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Abstract

This paper studies a game of strategic experimentation which the players
have access to two-armed bandits where the risky arm distributes lump-sum
payoffs according to a Poisson process with unknown intensity. Because of
free-riding, there is an inefficiently low level of experimentation in any
equilibrium where the players use stationary Markovian strategies. We
characterize the unique symmetric Markovian equilibrium of the game, which
is in mixed strategies. A variety of asymmetric pure-strategy equilibria is then
constructed for the special case where there are two players and the arrival
of the first lump-sum fully reveals the quality of the risky arm. Equilibria
where players switch finitely often between the roles of experimenter and
free-rider all lead to the same pattern of information acquisition; the
efficiency of these equilibria depends on the way players share the burden of
experimentation among them. We show that at least for relatively pessimistic
beliefs, even the worst asymmetric equilibrium is more efficient than the
symmetric one. In equilibria where players switch roles infinitely often they
can acquire an approximately efficient amount of information, but the rate at
which it is acquired still remains inefficient.
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Introduction

When a new restaurant of unknown quality arrives in your neighbourhood you can
choose to visit it and risk getting a bad meal yourself; or you can wait until an ac-
quaintance does and then find out about their meal. Furthermore, it may be difficult
to determine the quality of the restaurant from one visit alone — it may take many
visits to find out whether it is good or bad — so this is a dynamic problem in which the
players can perform repeated costly experiments (visit the restaurant) or learn from
the experimental observations of others. There are strategic issues in this: first because
you can choose to free-ride on the costly information acquisition of your acquaintances
(and they can on yours), and second because you can generate information which may
encourage others to share the future burden of acquiring information. Such a game
of strategic experimentation arises in a variety of economic contexts; besides consumer
search (as in the restaurant example) or experimental consumption (of a new drug, for
instance), firms’ research and development activities are a prominent example. Aca-
demic researchers pursuing a common research agenda or simply working on a joint
paper are also effectively engaged in strategic experimentation.

In the present paper we analyse a game of strategic experimentation based upon
two-armed bandits with a safe arm that offers a deterministic flow payoff and a risky
arm whose lump-sum payoffs are driven by a Poisson process. This Poisson model
is a natural generalization to continuous time of the two-outcome bandit model in
Rothschild (1974), the paper that started the economics literature on active Bayesian
learning. Nevertheless, Poisson bandits have received little attention so far. Presman
(1990) covers the single-agent case. Bergemann and Hege (1998, 2001) study models of
financial contracting that embed a Poisson bandit, but the emphasis of their analysis
lies on the contractual relationship between a single experimenter and a financier, not
on strategic experimentation itself. Malueg and Tsutsui (1997) analyze a model of
a patent race with learning where the arrival time of the innovation is exponentially
distributed given the stock of knowledge. This leads to the same structure of belief
revisions as with Poisson bandits, yet the nature of firms’ interaction in their model is
entirely different from the situation that we consider. Our motivation for this paper is
therefore two-fold: to introduce the notion of a Poisson bandit to a wider audience, and
to offer a systematic examination of multi-agent experimentation with such bandits.

With Poisson bandits, news arrives in a ‘lumpy’ fashion. Examples would be the
occasional ‘breakthrough’ in research and development, failure of an equipment or
technology whose reliability is being tested, a completed research paper in a longer-
term research agenda, or one of a sequence of crucial proofs in a paper. This should be
contrasted with the model of strategic experimentation in Bolton and Harris (1999),
which is based upon two-armed bandits where the risky arm yields a flow payoff with
Brownian noise. There, both good and bad news arrives continuously, and beliefs are
continually adjusted by infinitesimally small increments. The Poisson framework offers
an alternative modelling tool for situations where news leads to more drastic revisions
of beliefs. For concreteness, we focus on a situation where this news is good. So beliefs
jump to a more optimistic level whenever a ‘news event’ occurs, whereas they gradually



become more pessimistic in between such events.

Another difference between Poisson and Brownian bandits is the greater simplicity
of the former. Owing to the technical complexity of the Bolton-Harris model, a com-
plete characterization of its equilibria seems out of reach.! In the Poisson model, by
contrast, studying the issues associated with strategic experimentation presents much
less of a technical challenge. While the Brownian set-up relies on the theory of dif-
fusion processes and associated second-order differential equations (without explicit
solutions), the Poisson model involves elementary calculus and first-order differential-
difference equations that possess explicit solutions.

As a consequence, we are able to provide a relatively simple and tractable taxonomy
of what is possible in our model of strategic experimentation. The results of Bolton
and Harris (1999) carry over, among them of course the fundamental inefficiency of
information acquisition due to free-riding and, if a single success is not fully revealing,
the encouragement effect where one agent’s current experimentation may lead to an-
other performing more experimentation in the future (current experiments and future
experiments are strategic complements). Exactly as their game, moreover, ours has a
unique symmetric Markovian equilibrium, which is in mixed strategies. This is useful of
itself because it provides a robustness check of Bolton and Harris’s results in a simpler
context, and allows a transparent demonstration of the properties and comparative
statics of the symmetric equilibrium.

Our main results concern asymmetric (pure-strategy) Markovian equilibria. Here
we restrict ourselves to the special case where the arrival of the first lump-sum fully
reveals the quality of the risky arm. This case is interesting in its own right. Many
examples of strategic experimentation, and especially those involving rare events that
carry bad news, will indeed exhibit the feature that a single event is sufficient to deter-
mine the optimal decision. Mathematically, the restriction to fully revealing successes
simplifies matters in that value functions are (closed-form) solutions to first-order dif-
ferential equations. For ease of presentation, we focus on the two-player case. All our
results generalise to more than two players.

The restriction to fully revealing successes has the important consequence of shut-
ting down the encouragement effect: experimentation at the symmetric equilibrium
ceases altogether at the cut-off belief where a single experimenter would stop, and the
same holds for any pure-strategy Markovian equilibrium where the players’ strategies
switch actions a finite number of times only. The reason for this is simple. For the
encouragement effect to work, additional experimentation by one player must increase
the likelihood that other players will experiment in the future, and this future experi-
mentation must be valuable to the player who acted as a ‘volunteer’. To encourage the
others, this player needs a success on his risky arm — but in the case of fully reveal-
ing successes, he knows everything there is to know from then on, and the additional
experimentation by the other players is of no value to him. As we shall see, however,
there will be a different sort of encouragement in equilibrium, with players alternating

'Bolton and Harris (1999) restrict themselves to studying symmetric equilibria. Park (1999) in-
vestigates existence of a particular type of asymmetric equilibrium in the Bolton-Harris model.



between the roles of free-rider and ‘lone ranger’.

We show that (at least for relatively pessimistic beliefs) asymmetric (pure-strategy)
Markovian equilibria are more efficient than the symmetric equilibrium. The players
generate the same amount of information at all pure-strategy Markovian equilibria if
their strategies switch actions a finite number of times only. This result is driven by
backward induction: with finite switching there is a last agent to engage in experi-
mentation and this agent has no incentive to provide more information than would
be optimal in a single-agent set-up. Although the amount of information acquired is
constant over all pure-strategy Markovian equilibria with finite switching, the rate at
which the information is acquired does vary. The more equitably the players share the
burden of experimentation when it becomes costly (i.e., when ceasing to experiment
would yield a higher short-term payoff), the longer they are able to maintain the max-
imal rate of information acquisition, and the more efficient is the equilibrium. The
extreme equilibria where one player bears most of the costs of experimentation are the
least efficient.

Casual intuition might lead one to believe that the simplest pure-strategy equilib-
rium had one player ceasing to experiment when the cost of experimentation became
significant and free-riding ever after. In fact no such equilibrium exists. At the simplest
pure-strategy equilibrium of the two-player game, one player switches from experimen-
tation to free-riding when beliefs hit a threshold, leaving her opponent to continue
experimenting. Then, at a more pessimistic belief threshold, the two players exchange
actions — the player who was experimenting free-rides and the player who was free-riding
experiments — until all experimentation ceases at the lowest threshold for beliefs. Why
do we observe such an equilibrium? In Markovian equilibria the players are not really
choosing strategies to affect the amount of information acquired (in aggregate the same
amount is always acquired) — but instead they are choosing strategies to adjust the
rate at which information is acquired. The last player to experiment is obliged to do
this at some cost to herself (and benefit to her opponent). Thus she is not in a hurry
to find herself in this role and is willing to delay the time at which this phase of play
arrives. Her opponent benefits from this phase of play and so is prepared to experiment
in order to accelerate its arrival. Prior to this final phase, therefore, the player who
must run the final leg is prepared to defer it by not experimenting herself, whilst the
free-rider on the final leg is happy to carry the burden of the experimentation before
it. Thus there must be at least two thresholds where actions switch. This simplest
equilibrium can be elaborated on by many switches between the role of free-rider and
experimenter. We give a complete characterization of when and how this can happen.
As the players share the last leg more equally the equilibrium becomes more efficient,
because there is less of a temptation for either of the players to free-ride before the last
phase.

Our last major result is to show that an approximately efficient amount of infor-
mation can be acquired in the case of fully revealing successes if we allow the players
to use Markovian strategies that switch actions an infinite number of times during
a finite time interval. To put this result in perspective, note that in a situation of
strategic experimentation with observable actions and outcomes, the players are pro-



viding each other with a public good (information). The provision of this public good
is irreversible and ultimately costly (if the experiments are unsuccessful). Recent work
on the dynamic provision of public goods has found that efficient provision is possi-
ble if the players make smaller and smaller contributions over time and there is no
one player who is the last to contribute; see, for example, Admati and Perry (1991),
Marx and Matthews (2000), or Lockwood and Thomas (1999). These models use (non-
Markovian) trigger strategies to achieve efficiency. If a player deviates from the agreed
path of contributions at any point in time, then no other player will make contributions
to the public good in the future. Thus the players choose to continue to contribute to
the public good because their net gain (of others’ future contributions) outweighs their
current cost of provision. The absence of a final period is vital here. If there were a last
player to provide the public good, she would have no incentive to provide more than
the individually rational quantity of the public good and the candidate equilibrium
would unravel by backward induction. Although our model is very different — time is
continuous rather than discrete — the information transmitted is a natural public good.
If there is never a last period of experimentation for any player, each individual can be
given an incentive to take turns in providing additional (smaller and smaller) amounts
of experimentation. A level of experimentation which is approximately socially efficient
can then be induced; the rate at which this information is acquired is, however, so-
cially inefficient. Trigger-strategies are unnecessary here because the beliefs encode the
punishment. If a player does not perform an appropriate amount of experimentation,
then her opponents’ beliefs will not fall sufficiently for them to embark on their round
of experimentation, and this hurts the deviating player. In summary, while there is
no encouragement effect in the sense of Bolton and Harris (1999) here, players still do
encourage each other by taking turns in an incentive-compatible way.

