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Abstract:When a forecaster predicts the future value of a certain random variable

it is very likely that he will not only forecast that certain variable but he will also

forecast other variables from the same �eld. In the literature on the combination of

several individual forecasts univariate approaches have been used almost exclusively.

They deal with each forecasted variable at a time. In doing so all the information

stemming from the interaction of the variables is neglected. The aim of this report

is to show how a set of such multivariate forecasts can be combined eÆciently.

We will focus on various linear combinations and determine how the combination

weights should be chosen optimally with respect to the scalar mean square prediction

error (SMSPE) criterion. For this purpose we will assume that the �rst and second

order moments of the joint distribution of target variable and individual forecasts

are given. As a by-product linear adjustments of single forecasts are obtained. An

example illustrating the potential inherent in the multivariate approaches compared

to the classical univariate methods is presented. The performance of these methods

has to be reassessed if the moments of the joint distribution are unknown and have

to be estimated. Further investigations have to be carried out.

Keywords: Combination of forecasts, multivariate forecasts, linear combination.

AMS 2000 Subject Classi�cation: 62M20

1 Introduction

Let us be given k forecasts f

1

; : : : ; f

k

for an l-dimensional random vector y =

(y

1

; : : : ; y

l

)

T

. The forecasts are stacked to form a random vector f � (kl; 1), i.e.
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f = (f

T

1

; : : : ; f

T

k

)

T

. Our objective is to obtain a combined forecast vector f

comb

from

the single forecasts f

i

aiming at optimality within certain given classes of linear

combinations.

In the literature on the combination of forecasts univariate approaches have been

used almost exclusively, dealing with each forecasted variable y

j

at a time. Only

few work can be found on multivariate forecasts: Fuhrer and Haltmaier (1988)

and Wenzel (1999b, 2001) state the MMSPE-optimal choice of the combination

weights in a special case. Klapper (1999, 2000) develops rank-based procedures

for the combination of multivariate forecasts, whereas Wenzel (1998, 1999a, 2001)

determines optimal combination weights on the basis of a multivariate Pitman-

closeness criterion. Finally,Wenzel (2000, 2001) investigates the e�ect of shrinking

combined forecasts.

When applying univariate combinations, the information stemming from the inter-

action of the variables is neglected. The aim of this paper is to provide an extensive

analysis on how a set of multivariate forecasts can be combined e�ectively. We will

focus on various linear combinations and determine how the combination parame-

ters should be chosen optimally with respect to the scalar mean square prediction

error criterion.

A multivariate linear combination of the forecasts f

1

; : : : ; f

k

is given by

f

comb

= B

1

f

1

+ : : :+B

k

f

k

+ c =

k

X

i=1

B

i

f

i

+ c = Bf + c ; (1.1)

with B = (B

1

.

.

. : : :

.

.

. B

k

) 2 R

l�kl

and c 2 R

l

.

The number of parameters involved in such a linear combination is quite large,

namely kl

2

+ l. Consequently, it may be worthwhile considering variants which em-

ploy a smaller number of parameters but still capture the spirit of a multivariate

combination. This is especially true if the combination parameters have to be esti-

mated from empirical data.

But there are other reasons as well for which it may be appropriate to place certain

restrictions on the combination parametersB and c. For example, if all the individual

forecasts f

i

are unbiased for y, i.e. E(f

i

�y) = 0, i = 1; : : : ; k, the combined forecast

will be unbiased as well if we restrict c = 0 and

P

k

i=1

B

i

= I

l

.

Concerning optimality it is important to say by what measure the quality of a

forecast

~

f is to be judged. The most obvious measure is the matrix mean square

prediction error

MMSPE(

~

f ;y) = E[(y �

~

f)(y �

~

f)

T

]

= Cov(y �

~

f) + [E(y �

~

f)][E(y �

~

f)]

T

: (1.2)
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An alternative is o�ered by its scalar counterpart, the scalar mean square prediction

error

SMSPE(

~

f ;y) = E[(y �

~

f)

T

(y �

~

f)]

= tr(Cov(y�

~

f)) + [E(y �

~

f)]

T

[E(y �

~

f)]

= tr(MMSPE(

~

f ;y)) : (1.3)

The SMSPE is a scalar valued function. Hence, comparison of several forecasts

is more easily accomplished than by using the MMSPE which is matrix valued.

Here comparisons would have to be carried out in the L

�

owner ordering (L

�

owner,

1934). Consequently, SMSPE-optimality will be our target criterion. For the linear

combinations involving a full parameter matrix B, however, also optimality with

respect to the matrix valued MMSPE-criterion is granted, as we will demonstrate in

the respective sections. This corresponds to a result by Odell, Dorsett, Young

and Igwe (1989) who investigate the linear combination of vector estimators.

So, we will identify the SMSPE-optimal choice for the respective combination param-

eters. As we will see later on the optimal choice requires di�erent levels of knowledge

about the moments of the joint distribution of y and f depending on the chosen vari-

ant of the linear combination. In each case, however, moments up to order two are

involved. We will now introduce our notations:

Generalizing the approach from Harville (1985) to the case of multivariate fore-

casts we will assume the following setting: The expectations of y and f are given

by E(y) = �

0

and E(f) = E((f

T

1

; : : : ; f

T

k

)

T

) = (�

T

1

; : : : ;�

T

k

)

T

= �

f

giving rise to the

model:

�

y

f

�

=

�

�

0

�

f

�

+

�

"

0

"

f

�

=: �+ " ; (1.4)

where "

f

:= ("

T

1

; : : : ; "

T

k

)

T

. Consequently, E(") = 0 and the higher order moments

of " are the centered moments of (y; f

T

)

T

.

The elements of the l-dimensional target vector variable y are denoted by y =

(y

1

; : : : ; y

l

)

T

, whereas for i = 1; : : : ; k the elements of the forecast vector f

i

are

denoted by f

i

= (f

i;1

; : : : ; f

i;l

)

T

. The elements of the vectors � and " are named

accordingly.

The second order moments are given by

� := E(""

T

) = E

"

�

"

0

"

f

��

"

0

"

f

�

T

#

=:

�

�

00

�

0f

�

f0

�

�

�

(1.5)
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and

E(""

T

) = E

"

��

y

f

�

�

�

�

0

�

f

����

y

f

�

�

�

�

0

�

f

��

T

#

= Cov

��

y

f

��

:

(1.6)

Naturally, �

00

, �

�

and � are symmetric nonnegative de�nite matrices.

The lower left (kl� l)-submatrix �

f0

and the lower right (kl� kl)-submatrix �

�

of

� are block matrices consisting of (l � l)-dimensional blocks:

�

f0

=

0

B

B

B

@

�

10

�

20

.

.

.

�

k0

1

C

C

C

A

and �

�

=

0

B

B

B

@

�

11

�

12

: : : �

1k

�

21

�

22

: : : �

2k

.

.

.

.

.

.

.

.

.

.

.

.

�

k1

�

k2

: : : �

kk

1

C

C

C

A

: (1.7)

We will assume invertibility of the centered second order moment matrix of f

throughout, i.e. we assume invertibility of �

�

= Cov(f), and hence also invert-

ibility of the non-centered second order moment matrix �

�

+ �

f

�

T

f

= E(ff

T

) is

granted. Note that vectors and matrices are represented by bold face letters.

For the determination of the optimal combination parameters we will assume that

the �rst and second order moments of the joint distribution of y and f exist. If this

is not the case, e.g. if a component y

j

of the target vector variable y is trended,

then appropriate transformations of y and f should be undertaken, e.g. di�erencing

of the time series of observations on y

j

or consideration of relative changes. Since

f

1

; : : : ; f

k

are forecasts of y the same transformation should work for both, target

variable and forecasts.

Furthermore, we will assume that we know the �rst and second order moments of the

joint distribution of y and f , but not the distribution itself. (This describes state 2 of

knowledge in the classi�cation scheme by Harville (1985). State 1 means complete

knowledge about the distribution.)

We will see that the variants of the SMSPE-optimal combined forecasts depend on

di�erent portions of these �rst and second order moments. In practical applications

such moments will hardly ever be known. (Thus our knowledge falls even behind

state 4 of knowledge in Harville's scheme, where some assumptions on the �rst

order moments are made.) Consequently, we will have to estimate the necessary

moments from a sample of observations on the variables of interest. Then we plug

these estimators into the formulae for the optimal combinations. We may apply the

ordinary sample moments as estimators, but of course one might think of using

alternatives for this step, e.g. robust estimators.

4



Section 2 deals with the basic multivariate linear approaches, the univariate linear

approaches can be obtained as the special case l = 1. An alternative view on two

of the linear approaches via consideration of forecast errors is presented in Section

3. Section 4 investigates variants which require less knowledge about the covariance

structure of the joint distribution of y and f . Section 5 considers the special case

of k = 1 forecast, which results in adjustment of an individual forecast. Section 6

presents an analysis where for a set of exemplary �rst and second order moments of

the joint distribution of y and f the potential of the various multivariate adjustments

and combinations of forecasts is explored and compared to the univariate treatment

of each variable involved. The question in how far the various methods are sensitive

to the chosen coordinate system is discussed in Section 7. Section 8 concludes the

report. Appendix A lists some results mostly from the theory of matrix di�erential

calculus which will be useful in the subsequent sections. Appendix B proves Lemma

3.1.

We are now going to investigate the linear approach to the combination of multi-

variate forecasts.

2 The multivariate linear approach

In the univariate case the linear combination approach is used predominantly in the

literature. A good overview on the many investigations carried out in this direction is

provided e.g. byClemen (1989) orThiele (1993). Hence, it is nearby to concentrate

on linear combinations of multivariate forecasts in the �rst place. The results for

the linear combination of univariate forecasts follow as the special case l = 1 from

the subsequent derivations (compare also Troschke and Trenkler, 2000).

