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Abstract

We discuss regression models for ordered responses, such as ratings of bonds, schooling at-

tainment, or measures of subjective well-being. Commonly used models in this context are the

ordered logit and ordered probit regression models. They are based on an underlying latent

model with single index function and constant thresholds. We argue that these approaches are

overly restrictive and preclude a flexible estimation of the effect of regressors on the discrete

outcome probabilities. For example, the signs of the marginal probability effects can only change

once when moving from the smallest category to the largest one. We then discuss several alter-

native models that overcome these limitations. An application illustrates the benefit of these

alternatives.
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1 Introduction

Models for ordered responses have their origin in the biometrics literature. Aitchison and Silvey

(1957) proposed the ordered probit model to analyze experiments in which the responses of subjects

to various doses of stimulus are divided into ordinally ranked classes. Snell (1964) suggested

the use of the logistic instead of the normal distribution as an approximation for mathematical

simplification. The first comprehensive treatment of ordered response models in the social sciences

appeared with the work of McKelvey and Zavoina (1975) who generalized the model of Aitchison

and Silvey to more than one independent variable. Their basic idea was to assume the existence

of an underlying continuous latent variable – related to a single index of explanatory variables and

an error term – and to obtain the observed categorical outcome by discretizing the real line into a

finite number of intervals.

McCullagh (1980) proposed and discussed independently the so-called cumulative model in the

statistics literature. He directly modelled the cumulative probabilities of the ordered outcome as a

monotonic increasing transformation of a linear predictor onto the unit interval, assuming a logit

or probit link function. This specification yields the same probability function as the model of

McKelvey and Zavoina, and is therefore observationally equivalent. Both papers spurred a large

literature on how to model ordered dependent variables, the former mostly in the social sciences,

the latter predominantly in the medical and biostatistics literature.

On the one hand, a number of parametric generalizations have been proposed. These include

alternative link functions, prominent examples being the log-log or the complementary log-log

function (McCullagh, 1980), generalized predictor functions that include, for example, quadratic

terms or interactions, or dispersion parameters (Cox, 1995). Olsson (1979) and Ronning and Kukuk

(1996) discuss estimation of models in which both dependent and independent variables are ordered.

On the other hand, semi- and non-parametric approaches replace the distributional assumptions of

the standard model, or the predictor function, by flexible semi- or non-parametric functional forms.
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General surveys of the parametric as well as the semi- and nonparametric literature are given, for

example, in Agresti (1999), Barnhart and Sampson (1994), Clogg and Shihadeh (1994), Winship

and Mare (1984), Bellemare, Melenberg, and van Soest (2002), and Stewart (2004), the two latter

references in particular for the semi- and nonparametric treatments of ordered data.

When thinking about the usefulness of all these alternative models, it is inevitable to make up

ones mind on the ultimate objective of the analysis. We submit in this paper that in the case of

ordered responses, as in most other applications of discrete conditional probability models, the main

quantity of interest are the marginal probability effects: How much do cell probabilities change due

to the (marginal) increase of one regressor? We furthermore argue that standard ordered response

models are not well suited at all to analyze marginal probability effects. The reason is that the

answer is to a large extent predetermined by the rigid parametric structure of the model. Therefore,

we consider a number of generalizations that allow for flexible analyses of marginal probability

effects. In addition to the generalized threshold (Maddala, 1983; Terza, 1985; Brant, 1990) and

the sequential model (Fienberg, 1980; Tutz, 1990, 1991), we show how additional flexibility can be

gained by modeling individual heterogeneity either by means of a random coefficients model or as

a finite mixture/latent class model.