The paper is organised as follows. Section 1 sets up the Poisson bandit model.
Section 2 characterizes the optimal strategy for a single player. Section 3 establishes
the efficient benchmark where several players coordinate in order to maximize joint ex-
pected payoffs. Section 4 introduces the strategic problem and shows that, because of
free-riding, any equilibrium of the game leads to inefficiently low levels of experimenta-
tion. Section 5 presents the unique symmetric Markov perfect equilibrium, which is in
mixed strategies. Section 6 describes pure-strategy, and hence asymmetric, equilibria.
Section 7 contains some concluding remarks. Some of the proofs are relegated to the
Appendix.

1 Poisson Bandits

The purpose of this section is to introduce continuous-time two-armed bandit problems
with Poisson uncertainty. One arm S is ‘safe’ and yields a known deterministic flow
payoff whenever it is played; the other arm R is ‘risky’ and yields a known lump-sum
reward at random times whenever it is played, the lump-sums arriving according to
a Poisson process. The risky arm can be either ‘bad’ or ‘good’. If it is good, the



lump-sums (or ‘successes’) arrive more frequently than if it is bad.? We assume that
the agent strictly prefers R, if it is good, to S, and strictly prefers S to R, if it is bad,
so she has a motive to experiment with the risky action in the hope of discovering
that R is indeed good. The problem she faces, however, is that when she plays R she
cannot immediately tell whether it is good or bad, because in either case she initially
receives no payoff at all, and the longer she waits without getting a lump-sum, the
less optimistic she becomes. Of course, if she eventually receives a lump-sum then she
becomes more optimistic again that R is good, but if she waits and waits without the
lump-sum arriving then there will come a time when it is optimal for her to cut her
losses and switch irrevocably to S.

More formally, time ¢ € [0, 00| is continuous, and the discount rate is r > 0. The
known flow payoff of the safe arm is s. The known [lump-sum payoff of the risky arm is
h, the intensity of the Poisson process which determines the arrival of the lump-sums
is A1 for a good risky arm, and )y for a risky arm, and so the expected payoff from the
risky arm is equivalent to a flow payoff of \{h and Agh, respectively. We assume that
0 < Xh < s < A\h.

If an agent plays S over a period of time dt then her payoff is sdt, and if she
plays R over this period then her expected payoff is Ahdt, where A € {\g, A1} is
unknown. Thus, if k£ indicates her current choice between S (k = 0) and R (k = 1),
then her expected current payoff (conditional on the unknown state A of the risky arm)
is [(1 — k)s + kAh| dt. Starting with a prior belief py, her overall objective is to choose
a strategy {k;}i>0 that maximises

0 Uoore” (1= ky)s + ko] dt po} ,

0

which expresses the payoff in per-period terms. Of course, this choice of strategy is
subject to the constraint that the action taken at any time ¢t be measurable with respect
to the information available at that time.

Let p; denote the subjective probability at time ¢ that the agent assigns to the risky
arm being good, so that her current expectation of the flow equivalent of playing R is
A(pt)h with

A(p) = pA1 + (1 =p)Ao.

By the Law of Iterated Expectations, we can rewrite the above payoff as

E [/0 re T [(1— ky)s + keM(pi)h) dt po} .
This highlights the potential for beliefs to serve as a state variable.

Were an agent to act myopically over a period of time dt, she would weigh the short-
run payoff from playing S, rsdt, against what she expects from playing R, rA(p)h dt.
So let us define p™ as the belief that makes her indifferent between these choices,

m S — /\0]’L
Pr=mANn

2Presman (1990) calls this set-up, where one arm is of known quality, the Bellman case.




where AN = \; — )\g. For p > p™ it is myopically optimal to play R; for p < p™
it is myopically optimal to play S. As we shall see below, a forward-looking agent
(who values information) continues to play R for some beliefs p < p™, and is said to
experiment.

We shall consider the cases where there is a single agent, where there are N agents
playing as a team, and where there are N players who act strategically but use only
Markovian strategies with the state variable being the belief p.

2 The Single-Agent Problem

When S is played over a period of time dt, the belief does not change. When R is
played over a period of time dt, the lump-sum h arrives with probability A; dt if the
risky arm is good, and with probability Ao dt otherwise.® If the agent starts with the
belief p, plays R over a period of time dt and does not obtain a reward, then the
updated belief at the end of that time period is

p(1= A\ dt)
P —Adt) + (1—p)(1— g dl)
by Bayes’ rule. Simplifying, we see that the belief changes by
dp = —AXlp(1 —p) dt

p+dp=

as long as there is no success. Once a lump-sum arrives, on the other hand, the belief
Jumps up to
i(p) = Aip/A(p).

We now derive the agent’s Bellman equation. By the Principle of Optimality, the
agent’s value function satisfies
u(p) = max {7’ [(1—k)s+ kX(p)h] dt + e ""E [u(p + dp) | p]}
ke{0,1}
where the first term is the expected current payoff and the second term is the discounted
expected continuation payoff.

As to the expected continuation payoff, with subjective probability kA(p)dt the
lump-sum arrives and the agent expects u(j(p)); with probability 1 —kA(p) dt no lump-
sum arrives and she expects u(p) + «'(p)dp = u(p) — kA p(1 — p)u’(p) dt.*

rd

Using 1 — r dt to approximate e "%, we see that her discounted expected continu-

ation payoff is

(L —rdt) {ulp) + E[A(p) (u(i(p)) — ulp)) — Arp(1 — p)u’(p)] dt}

3This is up to terms of the order o(dt), which we can ignore here and in what follows.

4 Note that infinitesimal changes of the belief are always downward, so strictly speaking only the
left-hand derivative of the value function u matters here. While this turns out to be of no relevance to
the single-agent and team cases, we will indeed see equilibria of the strategic experimentation game
where a player’s payoff function is not of class C.

6



and so her expected total payoff is
u(p)+r{(1 = k)s+ kAp)h + k[A(p) (u(i(p)) — ulp)) — AAp(1 = p)u'(p)l/r — u(p)} dt.

When this is maximised it equals u(p). Simplifying and rearranging, we thus obtain
the Bellman equation

u(p) =, max {(1—k)s +kA(p)h + k[A(p) (u(i(p)) — u(p)) — AAp(1 —p)u'(p)]/r} .
Note that the maximand is linear in k, and the equation can be rewritten more suc-
cinctly as

u(p) = s+ nax, k{b(p,u) —c(p)} ,

where
c(p) = s = Ap)h

and

b(p, u) = [A(p) (u(j(p)) — ulp)) = AXp(L = p)u'(p)]/r.
Clearly, ¢(p) is the opportunity cost of playing R; the other term, b(p,u), is the (dis-
counted) expected benefit of playing R, and has two parts: first, A(p)(u(j(p)) — u(p))
is the expected improvement in the overall payoff should a success occur; second,
—AMp(1 — p)u/(p) is the negative effect on the overall payoff should no success occur.
The agent is indifferent between the two options when cost equals expected benefit,
each option resulting in u(p) = s. Thus she is effectively unrestricted by the discrete
nature of her choice; as usual in single-agent decision problems, there is no scope for
randomisation.

So, when it is optimal to play S (k* = 0), u(p) = s as one would expect; and when it
is optimal to play R (k* = 1), u satisfies the first-order differential-difference equation

(1) AXp(1 = p)u'(p) + ru(p) — Ap)[u(j(p)) — ulp)] = rA(p)h.

A particular solution to this equation is u(p) = A(p)h, the expected payoff from using
the risky arm forever. The option value of being able to switch to the safe arm is
then captured by the solution to the homogeneous equation, for which we try ug(p) =

(1—p) (lp%py for some p > 0 to be determined.’

Now
' n+p ) Moo o)
ip) = =L w(p). and uO(J(p))=m<A—l> wo(p).

Inserting these into the homogeneous equation and simplifying leads to the requirement
that
Ao

1
A1

5This guess can be obtained by ‘extrapolation’ from the limiting case where Ao = 0. In this case,
j(p) = Land u(j(p)) = A1h, so (1) becomes a linear differential equation; the above function uy is easily
seen to solve the homogeneous equation for ;1 =r/A;. A more systematic approach relies on a change
of the independent variable from p to In 1—;‘"—‘ This transforms (1) into a linear differential-difference
equation with constant delay to which results from Bellman and Cooke (1963) can be applied.

7



As a function of p, the LHS is a negatively sloped straight line which cuts the vertical
axis at 7 + Ag. The RHS is a decreasing exponential function which tends to 0 as
i — +00, tends to oo as p — —oo, and cuts the vertical axis at Ag. Thus the above
equation in p has two solutions, one positive and one negative; we write p; for the
positive solution. As the LHS of (2) rises with r, we see that yu; is increasing in the
discount rate.

The solution to the difference-differential equation for the single-agent case is thus

3) Vi) =2+ =) ()

with C' being the constant of integration. Economically relevant are solutions with
C > 0; these are convex in p.

Proposition 2.1 (Single-agent optimum) In the single-agent problem, there is a
cut-off belief pi given by
[Ll (S — th)

@) P L Dk =9+l —oh) P

such that below the cut-off it is optimal to play S and above it is optimal to play R.
The value function Vi* for the single-agent is given by

(5) Vi(w) = Ap)h + (s — A@DR) ( 1 ‘p> (1 ‘p> 1 (p—> 1

L=pi p L=pi
when p > pi, and V*(p) = s otherwise.

PRrROOF: The expression for pj and the constant of integration in (5) are obtained by
imposing Vi*(p;) = s (value matching) and (V;*)'(p;) = 0 (smooth pasting). To verify
optimality, note that for any function V; of the form (3), at any p such that V;(p) = s,
it is the case that V/(p) < 0 if p < pj and that V/(p) > 0 if p > pj. Now, playing S
when p € [0, pi| gives a payoff of s; playing R on any interval to the left of pj would
give a payoff less than s and is therefore sub-optimal. On the other hand, playing R
when p € |pi, 1] gives a payoff greater than s; playing S on any interval to the right of
p; would give a payoff of s and is therefore also sub-optimal. H

The value function for a single agent is illustrated in Figure 1 — it is the lower of the
two curves. (The solid kinked line is the expected per-period payoff from the myopic
strategy; the upper curve is relevant for the next section.) Note that an individual
agent can never be forced to accept a worse payoff, since any player can always act
unilaterally.

