

where Yt and Xt denotes the endogenous variables and exogenous (i.e. shocks)

system variables, respectively. The matrices A, B, C0 and C1 are defined as

A =



1 σ 0 0 0 0 0 0 0 0 0

0 γf 0 0 0 0 0 0 1 0 0

0 0 β 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1



, C0 =



−σ 0 0 0

0 −κp 0 0

0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



, C1 =



σ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



,

B =



1 0 0 σ 0 0 0 0 0 0 0

0 1 + 1 0 0 0 −κp 0 0 −γb 0 0

0 0 1 0 0 0 −κw κw 0 0 0

(1− ρr)γy (1− ρr)γπ 0 −1 + 1 0 0 0 0 0 ρr 0

−1 0 0 0 (1− δ) 0 0 0 0 0 0

−1 0 0 0 1 −1 0 1 0 0 0

1
σ

0 0 0 γ 0 −1 0 0 0 0

0 −1 1 0 0 0 0 −1 + 1 0 0 1

0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0



.
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A.2 The System for GMM Estimation

For the system GMM estimator, we collect equations 1 to 7 and reformulate the

stochastic equations including the relation for real wages to

yt = yt+1 − σ(rt −∆pt+1) + uyt (33)

∆pt = γf∆pt+1 + γb∆pt−1 + κp ((w − p)t + nt − yt) + upt , (34)

rt = ρrrt−1 + (1− ρr) [γπ∆pt + γyyt] + urt , (35)

∆wt = β∆wt+1 + κw

(
1

σ
yt + γnt − (w − p)t

)
+ uwt , (36)

nt =
1

1− δ
yt + unt , (37)

(w − p)t = ∆wt −∆pt + (w − p)t−1. (38)

Note that we replaced the expectation term by its future realized value by assum-

ing Etxt+1 = xt+1 +νt+1, which implies that expectations are unbiased predictions.

Further it is assumed that the expectation error νt+1 is orthogonal to past infor-

mation (i.e. instrument validity of the instrument vector zt). This implies, that

the residuals uyt , u
p
t , u

r
t , u

n
t and uwt do not only depend on the structural shocks of

the model, but also contain the expectational errors.
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In matrix notation the model structure is PYt = QYt+1 + RYt−1 + Ut, which can

be represented as



1 0 σ 0 0 0

κp 1 0 0 −κp −κp

−(1− ρr)γy −(1− ρr)γπ 1 0 0 0

−κw 1
σ

0 0 1 −κwγ κw

− 1
1−δ 0 0 0 1 0

0 1 0 −1 0 1





yt

∆pt

rt

∆wt

nt

(w − p)t


=



1 σ 0 0 0 0

0 γf 0 0 0 0

0 0 0 0 0 0

0 0 0 β 0 0

0 0 0 0 0 0

0 0 0 0 0 0





yt+1

∆pt+1

rt+1

∆wt+1

nt+1

(w − p)t+1


+



0 0 0 0 0 0

0 γb 0 0 0 0

0 0 ρr 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1





yt−1

∆pt−1

rt−1

∆wt−1

nt−1

(w − p)t−1


+



uyt

upt

urt

uwt

unt

0


.
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A.3 Figures

Figure 1: FIML Estimates (correct specification)
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Notes: Small sample distribution of the estimated structural parameters. The true

parameters are given by the vertical bars. T = 400 observations in each of the

N = 2500 artificial samples.
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Figure 2: FIML Estimates (ignoring wage rigidity)
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Notes: See Figure 1
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Figure 3: FIML Estimates (omitted price indexation)
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Notes: See Figure 1
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Figure 4: FIML Estimates (misspecified shock)
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Figure 5: System GMM Estimates (correct specification)
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Notes: See Figure 1
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Figure 6: System GMM Estimates (ignoring wage rigidity)
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Figure 7: System GMM Estimates (omitted price indexation)
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Notes: See Figure 1
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Figure 8: Two-step GMM Estimates (correct specification)
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