The remainder of the paper is organized as follows. In the next section we provide a short

review of the standard model, before turning to the generalizations in section 3. In section 4 we

illustrate the methods with an analysis of the relationship between income and happiness using

data from the German Socio-Economic Panel. Our results show that marginal probability effects

in the generalized alternatives are substantially different from those in the standard model. For

example, the standard model implies that the probability of being completely satisfied increases

on average by about 0.017 percentage points by a one-percentage increase in income, while it is

decreasing or constant in the generalized models. Section 5 concludes.
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2 Standard Ordered Response Models

Consider the following examples. In a survey, respondents have been asked about their life-

satisfaction, or their change in health status. Answer categories might range from 0 to 10 where

0 means completely dissatisfied and 10 means completely satisfied, or from 1 to 5, where 1 means

greatly deteriorated and 5 means greatly improved, respectively. The objective is to model these

ordered responses as functions of explanatory variables.

Formally, let the ordered categorical outcome y be coded, without loss of generality, in a rank

preserving manner, i.e. y ∈ {1, 2, . . . , J} where J denotes the total number of distinct categories.

Furthermore, suppose that a (k × 1)-dimensional vector x of covariates is available. In standard

ordered response models, the cumulative probabilities of the discrete outcome are related to a single

index of explanatory variables in the following way

Pr[y ≤ j|x] = F (κj − x′β) j = 1, . . . , J (1)

where κj and β(k×1) denote unknown model parameters, and F can be any monotonic increasing

function mapping the real line onto the unit interval. Although no further restrictions are imposed

a priori on the transformation F it is standard to replace F by a distribution function, the most

commonly used ones being the standard normal (which yields the ordered probit) and the logistic

distribution (associated with the ordered logit model), and we assume in what follows that F

represents either the standard normal or logistic distribution. In order to ensure well-defined

probabilities, we require that κj > κj−1, ∀j, and it is understood that κJ = ∞ such that F (∞) = 1

as well as κ0 = −∞ such that F (−∞) = 0.

Ordered response models are usually motivated by an underlying continuous but latent process

y? together with a response mechanism of the form

y = j if and only if κj−1 ≤ y? = x′β + u < κj j = 1, . . . , J

where κ0, . . . , κJ are introduced as threshold parameters, discretizing the real line, represented by

y?, into J categories. The latent variable y? is related linearly to observable and unobservable
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factors and the latter have a fully specified distribution function F (u) with zero mean and constant

variance.

The cumulative model (1) can be postulated without assuming the existence of a latent part

and a threshold mechanism, though. Moreover, since y? cannot be observed and is purely artificial,

its interpretation is not of interest. The main focus in the analysis of ordered data should be put

on the conditional cell probabilities given by

Pr[y = j|x] = F (κj − x′β)− F (κj−1 − x′β) (2)

In order to identify the parameters of the model we have to fix location and scale of the argument

in F , the former by assuming that x does not contain a constant term, the latter by normalizing the

variance of the distribution function F . Then, equation (2) represents a well-defined probability

function which allows for straightforward application of maximum likelihood methods for a random

sample of size n of pairs (y, x).

The most natural way to interpret ordered response models (and discrete probability models

in general) is to determine how a marginal change in one regressor changes the distribution of

the outcome variable, i.e. all the outcome probabilities. These marginal probability effects can be

calculated as

MPEjl(x) =
∂ Pr[y = j|x]

∂xl
=
[
f(κj−1 − x′β)− f(κj − x′β)

]
βl (3)

where f(z) = dF (z)/dz and xl denotes the l-th (continuous) element in x. With respect to a

discrete valued regressor it is more appropriate to calculate the change in the probabilities before

and after the discrete change ∆xl,

∆ Pr[y = j|x] = Pr[y = j|x+ ∆xl]− Pr[y = j|x] (4)

In general, the magnitude of these probability changes depends on the specific values of the ith

observation’s covariates. After taking expectation with respect to x we obtain average marginal
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probability effects, which can be estimated consistently by replacing the true parameters by their

corresponding maximum likelihood estimates and taking the average over all observations.