This solution exhibits all of the familiar properties, which were elegantly described
in Rothschild (1974): the optimal strategy has a threshold where the experimenter
switches irrevocably from R to S; there are occasions where the experimenter makes
a mistake by switching from R to S although the risky action is actually better (R is
good); the probability of mistakes decreases as the experimenter becomes more patient,
and as the reward from the safe action decreases.
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Figure 1: Payoffs for myopic agent, single agent, 2-agent team

3 The N-Agent Team Problem

Now suppose that there are N > 2 identical agents (same prior belief, same discount
rate), each with a replica two-armed bandit (same safe payoff, same lump-sum arriving
according to i.i.d. Poisson processes with same parameter), who are working as a team,
i.e. who want to maximise the average expected payoff. Information is public: the
players can observe each other’s actions and outcomes, so the players’ hold common
beliefs throughout time.

If K of them play R over a period of time dt when the risky arm is good, the
probability of none of them getting a lump-sum is (1 —\; dt)X =1 — K\, dt, the prob-
ability of exactly one of them getting a lump-sum is KX dt(1 — X\ dt)K~1 = K\, dt,
and the probability of more than one of them getting a lump-sum is negligible.® Anal-
ogous statements hold in the case of a bad risky arm. If these K players do not
obtain a reward, therefore, the belief decays K times as fast as in the single-agent case,
dp = —KAMp(1 —p) dt. Once a lump-sum arrives, on the other hand, the belief jumps
to the same value j(p) as in the single-agent case.

Lemma 3.1 In the N-agent team problem, it is optimal either for all players to play
R or for none of them to do so.

6 Again, we are ignoring terms of order o(dt).



PROOF: Let u be the value function for the team problem, expressed as average
payoff per team member. When the current belief is p and the current choice is for
K agents to play R, the average expected current payoff is r {(1 —K)s+ %/\(p)h} dt.
Paralleling the calculation for the single-agent problem, we see that the discounted
expected continuation payoff is

(L —rdt) {ulp) + K[X(p) (u(j(p)) —u(p)) — AAp(1 — p)u'(p)] dt}

and so the average expected total payoff is

u(p)+r {(1 = £)s + LA(p)h + K[A(p) (u(i(p)) — ulp)) — Ap(1 — p)u'(p)|/r — u(p) } dt

Thus the value function satisfies the Bellman equation

u(p) = _max {(1—%)s + EXp)h + K[Ap) (u(i(p) — u(p)) — Ap(1 = p)u'(p)]/7},

Ke{0,1,...N}

or equivalently

up) =s+  max KANb(p,u)—c(p)}/N.

Once again, the maximand is linear in K, and the team is indifferent between all levels
of K when ¢(p), the opportunity cost of playing R, equals N b(p, u), the expected social
benefit, each of them resulting in u(p) = s. Thus at all beliefs K* = N or K* = 0 is
optimal. H

So, when it is optimal for all players to play S, u(p) = s as usual; and when it is
optimal for them all to play R, u satisfies

(6) NAXp(1 = p)u/(p) + ru(p) — NA(p)[u(j(p)) — u(p)] = rA(p)h,

which is like equation (1) with Ay and A\; replaced by Ny and N);, respectively
(reflecting an N-times faster rate of information acquisition), and h replaced by h/N
(reflecting the fact that lump-sum rewards are shared amongst the N team members).
Arguing exactly as in the single-agent case, we see that this has the solution

) Vit = A+ 01 =) (2]

where py is the unique positive solution of the equation

r o\
(8) 7 H Ao — AN =) (A—(’) .

1

Proposition 3.1 (Team solution) In the N-agent team problem, there is a cut-off
belief py given by

pn (s — Aoh)
un + 1)(/\1]'L — S) + [LN(S — /\0]’L)

(9) Py = ( <pi
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such that below the cut-off it is optimal for all to play S and above it is optimal for all
to play R. The value function V3 for the N-agent team is given by

(10) Vﬁ(p):/\(p)h_i_(s_/\(p?\[)h)( 1—p > (1_p> N( - > N

1—pi P 1 —pxy

when p > py, and V3 (p) = s otherwise.

The proof proceeds exactly like that of Proposition 2.1 and is therefore omitted.

As the LHS of (8) rises with r and falls with N, we see that uy and p}, are increasing
in 7 and decreasing in N, and it is straightforward to show that each player’s payoff
Vi (p) increases in N over the range of beliefs where playing the risky arm is optimal.
Note that the average payoff of the players in any N-player problem can never be higher
than this, since the team can always replicate their strategies. The value function for
either member of a two-agent team is illustrated in Figure 1 — it is the upper of the
two curves.

The above proposition determines the efficient experimentation strategies for N
players acting as a team. We can distinguish two aspects of efficiency here. Given
a strategy profile {(ki,...,kn.)} >0 for the team members, the sum K; = > &,
measures how many risky arms are used at a given time t. We will call this number
the intensity of experimentation. On the other hand, the integral [;° K, dt measures
how much the risky arms are used overall. We will call this number the amount of
experimentation that is performed. The efficient intensity of experimentation exhibits
a bang-bang feature, being N when the current belief is above pj, and 0 when it is
below. Thus, starting from a prior belief py > p}, the efficient intensity is maximal as
long as successes occur frequently enough, and minimal after a sufficiently long spell
without a success. The efficient amount of experimentation depends on the initial
belief, the belief at which all experimentation ceases and the arrival times of rewards
on the risky arm.

As we shall see next, equilibria of the N-player strategic problem are never efficient.

4 The N-Player Strategic Problem

We continue to assume that the players have the same prior belief, the same discount
rate, replica two-armed bandits, and that information is public. We consider stationary
Markovian pure strategies with the common belief as the state variable.

Let k, € {0,1} indicate the current choice of player n between S (k, = 0) and R
(k, =1); let K =X k, and K_,, = K — k,, so that K_, summarises the current
choices of the other players. Taking into account the information generated if the other
players play R, we see that player n’s value function satisfies the Bellman equation

un(p) = max {(1—k,)s+ k., A(p)h

kn€{0,1}

+ (ko + Kon)AP) (un((p) — un(p)) — AXp(1 = pluy,(p)l/7}

11



where u/, (p) should be taken to mean the left-hand derivative of the payoff function
(see footnote 4 above). In terms of opportunity cost and expected benefit, the Bellman
equation reads

Uun(p) = 5+ K-, b(p,upn) + max k, {b(p,un) —c(p)} .
kn€{0,1}

Immediately we see that the best response, k(p), is determined by comparing the
opportunity cost of playing R with the expected private benefit:

=0 if ¢(p) > b(p, un),
(11) kn(p){ €1{0,1} if c(p) = b(p, un),

=1 if ¢(p) < b(p, uy).
If the best response is to play R (k¥ = 1) then player n’s value function u, satisfies
(12) KANp(1 = p)u'(p) + ru(p) = KA(p)[u(i(p)) — ulp)] = rA(p)h

with K = K_, + 1.7 If the best response is to free-ride by playing S (k% = 0) then u,,
satisfies

(13) KAXp(1 = p)u/(p) +ru(p) — KA(p)[u(j(p)) — u(p)] = s

with K = K_,,. Finally, using the indifference condition from (11) to substitute ¢(p)
for b(p, u,) in the Bellman equation, we see that for K_, > 0, player n is indifferent if
and only if u,(p) = s + K-,(s — A(p)h). Note that

Dk ={(p,u) €[0,1]] x Ry: u=s+ K (s—Ap)h)}

is a diagonal line in the (p, u)-plane which cuts the safe payoff line u = s at p = p™,
the myopic switch-point.

We first show that the incentive to free-ride on the experimentation efforts of the
other players makes it impossible to reach efficiency.

Proposition 4.1 (Inefficiency) All Markov perfect equilibria of the N -player strat-
egic game are inefficient.

PrOOF: All we need to show is that the efficient strategies from Proposition 3.1 are
not an equilibrium. Suppose therefore that players 1,..., N — 1 use the risky arm
at beliefs above the cut-off p}, and the safe arm below. If player N adopts the same

"Note that equation (12) for the strategic problem is the same differential-difference equation as
that for the team problem with K players; cf. equation (6). To see why, suppose for example that the
risky arm is good. Then, whenever K agents play the risky arm, a lump-sum arrives with probability
K\ dt over the next instant. In the K-agent team problem, this lump-sum is shared amongst K
players, so the expected lump-sum reward over the next instant is %K A1dt = hAy dt per player.
In the strategic problem, the lump-sum arrives with probability A; dt on player n’s arm and with
probability (K — 1)A; dt on someone else’s arm. Since player n keeps her own lump-sum in full and
receives no share of someone else’s, her expected lump-sum reward is also hA; dt. The same argument
applies when the risky arm is bad.

12



strategy, her payoff function is V3. Now, as p approaches p} from above, b(p, V)
tends to c¢(py)/N. This means that b(p, V) < ¢(p) at beliefs just above p},, so using
the risky arm is not optimal for player N there. H

It is obvious that in any Markov perfect equilibrium, at least one player must
be using the risky arm at any belief above pj. The interesting question is whether
experimentation continues beyond the single-agent optimum, i.e., whether there is an
encouragement effect.

Proposition 4.2 (Encouragement effect) Assume \g > 0. Then in any Markov
perfect equilibrium where at least two players use the risky arm on an interval of beliefs
17(py) — €,7(p})], at least one player experiments at some beliefs below pi. This is the
case in all Markov perfect equilibria if j(p}) > p™, and in particular if \g <.

PROOF: Suppose to the contrary that all players play S at all beliefs below p;. Then
each player’s payoff function satisfies u,(p}) = s, the left-hand derivative (u,) (p;) =0
and b(p3, u,) < c(py) = b(p3, Vi), hence u, (j(p7)) < Vi(j(p;)), which must in fact hold
as an equality since each player can always guarantee herself V;(j(p})) at the belief
J(p7). But each player who uses R at j(p}) must have u,(j(p;)) > Vi*(5(p})) because
she benefits from the experimentation of at least one other player. This is the desired
contradiction.