Linearly combined forecasts are of the form

Bf + c = B

1

f

1

+ : : :+B

k

f

k

+ c =

k

X

i=1

B

i

f

i

+ c ; (2.1)

where it may be appropriate to place certain restrictions on the combination param-

eters B = (B

1

jB

2

j : : : jB

k

) 2 R

l�kl

and c 2 R

l

.

We will consider two possible restrictions on the combination parameters. First we

may want to neglect the constant term c in the linear combination, i.e. we may use

the restriction c = 0. On the other hand we may restrict the parameter matrices such

that they sum up to unity, i.e.

P

k

i=1

B

i

= I

l

, where I

l

is the l � l identity matrix.

As mentioned in the introduction using both restrictions results in an unbiased

combination from unbiased individual forecasts.
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Since each of the two restrictions may or may not be utilized we arrive at four

di�erent linear combinations, which we are now going to examine. For each of the

variants we will state how the combination parameters should be chosen in order to

minimize the scalar mean square prediction error of such a combined forecast and

we will provide the respective minimal values.

The �rst considered variant of the linear approach is

f

B;c

= Bf + c : (2.2)

No restrictions are imposed on the combination parameters B and c in this set-up.

The expectation of f

B;c

is given as

E(f

B;c

) = E(Bf + c) = BE(f) + c = B�

f

+ c : (2.3)

We now want to determine how the combination parameters B and c should be

chosen in order to minimize the scalar mean square prediction error of such a com-

bined forecast. To achieve this goal we will perform the following three steps: In the

�rst step we will explicitly calculate the SMSPE-function. With the help of matrix

di�erential calculus we will di�erentiate this function with respect to the combina-

tion parameters B and c in the second step. In the �nal step we will simultaneously

equate these derivatives to zero and solve the resulting linear equation system. (Com-

pare also De�nition A.3 and Lemma A.4.) The unique solution (B

opt

; c

opt

) of the

equation system produces the desired minimum of the SMSPE-function.

Step 1: Explicit calculation of the SMSPE-function. Since it will be useful

later on we �rst calculate the matrix mean square prediction error function and

then exploit the fact that SMSPE(f

B;c

;y) = tr(MMSPE(f

B;c

;y)):

MMSPE(f

B;c

;y) = E[(y � f

B;c

)(y � f

B;c

)

T

]

= Cov(y� f

B;c

) + [E(y � f

B;c

)][E(y � f

B;c

)]

T

= �

00

�B�

f0

��

0f

B

T

+B�

�

B

T

+(�

0

�B�

f

� c)(�

0

�B�

f

� c)

T

: (2.4)

Taking traces and regrouping the terms with respect to the occurring unknowns we

6



arrive at the following expression for the scalar mean square prediction error of f

B;c

:

SMSPE(f

B;c

;y) = tr(MMSPE(f

B;c

;y))

= tr(B

T

B(�

�

+ �

f

�

T

f

))

� 2 tr(B(�

f0

+ �

f

�

T

0

))

+ 2c

T

B�

f

+ c

T

c

� 2�

T

0

c

+ tr(�

00

) + �

T

0

�

0

: (2.5)

Step 2: Di�erentiation. Applying Lemma (A.5) we get

@SMSPE(f

B;c

;y)

@c

= 2 [c� �

0

+B�

f

] : (2.6)

Lemma A.6 leads us to

@SMSPE(f

B;c

;y)

@B

= 2 [B(�

�

+ �

f

�

T

f

)� (�

0f

+ �

0

�

T

f

) + c�

T

f

] : (2.7)

Step 3: Equating to zero. Setting Equations (2.6) and (2.7) simultaneously to

zero and solving the resulting linear equation system for the unknown parameters

we obtain the optimal choices for B and c.

From Equation (2.6) we get

c

opt

= �

0

�B

opt

�

f

: (2.8)

Using (2.8) from (2.7) we obtain

B

opt

= �

0f

�

�1

�

: (2.9)

Inserting this result into Equation (2.8) we �nally arrive at

c

opt

= �

0

��

0f

�

�1

�

�

f

: (2.10)

From Equation (2.3) it is obvious that the combined forecast f

B

opt

;c

opt

is unbiased

even if the single forecasts are biased.

Provided that the solution (B

opt

; c

opt

) is unique, it can be seen that this solution

describes a minimum of the SMSPE-function within the considered class of combined

7



forecasts:

SMSPE(f

B;c

;y) = E[(y� f

B;c

)

T

(y� f

B;c

)]

= E[(y�Bf � c)

T

(y �Bf � c)]

= E

"

l

X

j=1

((y�Bf � c)

j

)

2

#

= E

"

l

X

j=1

(y

j

�B

j�

f � c

j

)

2

#

(2.11)

is a quadratic function in the unknown parameters bounded below by the value

0. Here (y � Bf � c)

j

denotes the j-th component of the vector y � Bf � c and

B

j�

= (B

j1

; : : : ; B

j(kl)

) denotes the j-th row of the parameter matrix B 2 R

l�kl

.

Inserting (B

opt

; c

opt

) into Equation (2.5) we may derive that the optimal SMSPE-

value is given by

SMSPE(f

B

opt

;c

opt

;y) = tr(�

00

)� tr(�

0f

�

�1

�

�

f0

) : (2.12)

As indicated in the introduction the above choice of combination parameters is not

only optimal with respect to the SMSPE- but also with respect to the MMSPE-

criterion: By inserting B

opt

and c

opt

into Equation (2.4) we get the corresponding

value

MMSPE(f

B

opt

;c

opt

;y) = �

00

��

0f

�

�1

�

�

f0

: (2.13)

Using Equations (2.4) and (2.13) we can see that the di�erence

MMSPE(f

B;c

;y)�MMSPE(f

B

opt

;c

opt

;y)

= (�

0

�B�

f

� c)(�

0

�B�

f

� c)

T

+B�

�

B

T

�B�

f0

��

0f

B

T

+�

0f

�

�1

�

�

f0

= (�

0

�B�

f

� c)(�

0

�B�

f

� c)

T

+ (B�

�

��

0f

)�

�1

�

(B�

�

��

0f

)

T

(2.14)

is always nonnegative de�nite, such that MMSPE-optimality is shown.

For a simple example see Section 6 where the potential of this combination is inves-

tigated for exemplary choices of � and � in the case of k = 2 forecasts of dimension

l = 2.

If we drop the constant term c and still place no restrictions on B, we obtain

f

B

= Bf ; (2.15)

8



with expectation

E(f

B

) = B�

f

: (2.16)

Setting c = 0 we derive the SMSPE of f

B

from Equation (2.5):

SMSPE(f

B

;y) =

tr(B

T

B(�

�

+ �

f

�

T

f

))

� 2 tr(B(�

f0

+ �

f

�

T

0

))

+ tr(�

00

) + �

T

0

�

0

: (2.17)

Di�erentiation with respect to B and setting the derivative equal to zero delivers

the optimal choice for B within this approach:

B

opt

= (�

0f

+ �

0

�

T

f

) (�

�

+ �

f

�

T

f

)

�1

: (2.18)

It is obvious that f

B

opt

is not necessarily unbiased even if the individual forecasts

are unbiased. The corresponding optimal SMSPE-value is given by

SMSPE(f

B

opt

;y) = tr(�

00

) + �

T

0

�

0

� tr

�

(�

0f

+ �

0

�

T

f

)(�

�

+ �

f

�

T

f

)

�1

(�

f0

+ �

f

�

T

0

)

�

: (2.19)

With the help of Lemma A.1 this may be rewritten as

SMSPE(f

B

opt

;y) = tr(�

00

)� tr(�

0f

�

�1

�

�

f0

)

+

�

�

0

��

0f

�

�1

�

�

f

�

T

�

�

0

��

0f

�

�1

�

�

f

�

1 + �

T

f

�

�1

�

�

f

(2.20)

such that in view of Equation (2.12) the loss caused by dropping the constant term

becomes obvious.

Similarly to the previous combination we can show that the di�erence

MMSPE(f

B

;y)�MMSPE(f

B

opt

;y)

= [B(�

�

+ �

f

�

T

f

)� (�

0f

+ �

0

�

T

f

)] �

� [�

�

+ �

f

�

T

f

]

�1

[B(�

�

+ �

f

�

T

f

)� (�

0f

+ �

0

�

T

f

)]

T

(2.21)

is always nonnegative de�nite, such that f

B

opt

is the MMSPE-optimal combination

as well.

The remaining two combinations f

B;c;rest

= Bf + c and f

B;rest

= Bf utilize the re-

striction

P

k

i=1

B

i

= I

l

of the weight matrices summing up to the identity matrix.
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Like in the univariate case (compare Troschke and Trenkler, 2000, Section 2)

it is possible to incorporate this restriction into the goal function and then calcu-

late the optimal combination parameters on that basis. The process, however, gets

rather involved. To avoid this the next section will present an alternative view on

forecast combination based on the forecast errors. More importantly, this alternative

view demonstrates the close relationship with the covariance adjustment technique

introduced by Rao (1966, 1967). Note that the restriction

P

k

i=1

B

i

= I

l

is essential

for this alternative view.