However, if we take a closer look at (3) and (4) it becomes apparent that marginal probability

effects in standard ordered response models have two restrictive properties that limit the usefulness

of these models in practice. First, the ratio of marginal probability effects of two distinct contin-

uous covariates on the same outcome, i.e. relative marginal probability effects, are constant across

individuals and the outcome distribution, because from (3) we have that

MPEjl(x)
MPEjm(x)

=
βl

βm

which does not depend on i and j. Second, marginal probability effects can change their sign only

once when moving from the smallest to the largest outcome. More precisely, the effects are either

first negative and then positive, or first positive and then negative, dependent on the sign of βl —

the first for βl > 0, the latter for βl < 0. This “single crossing property” follows directly from the

bell-shaped density functions of the standard normal and the logistic distribution. Therefore, if we

are interested in the effect of a covariate on the outcome probabilities, i.e. if we turn our attention

to the effects on the full distribution of outcomes, the standard models preclude a flexible analysis

of marginal probability effects by design.

3 Generalized Ordered Response Models

Three assumptions of the standard model are responsible for its limitations in analyzing marginal

probability effects: First, the single index assumption, second, the constant threshold assumption,

and third, the distributional assumption which does not allow for additional individual hetero-

geneity between individual realizations. While relaxing these assumptions we want to retain the

possibility of interpreting the model in terms of marginal probability effects. Therefore, we need

to search for a richer class of parametric models that does not impose restrictions such as constant

relative effects or single crossing. In this section we present four such alternatives.
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3.1 Generalized Threshold Model

The first model we consider relaxes the single index assumption and allows for different indices

across outcomes. This model was introduced by Maddala (1983) and Terza (1985) who proposed

to generalize the threshold parameters by making them dependent on covariates

κj = κ̃j + x′γj

where γj is a k × 1-dimensional vector of response specific parameters. Plugging this into (1) we

get the cumulative probabilities in the generalized threshold model

Pr[y ≤ j|x] = F (κ̃j + x′γj − x′β) = F (κ̃j − x′βj) j = 1, . . . , J (5)

where it is understood that κ̃0 = −∞ and κ̃J = ∞, as before. The last equality in (5) follows

because γj and β cannot be identified separately with the same x entering the index function

and the generalized thresholds, and we define βj ≡ β − γj . The cumulative probabilities define a

probability density function in the same manner as in (2) and parameters can be estimated directly

by maximum likelihood. We observe that the generalized threshold model nests the standard model

under the restrictions β1 = . . . = βJ−1 and therefore both models can be tested against each other

by performing a likelihood ratio (LR) test.

The generalized threshold model provides a framework in which marginal probability effects

can be analyzed with much more flexibility than in the standard model, since

MPEjl(x) = f(κ̃j−1 − x′βj−1)βj−1l − f(κ̃j − x′βj)βjl (6)

does not rely anymore on a single crossing property or constant relative effects. Nevertheless, this

generalization comes at a cost. First, the model now contains (J − 2)k parameters more than

before which reduces the degrees of freedom considerably, in particular when J is large. Second,

the condition κ̃j−1 − x′βj−1 < κ̃j − x′βj is required for all observations to ensure a well-defined

probability function, and attempted violations result in unproductive optimization steps when

maximizing the likelihood.

6



3.2 Random Coefficients Model

As a second alternative we discuss the class of random coefficients models. The basic idea is to

randomize the parameters of interest by adding an error term that is correlated with the unobserved

factors in u. Thus, we translate individual heterogeneity into parameter heterogeneity, writing the

vector of slopes as

β = β̃ + ε

where ε is an individual specific (k × 1)-dimensional vector of error terms. Moreover, we assume

for the joint error term γ ≡ (ε′ u)′ that

E[γ|x] = 0 and E[γγ′|x] = Σ with Σ =

 Ω ψ

ψ′ 1


where Ω is the (k × k)-dimensional covariance matrix of ε, ψ is the (k × 1)-dimensional covariance

vector between the slope parameters and u, and Var[u|x] = 1, as before. The consequences of this

modification are easiest seen from the latent variable representation, where we now have y? = x′β̃+ũ

with “new” error term ũ ≡ x′ε+ u, such that

E[ũ|x] = 0 and E[ũũ′|x] = x′Ωx+ 2x′ψ + 1 ≡ σ2
ũ

and ũ/σũ is distributed with distribution function F . If ε and u are jointly normal with covariance

