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Reexamining the Estimation of Simultaneous Equations
Systems

Yoshio Kimura
Chukyo University
Faeulty of Economics

The purpose of this paper lies primarily in strengthening limited information
maximum likelihood(LIML)} estimation by extending the existing theorem for
minimising the ratio of two quadratic forms and secondarily in reexamining two
stage least squares(TSLS) proposed by Kloek and Mennes(1960) under the
assumption that the matrix of the observations on the predetermined variables has
the rank not necessarily greater than the number of all predetermined variables.

As will be shown by the numerical examples presented later, the existing
thecrem aforementioned(henceforth, PD-theorem, for short) is often unapplicable to
the first step of LIML which requires to minimise a ratio of two variances expressed
as quadratic forms, since the positive definiteness of the denominator, an essential
assumption of PD-theorem, is apt to collapse even when the sample size is enough
targe to exceed the number of ail predetermined variables. Moreover, the first step
of the LIML modified by Fuller(1977), Fujikoshi and others{(1982) and
Morimune(1983) remains intact. Therefore, the extension of PD-theorem is
1nevitable for securing the wider applicability of both LIML and modified LIML.

Turning to TSLS, Kloek and Memnes(1560} proposed to use the principal
components of predetermined variables in the first stage of TSLS, the least squares
estimation of the reduced form, to overcome the apparent difficulty occurred when
the sample size is smaller than the number of all predetermined variables. However,
it would be natural to reexamine their proposals since the normal equations of
ordinary least squares{(OLS} are known always solvable. To achieve these ends, we
proceed as follows,

Section 1 is concerned with the revised LIML based on the generalised PD-
theorem.

In Section 2, we recxamine the proposeats of Kloek and Mennes{1960) from the
view point of the generalised inverses of a matrix and refer to a characterisation of
the so called Ridge estimation, a variant of OLS.

A brief summary of the arguments of Sections I and 2 as well as the problems
to be investigated further will be stated in Section 3.

Appendix 1 is devoted to the gencralisation of PD-theorem, admitting the
singularity of the denominator,

Finally, in Appendix 2, we state and prove the properties of generalised inverses
of matrices so as to make the paper self-contained.
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1. On the Revision of Limited Information Mazimum Likelihood Estimation

Throughout the paper, we consider a standard linear statistical medel consisting
of G structura! relations with K predetermined variables. In matrix form, the
model is written as

YB' +XI=1, ¢))
where n signifies the sample size, ¥ = an nXG mamix of observations or the
endogenous variables, B = a G X G matrix of coefficients of cwrrent endogenous
variables, X = an n X K matrix of observations on all predetermtined variables, I' =
a GXK matrix of coefficients of all predetermined variables, U = an n X G matrix
of all the sample disturbances, and B’ (T} is of course the transposition of B( I').

As is well known, it is customary to assume that n is enough large to ensure that
the rank of X(r(X), in symbol) equals K. However, we dare to leave r(X)
unspecified, because in handling multiregional ecomometric models and/or
econometric models of large scale it often occurs that we are obliged to be
contended with the sarmple size insufficient to secure the assumption (X} = K and
mainly from this reason we substitute the generalised inverse(g-inverse) of & matrix
for the usual inverse of a matrix.

Since LIML and TSLS estimate each equation contained in the model one by
one, it is convenient to express a representative equation to be estimated as

¥y=YB8+X v+u, (2)
where y is an n X 1 vector of observations on the dependent variable of equation (2),
X,{Y,) is the n X K(n X (g-1)) matrix of observations on explanatory
predetermined{endogenous) variables appearing in this equation and u is an n X 1
vector of sample disturbances of y.

Morcover, by Y, and £ denote (n X g) matrix (y: ¥,) and {1 X g} vector (1.- 8.
Then (2) is equivalent to

Y Bo—X,7 wu . (3}

On the other hand, for the observations of the remaining variables, we specify
Y, (X,) as the submatrix obtained from Y(X) by deleting Y. (X))

The main argument of this section begins with sumimarising the usual
computational scheme of LIML.  Following Johnston(1983, pp.483-486), the
scheme consists of two procedures.

