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ACCESSION GAMES:

A DYNAMIC PER-MEMBER PARTITION FUNCTION

APPROACH

L�ASZL�O �A. K�OCZY

Abstract. In this paper we de�ne and solve the accession game,
a dynamic game containing a union and a set of applicants with a
per-member partition function satisfying the conditions of Yi [17]
to include negative externalities. The solution gives an equilibrium
partition of the players as well as, after Morelli and Penelle [12],
the optimal path, a subgame-perfect sequence of partitions, where
each player maximises the present value of its payo�s subject to
others' moves.

While this game can be applied in general our motivation was
to model the ongoing extensions of the European Union.

1. Introduction

Economic and political integration has gained much attention re-
cently. Mergers and acquisitions exceed all previous volumes, bourses
coordinate their trading hours, stronger and stronger trading blocks
develop just to mention a few examples. In this paper our focus is
on the European Union (EU), on its extensions in particular. While
our paper contains no empirical part the assumptions in our model are
made with the aim to �t such an application very well.
WW2 redrew the political map of Europe. From 1 January 1958, Bel-

gium, France, Western Germany, Italy, Luxembourg and the Nether-
lands formed the European Economic Community (EEC) with the ul-
timate aim of a total economic and political union. The enlargement
of the EEC (then EU) has been on the agenda virtually from that
date, with a number of countries joining: United Kingdom, Denmark
and Ireland in 1970, Greece in 1981, Portugal and Spain in 1986, then
Austria, Finland and Sweden in 1995. The applicants' queue did not
decrease: since the fall of the communism a number of Central and East
European Countries (CEECs) are seeking their place in the European
Union.

Date: March 20, 2000.
Key words and phrases. partition function, externalities, path dependence.
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2 L�ASZL�O �A. K�OCZY

With its rapidly developing literature coalitional game theory con-
tributes a lot to the better understanding of integration. Authors
mostly use the characteristic function form, that lacks externalities:
ignores the side e�ects of forming coalitions as Greenberg [9] points
out. Thrall [14] and Thrall and Lucas [15] de�ne the partition function

[11, pp509-511], an extension of the characteristic function that assigns
a value to a coalition given the whole partition and hence accounts for
externalities too. The per-member partition function is its less general
form, but, on the other hand, a lot more feasible computationally. We
follow Yi [17] in assuming a set of conditions to express the negative
externalities of mergers and some other features.
Although our �ndings will be largely theoretical and hence generally

applicable, our main motivation is to understand the extension of the
European Union better. After the introduction of the notation, termi-
nology and some examples we will discuss the accession game, where
a number of applicants try to get membership in a coalition larger
than the others (cf. the apex game [3]), called the Union following the
optimal path [12], or sequence of coalition structures that maximises
the present value of future payo�s not independent of the behaviour
of other players. We give the solution algorithm of the accession game
with an arbitrary number of applicants.

2. Game Theoretic Foundations

2.1. The extension of Yi's game. 1 Yi [17] has introduced a two-
stage non-cooperative per-member partition-function game with three
conditions to contain negative externalities. We use a cooperative dy-
namic extension of this game:

Stage 1 : The initial partition is given exogenously.
Stage 2a: Players form their cooperative, so binding strategies.
Stage 2b: Players execute the move they have \agreed" upon in
stage 2a.

The game is repeated with Stage 2 of the kth game determining the
initial partition for Stage 1 of the k + 1st game.

De�nition 1. A coalition structure P = fP1; :::; Pkg is a partition
of the player set N = f1; :::; ng; � is the set of coalition structures,
j�j <1. We de�ne payo� for individual players and coalitions too.

Assumption 1. Players are ex-ante identical [Yi's Assumption 2.1],
and share the coalition payo� equally [p.205].

Yi [p.209] shows that ordered pair (m;P) is fully describes player
i 2 P 2 P; jP j = m, hence its immediate strategies as well, and so
with pure strategies a partition will always be followed by the same
partition at any stage of the game giving rise to loops.

1In this subsection all references will be to Yi [17].
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Now we can give further details as regards to how the game is played.
By the above property all players belonging to coalitions of the same
size have the same preferences and hence are identical, but we allow
identical players to make a decision in which they have di�erent fates.
The players are assigned to these di�erent roles by fair draws, and
hence they choose this strategy if {not disregarding others' strategies{
the expected worth of this lottery dominates other strategies. At each
move players who enforce the move are called perpetrators, while the
rest are the residuals (after Ray and Vohra [13]). As, in the de�nition of
Ray and Vohra, the de�nition of the residual coalition is often arbitrary,
we use the term less formally. We assume that the perpetrators' set is
always minimal. As a corollary if the set of coalitions of size k is not
smaller in partition P than in P 0 then the two are separated by a move,
all players in a coalition k in P 0 are in k in P, too. The signi�cance of
this rule will be understood later.