3 Alternative representations using error terms

Let us �rst consider the combined forecast

f

B;rest

= Bf =

k

X

i=1

B

i

f

i

with

k

X

i=1

B

i

= I

l

: (3.1)

This combination is designed for the case where each single forecast f

i

is unbiased

and hence �

i

= E(f

i

) = E(y) = �

0

for i = 1; : : : ; k is assumed in the calculation

of the optimal combination weights for f

B;rest

. Under the unbiasedness assumption

f

B;rest

is unbiased as well:

E(f

B;rest

) = B�

f

=

k

X

i=1

B

i

�

i

=

k

X

i=1

B

i

�

0

= �

0

= E(y) : (3.2)

Under the restriction

P

k

i=1

B

i

= I

l

the error of the combined forecast results from

the individual forecast errors e

i

= f

i

� y as a linear combination with exactly the

same weights occurring in the combined forecast:

e

B;rest

= f

B;rest

� y =

k

X

i=1

B

i

f

i

�

 

k

X

i=1

B

i

!

y

=

k

X

i=1

B

i

(f

i

� y) =

k

X

i=1

B

i

e

i

: (3.3)

Utilizing the restriction one more time we may continue

e

B;rest

=

 

I

l

�

k

X

i=2

B

i

!

e

1

+

k

X

i=2

B

i

e

i

= e

1

+

k

X

i=2

B

i

(e

i

� e

1

)

= e

1

+ (B

2

j : : : jB

k

)

0

B

@

e

2

� e

1

.

.

.

e

k

� e

1

1

C

A

=: e

1

+B

red

d : (3.4)
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Obviously, B

red

is a reduced version of B from which the complete B can be recon-

structed via the restriction. d is a (k � 1)l-dimensional random vector, where we

may also write e

i

� e

1

= (f

i

� y)� (f

1

� y) = f

i

� f

1

.

By the unbiasedness of the individual forecasts it follows that e

1

is an unbiased

statistic for the non-stochastic 0 2 R

l

and that d is unbiased for 0 2 R

(k�1)l

. This is

a situation where we can apply the (strong) covariance adjustment technique (Rao

1966, 1967), compare Lemma A.7 with T = e

1

, � = 0 2 R

l

, Z = d and m = (k�1)l.

In order to obtain the optimal combination matrix B

red

and hence B from Lemma

A.7 we need to know the covariance matrix W of (e

T

1

;d

T

)

T

. This covariance matrix

may be calculated from the given second order moment matrix � belonging to the

joint distribution of y and f .

At this stage we have to make a short stop to evaluate the unbiasedness assumption

connected with the combination f

B;rest

and its e�ect on the second order moment

matrix. Under the unbiasedness assumption we calculate the second order moment

matrix as

�

� = E

2

6

6

6

4

0

B

B

B

@

0

B

B

B

@

y

f

1

.

.

.

f

k

1

C

C

C

A

�

0

B

B

B

@

�

0

�

0

.

.

.

�

0

1

C

C

C

A

1

C

C

C

A

0

B

B

B

@

0

B

B

B

@

y

f

1

.

.

.

f

k

1

C

C

C

A

�

0

B

B

B

@

�

0

�

0

.

.

.

�

0

1

C

C

C

A

1

C

C

C

A

T

3

7

7

7

5

= E

"

��

y

f

�

� (1

k+1


 �

0

)

���

y

f

�

� (1

k+1


 �

0

)

�

T

#

; (3.5)

where 
 denotes the Kronecker product, i.e. 1

k+1


�

0

= (�

T

0

; : : : ;�

T

0

)

T

2 R

(k+1)l

.

The unbiasedness property is assumed to hold when calculating the optimal combi-

nation parameters, but of course this assumption may in fact not be true. In this

case the true second order moment matrix is given as

� = E

2

6

6

6

4

0

B

B

B

@

0

B

B

B

@

y

f

1

.

.

.

f

k

1

C

C

C

A

�

0

B

B

B

@

�

0

�

1

.

.

.

�

k

1

C

C

C

A

1

C

C

C

A

0

B

B

B

@

0

B

B

B

@

y

f

1

.

.

.

f

k

1

C

C

C

A

�

0

B

B

B

@

�

0

�

1

.

.

.

�

k

1

C

C

C

A

1

C

C

C

A

T

3

7

7

7

5

= E

"

��

y

f

�

�

�

�

0

�

f

����

y

f

�

�

�

�

0

�

f

��

T

#

: (3.6)

Only if the unbiased assumption is correct the matrices� and

�

� coincide. Otherwise

we can establish the following relationship:

�

� = �+ ��

T

� �(1

k+1


 �

0

)

T

� (1

k+1


 �

0

)�

T

+(1

k+1


 �

0

)(1

k+1


 �

0

)

T

(3.7)
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and, consequently,

�

�

00

= �

00

�

�

f0

= �

f0

�

�

�

= �

�

+ �

f

�

T

f

� �

f

(1

k


 �

0

)

T

� (1

k


 �

0

)�

T

f

+(1

k


 �

0

)(1

k


 �

0

)

T

: (3.8)

When considering the combination f

B;rest

we work with the unbiasedness assumption

and hence we use the second order moment matrix

�

�. We have to be aware, however,

that the unbiasedness assumption may not be true and hence � and

�

� may di�er.

Now we come back to the calculation of the covariance matrix W needed to apply

the covariance adjustment technique. Of course, it will be calculated under the

unbiasedness assumption, i.e. from

�

�, and will, therefore, be denoted as

�

W.

The current situation is the counterpart of univariate forecast combination with the

combination weights adding up to one. In the corresponding literature the optimal

combination weights are generally given in terms of the second order moments of

the errors. To clarify the connection to our results we �rst want to relate the second

order moments of the errors to

�

�:

Cov

2

6

6

6

4

0

B

B

B

@

e

1

e

2

.

.

.

e

k

1

C

C

C

A

3

7

7

7

5

=:

0

B

B

B

@

�

V

11

�

V

12

: : :

�

V

1k

�

V

21

�

V

22

: : :

�

V

2k

.

.

.

.

.

.

.

.

.

.

.

.

�

V

k1

�

V

k2

: : :

�

V

kk

1

C

C

C

A

=

�

V (3.9)

with

�

V

ij

= Cov(e

i

; e

j

) = Cov(f

i

� y; f

j

� y)

= Cov(f

i

; f

j

)� Cov(f

i

;y)� Cov(y; f

j

) + Cov(y;y)

=

�

�

ij

�

�

�

i0

�

�

�

0j

+

�

�

00

: (3.10)

From this we further calculate

Cov

��

e

1

d

��

=:

 

�

W

11

�

W

12

�

W

T

12

�

W

22

!

=

�

W ; (3.11)
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where

�

W

11

= Cov(e

1

) =

�

V

11

=

�

�

11

�

�

�

10

�

�

�

01

+

�

�

00

; (3.12)

�

W

12

= Cov(e

1

;d) = Cov

2

6

4

e

1

;

0

B

@

e

2

� e

1

.

.

.

e

k

� e

1

1

C

A

3

7

5

= (

�

V

12

�

�

V

11

; : : : ;

�

V

1k

�

�

V

11

)

= (

�

�

12

�

�

�

11

�

�

�

02

+

�

�

01

; : : : ;

�

�

1k

�

�

�

11

�

�

�

0k

+

�

�

01

) and (3.13)

�

W

22

= Cov(d) = Cov

2

6

4

0

B

@

e

2

� e

1

.

.

.

e

k

� e

1

1

C

A

;

0

B

@

e

2

� e

1

.

.

.

e

k

� e

1

1

C

A

3

7

5

= (Cov(e

i

� e

1

; e

s

� e

1

))

i;s=2;::: ;k

(3.14)

with

Cov(e

i

� e

1

; e

s

� e

1

) =

�

V

is

�

�

V

i1

�

�

V

1s

+

�

V

11

=

�

�

is

�

�

�

i1

�

�

�

1s

+

�

�

11

: (3.15)

Now knowing

�

W we may derive the optimal combination parameters for f

B;rest

from

Lemma A.7:

B

red;opt

= (B

2;opt

j : : : jB

k;opt

) = �

�

W

12

�

W

�1

22

and B

1;opt

= I

l

�

k

X

i=2

B

i;opt

:

(3.16)

In deriving the optimal value of the SMSPE-function corresponding to the above

optimal combination parameters we have to distinguish between two situations: If

the individual forecasts f

i

and hence also f

B;rest

are actually unbiased, we have

E(e

B;rest

) = 0 and, thus,

Cov(e

B;rest

) = E[(e

B;rest

)(e

B;rest

)

T

] = MMSPE(f

B;rest

;y) : (3.17)

Consequently, from Lemma A.7 we obtain the optimal value of the MMSPE-function

as

MMSPE(f

B

opt

;rest

;y) =

�

W

11

�

�

W

12

�

W

�1

22

�

W

21

; (3.18)

from which the corresponding optimal value of the SMSPE-function results by taking

traces

SMSPE(f

B

opt

;rest

;y) = tr(

�

W

11

)� tr(

�

W

12

�

W

�1

22

�

W

21

) : (3.19)
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If, however, we cannot assume unbiasedness we have to calculate the optimal

SMSPE-value by inserting the derived optimal combination parameters into the

general SMSPE-function given in Equation (2.5).

Since the (strong) covariance adjustment technique minimizes the covariance matrix

criterion it is clear that the above choice of the parameter matrix B is optimal with

respect to both criteria, MMSPE and SMSPE.

Now we turn to the combined forecast

f

B;c;rest

= Bf + c =

k

X

i=1

B

i

f

i

+ c with

k

X

i=1

B

i

= I

l

: (3.20)

Obviously, we no longer assume the individual forecasts to be unbiased, otherwise

there would be no need for introducing the constant term c.

The constant term can only inuence the bias of the combined forecast but not its

covariance matrix. Therefore the optimal choice for c is necessarily the one that

makes the combined forecast f

B

opt

;c

opt

;rest

unbiased, i.e.

c

opt

= �

0

�B

opt

�

f

: (3.21)

To �nd the optimal choice for B we may exploit this fact and consider the SMSPE

of

Bf + �

0

�B�

f

=

k

X

i=1

B

i

f

i

+

 

k

X

i=1

B

i

!