Procedure (i)  To find the minimum value £ of the ratio

E=(BW 8.} (BWE,), )
where W, = Y(I-X,(X]X, ) X))Y,, W=Y/I- X(X'X)YXVY,, (X'X) is the
generalised inverse(g-inverse) of XX (similarly for (X]X,)"), and I of course
denotes an identity matrix whose order is to be understood from the context,

For later convenience, we further introduce H, =X (X]X,y X! and
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H=X(X'X)X'. Conventionally, assuming implicitly that the denominator of
(4)or equivalently W) is positive definite, £ is obtained as the minimum root of
the following determinantal equation

| W, ~ew |=0 &)
Once ¢ is obtained, B, can be found as an eigen vector satisfying
(W, - tW)B,=0. )

Procedure (ii)  Using B, obtained above, we have the estimate y of ¥ as
';’= (x;x: }_X;Ya‘Ba . (7

We now examine the positive definiteness of W. By assertions (ii-1), (1-2.2)
and (u-2.3) of Theorem AP.2, {I1-H) is idempotent as well as symmetric and is of
rank n-r(X). Hence, W ={(I-H)Y,)({(I-H)Y,), which is clearly nonnegative
definite, is positive definite if and only if 1{({I-H)Y,} =g  In addition, it does
not harm the generality to assume that i Y,} = g, for otherwise one column of ¥,
is expressed as the linear combination of the others, which in tum makes the
cstimation unnecessary.  Therefore

{(I-H)Y,) & min{r(I-H),«(Y,)} =min{n-r(X), g }.
Accordingly, if n-o(X) < g, W is by no means positive definite.  Furthermore, the
numerical examples are to satisfy the order condition for identifiability which is
prerequisite to LIML estimation.  Bearing these in mind we enumeraie two
numerical examples which validate the necessity for the modification of Procedure
(i) of LIML by illustrating that the conventionally essumed positive definiteness of
W is apt to collapse.

Example 3 (standard case, ie, (X} = K)
Consider the following example ;

=20, K=17, g=4(three explanatory endogenous variables), K,=2{two explanatory
predetermined vanables; hence five explanatory variables in all).  Then W is seen
net to be positive definite because

nX)=20-17=3<4=g,
while the order condition for identifiability is met since

K2=K'Kl= 15>4=g‘

Example 4 (n<K, as was in Kloek and Mennes{1960))

Since n is less than K, (X} does not exceed n.  If, in addition, n = r{X} then
the matrix (1—H} vanishes for X is of now full rank.  Consequently, r{X) should
be less than is in order for the LIML to be applicable.  Thus, we take up the casc
where n=106, K=12, r(X)=9, g=2, and K;=2.  Therefore, we have

nr(X)=10-3=1<4=g (W is not positive definite}
and
K:=KK,=122=10>4=¢g.
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(the order condition for identifiability holds)

Preliminary considerations being over, we now state and prove our main
theorem which modifies Procedure (i} of LIML.

Theorem1 (i} N((I-H,)Y, < N({(1~H)Y,), and
(i) the smallest root ¢ of the determinantal equation

IP(W, ~(W,Q}Q'W,Q) (Q'W, )P - {(P'WP) | =0
gives the nontrivial minimum of the variance ratio (4), by employing {u, v, } which
satisfies the following two equations

{ P(W, ~ (W, QXQ'W,Q)y (Q'WI. YPu = £{(P'WP)u

(QW,Q)v, =~Q'W,Py) ,

the estimate B, of B, is expressed as

-

Ba =Pu + Q“'._, N

and finally, "Bﬂ 1s independent of the choice of P and Q, where P represents a basis
of R(HI-H)Y,)') and Q a basis of N((I- H)Y,,).
Proof (i} For any vector q of N({(I-H,)Y,), definee, = (1-H,)Y,q and e =
(I-H)Y,q. Then, by definition, e, = 0 and e,(e) is the vector of residuals in the
regression of Y,q on X(X).  Moreover, it is well known that the sum of squared
residuals of ordinary least squares decreases as the number of explanatory variables
inereases.  This, in conjunction with the fact that ¢, = 0, yields 05 e'e S eje,= 0.
Hence, 0=¢=(1-H)Y.g.

