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1. Introduction 

What does an income tax schedule look like, which takes account of the trade-off between 
equity and efficiency? This question was first asked by Mirrlees (1971) who developed the 
standard model of the optimal nonlinear income tax. Since then innumerable papers have 
generalized, refined, or corrected his analysis. It has also been realized that the second-best 
approach to income taxation pertains to a wide variety of economic problems such as monop-
oly pricing or contract theory in general. In this respect Mirrlees’ article has opened an impor-
tant and fascinating strand of economic thought. 

Yet, the theory of optimal income taxation is not in good shape. It contains a number of hid-
den assumptions and logical compromises, beginning with the problems that the Kuhn-Tucker 
conditions are neither sufficient nor necessary for global optima and that the usual condition 
for individual optima do not hold at corner solutions. Moreover, the analysis is so complex 
that many economists believe it’s just not worth the time struggling mechanically with dozens 
of equations in order to obtain one of the common results, while others such as Diamond 
(1998, 86) have simply resigned to the quandaries resulting from "bunching" or from gaps in 
the income distribution. A good deal of these difficulties is due to a premise which was meant 
to simplify the theory and make it more elegant: The natural problem of taxing a finite num-
ber of persons was replaced by the problem of taxing an uncountable infinity. This continuum 
approach eventually yields the desired results, in a more or less satisfactory manner. But as 
Mirrlees (1971, p. 179) himself pointed out, the use of Pontriyagin’s maximum principle fails 
to provide economic as opposed to mathematical insights. Thus, the logic behind some of the 
standard features of the optimal income tax remains obscure. 

This paper is devoted to optimal nonlinear income taxation in an economy with finitely many 
taxpayers. Important first steps in this direction have been undertaken by Stiglitz (1982), who 
analyzed the situation of two taxpayers only, Guesnerie and Seade (1982), who introduced a 
special redistribution motive, Weymark (1986), who concentrated on quasi-linear utilities, and 
Brunner (1989). The basic model is stated in section 2. The assumptions are fairly general and 
close to those of the standard model except that there are finitely many persons. 

Section 3 presents an axiomatic approach to characterizing second-best allocations. Such an 
approach has obvious advantages: Firstly, it is simpler in the mathematical sense. Secondly, it 
is easier to understand. Thirdly, it is self-contained without reference to other published or 
unpublished material or to additional calculations left to the reader. Two analytical tools are 
introduced. The first is the concept of a “utility curve” which was used by Matthews and 
Moore (1986) in a paper on monopoly pricing. The second is a revision of Seade’s (1982) 
notion of “agent monotonicity”. Equipped with utility curves and the new form of agent 
monotonicity it is possible to replace the usual graphical (revealed preferences) arguments by 
analytical proofs. As a side-product, new graphical illustrations emerge which can be used for 
classroom purposes. Every proof is designed in such a way as to make clear the economic 
meaning of the result. 

It is only fair to say that the finite approach to optimal income taxation has not found many 
adherents; most recent papers still use the continuum model. The reason may be that the only 
tax schedules, which have been shown to support a second-best optimum, are step functions. 
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Due to their discontinuity these do not look appealing to tax theorists. Moreover, the optimum 
is characterized by strictly positive implicit marginal tax rates (defined in section 4) while the 
explicit tax rates are either zero or not defined in the case of step functions. Section 5 contains 
our main result which demonstrates that any second-best optimum can be supported by a tax 
schedule which is continuous, differentiable almost everywhere and for which left- and right-
derivatives exist at every point of non-differentiability. 

The relationship between the continuum approach and the finite approach has remained un-
clear as yet since the former usually assumes tax schedules that are differentiable throughout 
whereas the latter shows that such schedules cannot exist. The central result of section 6 is a 
limit theorem which clarifies this tension. It demonstrates under which circumstances non-
differentiable tax schedules for finite economies converge to a differentiable limit as the skill 
distribution becomes dense. 

Another reason for the lacking popularity of the finite approach is presumably that not one 
single example of a tax schedule can be found in the literature. This is surprising because the 
simplicity to construct examples and to implement the model empirically is a particular 
strength of the finite model. Conversely, it is a weakness of the continuum model which, 
when it comes to applications, must be recast in finite form anyway since the integrals can 
only be solved numerically. Section 7 provides some illustrations for Cobb-Douglas and CES 
utility functions. 

The methods developed below may perhaps also be of use in other branches of economics, 
such as in contract theory. They can certainly be applied to the numerous variants of the stan-
dard model, including consideration of public goods (Boadway and Keen 1993), nonlinear 
technologies (Stiglitz 1987), fixed labor supplies (Diamond 1980), luck as an additional in-
come source (Strawczisnky 1999), or poverty as a public bad (Wane 2001). 