De�nition 2. The per-member partition function is the function

vi :� �! R
N ;

v =(v1; : : : ; vn)

The pair (N; v) is a per-member partition game.

Yi's conditions [17, Section 4.1.] on the per-member partition func-
tion form a very important part of our model:

Condition 1. v (ni;P) > v (ni;P
0), where ni 2 P \ P 0 and P is a

re�nement of P 0. This expresses that mergers hurt residual players.

Condition 2. v (nj;P) < v (k;P 0), where k =
Pj

i=1 ni

(1) P = P 0 [ fn1; n2; : : : ; njg n fkg for some partition P0 of n� k,
(2) ni � nj 8i;

that is, a merger with coalitions that are not smaller is bene�cial to
the members of the coalition.

Condition 3. v (nj;P) < v (ni + 1;P 0), where P 0 = P n fni; njg [
fni + 1; nj � 1g, ni � nj, that is, a member of a coalition is strictly bet-
ter o� by leaving the coalition and joining another that is not smaller.

2.2. Path dependence. The concept of examining paths is due to
Morelli and Penelle [12]. We give the basic de�nitions, introduce a
more general notation and proceed to the set-up of our own model.

De�nition 3. In one move we allow one \action" per player, that is:
an agreement is settled, the necessary draws are made, the proposed
coalitions are formed and payo�s are paid out. Less relevant approaches
would allow interaction between two players at a time or allow only
self-enforcing strategies (too slow/too fast communication). Let also
�f (P) be the set of feasible partitions after a move starting from P.
(We will allow �f (P) 6= � for some P 2 �.)
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Then a path � is a sequence fPigi>0 of partitions such that Pi+1 2
�f (Pi), that we write in the general form:

� =
�
P1;P2; : : : ;P���+1; : : : ;P�

	
the length of the path � 2 N is maximal, such that for all i � �

and j � �,Pi = Pj implies i = j. The last � partitions form the
equilibrium outcome that is repeated forever, forming a loop that is
non-trivial unless � = 1. Let Pt (�) denote the partition after playing
the game t times along path �.

De�nition 4. The present value for the player (m;P) along path �

from P is the discounted average of the payo�s along path � that
players of type (m;P) obtain, and is denoted by wm (�). Let � be the
set of paths that can be enforced by the same player, assuming rational
behaviour from the others. The expected present value or shortly value

is de�ned by

(1) wm = max
�2�

wm (�) ;

and the optimal path

(2) �m 2 argmax
�2�

wm (�) ;

A path is a solution if the outcome cannot be improved and the
corresponding game is coalition-proof and subgame perfect [4, 12].

3. The Accession Game

3.1. Introduction. In this section we de�ne the accession game: a
game of the extension of a special coalition St, with jStj = st at time t
that we refer to as the union. For simplicity we write S with s referring
to the actual size of S. This will lead to no confusion.

Assumption 2 (Monotonicity). We will restrict our attention to paths
where the union does not secede, that is, if S 2 Pt (�) then there
exists S 0 2 Pt+1 (�), such that S � S 0, that is the size of the Union is
monotone increasing.

As a result for all nontrivial games there exists P 2 � such that
�f (P) 6= �.
Note that, although the above assumption is strong from a theoret-

ical point of view the past of the European Union justi�es it. The
monotonicity is unlikely to change in the near future.
We can have two de�nitions of the applicants' sets, A: the set N nS0

for all t is the natural de�nition in the sense that it does not change in
the course of the game. The alternative we use, N n St, on the other
hand does not preserve history; as soon as some of the applicants join
S, a new game is considered with fewer applicants, giving rise to an
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inductive solution. We de�ne value for A and S, as the mean of the
members' values. As

wS0 (P) =
1

s0

X
i2S0

wi (P) =
1

st

X
i2St

wi (P) = wSt (P) ;

and S0 � St the interests of the original and current members of the
union coincide.
The focus of the solution is on the conict between the interests of

A and S. Although the game is not aimed to model the formation
of the cooperative agreement, each step of the game can be pictured
as a bargaining procedure: If no o�ers are made by the union or the
o�ers are not accepted the applicants play the disagreement strategy,
repartition themselves to obtain the highest value without acceptance.
The union makes its most preferred o�er. This is accepted if a subset
of applicants is willing to take it, and is able to enforce it. If it is not,
then the union makes further o�ers as long as these give improvement
over the disagreement strategy.
The �rst of the two approaches we consider is the pure non-trans-

ferable utility game. In the other approach we allow transfers among
applicants so the applicants' aggregated preferences are expressed by
their total value in the proposed partition. This approach is preferred
by the applicants as it maximizes their value along the optimal path.
The di�erence in the approaches is small if the payo�s for the members
of the Union S are considerably larger than for A: the bene�t of one
applicant being accepted outweighs the others' losses.