(ii} Applying assertions (ii-1) and (ii-2.3) of Theorem AP2, both {(I-H,}and
{I—-H) are idempotent as well as symmetric.  Hence, we at once see that

ROW)=R(((I-H)Y,)'}, (8.1)

NW)=N{{1-H)Y,), 8.2)
and

N(W, =N((I-H,)Y,). (8.3)

(8.1) and (8.2) ensure that the choice of P and Q in the theorem is conformable with
that of bases in Theorem AP, and (8.2) and (8.3) show that the condition of
assertion {ii) of Theorem AP.1 is met.  Therefore the assertions to be verified are
seen to be the direct consequence of assertions (i) and (iii) of Theorem AP.1.

(QE.D)

Tumning to the estimation procedure, there are two paths to follow.  For the
usual LIML estimation it suffices to exert Procedure (ii) with B, given in Theorem
1. On the other hand, to conduct the revised LIML estimation due to

Fuller(1977), we are to compute i= g—i (Fuller{1977, p442)) and
n
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v=(XX,) X{Y,8,. whee ¢ is a constant not less than unity, B.=Pi+0Q¥, and
the pair (d,¥) is determined S0 that
(P'(W, —(W,QUQ'W, Q)" (Q'W,)P)i = Z(P'WP)ii and (Q'W,Q)¥ =—{Q'W,Pii).
This completes the modified estimation scheme.

To simplify terminology, let’s abbreviate the family of estimates obtained by
applying the modified procedures stated above as MMVE(modified minimum
variance estimator).  Then, the MMVE derived from the data set fulfilling the
cendition that i(X) = K is known to be the LIML estimator, while it remains
indistinct whether the MMVE derived from the data set such that (X) < K
coincides with LIML estimator. ~ Nevertheless, there is found a value of n, say n,
such that n(X) = K for all n2 g in virtual process where the sample size tends to
infinity.  Consequently, MMVE becomes LIML estimator after n is reached.
Resorting again to the consistency of LIML estimator, it is now clear that MMVE is
consistent, irrespective of the sample size actually observed.  In addition, it is
needless to say that MMVE obtained by applying Fuller's formula exhibits the
asymptotic properties shown by Fuller(1977) and Morimune( 1983).

2. Further Consideration on TSLS

In this section, we reconsider the arguments of Kloek and Mennes(1960)
from the view point of applying the generalised inverse to the first stage of TSLS
and, as a byproduct, characterise the Ridge estimator in terms of the Moore-Penrose
generalised inverse.

Kloek and Mennes(1960;p.49), assuming the singularity of XX, proposed to
replace X = (X,.X;) by Z=(X|:F), so as to ensure the nonsingularity of Z°Z, where
X; is a submatrix obtained by deleting X, from X and F is a suitable principal
components of X; . Let 7 = (Z'Zy'Z¥, . Then, T is not necessarily
uncorrelated to u, since (Z°Zy'2°¥, is not a submatrix of the least squares cstimate
of the reduced form. Therefore, the estimators obtained by the estimarion method
Kloek and Mennes(1960) proposed are obliged to be biased and hence they are not

always consistert . On the other hand, the least squares estimate ?, of ¥, regressed
on X does exist irrespective of the rank of X' and assertions (ti-1),(ii-2.1) and (iii)
of Theorem AP.2 assure that ¥, = X(X'X)X'Y, is invariant for any cheice of
{(X'Xy . Cleaily ?1 is uncorrelated to u because , in view of (1), ¥V = ¥ - X{X Xy

X'Y gives the estimate of L{8°)' and because " ¥ = [ @] by the very nature of
least squares. Thus the resultant TSLS estimators are undoubtedly consistent even if
XX is singular. Hence, we can say that the proposals of Kloek and Mennes{1960)
are cof little use and that it suffices to apply g-inverse to each stage of TSLS, paying
attention to the use of g-inverse obtainable with the least computational
complexity."” Though the use of principal components of X; is rather denied, it

seems interesting to relate i’, {hereafter, the generalised inverse estimate of ¥,, for



short) to the principal components of X,
Let r be the rank of X and recall that (X’X) is nonnegative definite as well as
symmetric.  Then there exists an orthogonal matrix § such that

Ko
—
.0
§(XX)S = . (&)
0
where A, is alt diagonal matrix with r positive cigen values of (X'X) on the main
diagonal.