2. The Basic Model 

In the model economy there live finitely many persons who have different skills and thus earn 
different wage rates per hour, wh, where h = 0, 1...H  and 0 = w0 < w1 <...< wH. The premise that 
w0 vanishes is not essential but shortens some arguments as there will always be at least one 
person with zero income. fh > 0 denotes the probability mass of people with wage rate wh. 
Each Person with wage rate wh (person h, for short) chooses some consumption ch and some 
labor supply lh such that the commodity bundle (ch, lh) belongs to the uniform consumption 
space C=Ro+× [0; lmax] where lmax > 0. A person’s gross income is denoted as yh = wh lh.  

Assumption A: The uniform utility function u: C →R is continuous, strictly monotonically 
increasing in c, strictly monotonically decreasing in l and strictly concave on its entire do-
main. At least in the interior, it is twice continuously differentiable with partial derivatives 
uc(c, l) > 0 and ul(c, l) < 0 and a negative definite Hessian. Moreover, –ul(c, 0)/uc(c, 0) < wH 
for c small enough. 

The assumptions are all standard, except the last one which deserves some comment. In an 
attempt to rule out corner solutions, several papers in the field suppose utility functions that 
are not continuous on their entire domain (Brito and Oakland 1977, p. 408) or aggregate con-
sumption spaces that are not bounded (Guesnerie and Seade 1982, p. 159) or not closed 
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(Svensson and Weibull 1986, p. 167). In these cases the mere existence of an optimum be-
comes questionable and cannot be proven by standard arguments. The present approach ex-
plicitly allows corner solutions, but we need a minimum regularity to make the problem 
meaningful: If the marginal rate of substitution, evaluated lh = 0, exceeded the highest wage 
rate at every consumption level, no one would choose to work even in the absence of taxes 
and it would be impossible to extract a strictly positive revenue by means of an income tax. 
An allocation is a vector (ch, lh)h=0...H in CH+1. The social objective reads 

 h
H

0h

hh
),c(

f),c(u
1H

H...0h
hh ∑

=
∈ +

=

l
l C
max! . (1) 

Aggregate (per capita) consumption is Σ ch fh. Assuming a linear technology, aggregate (per 
capita) output is Σ yh fh. With an exogenous tax revenue g> 0, also defined in per capita terms, 
an allocation must satisfy the resource constraint 

 ∑
=

≥−
H

0h

hhh gf)cy( . (2) 

As the differences yh – ch are in fact tax payments, this inequality corresponds to the govern-
ment’s budget constraint. If the inequality holds strictly there is an output surplus. A first-best 
optimum maximizes the social objective (1) subject to (2). 

The second-best approach to optimal income taxation holds that the government is unable to 
observe wage rates and working hours directly but can only observe consumption and income 
levels. Stipulating a tax schedule means confronting the persons with legal choices (c, y). 
Since wage rates are exogenous, the preference ordering over commodity bundles (c, l) in-
duces a preference ordering over pairs (c, y) of consumption and income which depends on 
the respective wage rate. Some person k accepts the pair (ck, yk) intended for him only if no 
other pair (ch, yh) exists which he prefers strictly. Otherwise person k will mimic person h by 
choosing ch instead of ck and yh/wk instead of lk. As a result person k has consumption ch and 
gross income wkyh/wk = yh and cannot be distinguished from person h. Therefore every feasi-
ble allocation must satisfy the resource constraint and the self-selection constraints 

 u(ck, lk)≥u(ch, yh/wk)   for all k and h where  yh/wk≤ lmax.  (3) 

If yh/wk >lmax, person k cannot reach the pair (ch, yh) so that the respective self-selection con-
straint is not defined and irrelevant. A self-selection constraint is called downward if k > h and 
upward if k < h; it is called adjacent if k = h±1. A second-best optimum maximizes the social 
objective (1) subject to the resource constraint (2) and the self-selection constraints (3). 

The social objective is often taken to presuppose interpersonal utility comparisons. However, 
it can be given a completely different interpretation which does not suffer from the philoso-
phical and measurement problems raised by such comparisons. Consider a man who knows 
the entire model but does not yet know his own wage rate. The significance of this premise is 
that it induces an impartial choice. People with low wage rates are apt to vote for tax sched-
ules with high transfers at the bottom of the income scale and vice versa: these are partial 
decisions. By contrast, a man deciding under a “veil of ignorance” will consider each feasible 
allocation to be a lottery, with fh giving the probability to receive the commodity bundle 
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(ch, lh) after the veil is lifted. If one defines a preference ordering over these lotteries which 
satisfies the familiar continuity and independence axioms, the social objective (1) turns out to 
be nothing but an expected utility representation of this preference ordering. Without any 
regard to interpersonal utility comparisons, the resulting optima are not optimal for the poor 
or the rich or somebody in between, but for a man who is completely uncertain about his 
future income. The man’s optimal choice will reflect his risk aversion on the one hand and the 
deadweight losses from taxation on the other. 