3.2. An example. The table below shows the payo�s of game G,
as an example. The headings refer to the size of the coalition, so
v (s+ 1; fs+ 1; 1; 1g) must be read from the column with � s at the
top, and along line fs+ 1; 1; 1g.

vG 1 2,3 � s

P6= fs+ 3g 4

P5= fs+ 2; 1g 0 5

P4= fs+ 1; 2g 2 6

P3=fs+ 1; 1; 1g 1 7

P2= fs; 3g 3 3

P1= fs; 2; 1g 1 4 4

P0= fs; 1; 1; 1g 2 5

As the union cannot secede, increasing � by looking further back into
the past of S to partitions, where more of its currents members were
applicants does not increase the set of feasible outcomes �f . Thus we
can have an inductive argument: �rst solve for the case when we have 0
applicants (partition P6), and then given the solution for i-applicants,
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we can solve for i+1 applicants. The number of applicants is �nite, so
in a �nite steps we arrive to the case we aim to solve.
For 0 applicants the solution is trivial.
For 1 applicant we argue as follows: By monotonicity, set of possible

strategies is fP5;P6g. If no acceptance o�er is made by the union or
the o�ers are not accepted (we call this the disagreement strategy), the
applicants' maximal payo� is 0 by moving to P5. In this case the union
S gets 5

1�Æ
, while at partition P6 it would get 4

1�Æ
as calculated in the

previous step. Hence it makes no o�ers for the applicant.
When no o�er is made in the 2-applicant case A plays P4 giving

6
1�Æ

to the union S. The union makes only o�ers with a higher payo�:
P3. The applicants have homogeneous interests and hence a self-evident
preference-ordering according to the expected payo�s along the various
possible paths: P6;P5;P4;P3. As the state P4 can be achieved anyway,
the applicants will only accept o�ers that are better than that; in this
case we have no such moves, so P4 is played.
In he 3-applicant case we deal with P0 and P2 �rst. Although for

the applicants P2 is no better than playing P1, it gives the union S a
lower payo� and is still credible. The disagreement payo�s are therefore
wA = 3 1

1�Æ
and wS = 3 1

1�Æ
which is the lowest of all strategies for S.

The applicants prefer P6 most and hence this is played.

P1 Stage I Stage II

1 P4 > P6 > P3 > P1 > P5 P4 > P3 > P1 > P5

2 P5 > P6 = P3 = P1 > P4 P5 > P3 > P1 = P4

s P3 > P4 > P5 > P1 = P6 P3 > P4 > P5 > P1

P1 Stage III Stage IV Stage V

1 P4 > P3 > P5 P4 > P3 P3

2 P5 > P3 > P4 P3 > P4 P3

s P3 > P4 > P5 P3 > P4 P3

In partitionP1 the applicants have inhomogeneous preferences. Since
the 2-coalition does not bene�t from a merger with the singleton, the
non-cooperative outcome is P1, giving w

1 = 1
1�Æ

; w2 = 4
1�Æ

; ws = 4
1�Æ

.
The table above summarises the steps as the di�erent preference or-
derings are evaluated with the relation signs expressing preferences. In
stage I we can remove the strategies that are dominated by the dis-
agreement strategy for the union (P6). From here the strategies are
eliminated from backwards. The last chance to improve payo�s before
disagreement is P5. In stage II the doubleton is willing to accept this
and can enforce it after acceptance, so the \o�er" P1 is never made.
Foreseeing these actions, the singleton will accept the previous o�er in
stage III, P4, as it improves its payo�, and it can enforce it. This is
the worst possible outcome for the doubleton, it is willing to accept
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the previous o�er P3, and can enforce it, and hence this is the outcome
for the game. The union exploited the tension among applicants very
well: its �rst o�er is accepted, for the applicants P6 Pareto-dominates
this outcome. This table summarises the results for the various i-s for
game G.

Game G P m �� w

0-applicants P6 s+ 3
�
P6

	
4 1
1�Æ

1 0
1-applicant P5

s+ 2

�
P5

	
5 1
1�Æ

2 2 1
1�ÆP4

s+ 1

�
P4

	
6 1
1�Æ2-applicants

1 1 + 2 Æ
1�ÆP3

s+ 1

�
P3;P4

	
7 + 6 Æ

1�Æ

3 3 + 4 Æ
1�ÆP2

s

�
P2;P6

	
3 + 4 Æ

1�Æ

1 1 + Æ + 2 Æ2

1�Æ

3-applicants P1 2
�
P1;P3;P4

	
4 1
1�Æ

s 4 + 7Æ + 6 Æ2

1�Æ

1 2 + 4 Æ
1�ÆP0

s

�
P0;P6

	
5 + 4 Æ

1�Æ

If we allow transfers among applicants the singleton can compensate
the 2-coalition when moving to P2, and thus the strategy o�ering the
lowest value to the union S becomes a credible threat, and P6 is played.
Remarkably, transfers never take place, as the threat is never executed;
as soon as the union believes that transfers could take place, a better
outcome is achieved.