By §,(8,) denote the submatrix consisting of the first r{the remaining K-r) columns
of 8.  Then (9) further implies that

(X8,)(X5,) = A, , ]
and that
XS, =0 . (9")
Mareover the Moore-Penrose generalised inverse of ( X'X } is expressed as
Ao
(XXy =8 -- - 8= §(A)'S! . {10)
0 o0

In view of the invariance of \", for the choice of (X'X)™ and of (9°), we have,
¥, = X(XX) XY,

X(XXYXY,

(XS, XA, H(XS,)Y, <<= by (10)

(XS, X(XS,)'(X8,)) (XS,)'Y, . <<=by (9°)

Consequently, the generalised inverse estimate of ¥, is shown to be the least squares
estimate of ¥, regressed on the non-zero principal components XS5, of X.

We tum now te the Ridge estimation, another contrivance to cope with the

singuiarity or near singularity of XX . The Ridge estimate ?1 of Y, is given by

¥, = XEI+X%)'XY, , an
where k is an arbitrarily chosen paositive number, Utilising (9), (9”) and the fact
that 1= S8, (11) further reduces to

¥ = (XS)KY +A Y'(SXOY, ,
where I, of course signifies an identity matrix of order r.  Therefore it is rather
imrmediate that

lim Y = (X8, XA)'USIXNY, = X(X'X)*'XY, = X(XXYyxYy, .

It

Thus ¥, ultimately coincides with the generalised inverse estimate of Y, and as a
direct implication of the above argument on OLS we easily claim that the Ridge
estimator (kI+X'X)'X'¥, converges to (X'X)*X"Y,, the least squares estimator
of unknown parameters in terms of (X'Xf“ ask tends to 0.%



3. Concluding Remark

The arguments so far established a generalised estimation procedure
of MMVE and/or LIML by extending a classical theorem concerning the
extremisation of a ratio of two quadratic forms(PD-thecrem), and showed
that recognising the normal equations of least squares are always
solvable, the application of g-inverse to each stage of TSLS is rather
desirablem since the artificial contrivance of Kloek and Mennes(1960)
results in biased estimators, However, it remains te be studied further to clarify
the statistical properties of MMVE and to elaborate computational schemes so as to
promote the accuracy of numerical calculations needed in the estimation processes.



Appendix 1.  On the Extrema of the Ratio of Quadratic Forms

In this appendix, we are concerned with the extrema of a real valued function
denoted by F(x) =(x’Ax)/(x'Bx}, where A and B are real Symmetric matrices of
order n and x is an n-dimensional real vector, Moreover, unless otherwise
specified, B is supposed to be nonnegative definite. Obvigusly, F(x) can be
defined only for x for which x’Bx = 0 and the assumed nonnegative definiteness
of B implies that the denominator vanishes if and only if x e N(B) = {x e R"|
Bx = 0}, where R" is of course the n-dimensional real vactor space.  Thus it is
taken for granted that F is a function from {R"™\N(B)} = {x € R* | x ¢ N(B)}
into R, the set of all real numbers. If B is positive definite the
minimum(maximum} of F(x) is known to be the smaliest(largest) root of the
determinantal equation | A - AB | = 0 (Henceforth, PD-Theorem for short).
However, if B is singular PD-Theorem becomes unapplicable.  To see this, let
L be the intersection of N(B) and the n-dimensicnal unit circle centered at the
origin 0.  If B is singular L can not be compact, for L is then by no means
closed.  On the other hand, the nonsingularity of B implies that L coincides
with the unit circle which is compact. Hence, the famous Weierstrass
Theorem does guarantee that F(x) attains its extrema on its substantial domain L.
On the contrary, the singularity of B makes Weierstrass Theorem unapplicable by
preventing L from being compact.

For our main task to generalise PD-Theorem, the following two numerical
examples prove useful because they illustrate that PD-Theorem can no longer
remain valid under the nonsingutarity of B and suggest how to generalise PD-
Theorem.