Such an expected utility interpretation accords well with Rawls’ (1971) concept of “justice as 
fairness” but does not take recourse to his “difference principle”. It places convenient restric-
tions upon the social objective which help sharpen the analysis: the Bernoulli utility functions 
must be identical across skill levels and transforming or weighting them is not allowed. Har-
sanyi (1955) has sponsored a similar interpretation of the utilitarian objective. However, he 
discussed an abstract “soul” that randomizes not only over skill levels but also over prefer-
ences, implying that interpersonal utility comparisons re-enter through the backdoor. The 
present interpretation was suggested first by Vickrey (1960). 

3. Second-best Allocations 

The above optimization problem does not appear particularly difficult at first sight. However, 
the set of feasible allocations is not convex. To see this, consider two feasible allocations with 
different (ch, lh) for some h and the same (ck, lk) for some k > h such that the self-selection 
constraint (3) holds with equality in both cases. As the preference ordering is strictly convex, 
every convex combination of these two allocations will violate the self-selection constraint 
and will thus not be feasible itself. It has sometimes been observed (Diamond 1998, p. 86) 
that if the marginal tax rate decreases, individual budget sets will be non-convex, too, but a 
true solution will allow for this fact. The deeper problem is the non-convexity of the feasible 
set which entails that the familiar Kuhn-Tucker conditions are not sufficient for an optimum. 
What is more, they are not even necessary unless one shows that some constraint qualification 
is satisfied; see Bertsekas (1999, proposition 3.3.12). 

The following analysis makes no use of Kuhn-Tucker conditions or of the maximum princi-
ple. It proceeds in two steps. Firstly, the basic properties of optimal allocations are described 
without explicit reference to taxation. This task is performed in the present section and in 
section 4. Secondly, tax schedules which support the optimum are introduced in section 5. 
These schedules inherit certain features from the features of the underlying allocations. The 
theory is based on a few constructive proofs and otherwise on reductiones ad absurdum. 

Proposition 1 (Existence and Basic Properties): a) For any tax revenue g> 0 suffi-
ciently small there exists a second-best optimum. 

b) At any feasible allocation, ck > ch is equivalent to yk > yh and ck = ch is equivalent to yk = yh. 

c) At any feasible allocation, wk > wh implies u(ck, lk)≥u(ch, lh). 

Proof: a) The objective function is continuous and the set of feasible allocations is compact 
because (3) defines a closed subset of the compact set given by (2) and the requirements 
(ch, lh)∈C for all h. Due to assumption A, at least person H chooses a strictly positive income 
in the absence of taxes so that, by continuity, some tax revenue can be raised without violat-



 6

ing any self-selection constraint. Hence the set of feasible allocations is nonempty, and exis-
tence follows from the Weierstrass theorem. 

b) If a pair (ck, yk) contained strictly more consumption than another pair (ch, yh) but the same 
or even a smaller amount of income (effort), nobody would accept the latter pair since utility 
is strictly increasing in c and strictly decreasing in l. The converse conclusion and the second 
equivalence are also obvious. 

c) From (3), wk > wh and ul< 0 we have u(ck, lk)≥u(ch, yh/wk)≥u(ch, yh/wh)≡u(ch, lh) with the 
second inequality holding strictly if yh > 0.  █ 

A first-best tax schedule can raise any revenue as large as lmaxΣwh fh where aggregate con-
sumption and aggregate leisure vanish. This is not possible in the second-best context because 
such an allocation would violate the self-selection constraints. Hence, existence of an opti-
mum can be shown only if the tax revenue requirement is sufficiently small. Of course it 
would be helpful to have an equally simple expression of maximum tax revenue in the sec-
ond-best case, but there is none. We will return to this issue at the end of this section. 

Following proposition 1b) consumption increases strictly monotonically in income which 
means that the marginal income tax rate (defined in (14) below) must be strictly smaller than 
one. This feature of optimal income tax schedules holds under the most general assumptions 
and allows writing (ck, yk) > (ch, yh) without ambiguity: At any feasible allocation, the former 
pair must contain strictly more consumption and strictly more income. A further consequence 
of 1b) is that all persons with a strictly positive income enjoy a strictly positive consumption 
since c0≥0 and y0 = 0. It is hard to derive further general characteristics of second-best optima 
(Brito et al. 1990) but this changes rapidly once the following mild assumption on individual 
preferences is made. 

Assumption B: In the absence of tax distortions, consumption is a gross substitute for lei-
sure; inequality (18) from the appendix implies (ul/uc ucl– ull)l– ul> 0. 

The assumption of gross substitutability is known from general equilibrium theory where it 
plays an important role in stability and uniqueness proofs. It requires that in the absence of tax 
distortions a person will choose more consumption and thus more income when the price of 
leisure, i. e. the wage rate, rises. Consequently the government can use income as a signaling 
device: The higher a person’s income, the higher the wage rate will be. Because, as we shall 
see, the government wants to redistribute between persons with different wage rates rather 
than between persons with different incomes, this premise is fundamental to the very idea of 
income taxation. If it were violated there could be persons with different wage rates but iden-
tical incomes, making it impossible for the government to redistribute between these by 
means of an income tax. Note that assumption B does not preclude a backward bending labor 
supply and that superiority of consumption is sufficient for it to hold because then both the 
substitution and income effects of an increase in the wage rate are positive. Moreover the 
premise says nothing about a person’s potential behavior in the presence of tax distortions. 
Assumption B corresponds to Mirrlees’ (1971) assumption B but has been cast in terms of an 
empirically testable hypothesis. 