3.3. The general form. In the general accession game we allow trans-
fers among the applicants. Such a game even with an arbitrary number
of applicants simpli�es to a two-player game between the union S and
the applicants A. At each partition P, given the corresponding �f (P)
the next move is determined as follows.
Given P, both S and A can assign a value to any outcome in �f (P).

Given these, the union proposes its favoured partition. The applicants
can either accept this, or reject it, in which case the Union makes
further proposals as long as these are better than the disagreement
strategy:

PD 2 arg max
P 02�f

jSj2P 0

�
wA (P 0)

	

By perfect knowledge, applicants may choose their most preferred of-
fer. This is an equilibrium by construction and formally we have the
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solution:

(3) P� = arg max
P2�f (P0)

�
wA (P)

��wS (P) > wS (PD)
	

Alternatively, if o�ers are made by the applicants, then

P� = arg max
P2�f (P0)

�
wS (P)

��wS (P) � wA (PD)
	

If the decision is made in a symmetrical way, the solution is more
complex, we have something similar to the classical problem of the
Battle-of-Sexes except that we do not allow randomised strategies. In
many real life situations one of the strategies becomes a focal point ,
but in a theoretical problem gives little help.

3.4. Solving the general accession game. Our solution will be in-
ductive. Let �a = fP 2 �jn� s = ag the set of partitions with ex-
actly a applicants. For a = 0, � = ffngg and the solution is trivial.
When solving for a + 1 we assume that for all P 2 �k with 0 � k < a

the solution is known. Now let

�a
D = arg max

P2�a
vA (P) the disagreement set,

�+ =

(
P 2

n�s0[
a=0

�a

�����wS (P) > min
PD2�a

D

wS (PD)

)
the set of o�ers,

Pa 2 arg max
P2�+

wA (P) the accepted o�er in the case of a applicants.

Let b 2 N such that Pa 2 �b. Then starting from the initial partition
P 2 �a we have the following results:

�� (P) =

(
fP;Pag if b = a

fPg [ �� (Pa) otherwise,
(4a)

wA (P) =

(
vA (P) + Æ

vA(Pa)
1�Æ

if b = a

vA (P) + ÆwA (Pa) otherwise,
(4b)

wS (P) =

(
vS (P) + Æ

vS(Pa)
1�Æ

if b = a

vS (P) + ÆwS (Pa) otherwise,
(4c)

4. Solving more general games

4.1. Motivation. Like Morelli and Penelle [12], having discussed the
extensions of the EU, we must raise the question: how is the Union
formed? So far we have very strongly used the assumed dominance of
the Union, but now we want to know what happens if it is smaller, not
dominant, or even non-existent. Hence, in this part we consider games
without a dominant coalition. By removing it, we also remove the
preordering of the strategies that was so far determined by the union's
preferences. In the lack of a dominant player it would be very arbitrary
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to assign this role to any other player, and so a similar solution cannot
be established.

4.2. Solving games without a dominant coalition. The mono-
tonicity of the union provided a natural termination state, and even
for most of the others we could say that one is more likely to be a
termination state, and hence an outcome than the other simply by
looking at the size of the Union. This enabled us to de�ne an induc-
tive solution algorithm. It is clear that in games where moves between
any two partitions are possible, such algorithm cannot work. Here we
argue as follows: Given the the solution and assuming that it contains
no non-trivial loops the �nal partition is a coalition-proof, subgame-
perfect equilibrium outcome. While such outcomes cannot, in general,
be pointed out at once, as there might be several of them depending
the initial partition. By condition 2 coalitions of the same size bene�t
from merging so partitions with coalitions of the same size can be ex-
cluded. For a large set of players this leaves relatively few partitions to
test. (If n = 15 we have 27 such partitions out of a total of 176)2 These
partitions are interesting even if they fail as equilibrium outcomes, as a
further state can only be achieved by cooperation between coalitions of
di�erent sizes in which case {by rationality{ all bene�t, or by secession,
where, by condition 1 all outsiders get to a state with a higher payo�
that often means a higher expected present value, too.
Given these outcomes, we construct subgame perfect (and coalition-

proof) paths by extending these \1-paths" (as they have length 1).
In order to generate the k-paths �rst we take all partitions Pi of n
and all k � 1-paths and seek the equilibrium path of length k. The
strictly preferred one of this path and �k�1i (k � 2, otherwise �k�1i

does not exist) becomes �ki . If Pi appears twice in �ki then either the
path had already contained a loop or we have just identi�ed one. This
argument is repeated until no improvement is possible, no new paths
are generated. By construction the paths are the ones we have been
looking for.
It is not our aim to de�ne a concept to aggregate the players' in-

terests. We can discuss some simple examples, where the solution is
evident, but the general problem is open for further research.