2, 0 0 b 00
Example] A={00 0 [,B=1]0 b, 0 with a,>0, a,>0 and b>0(i = 1, 2).
00-a ¢ Q0

[+]
Evidently, N(B} = l(ﬁ]:l €R ;. Hence, x ¢ N(B) if and only if x, or Xy is
1

nonzero with x; arbitrary.  Therefore
F(x) = ((a,x,2-2yx,"}/ (bix,+b,x,7)  for any x € {R*\N(B)} .
Choose an Y& {R™N(B)}. Then [im F(x)= —o and [y F(x) = o,

X3 e Xy 4-m
provided that ¥, and ¥, are kept intact.  Thus F(x) aftains neither minimum
nor maximum on {R*\\N(B)} and any root of| A - A B | = 0 has no relevance to



the extrema of F(x).

a, 00 b 00
Example 2 A=|02,0,B=(000|witha>XNi=1 2)and b>0. A
000 000

0 0
direct calculation shows that N(B) = {x{é} +Xx j[0]: [’;‘Je R’} . Accordingly,
1 3
{RIN\N(B)} = {x e R’ with the property that x, = 0} and F(x) = {(a/b,} +
{a,/b }x/x,}¥.  Ewvidently, F(x) attains its minimum value = (a,/b,) at x = (x,, 0,
X3)' where x, = 0 and x, is arbitrary.

From these examples we can infer that if B is singular(the matrices B of the
above cxamples are nonnegative definite but not positive definite} then (i) PD-

Theorem collapses, {ii} F{(x) does not always attain the extreme and (iii) the

nonnegative definiteness of A may serve to ensure the existence of min F(x).
TaN(B}

Bearing in mind what are implied by the above numerical examples, we can
now turn to the generalisation of PD-Theorem.  To this end, let’s recall the
well known fact that to N{B ) there comresponds a linear subspace W with the
following properties;

dim W = the rank of B, {aP.1.1)

R"-W @ N(B) (AP.1.2) } (AP1)
where dim W denotes the dimension of W, W & N{ B) is a linear subspace
{x +y|xe W, ye N(B)} obeying the side condition W N(B) = {#}, and {0}
signifies a set consisting solely of the origin ¢ of R". Then, we can state and
prove;

Lemma AP1  Let W and r be as in {AP1)} and by P{Q) denote the matrix
representing any given basis of W (N(B)). Then,
V={R"\N(B)} = {Pu+Qv|ue R, ={R"\{0})}, veR""}=U,

where by the phrase “a matrix representing & basis of a linear subspace”, we
mean that the matrix obtained by arranging all vectors of the basis as its
columns.

Proof Let xe€V.  Then, {AP.1.2) asserts that there exist u, € R} and
v,€R"™ for which xw=Pu, +Qv,, because by definition VgR",
Obviously, u, # 0, for otherwise x = Qv e N(B), violating the assumption that

x ¢N(B).
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Conversely, if (Pu+Qv) is in U then B(Pu+Qv) = B(Pn), for by definition
BQ vanishes.  Since the definition of P implies that Pu is a nonzero vector in
W and since W (Y N(B) = {0}, Pu is not in N(B), or equivalently B(Pu)# 0. In
summary, (Pu+Qv) e N(B) for any (u, v)e(R; xR" "), (QED)

The lemma just represented enables us to reckon F(x) as a rcal valued
function defined on the Cartesian product (R; xR} which we hereafter
abbreviate by Z. Let r, P and Q be as in Lemma AP.1 throughout the remaining
part of this appendix. Then we can establish the following mathematical
results.

Lemma AP2 Let f and G be the functions from Z into R specified

respectively by

f(u, v) = (QvY'A(Qv)+2(Qv)'APu + (Pu)YA(Pu) (AP.2)
and

G{u, v) = f(u, v}/ (u'(P'BP)u) . (AP.2")
Then,

F(V}=G(Z}.
Proof  Rearranging the terms of the right hand side of (AP.2), we see that

flu, v} = (Pu+Qv)A(Pu+Qv) forall (u,vieZ, (AP3)

By the definition of Q, BOQ vanishes This, coupled with the assumed
symmeiry of B, implies that QB vanishes toc. Therefore,
u'(PBP)u = (Pu+Qv)B(Pu+Qv) forall (u, vieZ . (AP.4)
From (AP.3) and (AP.4), it follows that
Gy, v)= (Pu+QvyA(Pu+Qv)/(Pu+Qv)B(Pu+ Qv)
= F(Pu+Qv) for all {u, v)eZ . (AP.3)
Let 7 bein G(Z). Then, by definition, to ¢ there commesponds (u, v)eZ
such that £ = G(w, v).  Applying (AP 5) and noting Lemma AP.1 assures that
(PutQv) eV, it is clear that G(Z)c F(V).
Conversely, if ¢ is in F(V), ¢ = F(x} for some xeV and by Lemma AP.1
gain there exists (v, v}€Z such that 1 = Pu+Qv. Hence, by (AP.5), ¢ = F(x)}
=F(Pu+Qv) = G(u, v). Thus F(V)is surely involved in G(Z). {Q.ED)