Next, if j(p7) > p™, all players use R at least on the interval [p;, j(p])] where p;
is the belief at which the graph of V" intersects the diagonal Dy_;. To see that the
inequality Ag < r implies that j(p}) > p™, we note that with the notation Q(p) = 1%’
for the “odds ratio” corresponding to the belief p, we have

Aj(p) = i—jsz(p)
and 1
pi) = P

In particular, Q(j(p7)) < Q(p™) (thatis, j(p}) > p™) if and only if (11 +1)/p1 < A1/,
which in turn is equivalent to

>ﬁ
Hr="Ax

This inequality holds if and only if at © = A\g/A\, the RHS of (2) does not exceed the
LHS. Simple algebra shows that this is the case if and only if

Given r and )y, this clearly holds for all )\, sufficiently close to zero; as A\g/A; < 1 and
Ao/AN > 0, in fact, it holds whenever \g < 7. |

13



So the only possibility for the absence of an encouragement effect when Ay > 0
is a situation where only one player experiments at j(pj). A necessary condition for
this is that j(pj) < p™, which requires that Ay exceed r and be close to Ay, so that a
success of a ‘pioneer’ who considers experimenting beyond pj would not make other
players sufficiently optimistic to engage in further experimentation themselves. For
Ao = 0, on the other hand, all the other players would definitely switch to the risky
arm after observing the pioneer’s success, but this would not help the pioneer because
her continuation value has already jumped to u, (1) = A1k, the highest possible level.

In the following two sections we turn to a more detailed investigation of Markov
perfect equilibria. We shall consider symmetric mixed-strategy equilibria of the N-
player game and asymmetric pure-strategy equilibria of the two-player game.

5 Symmetric Equilibria

Since the efficient strategy profile is symmetric and Markovian with the belief as state
variable, it is natural to ask what outcomes can be achieved in symmetric Markovian
equilibria of the N-player game. We maintain the assumptions of the previous sections,
but allow for mixed strategies now. Following Bolton and Harris (1999), we actually
consider the time-division game in which agent n allocates a fraction x,, of the current
period [t,t + dt| to R, and the remainder to S; this is isomorphic to the player using
the mixed strategy that places probability «, on playing R, and the remainder on S.

So, let x, € [0,1] indicate the current decision of player n, K = ¥ | x,, and
K_,, = K —k,. Once again taking into account the information generated by the other
players, we see that player n’s value function satisfies the Bellman equation Player n’s
value function satisfies the Bellman equation

un(p) = max {(1—rn)s +rnA(p)h

+ (ki 4 K-) [MN0) (un(§ () — unlp)) — AN p(1 = p)uy, (p)]/7}

or alternatively,

Un(p) = s+ K-, b(p, un) + max i {b(p, un) —c(p)} -

Again the best response, x}(p), is determined by comparing the opportunity cost
of experimentation with the expected benefit:

=0 ife(p) > b(p, un),
ka(p)§ € 10,1 if e(p) = blp, un),
=1 if ¢(p) < b(p, uy).

In any Markov perfect equilibrium player n’s value function will be defined piece-
wise: when all the time is devoted to S it satisfies equation (13) with K = K_,,; when

14



all the time is devoted to R it satisfies equation (12) with K = K_, 4+ 1; and when the
time is divided strictly between S and R it satisfies

(14) AN p(1 = p)u/(p) — A(p)[u(j(p)) — u(p)] = rA(p)h — 7s.

In a symmetric equilibrium, the region where all players use the risky arm all the
time is separated from the region of strict mixing by the diagonal

Dyn1:={(p,u) €[0,1] x Ry: u=s+(N—1)(s— Ap)h)}.

Given the post-jump value u(j(p)), we have smooth pasting of the solutions to (6) and
(14) along this diagonal. To the left of the diagonal, the Bellman equation implies that
the players’ common strategy & : [0, 1] — [0, 1] is given by

1 ulp)—s
N —1s—Ap)h

K(p) =

where u is the common payoff function. As this payoff function is continuous, so is k.

Smooth pasting of the payoff function u occurs not only along the diagonal Dy _;
but also at the belief where this payoff reaches the level s. In other words, u must
be of class C'. To see this, suppose we had a symmetric equilibrium with a payoff
function that hits the level s at the belief p with slope «/(p+) > 0. Then we would
have b(p,u) = ¢(p) or

AP)[u(i(p)) — ulp)l/r = c(p) + AAp(1 — p)u'(p)/r

at beliefs immediately to the right of p, implying

AD)[u(i(p)) — sl/r = c(p) + AXp(L = p)u'(p+)/r > c(p)

by continuity. Immediately to the left of p, continuity of u(j(p)) and the fact that
u'(p) = 0 would then imply b(p,u) = A(p)[u(j(p)) — s|/r > ¢(p), so there would be an
incentive to deviate from S to R.

Our next result describes the unique symmetric Markov perfect equilibrium of the
strategic experimentation game. To prove existence of a symmetric equilibrium, we first
construct a family of candidate payoff functions, that is, solutions to the differential-
difference equation

, ) Ap)h —u(p
(15) A0p(1 =P () = N u(i ) = )] = i 2oy — 5, 2L
which combines (14) and (6). We then show that there is at least one such solution
with zero slope at the belief where it assumes the value s. In a last step, we establish

uniqueness.

Proposition 5.1 (Symmetric equilibrium) The dynamic experimentation game ad-
mits a unique symmetric Markov perfect equilibrium, which is necessarily in mized
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strategies. The corresponding payoff function is the unique function W3 : [0,1] —
(s, A\1h] of class C* with the following properties: Wi (p) = s on an interval [0, py] with
0<pn <1; Wi(p) > s on|pn,1]; and W} solves the differential-difference equation
(15) on |pn, 1[. The cut-off belief pn satisfies py < py < p} if Ao > 0, and py = p} if
Ao = 0. The equilibrium strateqy is given by

1 Wyp) —s 1}

#(p) = min {N —1s—Ap)h

and there is a second cut-off py with py < py < 1 such that 0 < k*(p) < 1 precisely
when py < p < PN .

PROOF: A solution u to (15) is entirely determined by its point of intersection (p, u(p))
with the diagonal Dy_;. To the right of Dy_;, we know already that u = u(®) where

WO0) = Vilo) = A+ C (1 =) (2]

for some constant C.

We can now rewrite (14) as an ordinary differential equation on the interval [~ (p), p|:

(16) AXp(1 = p)u'(p) + A(p)u(p) = rA(p)h — rs + A(p)u'” (j(p)).

Standard results imply that this ODE has a unique solution for any initial condition;
in particular, there is a unique solution u(") on [j=(p), p| such that uM(p) = v (p)

!, _
(P)-
Iterating this step, we construct functions u®) defined on [j7*(p), i~V (p)] for
i =2,3,... by choosing u” as the unique solution of the ODE

(17) AXp(1 = p)u/(p) + A(p)ulp) = rA(p)h — rs + Ap)uV(j(p))

and, by construction, u®'(p) = u(©®

subject to the condition u®(j=(=Y(p)) = ul=Y(=0=1(p)). Setting u(p) = u(p)
whenever j7(p) < p < j~~Y(p), we thus obtain a function u of class C'* on ]0, 1] that
solves (14) to the left of p, and (6) to the right of p.

Standard results imply further that this function depends in a continuous fashion
on p, i.e. on the point of intersection with the diagonal Dy _;. In particular, M (p), the
minimum of this function on the interval [p},, p™], is continuous in p. Let py denote
the belief where the graph of Vi cuts Dy_1, and p; y denote the belief where the graph
of V¥ cuts Dy_1. We want to show that there exists a p between py and p; y such that
M (p) = s. With @ denoting the function corresponding to p, let p be the highest belief
where 4 achieves this minimum. We want to show further that p is strictly between

py and pi.

Consider a solution u to (15) which is (strictly) above V3 for some belief p, €
Ipy, 1], If w and Vi have the same value at some belief p, € [pi,p-[, then u — V3
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has a strictly positive maximum at some belief p €]p,, 1]. As «/(p) = (V) (p) and
u(i(p)) = V(i (p)) < ulp) = Vy(p), (6) and (15) imply
Ap)h — u(p)

N :

So Ap)h — V3(p) < Ap)h — u(p) or u(p) < Vy(p), which is a contradiction. Con-
sequently, u lies strictly above V3 on [py,pr], and this implies that M(p) > s for

P <DN-

A(p)h — Vy(p) < N min {A(p)h - s,

Next, consider a solution u to (15) which is (strictly) below V}* for some belief
pr €p7,1]. If w and V}* have the same value at some belief p, € [p}, p,|, then Vi* —u
has a strictly positive maximum at some belief p €|py,1]. As (V") (p) = «/(p) and
V(G (p) —u(5(p)) < Vi'(p) — u(p), (1) and (15) imply

A(p)h — U(p)}
1

As Vi*(p) > s, the minimum on the RHS must be [A(p)h—u(p)|/N. But then NVj*(p) <
(N—=1D)A(p)h+u(p) < (N=1)A(p)h+Vi*(p) or Vi*(p) < A(p)h, which is a contradiction.
Consequently, u lies strictly below Vi* on [p], p.], and this implies that M (p) < s for
P> PiN-

Ap)h — Vi(p) > min {A(p)h .

Continuity of M together with the two arguments above imply that M (py) > s
and M (p; n) < s, and so there exists a p between py and p; y such that M(p) = s.
Recall that @ denotes the function corresponding to p, and p is the highest belief where
t(p) = s. The first argument above implies that @ < V3 and so p > p},, while the
second argument above implies that @ > V}* and so p < pj; also, since (V) (py) =0,
we see that v'(p) = 0.

Note that u is the players’ common payoff function if they all use the strategy

0 if p<p,
_ 1 _a(p)—s if o < 5
Ii(p) = N isaph TP <p=sp
1 it p>p;

as 4 < Vy it stays below Dy_;1 on [p, p| and is indeed a solution to (15). We thus have
shown existence of a symmetric equilibrium.

We want to show that the inequalities in p}, < p < p} are strict.
If p = py, then u(p) = s = V3i(py) and @'(p) = 0 = (V) (py), and now (14) and
(6) imply
Apn)[a(i(py)) — s] = rs —rA(py)h = NA(py)[Vy (5(py)) — s

and hence a(j(py)) — s = N[VF(i(px)) — sl So a(i(py)) = Vi(ipn)) + (N —
DIVyGpn)) —s] > Vi(i(px)), which is a contradiction.