Substituting l= y/w in the utility function and selecting someu from the utility function’s 
range, the equation u(c, y/w) =u defines a function c(y) with derivative 
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Assumption B implies that for all numbers w > 0 and all y∈(0, wlmax) the function c(y) be-
comes flatter in y-c-space the higher the wage rate, for differentiating with respect to w yields 
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)wu(
)uw)wy(u(uwu)wy(u

dw
)y('dc

2
c

cc
2

c

c
2

cc
2

<−−−=+−−−−= lllllllll l . (5) 

A person with a higher wage rate gives up a smaller amount of leisure in order to earn an 
extra unit of income and therefore demands a smaller extra amount of consumption to remain 
on the same indifference curve. Seade (1982) introduced (5) as an assumption which he 
named agent monotonicity. From Figure 1 which illustrates the case of two persons indexed 
h–1 and h it is possible to derive properties of second-best optima using graphical arguments. 
This is the traditional technique. 

Figure 1  
The Problem in y-c-space. 

 yh–1

c

y

ch–1

wh–1

wh

 

If one projects u(c, y/w) into w-u-space rather than into y-c-space these graphical arguments 
can be replaced by analytical proofs. Such a projection is referred to as a utility curve. Points 
on a utility curve indicate the respective utility levels of persons with different wage rates who 
all have the same consumption and income. A utility curve is not an indirect utility function 
because consumption and income have not been chosen optimally; they are exogenous. 

If y= 0 a utility curve is defined for all wage rates and runs parallel to the abscissa; every 
person has utility u(c, 0) independent of the wage rate. If y> 0 a utility curve is defined for 
wage rates w≥y/lmax only because labor supplies are bounded from above. In this instance 
utilities are given by u(c, y/w). The derivative uw(c, y/w) = –ul(c, y/w) y/w2 > 0 shows that 
utility increases strictly in the wage rate. This is obvious because with consumption and in-
come given, a rise in the wage rate simply means a reduction in labor supply. Differentiating 
anew shows that utility curves are strictly concave but this is immaterial and it will be more 
convenient to draw them as straight lines. 

At any interior point with a given wage rate and a given utility level, utility curves become 
steeper the more consumption and income the pairs (c, y) contain. This has a pretty straight-
forward explanation: As stated above, the slope of the utility curve is positive because an 
increase in the wage rate reduces labor supply and thus increases leisure. This effect becomes 
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all the more pronounced, the more income a pair contains. To see this formally, differentiate 
the slope uw(c(y), y/w) = –ul(c(y), y/w) y/w2 with respect to y, adjust c(y) in accordance with 
(4) and make use of assumption B to obtain 

 0w
u)uuuu(
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This inequality allows developing an alternative notion of agent monotonicity which is very 
intuitive and which will be used in almost every proof below. Consider a person who is indif-
ferent between two different pairs of consumption and income. Then agent monotonicity, as 
understood here, requires that all persons with a higher wage rate strictly prefer the pair with 
the higher income and vice versa. Under assumption B this is in fact true, as the following 
lemma shows. Figure 2 displays two utility curves associated with the pairs (c,y) and (_c, _y). 
The curves intersect at wh, implying that person h is indifferent between the pairs. Obviously 
all persons with a higher wage rate strictly prefer (c,y) and all persons with a lower wage 
rate that can reach both pairs strictly prefer (_c, _y). 

Figure 2 
Agent Monotonicity 

 wh

u

w

(_c, _y)

(     c,y)

 
Lemma 1 (Agent Monotonicity): Assume (c̄, ȳ  )>(_c, _y) and let person h (wh≥y/lmax) be 
indifferent between these pairs. Then every person with wage rate w > wh strictly prefers (c̄, ȳ  ) 
and every person with wage rate w<wh that can reach both pairs strictly prefers (_c, _y). 