Lemma APR3  Suppose that the matrix A is nonnegative definite and let u be
arbitrarily specified vector of R.  Then the equation

(Q'AQ)v = {(Q'APu) (AP.6)

is consistent, and
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min_ f(u, v)=f(n, v, )= u'(PY(A - (AQYQ'AQ) (Q'A))Pu , (APT)

where v, is any solution of (AP.6).
Proof  Since A is supposed to be nonnegative definite, there exists an nXn

matrix « such that o a =A. Hence (Q'AQ) = (aQ)Y(oQ) and
(Q0’A)=(aQ)e.  Consequently, R(Q’AQ) = R({(aQ)'(aQ)) = R{({aQ)’) in
which —(Q'APu)=(aQ"¥—aPu) is contained. Therefore, (AP.6) is
consistent,

Noticing that {AP.7) is the necessary and sufficient condition for minimising
f{u, v) with respect to v, it is immediate that
min fu, v) = f{u,v,)
veR"T
= wW(P'AP)u +(v,)(Q'APu)
= (PuYA(Pu)—(v,){Q'AQ)v, , (AP.8)
provided that (AP.6) holds for v,.

Since v, is known to be expressed as the sum of (Q'AQ) (~Q'APu) and
the linear combinations of vectors in N(Q'AQ) and since the assumed
nonnegative definiteness of A again allows that if (Q'AQ)y = 0 then y'QA =0,
it is easy to see that

f(u, v,) = flu, (Q'AQ) (-Q'APu))
= w'(P(A - (AQ)QAQ) (Q'A)P)u . (QED)

With the aid of Lemmas AP.1 through AP.3, we can now state and prove ;

Theorem AP.1  Assume that A and B are nonnegative definite.  Then, the
following assertions hold true.
(i) If N{A) is not contained in N{B), F(x) attains the minimum which is O at any
x € {N{A)Y\N(B}}, and
(ii) in the other case (N{(A) S N(B)),
(ii-1) F(x) attains the minimum equals the smallest root £ of the
determinantal equation

| P(A - (AQXQ'AQ) (QA)P-4{PBP)|=0 (AP.9)
at xeVexpressed as Pu+Qv, by (u, v, )eZ satisfying
{ (P'(A - (AQUQAQ) (Q'A)P)u = {(PBPlu (AP.10)
(Q'AQ)v, =—Q'APu (AP10")
and finally

(ii-2) Pu+Qv, is independent of the choice of bases of W and N(B).
Proof (i) Since A and B are nonnegative definite, F(x)Z0 for all x€V.
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By assumption, {N(A)\N(B)} is nonempty and for any xe{N{A)“N(B}},
F(x) = 0.
{ii-1} Let u be any vector in R;. Then, Lemma AP.3 asserts that there
exists v, & R"" with the property that
G(u,v,) = G{u,v) foral veR""
and Lemma AP.1 jmplies that Pu = (Pu + Q0)¢ V forall ueR;. Hence
wW'(PBPJu>0 forall ueR} .
Thus PD-Theorem applied to G(u, v, ), in conjunction with {AP.7), guarantees
that min G(w, v, } = £, the minimum root of (AP.9), is antained at u satisfying
uﬂa
(AP.10).
Recalling (AP.8), ¢ is explicitly expressed as the function of (u, v,)eZ so far
as (u, v,) is determined by (AP.10) and (AP.10").  Then, by definition, we

have
Glu, v)}2G(u, v,)ZG(u, v,) forall(y, v)eZ .
Thus
£=G(u, v,)= min G(u, v). (AP11)
= (wvjel :