If p = p3, then u(p) = Vi¥(py) and @/(p) = 0 = (V{")'(p}), and now (14) and (1)
imply

Ap)la(j(py)) — s] =rs —rA(p1)h = Ap1)[Vi' (5 (p1)) — 5]
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and hence a(j(p7)) = Vi"(j(p7)). So Vi* — w attains its maximum of 0 at j(pj) as
well as at pj. A variant of the second argument above (with j(pj) replacing p and
“maximum of 0” replacing “strictly positive maximum”) leads to the contradiction

VG (01)) < A (pD))h.

When )y = 0, on the other hand, the differential-difference equation (14) for strict
mixing simplifies to the differential equation

Ap(1 = p)u'(p) + Mpu(p) = (r + A)Mph —7s,
while the single-agent solution V}* solves
Ap(1 = p) (V) (p) + (r + Mp)Vi(p) = (r + A1) Aiph.

As u(p) = Vi*(py) = s and v/ (p) = (V{*)(p}) = 0, we see immediately from these two
ODEs that p = pj.

Finally, we want to show uniqueness of the symmetric MPE. Suppose therefore that
we have two symmetric equilibria with different payoff functions u and w, respectively.
Without loss of generality, let © — 4 assume a strictly positive global maximum at the
belief p. Here, u/(p) = @'(p) and u(j(p)) — a(j(p)) < u(p) — u(p), so b(p,u) < b(p, ).
We cannot have both u(p) and @(p) above Dy_; since in this region both u and @ are
of the form Vy and the difference v — @ is strictly decreasing to the right of Dy_;.
Further, if u(p) is above Dy_; and u(p) is on or below, then b(p,u) > ¢(p) = b(p, )
in contradiction to what we derived before. Consequently, we must have both u(p)
and @(p) on or below Dy _1, so b(p,u) = ¢(p) = b(p,w). This in turn yields u(j(p)) —
w(j(p)) = u(p) — u(p), so the difference u — @ is also at its maximum at the belief
j(p). Iterating the argument until we get to the right of p™ (and hence to the right of
Dy _1), we obtain the desired contradiction. This establishes the existence of a unique
symmetric equilibrium. H

The symmetric equilibrium of the Poisson model shares the main features with its
counterpart in the Brownian model of Bolton and Harris (1999). First, it clearly shows
the fundamental inefficiency of information acquisition due to free-riding. In fact,
not only is the amount of experimentation inefficiently low (as can be seen from the
lower cut-off py being above the team cut-off p};) and the intensity of experimentation
inefficiently low (at any belief between p%, and py there is strictly too little use of risky
arms), but the acquisition of information is slowed down so severely near the cut-off
Py, that the equilibrium amount of experimentation is never performed in finite time
— as the following result shows, the players never actually stop allocating at least some
of their time to playing the risky arm.®

Corollary 5.1 Starting from a prior belief above the equilibrium cut-off pyn, the play-
ers’ common posterior belief never reaches this cut-off in the symmetric Markov perfect
equilibrium.

8To some readers, this phenomenon might be familiar from the production of joint research papers.
Once the initial enthusiasm has waned, each co-author might spend less and less time working on the
paper, without actually withdrawing completely. And the paper might never be put out of its misery.
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PrOOF: Close to the right of py, the dynamics of the belief p given no success are

N Wx(p) —s
N -1 s—/\(p)hp

dp = —A\ (1 —p)dt.

(A success merely causes a delay before the belief decays to near py again; when
Ao = 0, this ‘delay’ is itself infinite.) As W3 is C? to the right of py with W} (py) = s,
(W) (py) =0 and (W3)"(py+) > 0, we can find a positive constant ¢ such that

N Wi(p) —

A/\N—l s—A(p)

hsp(l —p) <c(p—pn)

in a neighbourhood of py.

Starting from an initial belief py > py in this neighbourhood, consider the dynamics

dp = —c(p— p})* dt.
The solution of these dynamics with initial value p, is

1
ct+ (po — pn)~

Pt = DN +

Obviously, this solution does not reach py in finite time. Since the modified dynamics
have a faster rate of decrease as the original ones, this result carries over to the true
evolution of beliefs. [

A second feature that the symmetric equilibrium shares with that in Bolton and
Harris (1999) is the encouragement effect whereby one agent’s current experimentation
leads to another performing more experimentation in the future. This effect manifests
itself in the fact that the cut-off belief py where all experimentation stops for good in
the symmetric equilibrium is lower than the corresponding single-agent cut-off pj.

Third, the comparative statics with respect to the number of players also play out
as in the Brownian set-up. As N increases, the lower cut-off py falls, the upper cut-off
pn rises, and each player’s obtains a higher payoff at all beliefs where the risky arm is
used some of the time.

What differentiates the Poisson model from Bolton and Harris (1999) is that the
above results can be obtained by elementary methods and constructively. In fact, we
can represent the payoff function Wy in closed form up to some constants of integration
that are implicitly determined by the cut-off py. We use the notation Q(p) = lp%p for
the “odds ratio” corresponding to the belief p.

Corollary 5.2 Define intervals I; for 1 =0,1,... recursively by setting Iy = [p, 1] and
Livy = 37(L). If un # Ao/ AN, then

Wi(p) = <A1h+ %js)i)w <A0h+ %0_8)@) (1—p)
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Lo </\o /\OI/LZ\VA:> (1—p)Q(p)"~

i-1 (x(in) Xo/AX "
+3 = ( o lBof ) ln{<Ao/A1>"1Q<p>]> (1 p)0(p)

on I; N {p : Wi (p) > s} for some constants C™™ (n =0,...i — 1), chosen to ensure
continuity of W3, and, by construction, of (W})'.2 The constant C©) that fives payoffs
above Dy _1 is given by

C© = N(s — \oh) l1 -0 ] Q(p) .

PROOF: See the Appendix. H

Proposition 5.1 implies that there is no symmetric MPE in pure strategies. In fact,
any candidate for such an equilibrium unravels because of free-riding at lower beliefs.
What sort of behaviour can arise in a pure-strategy MPE will be addressed next.

6 Pure-Strategy Equilibria

From now on, we restrict our attention to the special case where a single success reveals
the risky arm to be good, i.e. we assume that \y = 0. This simplifies the construction
of equilibria considerably since payoff functions are now characterised by linear first-
order differential equations — the post-jump term u(j(p)) in equations (12) and (13) is
replaced with the constant A{h.

Accordingly, we simply write A for A;, and then AX reduces to A and A(p) becomes
Ap. Thus, if K_,, other players are using the risky arm and player n’s best response is
to play R (k! = 1) then her value function w,, satisfies
(18) K p(1 —p)u'(p) + (r + KAp)u(p) = (r + KX\)Ahp

with K = K_, + 1; if the best response is to free-ride by playing S (k! = 0) then u,
satisfies
(19) K p(1 —p)d (p) + (r + KAp)u(p) = rs + K\*hp
with K = K_,. Both these ODEs have simple closed-form solutions. The solution to
(18) is

1— P r/K\
(20) Vie(p) = Ahp+ C (1~ p) (7> ,

whereas that to (19) is

KM Mi—s) 1-p\"*
(21) Fi(p) —5+T+TP+C(1—P) (T) :

9The proof makes it obvious how one has to modify this result in the knife-edge case where puy =
Ao/ AN
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Using these solutions, we will construct two types of asymmetric equilibrium in
pure strategies. The first type of MPE consists of strategies where the action of each
player switches at finitely many beliefs. As a consequence, there is a last point in
time at which any player is willing to experiment. The belief at which this happens
(provided no success has been observed) will be the single-player cut-off p}, exactly as
in the symmetric MPE with A\g = 0. So a similar inefficiency arises: both the amount
and the intensity of experimentation are too low. Nevertheless, these equilibria differ
in terms of the time taken to reach the belief where experimentation ceases, and also
in terms of aggregate payoffs.

In the second type of MPE, each player’s strategy has infinitely many switching
points, and although there is a finite time after which no player ever experiments
again, no single player has a last time for experimentation. That is, immediately
prior to reaching a certain cut-off belief, the players switch roles increasingly fast, and
infinitely often. We will see that we can take this cut-off belief arbitrarily closely to
the efficient cut-off. Still, the equilibrium is inefficient: although an almost efficient
amount of experimentation is performed, it is performed with an inefficient intensity.

For ease of exposition, we restrict ourselves to the two-player case from now on.
Extending our results to asymmetric equilibria with more than two players poses no
conceptual difficulties, but increases the notational burden significantly.!©

The following result analyses each player’s best-response correspondence over the
relevant range of pairs of beliefs and continuation payoffs.

Lemma 6.1 Consider a belief p and a continuation payoff w > Vi*(p) for player i at
that belief. Fix an action of player j for all beliefs in an interval |p,p'| with p' > p.
If (p,u) lies on or to the right of the diagonal Dy, then R is the dominant action for
player i at all beliefs in |p,p'|. If (p,u) lies to the left of the diagonal Dy and u > s,
then there is an interval |p,p + €| C |p, p'| where player i’s best response is to play the
opposite action to player j’s. If uw = s and p < pi, then S is the dominant action for
player i at all beliefs in |p,p’| N |p, pi].

PROOF: See the Appendix. H

This result is illustrated in Figure 2 where the solid kinked line is the payoff from the
myopic strategy, and the solid curve the payoff from the single-agent optimal strategy.
From this picture, we can see that a Markov perfect equilibrium has three phases.
When the players are optimistic, both play R; when they are pessimistic, both play S;
in between, one of them free-rides by playing S while the other is playing R. We shall
see that this mid-range of beliefs further splits into two regions: the roles of free-rider
and ‘lone ranger’ are assigned for the whole of the upper region; in the lower region,
players can swap roles.

The next proposition first describes the ‘simplest’ such equilibrium, in which one
particular player experiments and the other free-rides throughout the lower region, and

Extending our results to the case \g # 0 is more involved; this is the goal of current research.
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Figure 2: Best responses in the two-player case

then characterizes all pure-strategy MPE where players’ actions switch at finitely many
beliefs. We use the notation Q(p) = lp%p again.