Proof: Consider the function Φ(w) = u(c,y/w) – u(_c, _y/w). By hypothesis Φ(wh) = 0. On the 
open interval (_y,y) we have c(y) > 0, so that (6) holds and uw(c(y), y/w) increases strictly 
monotonically in income. Thus Φ'(wh) = uw(c,y/wh) – uw(_c, _y/wh) > 0, which implies Φ(w) > 0 
for w > wh and Φ(w) < 0 for w < wh such that w≥y/lmax. These two inequalities hold globally 
because the function Φ does not vanish at any other point. For assume there exists a smallest 
w* > wh such that Φ(w*) = 0. By construction, Φ(w) > 0 for all w∈(wh, w*). If Φ(w) were 
strictly positive in a right-hand neighborhood of w* then Φ'(w*) = 0, otherwise Φ'(w*)≤0, but 
both would contradict (6). An analogous argument for w* < wh completes the proof. █ 

The statement takes account of the fact that the two pairs under consideration may be corner 
solutions, lh = 0 or lh =lmax, respectively. This causes no trouble because all pairs along the 
indifference curve between these are interior points, with intermediate values of labor and 
strictly positive consumption. As opposed to gross substitutability, which was assumed to 
hold only in the absence of distortionary taxes, agent monotonicity holds also in the presence 
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of such taxes. The following features of second-best optima, which have been established in 
the literature referred to in the introduction, give a first impression of how the agent 
monotonicity tool works. 

Proposition 2 (Production Efficiency and Monotonicity): a) Any second-best opti-
mum is production efficient in the sense that (3) holds with equality. 

b) At any second-best optimum, wk > wh implies (ck, yk)≥ (ch, yh). 

Proof: a) Assume there is an output surplus. If lH =lmax this can simply be used to increase 
cH. No one else can reach yH so that mimicking presents no problem, and person H becomes 
better off. If lH <lmax, pairs (c,y) > (cH, yH) exist such that u(c,y/wH) = u(cH, lH) and such 
that there is still an output surplus. Due to agent monotonicity, all persons h < H that preferred 
their pairs weakly to (cH, yH) by hypothesis, prefer them strictly to (c,y) if they can reach 
this pair at all. Hence they will not mimic if the saved output surplus is used to make person H 
somewhat better off. 

b) Assume yk < yh which implies ck < ch according to proposition 1b). Because k has a higher 
wage rate, both persons can reach both pairs. Everybody prefers (ck, yk) strictly to (ck, yh) but 
person h prefers (ch, yh) weakly to (ck, yk) by hypothesis. Hence, there existsc∈(ck, ch] such 
that h is indifferent between (c, yh) and (ck, yk). Due to agent monotonicity, k must then prefer 
(c, yh) strictly to (ck, yk) and must prefer (ch, yh) all the more, which contradicts (3). █ 

Production efficiency is an interesting feature in itself but will also play an important role in 
the following proofs. If, starting from some allocation, a reallocation is possible which satis-
fies all self-selection constraints, makes no one worse off and yields an output surplus, the 
original allocation cannot have been optimal. Figure 3 illustrates the monotonicity property. 
This states that persons with higher wage rates must be given pairs with higher consumption 
and income. Since the implication in proposition 2b) is a weak inequality, it may occur that 
persons with different wage rates obtain the same consumption and income. This is known as 
bunching. 

Figure 3 
Monotonicity and Bunching 

 wkwhwh wk

u

w

(ch, yh)

(ck, yk)

u

w

(ch, yh) = (ck, yk)

 

As yet we have assumed implicitly that two persons with identical wage rates will obtain 
identical pairs of consumption and income. Since Mirrlees (1971) this equal treatment prop-
erty enters silently the formulation of the social objective and the resource constraint which 
would otherwise take a more complicated form. In the light of the theory of the core such a 



 10

presumption seems questionable because equal treatment is a necessary feature of core alloca-
tions only if all consumer types are of equal number (Hildenbrand and Kirman, 1988, p. 174). 
This requirement is not met in the present model which explicitly allows fk≠ fh for k≠h. 

Proposition 3 (Equal Treatment Property): At any second-best optimum, wh = wh' im-
plies (ch, yh) = (ch', yh'). 

Proof: Assume yh > yh' and ch > ch' were second-best for some wh = wh'. The self-selection 
constraints imply u(ch, lh) = u(ch', lh'). Setc = (ch + ch')/2,l= (lh +lh')/2 andy= (yh + yh')/2. If 
persons h and h’ are both given (c,l) they become better off as the preference ordering is 
strictly convex. Hence there exists c <c such that u(c,l) = u(ch, lh) = u(ch', lh'). If both persons 
are given (c,l) their utilities remain unchanged and an output surplus emerges. Because per-
son h is indifferent and yh >y, agent monotonicity implies that all persons with wage rates 
w > wh prefer their pairs strictly to (c,y). The same is true for persons with wage rates w < wh' 
because person h’ is indifferent and yh’ <y.   █ 

Figure 4 illustrates the proof. In the first step the two persons h and h’ are made better off in 
that they are given convex combinations of their original bundles. But other persons, that 
possibly pay high taxes, may now be inclined to mimic h and h’, making the new allocation 
infeasible. Therefore consumption is reduced in the second step so as to make h and h’ as well 
off as before. Agent monotonicity implies that no one will mimic them. All utilities are un-
changed but there is an output surplus which can be used profitably as described in proposi-
tion 2a). The existence of further persons with the same wage rates as h and h’ does not matter 
because they must all have the same utilities as h and h', both before and after the change. 