�

0

�

k

X

i=1

B

i

�

i

=

k

X

i=1

B

i

(f

i

� �

i

+ �

0

) ; (3.22)

where the restriction

P

k

i=1

B

i

= I

l

has been used as well.

Since the f

i

��

i

+�

0

are unbiased we are back in the previous case, where we wanted

to �nd the optimal weights B

i

for a linear combination of unbiased forecasts without

constant term but under the restriction of the combination weights summing up to

the identity matrix. Since the f

i

� �

i

+�

0

result from shifting the f

i

by a constant

vector, their second order moments are the same. Consequently, the optimal choice

for B is given by

B

red;opt

= (B

2;opt

j : : : jB

k;opt

) = �W

12

W

�1

22

and B

1;opt

= I

l

�

k

X

i=2

B

i;opt

;

(3.23)
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and the corresponding optimal SMSPE-value is given by

SMSPE(f

B

opt

;c

opt

;rest

;y) = tr(W

11

)� tr(W

12

W

�1

22

W

21

) : (3.24)

There is, however, no unbiasedness assumption in this case and for this reason we

now have to use the second order moment matrices �, V and W instead of

�

�,

�

V

and

�

W. V and W are calculated from � in exactly the same way as

�

V and

�

W are

calculated from

�

�.

Similarly to the previous case it is clear that we have SMSPE- as well as MMSPE-

optimality of the chosen combination parameters.

When applying the combinations to empirical data one often has to face the dif-

�culty that the moments � and � are unknown and, thus, have to be estimated

from the data. In this context it is important that the estimates are chosen appro-

priately, i.e. for f

B

opt

;rest

we have to estimate with the unbiasedness assumption and

for f

B

opt

;c

opt

;rest

we have to estimate without this assumption. Compare also Thiele

(1993, Sections 3.1.2 and 3.3.2) for a corresponding result in the univariate setting.

The question arises which is the proper method to estimate

�

� and hence B

opt

under

the unbiasedness assumption. How should the joint expectation �

0

of y and the

forecasts f

1

; : : : ; f

k

be estimated? As the mean of the observations on y, as the

mean of all observations on y and the f

i

, or otherwise? The following lemma implies

that the estimate for B

opt

is insensitive with respect to the estimation of �

0

, we may

even use the constant 0. The lemma is proven in Appendix B.

Lemma 3.1 The optimal parameter matrix B

opt

for the combination f

B

opt

;rest

is

not altered if we use any other constant vector than �

0

in the calculation of the

covariance matrix

�

� = E

"

��

y

f

�

� (1

k+1


 �

0

)

���

y

f

�

� (1

k+1


 �

0

)

�

T

#

:

In Section 4 we will introduce variants of the linear combinations requiring the

estimation of less parameters. They may prove useful especially if there are only few

data to estimate the combination parameters.

4 Variants involving less parameters

Considering the multivariate combination approaches introduced in Section 2 it

becomes obvious that they utilize a large number of parameters: f

B;c

involves a

15



total of l

2

k + l parameters, f

B

depends on l

2

k, f

B;rest

on l

2

(k � 1) and f

B;c;rest

on

l

2

(k� 1)+ l parameters. Even for relatively few forecasts f

1

; : : : ; f

k

and a relatively

small dimension l of the vector y the number of parameters becomes quite large.

Therefore, it seems worthwhile to look for variants of the considered linear ap-

proaches involving less parameters but still capturing the spirit of multivariate com-

bination. Our approach is to restrict the parameter matrix B = (B

1

.

.

. : : :

.

.

. B

k

) 2

R

l�kl

from the linear approaches such that the number of parameters is reduced.

If we restrict the full l � l weight matrices B

i

to be diagonal matrices

D

i

=

0

B

B

B

@

D

i;11

0 : : : 0

0 D

i;22

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : D

i;ll

1

C

C

C

A

(4.1)

we reduce the number of parameters in each weight matrix from l

2

to l. The resulting

linear combination without further restrictions on the D

i

and containing a constant

term c, for example, is

f

D;c

= Df + c = D

1

f

1

+ : : :+D

k

f

k

+ c ; (4.2)

where D = (D

1

j : : : jD

k

). Now only l(k+1) parameters are involved. The other three

combinations f

D

, f

D;rest

and f

D;c;rest

are de�ned analogously.

If we further restrict the weight matrices B

i

to be scalar multiples �

i

I

l

of the l � l

identity matrix, we further reduce the number of parameters in each weight matrix

to 1. The resulting linear combination without further restrictions on the �

i

and

having a constant term c, for example, is

f

�;c

= �

1

f

1

+ : : :+ �

k

f

k

+ c ; (4.3)

where � = (�

1

; : : : ; �

k

)

T

and only k + l parameters are involved. The other three

combinations f

�

, f

�;rest

and f

�;c;rest

are de�ned analogously.

We will refer to the combinations with full weight matrices B

i

as strong combina-

tions, to the combinations with diagonal weight matricesD

i

asmedium combinations

and to the combinations with scalar weight matrices �

i

I

l

as weak combinations.

We will see that the weak combinations under the restriction

P

k

i=1

�

i

= 1 of the

combination weights adding up to one can be interpreted in terms of covariance

adjustment as well, more precisely in terms of weak covariance adjustment as intro-

duced by Trenkler and Ihorst (1995). This correspondence is another reason to

look at weak combinations.

16



4.1 Medium combinations

Inspecting the medium combination approach more closely it becomes obvious that

each component of the forecasts is combined separately: The forecasts f

1;j

; : : : ; f

k;j

for the j-th component y

j

of the target vector y are combined in the fashion of

univariate forecast combination using the parameters D

1;jj

; : : : ; D

k;jj

and c

j

. Con-

sequently, the minimum SMSPE combination of the forecast vectors f

i

within the

medium setting is obtained by choosing D

1;jj

; : : : ; D

k;jj

and c

j

according to the

univariate MSPE-optimal choices for each j = 1; : : : ; l. These choices are listed in

Troschke and Trenkler (2000). Alternatively, they may be obtained from the

strong multivariate linear combinations in Sections 2 and 3 as the special case of

l = 1 dimensional target variable and forecasts. In part these results can also be

found in Harville (1985).

We will consider the medium combination with constant term and no restriction on

the sum of the D

i

as an example, i.e. we consider f

D;c

= D

1

f

1

+ : : :+D

k

f

k

+ c with

expectation

E(f

D;c

) = D

1

�

1

+ : : :+D

k

�

k

+ c : (4.4)

Using the abbreviations

~

f

j

= (f

1;j

; : : : ; f

k;j

)

T

,
~
�

j

= (�

1;j

; : : : ; �

k;j

)

T

and

~

D

j

=

(D

1;jj

; : : : ; D

k;jj

)

T

we conclude from the results in the univariate case that the

choices for c

j

and

~

D

j

minimizing the univariate MSPE-criterion are given by

(

~

D

j

)

opt

= �

�1

~

f

j

~

f

j

Cov(

~

f

j

; y

j

) and (c

j

)

opt

= �

0;j

� Cov(y

j

;

~

f

j

)�

�1

~

f

j

~

f

j

~
�

j

; (4.5)

where �

~

f

j

~

f

j

= Cov(

~

f

j

;

~

f

j

). Invertibility of �

~

f

j

~

f

j

is granted because �

�

is positive

de�nite, cf. Lemma A.9 with A = �

�

and A

j

= �

~

f

j

~

f

j

. By these (

~

D

j

)

opt

and (c

j

)

opt

for j = 1; : : : ; l the optimal choices D

opt

and c

opt

are determined.

Since

SMSPE(f

D;c

;y) = E[(y � f

D;c

)

T

(y� f

D;c

)]

= E[

l

X

j=1

(y

j

� (f

D;c

)

j

)

2

]

=

l

X

j=1

E[(y

j

� (f

D;c

)

j

)

2

]

=

l

X

j=1

MSPE((f

D;c

)

j

; y

j

) (4.6)
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and since each component is treated separately by the medium approach, the optimal

SMSPE-value is obtained as the sum of the optimalMSPE-values in each component,

i.e.

SMSPE(f

D

opt

;c

opt

;y) =

l

X

j=1

MSPE(f

(

~

D

j

)

opt

;(c

j

)

opt

; y

j

)

=

l

X

j=1

h

�

00;jj

� Cov(y

j

;

~

f

j

)�

�1

~

f

j

~

f

j

Cov(

~

f

j

; y

j

)

i

= tr(�

00

)�

l

X

j=1

Cov(y

j

;

~

f

j

)�

�1

~

f

j

~

f

j

Cov(

~

f

j

; y

j

) ; (4.7)

where �

00;jj

denotes the j-th diagonal element of �

00

.

To obtain these results as the special case l = 1 from the strong combination we set

f =

~

f

j

, B =

~

D

T

j

, c = c

j

, �

0

= �

0;j

, �

f

=
~
�

j

, �

00

= �

00;jj

, �

0f

= Cov(y

j

;

~

f

j

) and

�

�

= �

~

f

j

~

f

j

in the formulae for the combination f

B;c

.

4.2 Weak combinations

We will now derive the optimal combination parameters within the variants of the

weak approach. First let us consider the weak combination with constant term and

with no restriction on the sum of the �

i

, i.e. we consider f

�;c

= �

1

f

1

+ : : :+�

k

f

k

+c

with expectation

E(f

�;c

) = �

1

�

1

+ : : :+ �

k

�

k

+ c : (4.8)

Again, we will have to explicitly calculate the SMSPE-function of f

�;c

, di�erentiate

this function with respect to the occurring parameters � and c, and �nally equate

the derivatives simultaneously to zero.