4.3. Examples. We solve a game to illustrate the introduced concepts
and to draw attention to some diÆculties encountered when solving
games. The table below shows the payo� values for game A. Games
with 5 players have 6 possible partitions. We aim to �nd the optimal
path from (1; N).

2Generated using http://sue.csc.uvic.ca/~cos/gen/nump.html.
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vA 1 2 � 3

P6 = f5g 6

P5 = f4; 1g -3 7

P4 = f3; 2g 2 5

P3 = f3; 1; 1g 1 6

P2 = f2; 2; 1g 1 4

P1 = f2; 1; 1; 1g 2 5

P0 = f1; 1; 1; 1; 1g 3

Beyond the validity of the general concepts, looking at game A we
notice that in partition P4 all players bene�t from cooperating and
playing P6. Thus the set of outcomes is reduced to P5 and P6. For
each player we compute the value along all 1-path alternatives. The
table below summarises our calculations: The sign # marks enforceable
outcomes, that is, outcomes where cooperation with other players is not
required. This means that the player can achieve at least this value.

1-paths

Pi m fP4g fP5g fP6g �� w (��)

P6 5 19
5

1
1�Æ# 5 1

1�Æ# 6 1
1�Æ#

�
P6

	
6 Æ
1�Æ

1 2 1
1�Æ �3 1

1�Æ# 6 1
1�Æ �3 1

1�ÆP5 4 17
4

1
1�Æ 7 1

1�Æ# 6 1
1�Æ

�
P5

	
7 Æ
1�Æ

2 2 1
1�Æ# 2 1

1�Æ 6 1
1�Æ 2 + 6 Æ

1�ÆP4 3 5 1
1�Æ# 7 1

1�Æ 6 1
1�Æ

fP4;P6g 5 + 6 Æ
1�Æ

1 2 1
1�Æ# 2 1

1�Æ 6 1
1�Æ 1 + 6 Æ

1�ÆP3 3 5 1
1�Æ 7 1

1�Æ 6 1
1�Æ

fP3;P6g 6 1
1�Æ

1 5 1
1�Æ �3 1

1�Æ 6 1
1�Æ 1� 3 Æ

1�ÆP2
2 7

2
1

1�Æ 7 1
1�Æ# 6 1

1�Æ

fP2;P5g
4 + 7 Æ

1�Æ

1 5 1
1�Æ#

11
3

1
1�Æ 6 1

1�Æ 2 + 6 Æ
1�ÆP1 2 2 1

1�Æ 7 1
1�Æ 6 1

1�Æ

fP1;P6g 5 + 6 Æ
1�Æ

P0 1 19
5

1
1�Æ# 5 1

1�Æ# 6 1
1�Æ# fP0;P6g 3 + 6 Æ

1�Æ

Within P6 and P0 players are of the same type, the best path is the
one o�ering the highest value.
In P1 the singletons can get to P4 without cooperating with the 2-

coalition to get 5 1
1�Æ

. This dominates strategy P5, so the 2-coalition

will never obtain the value 7 1
1�Æ

. But now both the singletons and the
2-coalition can improve their payo�s by choosing the path fP6g.
In P2 the 2-coalition disregards the singleton and plays strategy

fP5g.
In P3, similarly to P1 the singletons can get to P4, and so, although

this is not strictly better than playing P5 it is a credible threat forcing
the 3-coalition to play P6.
The same argument goes for P4. Here we must add that this was

the end one of the possible paths considered, hence in theory wherever
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it was selected as an outcome of optimal paths (in our example it was
not) the paths can be further improved upon.

2-paths 1-paths

Pi m fP0;P6g fP1;P6g fP2;P5g fP3;P6g fP4;P6g �� w (��)