Figure 4 
Equal Treatment Property 

 

u

(ch, yh)

wh = wh' w

(ch', yh')

(c,y)
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Because the equal treatment property did not enter the above proofs, proposition 3 renders this 
assumption valid and allows considering all persons with wage rate wh as a single person h 
who has the weight fh in the social objective and in the resource constraint. This yields seman-
tic simplifications because we can refer to “consumption of person h”, for instance, rather 
than to “consumption of every person with wage rate wh”. 

The results derived so far hold under any Paretian ordering of social states. The optimum gets 
a more specific structure if one adds the assumption of non-inferiority of leisure whose rele-
vance was first pointed out by Mirrlees (1974).  



 11

Assumption C: Leisure is a non-inferior good; inequality (19) from the appendix implies 
ulc – ul/uc ucc≤0. 

With any additively separable utility function, assumptions B and C are both satisfied because 
the cross-derivative vanishes. If leisure is inferior, the cross-derivative ulc is strictly positive 
and in the absence of taxes, persons with higher wage rates will choose to work longer be-
cause the income and the substitution effect go into the same direction. Therefore persons 
with higher wage rates may have higher marginal utilities of consumption even though they 
enjoy more consumption. If a first-best tax system became introduced now – aiming at equal-
izing marginal utilities of consumption – it would not necessarily redistribute from top to 
bottom but could possibly redistribute in the reverse direction. The following lemma, proven 
in the appendix, rests on assumption C and precludes this weird scenario where the rich re-
ceive cash payments from the government which are financed by taxes on the poor.  

Lemma 2 (Redistribution): If u(ck, lk) > u(ch, lh) for wk > wh, then it is possible to increase 
u(ck, lk) + u(ch, lh) by redistributing some leisure and/or consumption from k to h. 

The result carries over to a situation where there are many persons of each type: Assume that 
redistributing some consumption ε> 0 from one person with wage rate wk to one person with 
wage rate wh increased the sum of utilities. When there are two persons with wage rate wk 
instead, the sum of utilities still rises if we take consumption ε/2 from each of them and give it 
to the person with wage rate wh. More generally the social objective can always be increased 
under the assumptions of lemma 2 by redistributing some small enough quantity from each 
person with wage rate wk to each person with wage rate wh. One must only select a quantity 
small enough that every person of type k is still better off than every person of type h before 
the last redistributive move takes place. 

Figure 5 
Asymmetry Property 
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Before moving on we would like to point out two important features of feasible allocations. 
The first is referred to as the asymmetry property. It states that an upward self-selection con-
straint has slack if the corresponding downward self-selection constraint is binding and if the 
higher-skilled person has strictly more income. This is illustrated in figure 5 for an adjacent 
self-selection constraint. The figure makes clear that person h–1 will not mimic person h if the 
latter is made a bit better off. Asymmetry follows directly from agent monotonicity if one 
substitutes (c,y) for (ch, yh) and (_c, _y) for (ch–1, yh–1) in lemma 1. The second feature, re-
ferred to as the transitivity property, states that at any feasible allocation all downward self-
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selection constraints are satisfied if only the adjacent downward constraints are satisfied. To 
see this, first consider a binding constraint u(ch, lh) = u(ch–1, yh–1/wh). Agent monotonicity 
implies that any person k > h prefers (ch, yh) weakly to (ch–1, yh–1) because according to propo-
sition 2b), the former pair contains at least as much income as the latter. As person k prefers 
his own pair to (ch, yh) by hypothesis, it follows that he also prefers it to (ch–1, yh–1), and even 
strictly so if the above constraint had some slack or if the two bundles were different. The 
significance of the asymmetry and the transitivity properties is that they allow neglecting all 
but the adjacent downward self-selection constraints. For any feasible allocation, the other 
constraints either have slack or hold tautologically if bunching prevails. 

Proposition 4 (Chain Property): At any second-best optimum, all downward adjacent 
self-selection constraints are binding: u(ch, lh) = u(ch–1, yh–1/wh) for all h > 0. 

Proof: Let k be the largest index such that u(ck, lk) > u(ck–1, yk–1/wk). By transitivity, this 
implies that persons with income yk will not mimic persons with wage rates smaller than wk if 
they are made a bit worse off. By asymmetry, they will also not mimic persons with incomes 
larger than yk since all downward adjacent self-selection constraints above k are binding by 
construction. 

Moreover, let h be the smallest index such that u(ch+1, lh+1) > u(ch, lh/wh+1). By transitivity, 
this implies that persons with income yh will not be mimicked by persons with wage rates 
higher than wh if they are made a bit better off. By asymmetry, they will also not be mimicked 
by persons with incomes smaller than yh since all downward adjacent self-selection con-
straints below h are binding by construction. 