Recalling that (Pu+Qv,}=x is in V by virtue of Lemma AP.1, Lemma AP.2
and {AP.11) surely guarantee that
min F(x) =F(x)= £.
(ii-2}) TLet TI(L) be the matrix representing the basis of R{B)(N{B)} different
from the basis represented by P(Q).  Then, there exist nonsingular matricss §
and T such that P = [IS and Q= 0T and it is easily confirmed that
(QAQY =T (RAQ)Y(T) forany (Q'AQ) .
Hence a direct computation yields
P'(A - (AQXQAQ) (Q'A))P - £(P'BP)
= S(IT(A—(AQYQ'AQ) (FANT- ¢TIBTI)S . {AP12)
Obviocusly the nonsingulanty of S, together with (AP.12), further implies that £
is the smallest root of
| TITA—(AQ)Q'AR) (AP -#(IIBIT} {=0,
and that (AP.10) is true if and only if
(IT(A ~(AQ YQ'AQ ) (Q'A)IT )(Su) = £TT'BII XSu) .
Moreover, (AP.10%) is equivalent to
(Q'AQ KTy, )=—(Q'AIT)Su) .
Combining the above three observations with the fact that the bases
represented by P and Q are chosen arbitrarily, F(x) surely attains the minimum(=



£)at
T(Su)+Q(Tv,}=Pu+Qv,. (QEED)
Theorem AP.1 confines itself to the case where both A and B are nonnegative
definite. However, in view of the facts that a matrix H is nonpositive definite if
and only if -H is nonnegative definite and that N(H) = N(-H), it is clear that
Theorem AP.] applied to all possible patterns of definiteness of A and B vields
the following results which we state as a corollary.

Corollary AP.1. (i) If A and B are nonpositive definite, Theorem AP.1
remains intact, and
(ii) in the remaining case(A and B obey different patterns of
definiteness), it suffices to replace the " minimum “ and “ smallest-root
“in the theorem by * maximum “ and “ greatest-root * respectively.
Remarks concerning Theorem APY (i) The condition that N(A)CN(B)
assures that F(x) > O forall xeV. Hence £ is positive.

(i) As is well known, the linear subspaces possessing the property {AP.1)
are not unique. However, in view of the symmetry of B, the most natural
candidate of W is R(B) = {Bx | xeR" }, the image space of B.
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Appendix 2. On the Generalised Inverse of a Matrix

Here, we state and prove some fundamental properties of the generalised
inverse of a given matrix(abbreviated as g-inverse, for short) and refer to the
implication of g-inverse to the least squares method, so long as the implication is
relevant to the limited-information maximum likelihood estimation.

Lemma AP4  Let A be an mXn complex matrix.  Then the following two
statements are mutually equivalent.
(i) There exists an n X m matrix A~ such that

A(AT¥)=y for all yeR{A), and
(i) there exists an n Xm matrix A~ for which

AATA = A
Proof (i)={ii) By a’ denote the j-th column of A.  Since a'(j =1, -,
n} are in R{A), we have

AfA"al)y=a'  j=1, - n
or equivalently,

AATA =A.
(ii}={1) With any yeR(A), there is associated an x satisfying that Ax = y.
Hence,

AATYy = AATAx =Ax=y. (QED.)

The lemma just shown implies that it makes no difference whether we choose
(i) or (ii} to define the g-inverse.  Since we prefer (ii) to (i), we armive at the
following definition.

Defigition AP.1  For any mXn matrix A, an nXm matrix A~ such that
AA"A = A is said to be the g-inverse of A,

Remark concerning Definition AP.1 The usual elimination method

guarantees that for any A, there exists A~ such that
AATA =A and ATAAT = AT
For the detail, see Rao(1973, pp.26-27).

Lemnma APS  Let Li(i = 1, 2) be two linear subspaces with the properties that
L; gl andthatdim L, =dim L, =d  Then L, = L,, where by dim L; we
mean the number of vectors forming a basis of L.

Proof Suppose the contrary.  Then there exists an x of L, which does not
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belong to L,.  Let {y,, ¥, =, y} be abasisof L;.  Since x is not in L,, the

vectors x, ¥', ¥, -, ¥* are linearly independent, for otherwise there exists a
nonzero vector (G, €, €3, *'*, ¢4)  such that
Cox + ey + e foyt=

He=0¢=0G=1d),fory, ¥’ -, y are lincarly independent by
definition.  Thus, ¢, # 0, whence x is cxpressed as a linear combination of
¥viG = 1, -+, d).  Consequently, x should be in L, which violates the
hypothesis that x is not in L;.  Hence, 1, ¥, ¥, -, ¥" are linearly independent
and in L, because y'el, gL (j=1, -, d). Therefore, d =dim L,Zd+], a
self-contradiction. {Q.E.D.}