Step 1: Explicit calculation of the SMSPE-function. By inserting B =

(�

1

I

l

j : : : j�

k

I

l

) into the general SMSPE-formula (2.5), utilizing our notation from

Section 1 and �nally applying Lemma A.2 we �nd the scalar mean square prediction
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error of f

�;c

as follows:

SMSPE(f

�;c

;y) =

�

T

H�

� 2�

T

h

+ 2c

T

 

k

X

i=1

�

i

�

i

!

+ c

T

c

� 2�

T

0

c

+ tr(�

00

) + �

T

0

�

0

; (4.9)

where

H :=

0

B

@

tr(�

11

) + �

T

1

�

1

: : : tr(�

1k

) + �

T

1

�

k

.

.

.

.

.

.

tr(�

k1

) + �

T

k

�

1

: : : tr(�

kk

) + �

T

k

�

k

1

C

A

=

0

B

@

tr(�

11

) : : : tr(�

1k

)

.

.

.

.

.

.

tr(�

k1

) : : : tr(�

kk

)

1

C

A

+

0

B

@

�

T

1

�

1

: : : �

T

1

�

k

.

.

.

.

.

.

�

T

k

�

1

: : : �

T

k

�

k

1

C

A

=: H

1

+H

2

(4.10)

are (k � k) symmetric matrices and

h :=

0

B

@

tr(�

10

) + �

T

1

�

0

.

.

.

tr(�

k0

) + �

T

k

�

0

1

C

A

=

0

B

@

tr(�

10

)

.

.

.

tr(�

k0

)

1

C

A

+

0

B

@

�

T

1

�

0

.

.

.

�

T

k

�

0

1

C

A

=: h

1

+ h

2

(4.11)

are k-dimensional vectors.

Note that by applying Lemma A.2 we may rewrite the third term of the above

function as

2c

T

 

k

X

i=1

�

i

�

i

!

= 2�

T

q

c

; (4.12)

where

q

c

=

0

B

@

c

T

�

1

.

.

.

c

T

�

k

1

C

A

; (4.13)
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which is useful for the subsequent calculation of the derivatives.

Step 2: Di�erentiation. Applying Lemma (A.5) we get

@SMSPE(f

�;c

;y)

@c

= 2

"

c� �

0

+

k

X

i=1

�

i

�

i

#

: (4.14)

and

@SMSPE(f

�;c

;y)

@�

= 2 [H�� h + q

c

] : (4.15)

Step 3: Equating to zero. Setting Equations (4.14) and (4.15) simultaneously to

zero and solving the resulting linear equation system for the unknown parameters

we obtain the optimal choices for � and c.

From Equation (4.14) we get

c

opt

= �

0

�

k

X

i=1

�

i;opt

�

i

: (4.16)

Setting the derivative (4.15) equal to zero and using the result (4.16) after some

lengthy calculations (involving reformulations like in Equations (4.12) and (4.13))

we �nally obtain H

1

�

opt

= h

1

or equivalently

�

opt

= H

�1

1

h

1

: (4.17)

Invertibility of H

1

is granted by the fact that �

�

is positive de�nite, cf. Lemma A.9

with A = �

�

and A

tr

= H

1

.

By the same reasoning as in the strong case it is obvious that this solution minimizes

the SMSPE-function within the considered class of weakly combined forecasts, cf.

Equation (2.11). From Equation (4.8) we may conclude that the combined forecast

f

�

opt

;c

opt

is unbiased even if the single forecasts are biased.

Inserting (�

opt

; c

opt

) into Equation (4.9) we may derive that the corresponding op-

timal SMSPE-value is given by

SMSPE(f

�

opt

;c

opt

;y) = tr(�

00

)� h

T

1

H

�1

1

h

1

: (4.18)

See Section 6 for an analysis of the potential o�ered by this combination in a simple

example.
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The weak combination without constant term and without restriction on the sum

of the �

i

is

f

�

= �

1

f

1

+ : : :+ �

k

f

k

(4.19)

with expectation

E(f

�

) = �

1

�

1

+ : : :+ �

k

�

k

: (4.20)

The corresponding SMSPE-function is obtained by setting c = 0 in Equation (4.9):

SMSPE(f

�

;y) = �

T

H�� 2�

T

h+ tr(�

00

) + �

T

0

�

0

: (4.21)

This expression is minimized by

�

opt

= H

�1

h ; (4.22)

where invertibility of H is granted by the positive de�niteness of �

�

+ �

f

�

T

f

and

Lemma A.9 with A = �

�

+ �

f

�

T

f

and A

tr

= H. Obviously, f

�

opt

need not be

unbiased even if the single forecasts f

i

are unbiased.

Inserting �

opt

into Equation (4.21) leads to the optimal value of the SMSPE-function

within the considered class of combinations:

SMSPE(f

�

opt

;y) = tr(�

00

) + �

T

0

�

0

� h

T

H

�1

h : (4.23)

The remaining two weak combinations f

�;rest

and f

�;c;rest

utilize the restriction

1

T

k

� = 1 of the scalar weights summing up to one. Like in the case of full weight

matrices (cf. Section 3) it is advantageous to choose a representation via the forecast

errors. Then the weak covariance adjustment technique (Ihorst, 1993, Trenkler

and Ihorst, 1995) can be applied.

Like in the case of f

B;rest

for the combined forecast

f

�;rest

= (�

T


 I

l

)f =

k

X

i=1

�

i

f

i

with

k

X

i=1

�

i

= 1 (4.24)

we assume unbiasedness of each single forecast f

i

. Then also f

�;rest

is unbiased:

E(f

�;rest

) =

k

X

i=1

�

i

�

i

=

k

X

i=1

�

i

�

0

= �

0

= E(y) : (4.25)
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Again we see that under the restriction

P

k

i=1

�

i

= 1 the same weights �

i

occur in

the representation of the combined forecast error in terms of the individual forecast

errors:

e

�;rest

= f

�;rest

� y =

k

X

i=1

�

i

f

i

�

 

k

X

i=1

�

i

!

y =

k

X

i=1

�

i

(f

i

� y) =

k

X

i=1

�

i

e

i

:

(4.26)

Using the restriction again we arrive at

e

�;rest

=

 

1�

k

X

i=2

�

i

!

e

1

+

k

X

i=2

�

i

e

i

= e

1

+

k

X

i=2

�

i

(e

i

� e

1

) : (4.27)

Since the individual forecasts are unbiased we see that e

1

is an unbiased statistic for

the non-stochastic 0 2 R

l

and that e

i

�e

1

are unbiased for 0 2 R

l

for i = 2; : : : ; k. In

this situation we can apply the weak covariance adjustment technique from Lemma

A.8 with T = e

1

, � = 0 2 R

l

, p = k � 1, Z

i

= e

i+1

� e

1

and  = (

1

; : : : ; 

p

)

T

=

�(�

2

; : : : ; �

k

)

T

.

Note that (Z

T

1

; : : : ;Z

T

k�1

)

T

= d from Equation (3.4) such that

0

B

B

B

@

Cov(Z

1

) Cov(Z

1

;Z

2

) : : : Cov(Z

1

;Z

k�1

)

Cov(Z

2

;Z

1

) Cov(Z

2

) : : : Cov(Z

2

;Z

k�1

)

.

.

.

.

.

.

.

.

.

.

.

.

Cov(Z

k�1

;Z

1

) Cov(Z

k�1

;Z

2

) : : : Cov(Z

k�1

)

1

C

C

C

A

= Cov(d) =

�

W

22

(4.28)

from Equation (3.14) and

(Cov(T;Z

1

)j : : : jCov(T;Z

k�1

)) = Cov(T;d) =

�

W

12

(4.29)

from Equation (3.13). Remember that the �-accent denotes calculation under the

unbiasedness assumption.

Taking traces of the respective l � l-submatrices of

�

W

12

and

�

W

22

we obtain the

vector

�
g = (tr[Cov(T;Z

1

)]; : : : ; tr[Cov(T;Z

k�1

)])

T

(4.30)

and the matrix

�

G = (tr[Cov(Z

i

;Z

s

)])

i;s=1;::: ;k�1

: (4.31)
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From Lemma A.8 and the restriction 1

T

k

� = 1 we get the optimal choice for � =

(�

1

; : : : ; �

k

)

T

as

0

B

@

�

2;opt

.

.

.

�

k;opt

1

C

A

= �

opt

= �

�

G

�1

�
g and �

1;opt

= 1�

k

X

i=2

�

i;opt

: (4.32)

In deriving the corresponding optimal value of the SMSPE-function again we have

to distinguish between two situations: If the individual forecasts f

i

and hence also

f

�;rest

are actually unbiased, we have E(e

�;rest

) = 0 and, thus,

tr(Cov(e

�;rest

)) = E[(e

�;rest

)

T

(e

�;rest

)] = SMSPE(f

�;rest

;y) : (4.33)

Consequently, from Lemma A.8 we have the optimal value of the SMSPE-function

SMSPE(f

�

opt

;rest

;y) = tr(

�

W

11

)�
�
g

T

�

G

�1

�
g ; (4.34)

where

�

W

11

= Cov(e

1

). If, however, we cannot assume unbiasedness we have to

calculate the SMSPE-value by inserting B = �

T

opt


 I

l

and c = 0 into the general

SMSPE-function from Equation (2.5).

As the last possibility of the weak approach we consider the combined forecast

f

�;c;rest

=

k

X

i=1

�

i

f

i

+ c with

k

X

i=1

�

i

= 1 ; (4.35)

where unbiasedness of the individual forecasts is no longer assumed.