structure given by Σ, we obtain an ordered probit model with unobserved heterogeneity. However,

in principle, we do not need to know the distributions of ε or u, as long as F is a well-defined

distribution function. In this case, we can express the cumulative probabilities in the random

coefficients model as

Pr[y ≤ j|x] = F

(
κj − x′β̃

σũ

)
≡ F̃j(x) (7)

where σũ =
√
x′Ωx+ 2x′ψ + 1 can be seen as dispersion parameter. The standard model is a

special case of the random coefficients model under the assumption of zero covariance matrix Ω
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and zero covariance vector ψ (deterministic parameters) which can be used for a simple LR test to

discriminate between both models.

The probability density function of y can be obtained in the same way as in (2), and one can

calculate marginal probability effects in the random coefficients model as

MPEjl(x) =
[
f̃j−1(x)− f̃j(x)

] β̃l

σũ

+
[
f̃j−1(x)

(
κj−1 − x′β̃

)
− f̃j(x)

(
κj − x′β̃

)] x′Ωl + ψl

σ3
ũ

(8)

by using product and chain rules. In (8), Ωl denotes the l-th column in Ω and ψl the l-th element in

ψ, respectively, and f̃(z) = dF̃ (z)/dz. The first term in (8) corresponds to the marginal probability

effects in the standard model corrected for the standard deviation of the disturbance ũ. The second

term arises because we assume a specific form of heteroscedasticity which makes the error term

dependent on x. Consequently, marginal probability effects in the random coefficient model are

more flexible than those in the standard model since the sign of the second term is indeterminate.

The random coefficients model can be estimated directly by the method of maximum likelihood

with heteroscedasticity corrected index function. However, some caution is required in running

the optimization routines. Although the parameters of the model are all identified by functional

form, the specific structure of the model might cause problems in some datasets. Specifically,

certain values of Ω, ψ and x can drive σ2
ũ to be negative or its square root to be almost linear

in the parameters, such that the argument in F gets complex or is not identified, respectively.

Nevertheless, if the data support the model, we should find reasonable estimates of the elements in

Ω and ψ.

3.3 Finite Mixture Model

The third approach is a finite mixture model for ordered data (Everitt, 1988; Everitt and Merette,

1990; Uebersax, 1999) which provides a very flexible way of modeling heterogeneity among groups

of individuals. It is supposed that the population is split into C distinct latent classes and each
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class has its own data-generating process, i.e. we relax the distributional assumption of the standard

model and its implied homogeneity. To fix ideas, let c = 1, . . . , C denote the index of classes and

write the cumulative probabilities for class c as

Pr[yc ≤ j|x] = F (κcj − x′βc) ≡ Fcj(x)

However, individual class membership is not observable and we assume that each individual belongs

to a certain class c with probability πc. Thus, we can write the cumulative probabilities of the

observed outcomes as a mixture of class specific cumulative probabilities

Pr[y ≤ j|x] =
C∑

c=1

πcFcj(x) (9)

where the πc’s sum up to unity. The probability density function of the ordered outcome is given

by Pr[y = j|x] =
∑

c πc

(
Fcj(x) − Fcj−1(x)

)
and marginal probability effects can be obtained, as

before, by taking the first order derivative with respect to xl

MPEjl(x) =
C∑

c=1

πc

(
fcj−1(x)− fcj(x)

)
βcl (10)

Again, the sign of marginal probability effects is indeterminate because of the dependence on πc

and βcl which might differ in magnitude and sign among classes. The statistical significance of these

differences can be tested by conducting a LR test with restrictions π1 = . . . = πC and β1 = . . . = βC ,

that is, a total number of (C − 1)(k + 1) restrictions.

The parameters of the finite mixture model can be estimated directly via maximum likelihood.