P6 5 3 + 6# 16

5
+ 6# 17

5
+ 6# 4 + 6# 19

5
+ 6# 6 1

1�Æ
#

�
P6

	
6

1 3 + 6 2 + 6 1� 3 1 + 6 2 + 6 �3 1

1�Æ
# �3 1

1�Æ
P5

4 3 + 6# 7

2
+ 6# 4 + 7# 19

4
+ 6 17

4
+ 6 7 1

1�Æ

�
P5

	
7

2 3 + 6 5 + 6 4 + 7 1 + 6 6 1

1�Æ
2 + 6

P4
3 3 + 6 2 + 6# 3 + 11

3
# 6 1

1�Æ

-
6 1

1�Æ

fP4;P6g
5 + 6

1 3 + 6 2 + 6 5

2
+ 2 2 + 6# 6 1

1�Æ
1 + 6

P3
3 3 + 6 4 + 6 4 + 7

-
5 + 6 6 1

1�Æ

fP3;P6g
6 1

1�Æ

1 3 + 6 2 + 6 1 + 6 5 + 6 �3 1

1�Æ
1� 3

P2
2 3 + 6# 7

2
+ 6#

- 19

4
+ 6 7

2
+ 6 7 1

1�Æ
#

fP2;P5g
4 + 7

1 3 + 6 3 + 11

3
# 8

3
+ 6 5 + 6# 6 1

1�Æ
2 + 6

P1
2 3 + 6

-
4 + 7 6 1

1�Æ
2 + 6 6 1

1�Æ

fP1;P6g
5 + 6

P0 1 - 16

5
+ 6# 17

5
+ 5# 4 + 6# 19

5
+ 6# 6 1

1�Æ
# fP0;P6g 3 + 6

This way we have chosen a unique path of length at most 2 starting
from each of the partitions. These are the 2-paths. In the table we
compare the values along these paths with each other and with the
values of the 1-paths ( = Æ

1�Æ
). Arguing like before we �nd that

all possible 3-paths are dominated by previously calculated 2-paths,
no paths are extended and column �� contains the optimal paths. In
particular the solution of the game, and the corresponding value are:

� =
�
P0;P6

	
(5a)

w1
0 = 3 + 6

Æ

1� Æ
(5b)

4.4. Loops. To illustrate the signi�cance of loops, before moving to
more complex issues, �rst we will solve the simplest game L containing
a loop with its payo� function below. This game has four players3

Notice the relatively high value of v21. We can guess that the players
want to exploit this.

vL 1 � 2

P4 = f4g 9

P3 = f3; 1g 0 13

P2 = f2; 2g 8

P1 = f2; 1; 1g 4 15

P0 = f1; 1; 1; 1g 7

In our solution we exploit the game's simplicity, the fact that at each
stage there are coalitions of at most 2 di�erent sizes and so the game
simpli�es to a 2-player game, there is always a unique disagreement
strategy where the two sets of players form two coalitions, alternatively

3Using the conditions it is easy to prove that less players will not engage in a
loop.
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they cooperate in some way. The game lacks partitions with more than
one cooperative strategy dominating disagreement.
Finding paths that include loops is similar, except that calculations

are done recursively. Instead of a proof we give some evidence: By
construction the method supports coalition-proofness, and subgame
perfectness, the question is only whether it terminates or not. When
looking for paths with loops we cannot assume stable outcomes to begin
with. However, the number of paths with loops is �nite, too, and at
each stage where a new path is created we get rid of another one, hence
the algorithm must terminate. As opposed to paths without loops due
to the recursive nature of the algorithm , we need separate calculations
to get the exact expected present values.
In stage I we look at the 1-paths. In stage II players improve their

payo�s by selecting another path4, and repeat this in stage III as well,
but using the values calculated in stage II. Further steps do not change
the result, all paths end in stable loops, hence we have the optimal
paths.

Stage I Stage II Stage III

w �� w �� w ��

v10
7

1�Æ
fP0g 7 + 19

2
Æ

1�Æ
fP0;P1g 7 +

19

2
Æ+9Æ2

1�Æ

�
P0;P1;P4

	
v11

4
1�Æ

fP1g 4 + 9 Æ
1�Æ

fP1;P4g 4 +
9Æ+ 19

2
Æ2

1�Æ

�
P1;P4

	
v21

13
1�Æ

13 + 9 Æ
1�Æ

13 +
9Æ+ 19

2
Æ2

1�Æ

v22
8

1�Æ
fP2g 8 + 19

2
Æ

1�Æ
fP2;P1g 8 +

19

2
Æ+9Æ2

1�Æ

�
P2;P1;P4

	
v13 0 fP3g 0 fP3g 0

�
P3

	
v33

13
1�Æ

13
1�Æ

13
1�Æ

v44
9

1�Æ
fP4g 7 + 19

2
Æ

1�Æ
fP4;P1g

9Æ+ 19

2
Æ2

1�Æ

�
P4;P1

	
The game below, M has 5 players. The outcome of this game (a

loop) does not include states where all players are of the same type,
so di�erences never vanish. As a result values have to be calculated
separately.