Following the same reasoning as in Section 3 we can conclude that the optimal

parameter values in this case are given by

c

opt

= �

0

�

k

X

i=1

�

i;opt

�

i

; (4.36)

0

B

@

�

2;opt

.

.

.

�

k;opt

1

C

A

= �G

�1

g and �

1;opt

= 1�

k

X

i=2

�

i;opt

; (4.37)

whereas the corresponding optimal value of the SMSPE-function is

SMSPE(f

�

opt

;c

opt

;rest

;y) = tr(W

11

)� g

T

G

�1

g : (4.38)
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Here all moments have to be calculated without the unbiasedness assumption. g

and G are calculated from W

12

and W

22

in exactly the same way as
�
g and

�

G are

calculated from

�

W

12

and

�

W

22

.

It should be pointed out, that the weak combination approach needs even less pa-

rameters than would be involved if the forecasts for each target variable y

j

were

combined within the univariate setting (which is the medium approach as outlined

above). Consequently, it may be practical in empirical applications where the num-

ber of data available for parameter estimation is not large.

On the other hand all components of the forecasts are treated alike by the weak

approach: The same coeÆcient �

i

is assigned to each component of the forecast f

i

.

Thus �

i

constitutes a compromise between the choices which would have been made

for each component separately in the medium approach. Only the constant vector

c allows for an individual correction in each of the l components. In how far such a

procedure is reasonable depends on the variables under consideration.

4.3 Arithmetic mean and general remarks

Finally, we will also include the arithmetic mean of the individual forecasts in our

considerations: It is a very simple linear combination and has proven (at least in the

univariate case) to be very powerful in empirical investigations (cf. Kang, 1986).

f

am

=

1

k

k

X

i=1

f

i

= Bf with B =

1

k

(I

l

j : : : jI

l

) 2 R

l�kl

= f

�

with � =

1

k

1

k

: (4.39)

Its expectation is

E(f

am

) =

1

k

k

X

i=1

�

i

(4.40)

and thus the unweighted average is not unbiased in general. If, however, each indi-

vidual forecast is unbiased, then also f

am

is. The corresponding SMSPE-value can

be obtained by inserting � =

1

k

1

k

and c = 0 into Equation (4.9):

SMSPE(f

am

;y) =

1

k

2

1

T

k

H1

k

�

2

k

1

T

k

h+ tr(�

00

) + �

T

0

�

0

: (4.41)

Taking a closer look at the optimal combination parameters in the strong, medium

and weak multivariate linear approaches we detect that all of them utilize moments
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of the joint distribution of y and f up to order two. The level of knowledge required,

however, is di�erent: The strong approaches work with the full matrices �

is

(i; s =

0; : : : ; k), whereas the medium and weak approaches only use the diagonal elements

of the �

is

. While the medium approaches use these diagonal elements individually,

the weak approaches only work with their sums, i.e. with the traces of the �

is

.

It is important to note that we may as well regard the problem of �nding the optimal

combination parameters in the multivariate linear approaches as linear regression

problems just like Granger and Ramanathan (1984) showed for the univariate

case. This point of view is very practical for empirical applications since standard

statistics software can be used. For details on the regression interpretation we refer

to Troschke (2002).

In Section 6 we will report about �rst investigations on the quality of the multivariate

linear approaches in the simple case of k = 2 forecasts for l = 2 variables. But �rst

we will turn to the special case k = 1.

5 The special case k = 1: Adjustment of forecasts

There is no reason why the special case k = 1 should be ruled out in the above

considerations. Of course, this "combination of one multivariate forecast" should

rather be addressed as adjustment of single multivariate forecasts. Exploiting the

moment structure of the joint distribution of the target vector variable y and a

single forecast f

i

the performance of f

i

can be improved with respect to the scalar

mean square prediction error by this kind of adjustment. Granger (1989, p. 169)

points out the usefulness of such adjustments in the univariate case.

The SMSPE of the forecast f

i

is given by

SMSPE(f

i

;y) = E[(f

i

� y)

T

(f

i

� y)]

= tr[Cov(f

i

� y)] + [E(f

i

� y)]

T

[E(f

i

� y)]

= tr(�

ii

) + �

T

i

�

i

+ tr(�

00

) + �

T

0

�

0

� 2[tr(�

i0

) + �

T

i

�

0

] :(5.1)

All of the multivariate linear combination approaches described above may be em-

ployed in this case resulting in the corresponding adjustments. Some of the adjust-

ments, however, are identical to others: While f

B;c;rest

, f

D;c;rest

and f

�;c;rest

coincide

for k = 1, the adjustment counterparts of f

B;rest

, f

D;rest

and f

�;rest

coincide with the

individual forecast. Consequently, there are only seven remaining di�erent adjust-

ments.

The optimal adjustment parameters and their corresponding optimal SMSPE-values

may be obtained from the respective formulae in the preceding sections by setting
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f = f

i

, �

f

= �

i

, �

�

= �

ii

, �

0f

= �

0i

, B = B

i

2 R

l�l

, D = D

i

2 R

l�l

and

� = �

i

2 R. We will illustrate this by two examples:

The strong multivariate unrestricted linear adjustment of f

i

with constant term is

(f

i

)

B;c

= Bf

i

+ c ; (5.2)

where B 2 R

l�l

and c 2 R

l

. The optimal choices for the parameters are obtained as

special cases of Equations (2.9) and (2.10), namely

B

opt

= �

0i

�

�1

ii

and c

opt

= �

0

��

0i

�

�1

ii

�

i

(5.3)

with corresponding optimal SMSPE-value from Equation (2.12)

SMSPE((f

i

)

B

opt

;c

opt

;y) = tr(�

00

)� tr(�

0i

�

�1

ii

�

i0

) : (5.4)

The strong (and medium and weak) multivariate linear adjustment of f

i

with constant

term and with the restriction of the weights summing up to the identity matrix is

(f

i

)

I

l

;c

= f

i

+ c : (5.5)

According to Equation (3.21) the optimal choice for c 2 R

l

is given by

c

opt

= �

0

� �

i

; (5.6)

thus resulting in the bias corrected forecast. The corresponding optimal SMSPE-

value is

SMSPE((f

i

)

I

l

;c

opt

;y) = tr(�

ii

) + tr(�

00

)� 2 tr(�

i0

) : (5.7)

As a consequence of the previous results each of the adjusted forecasts employing a

constant term c is unbiased.

In the following Section 6 we will carry out a �rst analysis of the potential inherent

in the new methods. The seven di�erent ways of adjusting a single forecast will be

included.

6 First comparisons

The purpose of this section is to present a �rst example of the potential inherent in

the multivariate adjustments and combinations. We will consider the simple case of

k = 2 forecasts f

1

and f

2

for an l = 2 dimensional target variable y. Consequently,
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the number of unknown combination parameters ranges from 1 for the weak f

�;rest

combination to 10 for the strong f

B;c

combination.

The example consists of a comparison of the optimal SMSPE-values which result

from a given set of moments � and �. In order to base the example on realistic

grounds these moments were obtained as the sample moments from an empirical

forecast data set. Of course such an example can provide only limited insight in

the performance of the various methods. Therefore, a more detailed analysis has to

follow and will be presented in a future paper.

We assume � and � to be given as follows:

� =

0

@

�

0

�

1

�

2

1

A

=

0

B

B

B

B

B

B

B

@

2:328571

1:961905

1:904762

1:857143

2:047619

1:928571

1

C

C

C

C

C

C

C

A

(6.1)

and

� =

0

@

�

00

�

01

�

02

�

10

�

11

�

12

�

20

�

21

�

22

1

A

=

0

B

B

B

B

B

B

B

@

3:018231 2:335850 2:412245 1:777891 1:899830 1:621088

2:335850 2:938549 2:265420 2:246939 1:812528 1:985374

2:412245 2:265420 3:229025 2:272109 2:510488 2:088435

1:777891 2:246939 2:272109 2:622449 1:649660 2:335034

1:899830 1:812528 2:510488 1:649660 2:134637 1:562925

1:621088 1:985374 2:088435 2:335034 1:562925 2:221088

1

C

C

C

C

C

C

C

A

:(6.2)

From these moments we may now determine the optimal adjustment or combination

parameters belonging to the di�erent methods. In order to obtain the corresponding

optimal SMSPE-values we can use the formulae derived in Sections 2 - 5.

Following the formulae from Section 2 we obtain, for example, the optimal pa-

rameters for the strong multivariate linear unrestricted combination approach with

constant term f

B;c

:

B

opt

=

�

0:505969 0:199559 0:223352 �0:112853

�0:448593 1:124554 0:845578 �0:461582

�

and

c

opt

=

�

0:754516

�0:113317

�

: (6.3)
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The corresponding optimal value of the SMSPE-function is

SMSPE(f

B

opt

;c

opt

;y) = 0:800234 : (6.4)

Since the arithmetic mean of the individual forecasts is a very simple and empiri-

cally very successful combining strategy, we decided to compare the potential of the

new techniques to that of the arithmetic mean. Consequently, all SMSPE-values in

Table 1 are presented relative to the SMSPE-value of the arithmetic mean, which

is 2.515893 in the present situation. All decimals have been deleted after the fourth

decimal such that methods outperforming the arithmetic mean can be identi�ed

immediately.

Since the moments � and � are assumed to be known, the calculations are carried

out on a theoretical basis and, hence, the SMSPE-values reect the theoretical rank-

ing of the various methods: the adjustments are not worse than the single forecasts;

the more elaborate combinations are not worse than the arithmetic mean and they

are not worse than the individual forecasts; the combination f

B

opt

;c

opt

is not worse

than f

B

opt

which in turn is not worse than f

B

opt

;rest

; likewise f

B

opt

;c

opt

is not worse

than f

B

opt

;c

opt

;rest

which in turn is not worse than f

B

opt

;rest

; the strong version of a

linear combination is not worse than the corresponding medium version which in

turn is not worse than the corresponding weak version.