This requires maximization of a (in general multimodal) log-likelihood function of the form

lnL(θ, π|y, x, z) =
n∑

i=1

J∑
j=1

yij ln
{ C∑

c=1

πc

(
Fcj(xi)− Fcj−1(xi)

)}
where θ and π is shorthand notation for the vectors of class specific parameters θc (which include

thresholds and slopes) and probabilities πc, respectively, and yj is a binary variable indicating

whether y = j. The multimodality of the log-likelihood function and the large number of parameters

for increasing C might cause the optimization routines to be slow in finding the global maximum.
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Furthermore, although the probability function of the complete mixture might be well-defined,

the probabilities in a subset of classes can turn negative. An alternative approach of getting the

maximum likelihood estimates that circumvents these problems is to formulate the model as an

incomplete data problem and to apply the EM algorithm of Dempster et al. (1977).

To be more specific, let mc denote a binary variable indicating individual class membership

which can be interpreted as independent realizations of a C-component multinomial distribution

with component probabilities πc, the prior probability of belonging to class c. The likelihood

contribution for each individual conditional on observed class membership can be written as

L(θ, π|yi, xi,mi) =
J∏

j=1

{
C∏

c=1

[
πc

(
Fcj(xi)− Fcj−1(xi)

)]mci

}yij

Straightforward manipulations yield the (complete-data) log-likelihood function for a random sam-

ple of size n given m

lnL(θ, π|y, x,m) =
n∑

i=1

J∑
j=1

yij

C∑
c=1

mci

{
lnπc + ln

(
Fcj(xi)− Fcj−1(xi)

)}
(11)

Since we cannot observe individual class membership, that is the data are incomplete, we cannot

maximize this log-likelihood function directly.

The EM algorithm proceeds iteratively in two steps, based on an E-step in which the expectation

of (11) is taken with respect to m given the observed data and the current fit of θ and π, and an M-

step in which the log-likelihood function (11) is maximized with respect to θ and π given expected

individual class membership. The linearity of the complete-data log-likelihood in m allows for

direct calculation of the expected individual class membership given the observed data and the

parameters obtained in the q-th iteration step. This expectation corresponds to the probability of

the ith entity belonging to class c, henceforth called posterior probability τc. From the assumptions

above or simply by Bayes’ theorem it can be shown that

τc
(
y, x; θ(q), π(q)

)
=

π
(q)
c

(
F

(q)
cj (x)− F

(q)
cj−1(x)

)
C∑

c=1
π

(q)
c

(
F

(q)
cj (x)− F

(q)
cj−1(x)

)
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where F (q)
cj denotes the value of F evaluated at the parameters obtained in the q-th iteration step.

These probabilities can be used to anaylze the characteristics of each class, i.e. we can assign each

individual to the class for which its probability is the highest and then derive descriptive statistics

or marginal probability effects per class.

The M-step replaces mc in (11) by its expectation, τc, and therefore considers the expected

log-likelihood to be maximized. Again, the linearity in (11) provides a substantial simplification of

the optimization routine. First, updated estimates of π(q+1)
c can be obtained directly by taking the

sample average n−1∑
i τc(.). Secondly, each class can be maximized separately with respect to θc

to get updated estimates θ(q+1)
c taking into account the multiplicative factor τc. In other words, we

can estimate C simple ordered probits or logits while weighting the data appropriately and alter

the E- and M-steps repeatedly until the change in the difference between the log-likelihood values

is sufficiently small.

3.4 Sequential Model

The last alternative for a flexible ordered response model adopts methods from the literature on

discrete time duration data. In this literature, the main quantity of interest is the conditional exit

probability (or “hazard rate”) Pr[y = j|y ≥ j, x], where y is the duration of the spell and j is the

time of exit. The key insight is that such discrete time hazard rate models can be used for any

ordered response y. Once the conditional transition probabilities are determined, the unconditional

probabilities are obtained from the recursive relationship

Pr[y = j|x] = Pr[y = j|y ≥ j, x] Pr[y ≥ j|x] j = 1, . . . , J (12)

where

Pr[y ≥ 1|x] = 1

Pr[y ≥ j|x] =
j−1∏
r=1

{
1− Pr[y = r|y ≥ r, x]

}
j = 2, . . . , J (13)
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and it is understood that Pr[y = J |y ≥ J, x] = 1. Using (12) and (13) the whole probability function

of y can be expressed in terms of conditionals, or more precisely, as a sequence of binary choice

models where each decision is made for a specific category j conditional on refusing all categories

smaller than j. This kind of model can be motivated by a sequential response mechanism where

each of the J outcomes can be reached only step-by-step, starting with the lowest category, and

therefore the model is refered to as sequential model. This model implicitly accounts for the ordering

information in y without assuming any cardinality in the threshold mechanism.