vM 1 2 � 3

P6 = f5g 4

P5 = f4; 1g 0 6

P4 = f3; 2g 2 5

P3 = f3; 1; 1g 1 8

P2 = f2; 2; 1g 1 5

P1 = f2; 1; 1; 1g 2 11

P0 = f1; 1; 1; 1; 1g 3

4Of course the improvement need not apply to all players.
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Stage I Stage II Stage III

w �� w �� w ��

v10
3

1�Æ
fP0g 3 + 28

5
Æ

1�Æ
fP0;P1g 3 + 28

5
Æ + 24

5
Æ2

1�Æ
fP0;P1;P5g

v11
2

1�Æ
fP1g 2 + 4 Æ

1�Æ
fP1;P5g 2 + 4Æ + 5 Æ2

1�Æ

�
P1;P5

	
v21

11
1�Æ

11 + 6 Æ
1�Æ

11 + 6Æ + 13
2

Æ2

1�Æ

v12
1

1�Æ
fP2g 1 + 2 Æ

1�Æ
fP2;P1g 1 + 2Æ + 4 Æ2

1�Æ
fP2;P1;P5g

v22
5

1�Æ
5 + 13

2
Æ

1�Æ
5 + 13

2
Æ + 5 Æ2

1�Æ

v13
1

1�Æ
fP3g 1 + 3 Æ

1�Æ
fP3;P5g 1 + 3Æ + 17

4
Æ2

1�Æ
fP3;P5;P1g

v33
8

1�Æ
8 + 6 Æ

1�Æ
8 + 6Æ + 13

2
Æ2

1�Æ

v24
2

1�Æ
fP4g 2 + 3 Æ

1�Æ
fP4;P5g 2 + 3Æ + 17

4
Æ2

1�Æ
fP4;P5;P1g

v34
3

1�Æ
5 + 6 Æ

1�Æ
5 + 6Æ + 13

2
Æ2

1�Æ

v15 0 fP5g 2 Æ
1�Æ

fP5;P1g 2Æ + 4 Æ2

1�Æ

�
P5;P1

	
v45

6
1�Æ

6 + 13
2

Æ
1�Æ

6 + 13
2
Æ + 5 Æ2

1�Æ

v56
4

1�Æ
fP6g 4 + 28

5
Æ

1�Æ
fP6;P1g 4 + 28

5
Æ + 24

5
Æ2

1�Æ
fP6;P1;P5g

Table 1. Solution of game M .

Table 1 shows the process of solving gameM . By stage III it is clear
that all paths lead to the loop P1;P5, but further stages give di�erent
values for the expected present values. The following simultaneous
equations for the values at each stages in the loop and the subsequent
calculations give the correct �gures.

w1
1 = v11 + Æ

2w4
5 + w1

5

3
(6a)

w2
1 = v21 + Æw4

5(6b)

w1
5 = v15 + Æw1

1(6c)

w4
5 = v45 + Æ

w1
1 + w2

1

2
(6d)

This is a set of simultaneous equations, 4 of them, with 4 unknowns
that can be rearranged as follows:

v11= w1
1 � 2Æ

3
w1
5 �

2Æ
3
w4
5

v21= w2
1 � Æw4

5

v15= � Æw1
1 + w1

5

v45=� Æ
2
w1
1 �

Æ
2
w2
1 + w4

5

In general there might be zero, one, or in�nite solutions to these
equations, but our assumption that we found the equilibrium path
after observing convergence in the values implies that the solution is
unique. Solving these equations we get the �nal results:
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w ��

(5;P6)
4
5
5+7Æ+Æ2

1�Æ2

�
P6;P1;P5

	
(1;P5) 4 Æ(3+6Æ+4Æ

2)
6�7Æ2+Æ4

�
P5;P1

	
(4;P5)

36+39Æ�12Æ2+11Æ3

6�7Æ2+Æ4

(2;P4)
1
2
24+36Æ+23Æ2+12Æ3+9Æ4

6�7Æ2+Æ4

�
P4;P5;P1

	
(3;P4) 29+18Æ+9Æ

2�6Æ3+�4Æ4

6�7Æ2+Æ4

(1;P3)
1
2
12+36Æ+37Æ2+12Æ3+Æ4

6�7Æ2+Æ4

�
P3;P5;P1

	
(3;P3)

48+36Æ�17Æ2�12Æ3�3Æ4

6�7Æ2+Æ4

(1;P2)
6+12Æ+17Æ2+16Æ3+Æ4

6�7Æ2+Æ4

�
P2;P1;P5

	
(2;P2)