It is interesting to analyze what margin of improvement is expected in the situation

under consideration: The expected scalar squared error loss of the best combination

f

B

opt

;c

opt

is 20% less than that of the arithmetic mean. The corresponding medium

and weak combinations are expected to be only 11% better than the arithmetic

mean. The medium approach is equivalent to the classical univariate treatment of

each component. Consequently, we can infer that the strong multivariate treatment

(incorporating the interactions between the components) has the potential to im-

prove upon the classical univariate treatment by 10% in the current example. The

best adjustments f

i;B

opt

;c

opt

are expected to be about 20% or 13% better than their

corresponding individual forecasts. It is also interesting to note that in general the

strong combinations and adjustments are far better than their medium counter-

parts whereas only small di�erences can be observed between the medium and the

weak counterparts. One should, however, take into consideration that the medium

and weak combinations and adjustments depend on far fewer parameters than their

strong counterparts. This may result in an advantage, when the combination or

adjustment parameters have to be estimated.

The results also reveal that the expected advantage of including a constant term

and / or dropping the restriction can be substantial.
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Forecast f

�

SMSPE(f

�

; y)

First forecast f

1

1.0654

Adjustments: f

1;B

opt

;c

opt

0.8516

f

1;B

opt

0.9909

f

1;I;c

opt

0.9896

f

1;D

opt

;c

opt

0.8861

f

1;D

opt

1.0632

f

1;�

opt

;c

opt

0.8931

f

1;�

opt

1.0643

Second forecast f

2

1.0422

Adjustments: f

2;B

opt

;c

opt

0.9043

f

2;B

opt

0.9263

f

2;I;c

opt

1.0104

f

2;D

opt

;c

opt

0.9902

f

2;D

opt

1.0329

f

2;�

opt

;c

opt

0.9902

f

2;�

opt

1.0413

Strong combinations: f

B

opt

;c

opt

0.8002

f

B

opt

0.8483

f

B

opt

;c

opt

;rest

0.9030

f

B

opt

;rest

0.9478

Medium combinations: f

D

opt

;c

opt

0.8842

f

D

opt

0.9771

f

D

opt

;c

opt

;rest

0.9388

f

D

opt

;rest

0.9851

Weak combinations: f

�

opt

;c

opt

0.8922

f

�

opt

0.9987

f

�

opt

;c

opt

;rest

0.9482

f

�

opt

;rest

0.9993

Table 1: SMSPE-values of adjusted and combined forecasts for certain known mo-

ments � and � (all values relative to the SMSPE of the arithmetic mean)
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It can be seen that there is some potential in the multivariate linear approaches to

outperform the arithmetic mean. How well this potential is exploited will depend

on how good the current sample reects the future relationship between target vari-

able y and forecasts f

i

. Clearly, the more suitable data are available for estimating

that relationship, the better. Also the data should not be subject to extreme struc-

tural changes during the considered period. Consequently, the multivariate linear

approaches should be more valuable for monthly, weekly or even daily data (e.g.

from the stock market) than they are for yearly data.

7 Translations and Scale Transformations

It is an important thing to know in which way the linear adjustments and combina-

tions of multivariate forecasts are a�ected by transformations of origin and scale, i.e.

in how far the results depend on the chosen coordinate system. We investigate if the

adjusted and combined forecasts are transformed in the same way as the individual

forecasts.

Let us �rst consider translations of the data. By this we mean that we add a constant

vector � 2 R

l

to the target variable y as well as to each single forecast f

i

, i.e. after

the translation we obtain the new variables

�

~
y

~

f

�

=

�

y

f

�

+ 1

k+1


 � : (7.1)

The expectation vector
~
� and the centered second order moment matrix

~

� of the

transformed variables (
~
y

T

;

~

f

T

)

T

relate to the corresponding quantities � and � of

the original variables (y

T

; f

T

)

T

as follows:

~
� = �+ 1

k+1


 � and

~

� = � : (7.2)

The second order moment matrix

�

� which is calculated di�erently because of the

assumption of unbiasedness of each single forecast is not a�ected by such a transla-

tion either. Consequently, also the matrices V,

�

V, W and

�

W are not a�ected. The

matrices and vectors H

1

, h

1

, G, g,

�

G and
�
g connected with the weak approaches

are not a�ected as well, whereas H and h are changed.

Consulting the equations determining the optimal parameters from the respective

sections above we can derive that all combinations except three behave reasonably

under the translation, i.e. they are translated by the same vector � as the individual

forecasts. The exceptions are f

B

opt

, f

D

opt

and f

�

opt

. The corresponding adjustments

show the same behaviour. Of course, the arithmetic mean is translated by � as well.
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Let us now turn to scale transformations of the data. By this we mean that target

variable y as well as each single forecast f

i

are multiplied by the same constant

matrix � 2 R

l�l

, i.e. after the translation we obtain the new variables

�

~
y

~

f

�

=

0

B

B

B

@

�y

�f

1

.

.

.

�f

k

1

C

C

C

A

=

0

B

B

B

@

� 0 : : : 0

0 � : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : �

1

C

C

C

A

0

B

B

B

@

y

f

1

.

.

.

f

k

1

C

C

C

A

=: �

�

y

f

�

: (7.3)

The moments of the transformed variables (
~
y

T

;

~

f

T

)

T

relate to the corresponding

quantities of the original variables (y

T

; f

T

)

T

as follows:

~
�

i

= ��

i

for i = 0; : : : ; k and

~

�

is

= ��

is

�

T

for i; s = 0; : : : ; k ; (7.4)

i.e.
~
� = �� and

~

� = ���

T

. The l � l submatrices of

�

�, V,

�

V, W and

�

W are

transformed in the same way.

Analyzing the respective formulae we can conclude that all strong combinations

and adjustments as well as the arithmetic mean show a reasonable behaviour under

such a transformation: They are multiplied by � from the left as well. The medium

combinations and adjustments only behave reasonably if we restrict � to be a di-

agonal matrix, whereas the weak combinations and adjustments perform well only

if we further restrict � = �I

l

, � 2 R. This exactly reects the spirit of the three

approaches, since a diagonal � means treatment of each component on its own,

whereas a scalar matrix � means treatment of all components as one. In the latter

case we may conclude that

~

H

1

= �

2

H

1

and the vectors and matrices h

1

, H, h, G,

g,

�

G and
�
g are transformed in the same way.

Combining the results on translations and scale transformations above we may con-

clude that only the combinations f

B

opt

;c

opt

, f

B

opt

;rest

, f

B

opt

;c

opt

;rest

and f

am

and their

corresponding adjustments remain reliable under linear transformations of the data.

Thus, these combinations should be preferred if they show a good behaviour other-

wise.

Besides their unreasonable behaviour under translations the combinations f

B

opt

,

f

D

opt

and f

�

opt

are not necessarily unbiased even if the individual forecasts are un-

biased. Consequently, use of these techniques cannot be recommended.
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8 Conclusions

In this report we have introduced linear approaches for the combination of multi-

variate forecasts. Three main variants of this approach have been considered. The

strong variant depends on the largest number of unknown combination parameters

followed by the medium and then the weak variant. Within each main variant we

have considered four further variants. They can be characterized by two facts well-

known from the univariate linear combination of forecasts: "Are the weight matrices

restricted to sum up to the identity matrix?" and "Is a constant term included?"

For each case we have derived the respective optimal combination parameters as

well as the resulting optimal value of the scalar mean square prediction error.

Each of the multivariate linear approaches requires knowledge about the moments

up to order two of the joint distribution of y and f . Again, the strong variant requires

more knowledge than the medium variant, and the medium variant requires more

detailed knowledge than the weak variant. Since the medium approach is equiva-

lent to the univariate treatment of each component, the classical univariate linear

approaches have been included as competitors to the new approaches. We have also

considered the special case of k = 1 forecast which means adjustment of an individ-

ual forecast.

Due to the smaller number of parameters involved the weak combination and ad-

justment approaches may be apt if only a small amount of data is available for

parameter estimation. Use of the weak approaches, however, amounts to the fact

that all components are treated as one. Thus, they should only be applied if this

seems at least roughly justi�ed.

We have seen that the strong multivariate linear combinations f

B

opt

;c

opt

, f

B

opt

;c

opt

;rest

and f

B

opt

;rest

as well as the arithmetic mean show a reasonable behaviour when

the coordinate system is changed in which the target variable and the forecasts

are measured. From this point of view use of the strong, medium and weak linear

unrestricted combinations of forecasts without constant term f

B

opt

, f

D

opt

and f

�

opt

are the least advisable.

Granger and Ramanathan (1984) have shown that in the univariate case the

linear combination of forecasts can be seen as a linear regression problem. The same

is true for the linear combination of multivariate forecasts introduced in this paper.

The appropriate regression models will be derived in a further paper (Troschke,

2001).

An analysis of the potential of the various methods with respect to their optimal

expected scalar squared prediction error loss (SMSPE) was carried out. We have
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considered a small example based on given realistic moments of the joint distribution

of y and f . In this example the possible improvement with respect to the classical

univariate approach was 10% whereas the possible improvement with respect to the

arithmetic mean was 20%. If the moments have to be estimated some portion of

that advantage will be lost. How much will be lost with a certain sample size is one

question which has to be answered by a much more detailed analysis of the possible

bene�ts of the multivariate linear approaches. Another point is to �nd out whether

it is worthwhile to consider more than k = 2 forecasts or more than l = 2 variables

at a time.
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Appendix

A Preliminary results

This section collects some results which are needed for our considerations. Most of

them are well-known from the literature.