Proposition 6.1 (Two players, pure strategies, finite number of switches)
In the two-player strategic experimentation problem, there is a pure-strateqy Markov
perfect equilibrium where the players’ actions depend as follows on the common poste-
rior belief. There are three cut-off beliefs py < py < p, such that: on |p,, 1|, both players
play R; on |pe, pr], player 1 plays R and player 2 plays S; on |pi,pe|, player 1 plays
S and player 2 plays R; on [0,p7], they both play S. The low cut-off, pi, is given in
Proposition 2.1; the other two are given by the solution to

() 5 [

—%—1:0

and the solution to

{(T+/\)(2T+/\) Q(pe) _T2+(r+/\)(r+2/\)} <Q(ﬁr)>r”+1+r+/\ [Q(ﬁr)
rA Q(pm) A Q(pe) A L1Q(pm)

—1}—1:().

Moreover, in any pure-strateqy MPE with finitely many switching points there are
three cut-off beliefs p; < py < Py, with py < py and p, < p,, such that: on |p., 1|, both
players play R; throughout |py, D], one player plays R and the other plays S; on |p3, P,
the players share the burden of experimentation by taking turns; on [0,pi], they both
play S.
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PROOF: Here we just sketch the proof; for details, see the Appendix.

We first note that there must be a last player to experiment since the level u = s
can only be reached via the part of the (p,u)-plane where R and S are mutual best
responses. This player, say player 2, will necessarily stop experimenting at the single-
agent cut-off belief pj.

We can now work backwards (in time) from (pj,s). On an interval to the right
of pj, player 2 plays R and his continuation value (as a function of the belief) is a
slowly rising convex function. On this interval, player 1 free-rides by playing S and her
continuation value is a steeply rising concave function. Thus, at some belief, player 1’s
value meets D; while player 2’s value is still below it — this defines p,. On an interval to
the right of p,, player 1 is content to ‘go it alone” and play R, while player 2 responds
by free-riding with S. At some belief, player 2’s value meets D; while player 1’s value
is yet further above it — this defines p,. On the interval to the right of p,, both players
optimally play R.

As to other equilibria of this sort, we again work backwards from (pj,s). If the
players swap roles (at least once) before the value of either of them has met D, then
the one with the higher value will be below that of player 1 in the ‘simplest’ equilibrium
sketched above, and the one with the lower value will be above that of player 2. At
some belief, the value of one of the players meets D; while the other’s value is still
(weakly) below it — this defines p, > p,. The one with the higher value plays R to the
right of py, while the other one free-rides until the value meets D; — this defines p, < p,
— and then joins in by playing R. [

The value functions of the two players in the ‘simplest’ equilibrium (with cut-offs
P, pe and p,) are illustrated in Figure 3. The faint straight line is D;. Observe that
the lower payoff meets this line at p, while the higher payoff meets it at p,.

Note that with finitely many beliefs at which a player changes his action, the
threshold belief at which all experimentation stops is again the single-agent cut-off pj;
in particular, it is the same for all equilibria of this type (and thus they all exhibit the
same amount of experimentation, whereas the higher threshold beliefs are determined
endogenously by how the burden of experimentation is shared at beliefs to the right of
pi (and hence the intensity of experimentation will vary across these equilibria).

The ‘simplest’ equilibrium of Proposition 6.1 is also the ‘worst’ from an efficiency
perspective. This is because it gives the player who experiments last the lowest possible
payoff function, which in turn implies that the part of the state space where both players
experiment is smallest — the threshold belief at which the intensity of experimentation
drops from 2 to 1 (that is, the belief at which the lower payoff function crosses D;) is
as high as it can be, namely equal to p,. The ‘simplest’ equilibrium therefore exhibits
the slowest experimentation. In an MPE where the threshold belief p, is lower, the
maximal intensity of experimentation is maintained for longer, so the same overall
amount of information is acquired faster. As the following proposition shows, such an
equilbrium is more efficient.
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Figure 3: Payoffs in a two-player asymmetric equilibrium.

Proposition 6.2 (Welfare ranking) The sum of the players’ payoffs in the pure-
strateqy Markov perfect equilibria of Proposition 6.1 is decreasing in the cut-off belief
D, where one player switches to the safe arm for the first time, and strictly decreasing
in P, at all beliefs where both players use the risky arm.

PROOF: Let @ denote the solution to the ODE u(p) = s+3{2b(p, u) —c(p)} (which cor-
responds to exactly one member of a two-player team experimenting) with u(pj) = s.
In an equilibrium with right cut-off p,, the two players’ average payoff function is
@ on [pi,p.]; above p,, it is of the form V5 as in (20) with the constant of integra-
tion determined by the condition V5(p,) = u(p,). It is straightforward to verify that
Vi (p,) > @' (p,), which in turn implies that the V5 part of the average payoff function
is the higher, the lower is p,. H

The way to achieve a more efficient equilibrium is to raise the lower of the two
payoff functions by sharing the burden of experimentation more equally, that is, by
switching roles more often. The lowest upper bound on aggregate payoffs is then given
by a situation of payoff symmetry where each player obtains exactly half the payoff of
the team strategy that has one player experiment to the left of the diagonal D;, and
both players to the right of it.!* This is the same payoff as if each player allocated

HThis lowest upper bound on a player’s payoff function is easy to calculate. To the left of Dy, it
solves the ODE u(p) = s + 3{2b(p,u) — c(p)} (which corresponds to exactly one member of a two-
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exactly half of his time to the risky arm on the entire region below Dy, hence clearly
different from the payoff in the symmetric equilibrium of Proposition 5.1 where the
fraction of time allocated to the risky arm falls gradually from 1 to 0 over this region.

In particular, there is a region of beliefs close to the single-agent cut-off where
the intensity of experimentation in the symmetric equilibrium is lower than even in
the ‘worst’ asymmetric one. By the logic of the last proposition, this ought to mean
that welfare in the symmetric equilibrium should be lower at those beliefs than in any
asymmetric equilibrium. The following proposition confirms this.

Proposition 6.3 (Welfare comparison with symmetric MPE) For beliefs in the
interval |p3, pe] the sum of the players’ payoffs in the pure-strategy asymmetric equilib-
ria of Proposition 6.1 is strictly greater than the sum of players’ payoffs in the mized-
strateqy symmetric equilibrium of Proposition 5.1.

PROOF: See the Appendix. H

The intuition for this result is that, at each belief in the stated range, players are
engaged in a coordination game like the Battle of the Sexes. There are two asymmetric
pure equilibria of the type ‘free-rider, lone ranger’ where one player gets a high payoff
and the other gets a low payoff. The players have different preferences over these
equilibria (they would both prefer to free-ride) and it is this that presents them with
a coordination problem. If the coordination problem is solved by mixing, the players
do worse in aggregate.!?

Propositions 6.2 and 6.3 show that alternating between the roles of free-rider and
lone ranger as the belief changes is an effective (and incentive-compatible) way of in-
creasing players’ payoffs. Players can do even better if we allow them to switch between
actions at infinitely many beliefs. In that case, they can take turns experimenting in
such a way that no player ever has a last time (or lowest belief) at which he is supposed
to use the risky arm. Surprisingly, it is then possible to reach cut-off beliefs below pj
in equilibrium. In fact, it is possible to (almost) attain the efficient cut-off p}, but it is
still reached too slowly.

Proposition 6.4 (Two players, pure strategies, infinite number of switches)
For each € > 0, there is a strictly decreasing sequence of beliefs {p;r X o with p; <
pl = limy o p;-r < pi + € such that the following pure strategies constitute a Markov
perfect equilibrium of the two-player strategic experimentation game: on ]pig, 1], both
players play R; on ]le,pﬂ, player 1 plays R and player 2 plays S if i is even, whereas
player 1 plays S and player 2 plays R if i is odd; on [0,pl ], they both play S.

player team experimenting) subject to the condition u(pi) = s. The intersection of this solution with
D1 determines the lowest possible realisation of the threshold p,. To the right of D;, we then have a
function V4 as in (20).

12Note that the symmetric equilibrium could exhibit a higher intensity of experimentation than the
asymmetric ones at beliefs close to the cut-off po. The proposition does not rule out that because of
this, the mixed equilibrium could be more efficient at beliefs above py,. Numerically, however, we find
that the asymmetric equilibria are more efficient on the entire interval |p},1[.
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PROOF: See the Appendix. H

Note that pT,Q and pil are playing the roles of p, and p, from Proposition 6.1.
Also note that as e tends to zero the amount of experimentation performed in this
equilibrium approaches the efficient amount. However, the intensity of experimentation
is efficient only at times before pT,Q and after pl_ is reached; at times in between it is
1, and therefore first too low then too high relative to the efficient benchmark.

7 Concluding Remarks

There are some generalisations of our results that follow with no or relatively little
additional work. First, all our results apply to bandit problems where the known arm
generates a stationary non-deterministic stream of payoffs — we can simply reinterpret
s as the expected flow payoff. Second, the construction of asymmetric equilibria for the
case of fully revealing successes (Section 6) generalises to more than two players, and
the corresponding results carry over. Third, the model is easily adapted to situations
where news events carry bad news.

It is more cumbersome to examine asymmetric pure-strategy MPE in the general
case where both Poisson intensities are strictly positive. We naturally expect that
the results of Section 6 generalise, but the analysis becomes harder because we have
to ‘paste together’ solutions to various differential-difference equations, keeping track
of the precise region into which the posterior belief jumps after a success. We are
investigating such equilibria in current work.

In the case of fully revealing successes, the model can be reinterpreted as a model
of innovation and learning similar to Malueg and Tsutsui (1997). In contrast to these
authors, we obtain closed-form solutions in our set-up. It would be interesting to
vary the degree to which the post-innovation prize is shared, e.g. by introducing an
advantage for whoever is first to experience a success.

Another extension that we intend to pursue is the introduction of asymmetries
between players, for example regarding the discount rate or the ability to generate
information from their experimentation effort. This may reduce the multiplicity of
asymmetric equilibria that we have found for symmetric players. It may also allow us
to investigate the question as to with whom a given agent would choose to play the
strategic experimentation game.