Each person with income yk has a higher wage rate and a higher utility than each person with 
income yh. Hence, the prerequisites of lemma 2 are fulfilled and the social objective can be 
increased by redistributing consumption ε or consumption and leisure of value ε from each 
person with income yk to each person with income yh, provided ε> 0 is small enough. It is 
insignificant if a person with income yk mimics another with the same income after this redis-
tribution because their commodity bundles all have identical values. The same applies for 
persons with income yh. Because all other self-selection constraints and the resource con-
straint are satisfied, the original allocation could not have been optimal. Hence the assumed 
indices k and h do not exist.  █
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Figure 6 
Chain Property 
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The proof takes account of two difficulties: Firstly, there may be bunching at income yk 
meaning that several persons k ...k all have consumption ck and income yk at the outset. In 
this instance a number of upward adjacent self-selection constraints are binding and person k 
would immediately mimic person k+1 if he alone were made worse off. Therefore, all persons 
with income yk must be made worse off and, conversely, all persons with income yh must be 
made better off. Secondly, lemma 2 requires redistributing either consumption only or con-
sumption and leisure together, depending on the sizes of the respective labor supplies. If there 
is bunching it may be necessary to practice both forms of redistribution simultaneously. In 
this instance persons with income yk all having identical pairs at the outset receive different 
pairs after redistribution and one cannot exclude the possibility that, for instance, person k 
mimics person k+1. But this will not violate the resource constraint as all pairs have the same 
value after redistribution. 

The chain property says that a second-best tax system redistributes from top to bottom until 
all downward adjacent self-selection constraints bind. This intuitive feature, proven under 
similar assumptions by Röell (1985), is illustrated in figure 6 and shows that each person is 
indifferent between his own pair and the pair of his left-hand neighbor. Combining with 
proposition 2b) we see that every second-best optimum satisfies the conditions 

 u(ch, lh) = u(ch–1, yh–1/wh)   and   yh≥ yh–1   for all h > 0 .  (7) 

These necessary conditions also characterize solutions if the government’s objectives differ 
from the objective considered here. With a Rawlsian objective, which requires maximizing 
the utility of person zero, the highest c0 compatible with (7) will be selected. All downward 
adjacent self-selection constraints must bind, as otherwise the government could take some 
consumption from the person that prefers his pair strictly to that of his left-hand neighbor and 
give it to the persons with lower wage rates. Moreover, a Leviathan that aims at maximizing 
tax revenue will set c0 to zero and will choose the other pairs in accordance with (7) because 
any slack in a downward adjacent self-selection constraint implied that a higher tax revenue 
could be extracted from the respective person. Therefore maximal tax revenue is characterized 
implicitly by c0 = 0 and (7). Solving the related maximization problem yields the set of tax 
revenues compatible with existence of a second-best optimum under the present objective. 
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4. Implicit Marginal Tax rates 

In the absence of distortionary taxes each person’s marginal rate of substitution –ul/uc will 
equal the wage rate at an interior solution. A positive marginal tax rate implies that the mar-
ginal rate of substitution falls short of the wage rate and vice versa. Therefore it seems natural 
to define implicit marginal tax rates for h > 0  and h < H as 
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respectively. Lh denotes the implicit marginal tax rate of person h. Rh denotes the implicit 
marginal tax rate of person h+1 if the latter has the same income as the former. This occurs 
when person h+1 mimics person h or when there is bunching. Since (5) shows that the expres-
sion defined in (4) increases in the wage rate and since the latter becomes subtracted in the 
definitions of Lh and Rh, we obtain Rh > Lh if yh is strictly positive. Owing to the chain prop-
erty the commodity bundles (ch, lh) and (ch–1, yh–1/wh) must be on the same indifference curve 
of person h at an optimum. The former bundle contains weakly more consumption than the 
latter because of monotonicity. Hence the marginal rate of substitution is greater at (ch, lh) and 
because it becomes subtracted we have Lh≤Rh–1, holding as an equality only if yh = yh–1. To 
sum up, for all h > 0 such that yh > 0 and yh > yh–1, we obtain 

 Rh > Lh   and   Rh–1 > Lh,  (9) 

respectively. The full meaning of the variables Lh and Rh will not become clear before the 
following section. The term “implicit tax rate” was coined by Weymark (1986) with respect to 
Lh whereas Rh has not been introduced explicitly as yet. Weymark has also derived results 
similar to the following for the special case of a quasi-linear utility function. 

Proposition 5 (Implicit Marginal Tax Rates): At any second-best optimum 

a) Lh≥0 for all h such that yh > yh–1,  

b) LH = 0 if lH <lmax and  

c) Lh > 0 for all h < H such that yh > yh–1. 