The �rst lemma provides the inverse of a regular matrix modi�ed by a matrix of

rank one:

Lemma A.1 (Rao and Bhimasankaram, 1992, p. 145) Let A 2 R

n�n

be non-

singular and let u;v 2 R

n

. Then

(A+ uv

T

)

�1

= A

�1

�

1

1 + v

T

A

�1

u

A

�1

uv

T

A

�1

:

The following lemma gives explicit representations of some matrix or vector expres-

sions in terms of the elements involved.

Lemma A.2 Let A = (a

ij

) 2 R

m�n

, x = (x

i

) 2 R

m

and y = (y

j

) 2 R

n

. Then

x

T

Ay =

m

X

i=1

n

X

j=1

a

ij

x

i

y

j

:

In the special case where m = n and A = I

n

we obtain

x

T

y =

n

X

i=1

x

i

y

i

:

In order to determine the optimal combination parameters within our various ap-

proaches we have to apply di�erential calculus. Since some of the parameters are

vectors or even matrices the concept of matrix di�erential calculus (Magnus and

Neudecker, 1999) proves most helpful.

De�nition A.3 Let f(X) be a real-valued function of a matrix X = (x

ij

) 2 R

n�q

.

Then f is called di�erentiable with respect to X if and only if it is di�erentiable with

respect to each of the elements x

ij

. The derivative of f with respect to X

@f(X)

@X

:=

0

B

@

@f(X)=@x

11

: : : @f(X)=@x

1q

.

.

.

.

.

.

@f(X)=@x

n1

: : : @f(X)=@x

nq

1

C

A

is a matrix with the same dimensions as X.
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Lemma A.4 (Magnus and Neudecker, 1999, pp. 119f, 95, 65) Let f : S ! R

be a real-valued function de�ned on a set S � R

n�q

. Further let X

0

be an interior

point of S and let f be di�erentiable at X

0

. Then a necessary condition for f to

have a local minimum or a local maximum at X

0

is

@f(X

0

)

@X

= 0 ;

where the derivative of f with respect to X is given in De�nition A.3 above.

X

0

is an interior point of S if there exists a real constant r such that the ball

B(X

0

; r) = fXjX 2 R

n�q

; jjX�X

0

jj < rg

is contained in S completely. Here jjXjj = (tr(X

T

X))

1=2

denotes the Frobenius-

norm of X.

The next two lemmas give the derivatives for special real-valued vector and matrix

functions.

Lemma A.5 (Magnus and Neudecker, 1999, p. 177) Let a;x 2 R

n

and A 2

R

n�n

. Then

@a

T

x

@x

= a ;

@x

T

Ax

@x

= (A+A

T

)x :

Lemma A.6 (Magnus and Neudecker, 1999, p. 178) Let A;B;X be real ma-

trices of appropriate dimensions. Then

@ tr(AX)

@X

= A

T

;

@ tr(XAX

T

B)

@X

= B

T

XA

T

+BXA ;

@ tr(XAXB)

@X

= B

T

X

T

A

T

+A

T

X

T

B

T

:

The following two lemmas deal with strong and weak covariance adjustment.
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Lemma A.7 (Strong covariance adjustment technique, Rao 1966, 1967, Bak-

salary and Kala 1982)

Let T and Z be two statistics with E(T) = � 2 R

l

, E(Z) = 0 2 R

m

and

Cov

�

T

Z

�

=

�

W

11

W

12

W

T

12

W

22

�

=W

where W is a known positive de�nite matrix.

Then

T

0

= T�W

12

W

�1

22

Z

is unbiased for �. The dispersion matrix of T

0

Cov(T

0

) =W

11

�W

12

W

�1

22

W

T

12

is minimal in the sense of the L

�

owner ordering among all unbiased estimators for

�, which are linear combinations L

1

T+L

2

Z with matrices L

1

and L

2

of appropriate

dimensions.

Lemma A.8 (Weak covariance adjustment technique, Ihorst, 1993, Trenkler

and Ihorst, 1995)

Let T and Z

1

; : : : ;Z

p

be p + 1 statistics with E(T) = � 2 R

l

and E(Z

i

) = 0 2 R

l

for i = 1; : : : ; p. Further let

g = (tr[Cov(T;Z

1

)]; : : : ; tr[Cov(T;Z

p

)])

T

and

G =

0

B

B

B

@

tr[Cov(Z

1

)] tr[Cov(Z

1

;Z

2

)] : : : tr[Cov(Z

1

;Z

p

)]

tr[Cov(Z

2

;Z

1

)] tr[Cov(Z

2

)] : : : tr[Cov(Z

2

;Z

p

)]

.

.

.

.

.

.

.

.

.

.

.

.

tr[Cov(Z

p

;Z

1

)] tr[Cov(Z

p

;Z

2

)] : : : tr[Cov(Z

p

)]

1

C

C

C

A

be known quantities where G is a positive de�nite matrix.

For  = (

1

; : : : ; 

p

)

T

we consider estimators of the type

T



= T�

p

X

i=1



i

Z

i

which are unbiased for �.

Then the total variance tr[Cov(T



)] of T



is minimized by the choice



opt

= G

�1

g

and the corresponding minimal value of the total variance is given by

tr[Cov(T



opt

)] = tr[Cov(T)]� g

T

G

�1

g :
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The �nal lemma in this section is concerned with the positive de�niteness of certain

submatrices of a positive de�nite matrix A.

Lemma A.9 Let the partitioned matrix

A =

0

B

B

B

@

A

11

A

12

: : : A

1k

A

21

A

22

: : : A

2k

.

.

.

.

.

.

.

.

.

.

.

.

A

k1

A

k2

: : : A

kk

1

C

C

C

A

2 R

kl�kl

(A.1)

consisting of l � l-dimensional blocks be positive de�nite. Then the matrices

A

j

=

0

B

B

B

@

A

11;jj

A

12;jj

: : : A

1k;jj

A

21;jj

A

22;jj

: : : A

2k;jj

.

.

.

.

.

.

.

.

.

.

.

.

A

k1;jj

A

k2;jj

: : : A

kk;jj

1

C

C

C

A

2 R

k�k

(A.2)

consisting of the j-th main diagonal elements of the blocks, for j = 1; : : : ; l, and

A

tr

=

0

B

B

B

@

tr(A

11

) tr(A

12

) : : : tr(A

1k

)

tr(A

21

) tr(A

22

) : : : tr(A

2k

)

.

.

.

.

.

.

.

.

.

.

.

.

tr(A

k1

) tr(A

k2

) : : : tr(A

kk

)

1

C

C

C

A

2 R

k�k

(A.3)

consisting of the traces of the blocks are positive de�nite as well.

Proof:

A submatrix of a matrix A is a matrix that can be obtained by striking out rows

and/or columns of A. A submatrix of a quadratic matrix is called a principal sub-

matrix if it can be obtained by striking out the same rows as columns (so that the

i-th row is struck out whenever the i-th column is struck out, and vice versa); cf.

Harville (1997), pp. 13{14. The A

j

are principle submatrices obtained by striking

out all rows and columns except for the j-th, (l+j)-th, (2l+j)-th, : : : , ((k�1)l+j)-

th.

According to Harville (1997), Corollary 14.2.12, any principal submatrix of a

positive de�nite matrix is positive de�nite, such that A

j

is positive de�nite for

j = 1; : : : ; l.

Since

A

tr

=

l

X

j=1

A

j

(A.4)

the positive de�niteness of A

tr

follows.
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B Proof of Lemma 3.1

Lemma 3.1 The optimal parameter matrix B

opt

for the combination f

B

opt

;rest

is

not altered if we use any other constant vector than �

0

in the calculation of the

covariance matrix

�

� = E

"

��

y

f

�

� (1

k+1


 �

0

)

���

y

f

�

� (1

k+1


 �

0

)

�

T

#

:

Proof: We show that the optimal parameter matrix B

opt

is the same regardless

whether we use

�

� = E

"

��

y

f

�

� (1

k+1


 �

0

)

���

y

f

�

� (1

k+1


 �

0

)

�

T

#

or

~

� = E

"

��

y

f

�

� (1

k+1


 �

0

)

���

y

f

�

� (1

k+1


 �

0

)

�

T

#

:

in its calculation, where �

0

2 R

l

is arbitrary.

From Equations (3.17) and (3.4) we may conclude that the target function

MMSPE(f

B;rest

;y) depends on the moments of the joint distribution of (y

T

; f

T

)

T

only

via the moments of the errors e = (e

T

1

; : : : ; e

T

k

)

T

. Since E(e

i

) = 0 for i = 1; : : : ; k

because of the unbiasedness assumption, it suÆces to show that

�

V = E(ee

T

) is in-

dependent of the choice of �

0

. We will show that each submatrix

�

V

ij

is independent

of the choice of �

0

:

�

V

ij

= E[e

i

e

T

j

] = E[(f

i

� y)(f

j

� y)

T

]

= E[((f

i

� �)� (y � �))((f

j

� �)� (y � �))

T

]

= E[(f

i

� �)(f

j

� �)

T

]� E[(f

i

� �)(y � �)

T

]

� E[(y � �)(f

j

� �)

T

] + E[(y � �)(y � �)

T

] ; (B.1)

where � 2 R

l

is arbitrary. If we set � = �

0

in the �nal expression we obtain

�

V

ij

=

�

�

ij

�

�

�

i0

�

�

�

0j

+

�

�

00

; (B.2)

whereas for � = �

0

we obtain

�

V

ij

=

~

�

ij

�

~

�

i0

�

~

�

0j

+

~

�

00

: (B.3)

This completes the proof.
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