More generally, we hope that Poisson bandits will prove useful as building blocks
for models with a richer structure. Interesting extension in this direction could include
rewards that depend on action profiles, unobservable outcomes, or costly communica-
tion.
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Appendix

Proof of Corollary 5.2

We consider the equation

(A1) AXp(1 = p)u' (p) + A(p)u(p) = rA(p)h — s + Ap)u(i(p))-

Let a = Ag/AN, and, for i > 0, define

90 () = dPp+d(1—p) +mO (1 PO+ (1 —p)Rp) 3 16 (n [Go/ A" 0m)])"

where ¢ is an iteration counter, and dgi), dg),m(i), 1=1) are constants (which depend on 7).
We are interested in the situation where u(j(p)) = ¢ (j(p)):

(o iy A iy A A Ao Ao\
dDGp) = d()—1p+d()—0(1—p)+m()—0< 0> (1 - p)Q(p)*

' Ap) % Xp) Ap) \ M
T (i) (1= 315 (1 [/ )" )"
Alp) \ A1 ot
in which case the RHS of (A.1) becomes:
. . . . i-1
GO (p) = DYp+ DY (1 —p)+ MO (1 - p)2p)* + (1 -p)Qp)* > LU= (In[(Ao/M)" Q(p)))"
n=0
where . . . .
DY = d\ +r(Mh—s), DY =dyx +r(Aoh - s)

and

MO — m(z‘)/\0 Mo/ A1), i—n) — l(i*")/\o (Ao/A1)" .

The homogeneous equation has the solution

uo(p) = (1 —p)Q2p)*.

Using the method of variation of constants, we now write u(p) = a(p)ugp(p) so that

AXp(1 = p)u/(p) + Ap)u(p) = AXp(1 — p)ug(p)d’ (p).

The ODE thus transforms into the following equation for the first derivative of the unknown
function a:

G (p)
p(1 —p) uo(p
— DY) (1 —p) 2+ D Q(p) (1 — p) 2 + MO Qp)ret (1 —p) 2

i—1

+ Q)1 —p) 2 D LU (In[(Ao/A)" ()"

n=0

AXd'(p) =
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Make the substitution w = Q(p) and define A(w) = a(p), so a’(p) = —A’(w)/p?. Then

, : . i-1
—ANA'(W) = D w2 4 DY w4 MO e ST L (In (g /)" W)

n=0
SO
_ i’ ... Dy . MO e LU ]yttt
Alw) = /\—lw —l—/\—ow +mw —nz:%m(ln[(/\o//\l) w])
+ C(iJrl)’

where C0*1) is a constant of integration. Multiplying by ug(p) = (1 —p) w® and substituting
w = Q(p) leads to

% (0 (i
u(p) = li—ller 11—(; (1—p)+ /\OA—I—MA/\ (1 - p)Q(p)
i 7 (i+1-n) . |
+ (1 = p)Q(p)* nz::l —I?; ;/\ (111 {(/\0//\1)7171 Q(p)}) +(1— p)Q(p)aC(Prl).

This completes one iteration.
From the solution to the team problem:
dgo) =\ h, dgo) = Xoh, and m© = C'(O),

where C©) is the constant that fixes payoffs above the diagonal. The final (summed) term is
vacuous for 7 = 0.
The above iterative step shows that, in general,

; Mh—s) ; r(Aoh — ) : Ao (Mo/A)M\ "
4 = p4 TP ey TR — ) d m = (0><—>'

1 1h + N i, 0 oh + e i, and m C Mo — AN
After a little algebra, we find that the constants in the summation are given by:

Jli-n) _ ctn) <_ Ao (Ao/M1
- nl A

) > form=0,...,i—1.

The constants C'—") (n = 0,...7 — 1) are chosen to ensure continuity. In particular,
writing j~° for j7/(p), CU*tD is chosen such that u(+V(;=%) = u®(57%) for i > 0, and
satisfies:

C(i+1) (1 _jfi)Q(jfi)a
_rh=s) ., r(oh—s)

= /\—ljﬂ - /\—0(1 -7
Ao (o/A)" Y (Ao Qo/A)"\' iy i
(0) o 0 0 1 o 17 AV
e <1 Ao — HAA > < Ao — pHAA > (=790

{ B e |5 (-2 o))

n!
1 <_ o (AAO/AM)Q In [(Ao/A1)" Q(W)Dnﬂ] } (1-7799207)"

C (n+1)!
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Proof of Lemma 6.1

First note that each player’s value function is continuous as a function of p and takes the
value Ah at p = 1 and s at p = 0; moreover it is differentiable wherever he/she chooses
optimally to switch (from playing R to playing S, or vice versa) and the other player does
not switch — if the right derivative is smaller, the player should switch at a larger p; if the
right derivative is larger, the player should switch at a smaller p.

Our aim is to show that the region bounded below by the myopic payoff in the (p, u)-plane
contains three regions, as in the picture in the main text. In one region (when the players
are optimistic) it is dominant for each of them to play R and in another region (when the
players are pessimistic and u = s) it is dominant for each of them to play S; in between, S
and R are mutual best responses.

Assume that the continuation value of player n is given by u,(p), for n = A, B.

e Assume that player A (she) is playing R when the belief is in some interval [py, p;|, and
consider the best response of player B (he) on [ps, pc] C [pe, pr]. If it is also R then his value
function on [py, pc] is given by Vi from equation (20) with Va(ps) = up(pe); if his best response
is S then his value function on [py, p.| is given by Fj from equation (21) with Fi (pe) = up(pe).
Now, if Vo(p) = Fi(p) = u, say, then Vj(p) > F{(p) if u > 2s — Ahp, and V;(p) < F(p) if
u < 2s — Ahp. Thus, if ug(ps) > 2s — Ahpy, then his best response to R is to “join in” by
playing R on [ps, p.]; if up(ps) < 2s — Ahpy, then his best response to R is to free-ride by
playing S on [py, p.] for any p. such that Fi(p.) < 2s— Ahp.; and he can only switch optimally
at a belief p. € [py, pr] where (p.,up(p.)) € D1.

e Now, assume that player A (she) is playing S when the belief is in some interval [py, p,],
and consider the best response of player B (he) on [ps, p.] C [pe, pr]. If it is R then his value
function on [py, p.] is given by Vi from equation (3) with Vi (py) = up (py); if his best response
is also S then the belief no longer changes, so it must be the case that up(py) = s and his value
function on [py, p.] is simply s. Now, if Vi(p) = s, then V{(p) > 0 if p > p}, and V{(p) < 0
if p < pj. Thus, if ug(ps) = s, then his best response to S is to act unilaterally: if p, > p}
then play R on [ps, p,; if po < pf then play S on [py, p.] for any p. such that p. < pi; and he
can only switch optimally at the belief pj. However, if ug(ps) > s, then his best response to
S must be to play R on [pg,p,] (but note that V{(p) < 0 if (r+ Ap)Vi(p) > (r + \)Ahp). A

Proof of Proposition 6.1

Let p, denote the smallest belief where each player’s continuation value is (weakly) above Dy,
and let p; denote the largest belief where each player’s continuation value is (weakly) below
Dy; necessarily, p7 < py < p, < p™.

For a belief in a neighbourhood of 1, specifically p € (pr, 1], R is the dominant strategy;
and for a belief in a neighbourhood of 0, specifically p € [0, pi], S is the dominant strategy.
(We know that u,(0) = s, and so S is a dominant response on any interval [0, p.] C [0, pj]).
For beliefs p € (p7, p¢], the best response to S is to play R (act unilaterally), and the best
response to R is to play S (free-ride). Now consider beliefs p € (pg, p,]; let A be the player
whose continuation value crosses D; at py and let B be the player whose continuation value
crosses Dy at p,.. If B plays S, then A’s best response is to play R (act unilaterally), and if
B plays R, then A’s best response is to play R (“join in”); thus R is the dominant response
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for A. So, given A plays R, B’s best response is to play S (free-ride). To summarise:

Belief p 0 Pl De Dr 1
A’s strategy S S/R R R

B’s strategy S R/S S R

A’s continuation value S Fira/Via Via Va4
B’s continuation value S Vis/FiB Fi Vo.B

and the strategies on (pj,p¢] determine py endogenously, which player plays R and which
player plays S on (py, pr], and p, endogenously. If the players have the above continuation
values, then the above strategies are best responses to each other; and if the players are using
the above strategies, then the continuation values are indeed those given above. Thus the
above strategies constitute an equilibrium with the equilibrium value functions given by the
continuation values.

The ‘simplest’ equilibrium is where one player, say player 1, plays S on (p}, p¢], and the
other player, player 2, plays R on this interval. Then player 1’s value function Fj satisfies
equation (21) and player 2’s value function V; satisfies equation (3), with Fy(p;) = Vi(p}) = s.
So F{(pt) > V{(p}), since whenever Fi(p) = Vi(p) = u, say, F{(p) > V{(p) iff A\hp < s, i.e.
iff p < p™. Furthermore, it can be shown that F} is concave and V; is convex!'? and so if F}
and V] take the same value again, say at p. > p}, then Fj(p.) < V{(pc), which implies that
pe > p™. This shows that F; meets D; at a smaller belief than does V7, and that F; > V; on
(p%, De]; that is, player 1 must be A and switch from playing R on (py, pr], and player 2 must
be B and switch from playing S on (p¢, p.]. This equilibrium is thus given by:

Belief p 0 P De Pr 1
A’s strategy S S R R

B’s strategy S R S R

A’s value function s Fia V1,4 VoA
B’s value function s V1,8 Fi Vo.B

and the components of the value functions, and the switch-points, are determined as follows:

1) Cin Fy 4 from Fy 4(p}) =

2 in Vi g from Vj g(p]) = s

)
) ¢
3) D¢ from Fy 4(pr) = 25 — Ahjpy
4) C'in Vi 4 from Vi a(pe) = F1 a(De) = 25 — Ahy
5) Cin Fy g from Fi 5(pe) = Vi,8(Pr)
6) pr from Fy g(p,) = 2s — Ahpy

)

(
(
(
(
(
(
(7) Cin Va4 from Vo 4(Pr) = V1,4(Pr)
(

8) Cin V, g from Vs g(py) = F1 g(pr) = 25 — A\hpy

13Tt transpires that the second derivative of the functions F;, Vi and V5 has the same sign as the
constant of integration (in (21), (3) and (20) respectively) and thus the convexity/concavity of the
solution is determined by that sign.
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Note that the boundary condition at p = 1 is automatically satisfied because V5 4(1) =
Vo 5(1) = Ah regardless of the constants of integration.