To complete the model we specify the conditional transition probabilities as

Pr[y = j|y ≥ j, x] = F (αj + x′βj) = Fj(x) j = 1, . . . , J (14)

where αj is a category specific constant, βj is a category specific slope parameter, and it is under-

stood that αJ = ∞ such that FJ(∞) = 1. Therefore, in contrast to previously discussed models, we

do not parameterize the cumulative probabilities but rather the conditional transition probabilities.

The parameters can be estimated by running j consecutive binary choice models where the depen-

dent variable is the binary indicator yj defined in the previous section, and only observations with

y ≥ j are included. Therefore, estimation is simplified considerably compared to the generalized

threshold and the random coefficients model since no further restrictions on the parameter space

are required. The downside is that computation of the marginal probability effects is now more

complicated. It can be shown that

MPE1l(x) = f1(x)β1l

MPEjl(x) = fj(x)βjl Pr[y ≥ j|x]− Fj(x)
j−1∑
r=1

MPErl(x) j = 2, . . . , J (15)

Clearly, these effects are very flexible, as they can vary by category and do not rely on a single

crossing property or constant relative effects. The sequential model and the standard model are

nonnested models and one may use information based measures like the Akaike Information Cri-

terion (AIC) as a model selection criterion. Moreover, for the problem of choosing among the

generalized alternatives the same strategy is advisable.
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4 Empirical Illustration

In order to illustrate the benefit of the generalized ordered response models we analyze the effect

of income on happiness using data from the German Socio-Economic Panel (GSOEP; see also Boes

and Winkelmann, 2004). The relationship between income and happiness was studied before in

a number of papers (see, for example, Easterlin, 1973, 1974; Scitkovsky, 1975; Frey and Stutzer,

2000, 2002; Shields and Wheatley Price, 2004 and the references therein) and has gained renewed

interest in the recent literature because of its use for valuation of public goods or intangibles (see,

for example, Winkelmann and Winkelmann, 1998; Frey, Luechinger, and Stutzer, 2002; van Praag

and Baarsma, 2005).

We used data from the 1997 wave of the GSOEP and selected a sample of 1735 men aged

between 25 and 65. The dependent variable happiness with originally 11 categories was recoded to

avoid cells with low frequency and, after merging the lower categories 0/1/2 and 3/4, we retained

a total of J = 8 ordered response categories. We included among the regressors logarithmic family

income and logarithmic household size as well as a quadratic form in age, and two dummy variables

indicating good health status as well as unemployment.

In our regression analysis we assumed that F is the cumulative density function of the standard

normal distribution. The random coefficients model was simplified by restricting Ω and ψ such that

σ2
ũ = Ωllx

2
l +2ψlxl +1, where xl is assumed to be logarithmic income, Ωll denotes the l-th diagonal

element in Ω and ψl the l-th element in ψ, with all other elements equal to zero. In the finite

mixture model we considered only two latent classes (C = 2). The following discussion proceeds in

two steps: First, we evaluate the models by means of likelihood ratio tests and selection criteria,

and second, we examine the implications for interpretion in terms of marginal probability effects.