30+39Æ�5Æ2�11Æ3�Æ4

6�7Æ2+Æ4

(1;P1) 43+6Æ+4Æ
2

6�7Æ2+Æ4

�
P1;P5

	
(2;P1) 233+18Æ�19Æ

2�6Æ3

6�7Æ2+Æ4

(1;P0)
1
5
15+28Æ+9Æ2

1�Æ2

�
P0;P1;P5

	
5. Conclusions

We have demonstrated a number of problems arising when trying
to solve the general accession game. If we exclude loops and assume
the monotonicity of the union's size the game can be solved. The so-
lution of games without these restrictions is open for future research.
However, despite its limitations the model matches the selected appli-
cation rather well, and at the same time demonstrates a mechanism
how small players may be able to enforce their interest against the
much larger union by cooperation, while the lack of cooperation may
allow the union to exploit the division of the applicants.
Baldwin [2, pp130-139] describes the \hub-and-spoke bilateralism"

model, where the European Union has arrangements with each appli-
cant separately. In our model this corresponds to the union and a set
of singletons. This state is favourable for the Union, but not for the
applicants. Candidates may improve their average position by forming
a coalition, such as the Visegr�ad group or the Baltic countries were
in the past. These lost their importance as the EU {probably not
malevolently{ favoured some of their members over others, who then
in turn made every e�ort to exploit their advantage. Such divisions
reduce the average chance for acceptance. Allowing transfers between
the applicants, for instance in the form of tax exemptions, could help
to overcome this diÆculty and give a more eÆcient outcome.
The encountered diÆculties give rise to some questions that we leave

open. Loops are very uncommon in games and they might o�er a
new way to explain cyclic behaviour by �rms or countries in forming
alliances. Morelli and Penelle [12] discuss how di�erent utility transfers
a�ect the accession path; our example shows that even the uncertainty
about the transfers can inuence the outcome.
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There are many ways to extend or generalise this model. Most of
the restrictions introduced are to reduce the level of complexity and to
match our limited tools. Multi-level integration in the sense of Baldwin
[2] is an interesting problem possibly modelled by games, with gradual
membership in coalitions such as games with fuzzy coalitions [5].

References

1. Robert J. Aumann and Jacques H. Dr�eze, Cooperative games with coalition

structures, International Journal of Game Theory 3 (1975), 217{237, Also, as
UCL-CORE Reprint 217.

2. Richard E. Baldwin, Towards an integrated Europe, CEPR, London, 1994.
3. Elaine Bennett and Eric van Damme, Demand commitment bargaining: The

case of apex games, Game Equilibrium Models III: Strategic Bargaining (Rein-
hard Selten, ed.), Springer Verlag, Berlin { Heidelberg, 1991, pp. 118{140.

4. Douglas B. Bernheim, Bezabel Peleg, and Michael D. Whinston, Coalition-
proof Nash equilibria: I. Concepts, Journal of Economic Theory 42 (1987),
no. 1, 1{12.

5. Dan Butnariu and Erich Peter Klement, Triangular norm-based measures and

games with fuzzy coalitions, Kluwer Academic Publishers, Dordrecht { Boston
{ London, 1993.

6. Maarten F. Cornet, Game theoretic models of bargaining and externalities, The-
sis Publishers, Amsterdam, 1998.

7. EFTA, The European Free Trade Association, EFTA Secretariat, Geneva, 1987.
8. Drew Fudenberg and Jean Tirole, Game theory, The MIT Press, Cambridge,

Massachusets, 1991.
9. Joseph Greenberg, Coalition structures, Handbook of Game Theory (Robert J.

Aumann and Sergiu Hart, eds.), vol. 2, Elsevier Science Publications B.V.,
1994, pp. 1305{1337.

10. L�aszl�o �A. K�oczy, Cooperative models for extending the European Union, Mas-
ter's thesis, Center for Economic Studies, Katholieke Universiteit Leuven, Leu-
ven, May 1999.

11. William F. Lucas, Some recent developments in n-person game theory, SIAM
Review 13 (1971), no. 4, 491{523.

12. Massimo Morelli and Philippe Penelle, Economic integration as a partition

function game, Discussion Paper 9785, CORE, Louvain-la-Neuve, 1997.
13. Debraj Ray and Rajiv Vohra, Equilibrium binding agreements, Journal of Eco-

nomic Theory 73 (1997), 30{78.
14. Robert M. Thrall, Generalised characteristic functions for n-person games,

Proceedings of the Princeton University Conference of October 1961, 1962,
Privately printed for members of the conference., pp. 157{160.

15. Robert M. Thrall and William F. Lucas, n-person games in partition function

form, Naval Research Logistic Quarterly 10 (1963), 281{298.
16. Robert J. Weber, Games in coalitional form, Handbook of Game Theory

(Robert J. Aumann and Sergiu Hart, eds.), vol. 2, Elsevier Science Publica-
tions B.V., 1994, pp. 1285{1303.

17. Sang-Seung Yi, Stable coalition structures with externalties, Games and Eco-
nomic Behavior 20 (1997), 201{237.

Center for Economic Studies, Katholieke Universiteit Leuven,

Naamsestraat 69, B-3000 Leuven, Belgium

E-mail address : laszlo.koczy@econ.kuleuven.ac.be