Theorem AP.2  Let A be an m X n complex matrix.  Then A~ possesses the
properties stated below(assertions (i) through (iii} are due to Rao and
Mira(1971; Lemma 2.2.6 )).
@ (A A) = (A"A), thatis, AA is idempotent,
(i) if V is a matrix such that i{ A"VA) = r(A) then
ii-1) A(A'VAY(A'VA)=A and (A'VAYA'VAY A" =A",
(ii-2) A(A"VA) A" has the properties;
(ii-2.1) A{A"VA) A" is invariant for any choice of (A"VA)",
(ii-2.2) 1(A(A"VA)Y A')=1(A), and
(ii-2.3) if A"VA is hermitian, sois A(A'VA)Y A',
and finally
(iii) for any y=R(A), the general solution of Ax =y is given by
Ay+{(I-A"A),
where v is an arbitrary vector.
Proof (i} (A AXATA) = AT(AATA) = A"A .
(ii-1} The definition of g-inverse yields
(A'VAXA VA (A'VA) = A'VA . (AP.13)
Rearranging the terms of (AP.13), we have
(A"VAX{A'VAY (A'VA)-T) = [0].
In other words, every column of {(A'VA) (A"VA)-T) is in N{A'VA) which
equals N{A) by Lemma AP.5.  This verifies the first half of assertion (ii-1).
Let y be a representative row of ((A'VAXA'VA) -I).  Then, (AP.13)
implies that y' € N((A'VA)') = N(A'V'A).  Since dim N(A'V'A) = n-
1((A"VAY ) = n-r(A"V'A) = n-r(A) and since N(A'V'A)QN(A), Lemma AP.5
ensures that N(A"V'A)=N(A). Hence yA'=0.
(ii-2.1} By D, and D, denote any two g-inverses of (A'VA).  Applying the



second half of (ii-1), we obtain

(A'VAD, -DA" = [0} i=12
This further reduces to

(A'VAXD, -D,A" =[0]. (AP.14)
Employing Lemma AP3 as in the proof of the first half of assertion (ii-1),
[AF.14] implies that A(D,A" ~D,A") = [0], from which it immediately follows
that

ADA'=AD,A"  for any g-inverse of (A'VA ).
{{i-2.2] HA)Zr(A(A'VAY A"} HA(A'VAY A'VA) = 1(A)
(ii-2.3) Let H be an hermitian matrix.  Then, as is well known, therz exists a
unitary matrix Q such that Q'HQ=[-? ' D] where W is a real diagonal

0:o0

matrix, the diagonal elements of whick are real nonzero eigen values of H.
Furthermore, a direct calculation yields

Q['F—l : 0}1_ [qr; 0]0_
H e --- H=Q e . =H .
¢ 0 0:0

T

And the matrix Q[ 0})' is clearly hermitian. In other words, an
0 0

hermitian matrix has an hermitian g-inverse.  Let D be an hermitian g-inverse
of A'VA.  Then A'DA=(A'DA), Thus, the assertion follows directly
from assertion (ii-2.1).

_{iii} A direct computation, with Lemma AP 4 and Definition AP.1 in mind,
assures that

AATYHI-ATAW) = AAy =y. ({Q.ED.)

Consider now to estimate B of the mode!

¥y=X8+u,
where X(¥) is an n XK matrix{ & X I vector ) of observations, u the vector of
disturbances, and n of course the sample size.
Then, Theorem AP.2(iii} assures that the least squares estimates § of B is
expressed as ;

B =(XX) Xy +{T-(XK) (XK)v , (AP.15)
where v ¢an be any vector of K-dimensional real vector space.  Define the
estimate § of y by XB and the residual e by y—§. Then in view of
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Theorem AP.2(ii-1: the first half), we have

e= (I-X(XX) X% . (AP.18)
Therefore, Theorem AP.2{ii-2.1) asserts that ¢ is independent of the g-inverse
used but dependent sorely on the data observed.  And (AP.16) affords & basis

for interpreting the denominator{numerator) of (4) in the text as the sum of
squared residuals obtained from regressingz= Y, B, on X(X,).
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