— Table 1 about here —

The first question we address is whether one of the models presented above uses the informa-
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tion inherent in the data optimally. For this purpose, we perform likelihood ratio tests or AIC

comparisons, depending on the situation. For example, the differences between the generalized

threshold and the standard ordered probit model are statistically signifcant if we can reject the

null hypothesis of no category specific parameters. This can be investigated by running a likeli-

hood ratio test with minus two times the difference between the log-likelihoods of the standard and

the generalized model as appropriate test statistic, showing a value of 79.98. The test statistic is

asymptotically χ2-distributed with 36 degrees of freedom. Thus, we can reject the null hypothesis,

and thereby the standard orderd probit model. Likewise, we can compare the random coefficients

model as well as the finite mixture model with the ordered probit, the latter being rejected in both

cases. The sequential model and the standard ordered probit are nonnested models which rules out

the application of a LR test. Instead, we may calculate the AIC for each model, showing values

of 6107.96 and 6096.24 for the ordered probit and the sequential probit, respectively. A smaller

value indicates a better fit while penalizing for the proliferation of parameters, and, although 36

parameters more, we favor the sequential probit to the ordered probit model. Furthermore, among

the generalized alternatives the generalized threshold and the sequential model have the smallest

AIC values, followed by the finite mixture model and the random coefficients model.

— Table 2 about here —

We now turn our attention to average marginal probability effects of income on happiness. The

MPE’s of the ordered probit model are reported in the first column of table 2. Our results show a

positive coefficient of logarithmic income, implying a negative sign of the MPE’s for low happiness

responses, switching into the positive for j ≥ 6. The interpretation of, for example, MPE6 = 0.0328

is that a one-percent increase in income raises the probability of happiness = 6 by approximately

0.0328 percentage points. Compared to the standard model, the generalized threshold and the

sequential model yield substantially different effects (see columns 2 and 3). First, the sign of

MPE5 changes, indicating a positive effect also for the fifth category. Second, the magnitude

14



of some MPE’s are clearly underestimated by the standard model. For example, the estimated

MPE6 in the generalized ordered response models is more than twice as large as in the ordered

probit. Third, and probabably most important, the sign of the marginal probability effect in the

utmost right part of the outcome distribution turns out to be negative, violating the single crossing

requirement of the simple model.

The results of the random coefficients model are reported in the fourth column of table 2.

The calculated MPE’s tend to support the results of the generalized threshold and the sequen-

tial model, although there is no negative effect on the highest happiness response. However, the

random coefficient specification provides further insights into the relationship between income and

happiness. We estimated Ω̂ll = 0.60 and ψ̂l = −0.77, the latter implying that unobservables in the

happiness equation are negatively correlated with the random coefficient. This can be interpreted

as follows: If unobservables in the happiness equation tend to increase the probability of higher

responses, then the effect of income is lower for these individuals.

In the finite mixture model we can make use of the posterior probabilities to obtain marginal

probability effects per class (see columns 5 and 6). The results indicate that the effect of income

on happiness can be neglected for one class (the relatively happy class with average happiness of

5.71) whereas for the class of relatively unhappy people (average happiness of 4.25) income plays a

much more important role.

5 Concluding Remarks

In this paper we argued that the standard ordered probit and ordered logit models, while commonly

used in applied work, are characterized by some restrictive and therefore non-desirable properties.

We then discussed four generalized models, namely the generalized threshold, the random coeffi-

cients, the finite mixture, and the sequential model. All of them are substantially more flexible in

analyzing marginal probability effects since they do not rely on constant relative effects or a single
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crossing property.

An illustrative application with data from the 1997 wave of the GSOEP dealt with the relation-

ship between income and happiness. We asked how a one-percent increase in income is predicted

to change the happiness distribution, ceteris paribus. The analysis showed that the estimated

marginal probability effects differed markedly between the standard ordered probit model and the

probit-specified alternatives. For example, a negative marginal effect for the highest answer cate-

gory (as predicted by the generalized threshold model) is ruled out by assumption in the standard

model.

As is not uncommon with such generalizations, they can be computationally burdensome due

to the larger number of parameters, restrictions on the parameter space, or a multimodality of the

likelihood function. Nevertheless, the greater flexibility and enhanced interpretation possibilities

should render these alternative models indispensable tools in all research situations, where an accu-

rate estimation of the marginal probability effects over the entire range of the outcome distribution

is of interest.
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