Noting that when Va(p) = Vi(p) = u, say, Vi(p) > V{(p) iff w > Ahp (the payoff from
always playing R), we see that

o 0<F] ,(p7), F{aBe) > V] 4a(Be), VIaBr) <V A(Br);
e 0=V/g1)., Vi) <FpBe), FpDr)="Vspr)

Thus, as the common belief decays, B switches smoothly from R to S against R at p, (where
A has a kink), both A and B switch at p; (each with a kink), and B switches smoothly again
from R to S against S at p] (where A again has a kink).

Following steps (1) and (3) determines the equation for p, given in the statement of
the proposition; following steps (2), (5) and (6) determines the equation for p, given in the
statement of the proposition; the remaining steps are for completeness only.!

Other equilibria for the two-player strategic problem

Any finite partition of the interval to the right of p} can be used to construct a pure strategy
equilibrium of the two-player strategic problem.

Take any finite (measurable) partition of (p],p™] and divide this into two subsets I,,,
n = 1,2. Build the continuous functions X,, on [p}, p™] as follows: X, (pj) = s, X,, satisfies
equation (21) on I, (free-rider), X, satisfies equation (3) on I, (lone ranger).

Define p, = min{p € [p{,p"]: X1(p) V Xa(p) =25 — Ahp}. If X;(pr) > X (Pe) then
A=mn,else A=-n; B=-A.

Define p, by Xg(p,) = 2s — Ahpr, so py < pi.

"]

Now take the partition J; U Jo of (pi, pe], where J, = {p <ps:p € I,}, i.e. J, and I, agree
on (pfvpd'
Let A’s strategy be as follows:
play S on [0, pi]; play S on J4 and R on Jg; play R on (py, pr); play R on (p,, 1].
Let B’s strategy be as follows:
play S on [0, pi]; play R on J4 and S on Jg; play S on (pg, pr]; play R on (p,, 1].

Build the continuous functions Y;, on [0, 1] as follows:

Ya(p) = s on [0,pi]; Ya satisfies equation (21) on J4 (free-rider) and satisfies equa-
tion (3) on Jp (lone ranger); Y4 satisfies equation (3) on (ps, pr] (lone ranger); Y satisfies
equation (20) on (py, 1].

Ys(p) = s on [0,pi]; Yp satisfies equation (3) on J4 (lone ranger) and satisfies equa-
tion (21) on Jp (free-rider); Yy satisfies equation (21) on (pg, pr] (free-rider); Yy satisfies
equation (20) on (p,, 1].

If the continuation values are given by Y,,, then the above strategies are best responses to
each other; and if the players are using the above strategies, then the continuation values are
indeed given by Y,,. Thus the above strategies constitute an equilibrium with the equilibrium
value functions given by Y.

Y4 and Yp lie between Fy 4 and Vi g U Fi g below and to the left of D;. Thus p, < pp <
pr < pr, and so the ‘simplest’ equilibrium exhibits the least experimentation.

MDetails are available from the authors on request.
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Proof of Proposition 6.3

It is straightforward to check that at the symmetric equilibrium, each player’s payoff function

W satisfies W
S = 4 (R 1) + G

on |pi,p2], where po is the upper cut-off from Proposition 5.1 with N =2 and

R@:<&%y%

is decreasing in p and smaller than 1 for p > p]. Aggregate payoff at this equilibrium is twice
W on }pfv ﬁQ}

On |p3, pe] the payoff function of player 2 (the last experimenter) at the ‘simplest’ asym-
metric equilibrium described in Proposition 6.1 is of the type V1 with the boundary condition
Vi(py) = s. By (20) this satisfies

Vi(p) —s r —\/ A
s(1—p) T+/\R(p) +7“—i-/\

R(p),

where we have used the fact that Q(p™)/Q(p}) = r/(r + A). On |p}, pe] the payoff function
of player 1 (the last free-rider) at this same equilibrium is of the type F; with the boundary
condition Fi(pj) =s. By (21) this satisfies

Fi(p) —s _ A
s(1—p) (r+ X

N rA
)zR(P) a4 —mR(P),

again using Q(p™)/Q(p;) =1r/(r + X). Aggregate payoff at this equilibrium thus satisfies

/\2
(r+A)?2

Vilp) + Filp) —2s _ r(r+23)
s(1—p) (r4+X)?

R(p) ™M —1+ R(p).

With the notation p = /A, a simple calculation now gives

Vi+ Fy —2W* P2 +3) Ly 1
—_ RYrp —— _R_2InR—1+2pu,
s(1—p) (i +1)? i+ 1)? :

where we have suppressed the dependence of V;, Fy, W and R on p. We want to show that
the right-hand side is positive on the interval |pj, p™]. To this end, we consider the right-hand
side as a function f(R) on the interval [R(p™),1]. As f(1) =0, f’(1) < 0 and f” < 0 on this
interval, it suffices to show that f(R(p™)) > 0. Now, R(p™) = [u/ (i + 1)]*, so

2n+1 1 1 >“ I
R(p™)) =— —2uln —— .
JEP™) p+1 +(;H—l)2 <u+1 Mn;ﬁ—l

As a function of p on the positive half-axis, this is quasi-concave with limit zero as p tends
to 0 or 400, hence positive throughout.

For p € |p}, min{ps, pr}|, therefore, the sum of payoffs at the symmetric equilibrium lies
strictly below the sum of payoffs at the asymmetric equilibrium. This implies that the payoff
of player 1 (the last free-rider) at the asymmetric equilibrium lies above W. Hence, the belief
at which player 1’s value function intersects D; must be strictly lower than the belief at which
W intersects D1, or py < po. [ |

32



Proof of Proposition 6.4

Our aim is to build an MPE where the players make an infinite number of switches between R
and S in finite time. We find equilibria where the beliefs fall arbitrarily close to the team cut-
off before the players stop using R for good. This means that the amount of experimentation
performed can get arbitrarily close to the efficient level. The intensity of experimentation,
however, will be inefficiently low.

The intuition for these equilibria is that for all beliefs above the team cut-off level there
is a Pareto gain from performing more experiments, so provided any player’s immediate con-
tributions are sufficiently small relative to the long-run Pareto gain, performing experiments
in turn can be sustained as an equilibrium.

The equilibrium constructed below is such that a player’s payoff before embarking on
a round of single-handed experimentation equals s. (At all other beliefs, each player has
an expected payoff strictly exceeding s.) While pinning down equilibrium payoffs this way
simplifies the construction, other choices would work as well.

Fix a belief pg strictly between the two-player team cut-off p5 and the single-agent optimal
cut-off pj. Given this starting point, we will define a strictly decreasing sequence of beliefs
{p;-r o bounded below by p3 such that the following Markovian pure strategies constitute

an equilibrium at beliefs p < pgz player 1 uses R on any interval [p;r ,pj 41| for even i and S

otherwise; player 2 uses R on any interval [pj, p;-r 41| for odd i and S otherwise. In particular,
both players use S at beliefs p < pf_ = lim; o0 pj.

Assuming for the moment that we have already constructed such a sequence of beliefs,
let X; be player 1’s expected payoff at the start of the interval [pj, p;-r 41| with even i when the
players use the above strategies. Similarly, let Y; be player 2’s expected payoff at the start
of the interval [pj, p;-r 41| with odd i when the players use those strategies.

Let 7 be even. Player 1 uses I? on the interval [p;r , p;-r 411, s0 her value function satisfies the
single-agent differential equation (1) there. If u(p;r +1) is her expected payoff once the belief
has hit pjﬂ, we obtain

1-— T Xy /A
X, = g+ ) — M) S ()
1 —piq \Titl

or

X(PI) —s_1_ 1+ u(pjﬂ) — /\hpjﬂ < T >r/>‘
s(l—p)) = s(1—p})
where x; = Q(pj)/Q(pm)
On the interval [p;r 115 p;-r 4o, player 1 watches while player 2 uses R, so her value function

Ti+1

satisfies the differential equation (11) with K = 1 and the terminal condition u(pLQ) = Xiio.
Solving this gives

u(plyy) —s oA 1 <117¢+1>r/>‘ [ Xit2 — s A1 ]
S

s(1 —pj) CrH AT Tit2 (1 —pjﬂ) - T+ AT

Substituting this into the above equation for X;, assuming that
X,=s for i=0,2,4,...,
and re-arranging, we get the second-order difference equation

A {LA i

— X
r+ A

A
Tiyq

_ A
Z; Liyo

L T l_leg_ T L
T+/\JZL‘ L T+/\$i+1
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for even i. Going through the same steps for player 2 under the assumption that
Y,=s for i=1,3,5,...,

we see that this difference equation holds for all 7.
With the new variable
Tl — T
(2 ,I',L 9

this yields the two-dimensional first-order system

Ti+1 = X4 (1“1‘2’1'),

(T+zi0) 0 = (4 2) M by (T4 20) — @i (14 2)" M — %
"

r+ A

The fact that p; < pg < pj translates into < a9 < ”r”‘. Via the above system,

each choice of zy > 0 determines a strictly increasing sequence {x;} (and hence also a strictly
decreasing sequence {pj}) We are done if we can show that there is a choice of zy such that
the sequence {z;} is bounded above by =22,

Fix 6 > 0 such that zg + 6 < # Since

r+A
r

(‘9zi+1 r T4+ A

(‘921- ($i’0) - Xwi - A ’

there isa v > 0 and a [ strictly between 0 and 1 such that for all (z;, z;) with g < x; < x9+06
and 0 < z; <~ the partial derivative of z; 11 with respect to z; satisfies

0zit1
< b.
0< 0z; =8
Now let s
20 :min{’y,(l—ﬂ)lnxo—'— }
Zo

A simple induction argument then shows that

1’0+5
Zo

i—1 i—1 i—1

xX; . 20
In— = In(1 ) < ;< 20 = <1
ngﬁ0 ;:0 n( +Zj)_;:02j_j§:0ﬂ 20 5= n

for all 7. This implies that x; < xo+ 6 < % for all 4, as desired.
r42\
T

(which corresponds to taking pg closer
r+2A
T

Note that by taking x( closer and closer to
and closer to p3), we can insure that the limit of the x; gets arbitrarily close to , and
so the distance between the limit belief pi_ and the efficient cut-off p5 becomes smaller than
any given positive €. To complete the construction of the equilibrium, we now only have to
move back from pg to higher beliefs and assign actions to the two players in the way we did
for the pure-strategy equilibria with a finite number of switches. |
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