Proof: a) The premise and proposition 1b) imply yh > 0, lh > 0 and ch > 0. Hence there exist 
numbers δ, ε> 0 such that u(ch – ε, lh –δ) = u(ch, lh). Because of agent monotonicity no person 
with wage rate w > wh will prefer the bundles constructed in this manner. Since the downward 
adjacent self-selection constraint holds with equality by the chain property and yh > yh–1, the 
upward self-selection constraints have slack so that no person with wage rate w < wh prefers 
the new bundles for sufficiently small δ. If Lh were strictly negative, person h’s marginal rate 
of substitution would exceed the wage rate and it would be possible to set ε> whδ. As this 
yields an output surplus we must have Lh≥0. 

b) Because lH <lmax, numbers ε, δ> 0 exist such that u(cH + ε, lH +δ) = u(cH, lH). Agent 
monotonicity implies that no person h < H that can reach the new bundles will prefer them. If 
Lh were strictly positive, person H’s marginal rate of substitution would fall short of the wage 
rate and it would be possible to set ε< wHδ. As this yields an output surplus we must have 
LH≤0. Now suppose yH = yH–1. From (8) and (9) it follows that LH = RH–1 > LH–1≥0 but LH > 0 
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contradicts the result just found. Therefore we have yH > yH–1 so that result a) applies which 
gives LH≥0. The two inequalities together imply LH = 0. 

c) Following the proof of a), commodity bundles (ch – ε, lh – ε/wh) exist that are preferred by 
no one else if ε> 0 is sufficiently small. The new bundles satisfy the resource constraint as the 
fall in aggregate consumption equals the fall in aggregate output. Now consider the utility 
U(ε) = u(ch – ε , lh –ε / wh ) and the slack of the downward adjacent self-selection constraint 
S(ε) = u(ch+1, lh+1) – u(ch –ε , (whlh – ε)/wh+1). Differentiating with respect to ε yields 

 U'(0) = –uc(ch, lh) Lh   and   S'(0) = uc(ch, yh/wh+1)Rh.  (10) 

If Lh  equals zero an increase in ε leaves person h’s utility unchanged up to first order but 
induces strictly positive slack in the self-selection constraint because Rh > Lh. This slack al-
lows redistributing from persons with income yh+1 to persons with income yh as described in 
the proof of the chain property, which increases the social objective according to lemma 2. 
Therefore Lh = 0 cannot be optimal, and combining with result a) it follows that Lh > 0. █ 

Figure 7 
Non-negative Implicit Marginal Tax Rates 
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Figure 7 shows why a strictly negative implicit marginal tax rate can never be optimal. Start-
ing from Lh < 0, person h’s consumption and income are diminished; this corresponds to a 
clockwise rotation of the utility curve. Person h+1 that has been indifferent between 
(ch+1, yh+1) and (ch, yh) at the outset, now prefers his own pair strictly. Persons with wage rates 
below wh originally preferred their own pairs strictly because of asymmetry and will stick to 
them if the rotation is small enough. Thus the new allocation satisfies all self-selection con-
straints. At the same time it yields an output surplus because a negative Lh implies that the 
marginal rate of substitution exceeds the wage rate which in turn allows a relatively strong 
reduction in consumption. Therefore a negative implicit marginal tax rate presents a useless 
waste of resources. It induces the familiar deadweight loss of taxation and has no incentive 
function because utility curves can always be rotated clockwise a bit without violating the 
incentive constraints. 

Proposition 5b) utilizes the fact that the utility curve of the person with the highest wage rate 
can also be rotated counter-clockwise. Therefore a strictly positive tax rate at the top of the 
income distribution is also inefficient. Figure 6 makes clear why this argument does not apply 
to persons h < H: A counter-clockwise turn of any other utility curve induces mimicking of the 
respective right-hand neighbor. The famous “no distortion at the top” result first detected by 
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Phelps (1973) is not valid for a corner solution lH =lmax, however. Corner solutions could be 
ruled out using an Inada condition ul(c, l)/uc(c, l)→–∞ for all c > 0 and l→ lmax which im-
plies that Lh approaches minus infinity as labor supply approaches its maximum. Because Lh 
must be non-negative according to proposition 5a) it follows that lh <lmax for all h. Substitut-
ing this into 5b) yields LH = 0. 

Proposition 5c) demonstrates that Lh will be strictly positive in general because it prevents the 
right-hand neighbor from mimicking. As person H has no such neighbor the argument is not 
valid in this case. Otherwise a strictly positive Lh facilitates additional redistribution which is 
a good thing according to lemma 2. The explanation of this fundamental result runs as fol-
lows: If one starts at Lh = 0, reduces person h’s consumption by ε and increases his leisure by 
ε/wh, the marginal rate of substitution declines which means that the implicit marginal rate 
becomes positive. The utility of person h remains unchanged up to first order. However, the 
utility of his right-hand neighbor declines in the case of mimicking because he also loses 
consumption ε, but only gains leisure ε/wh+1 which is smaller than ε/wh. Hence the choice of 
person h is distorted because this distortion harms his right-hand neighbor more and can thus 
be used strategically to increase the degree of redistribution. This manœvre works irrespective 
of whether persons h and h+1 have different or identical incomes at the outset. When Lh = 0 a 
possible bunching is broken up by introducing the tax distortion. But when Lh > 0 bunching 
cannot be excluded by a similar line of reasoning. Surely increasing Lh will separate the two 
persons but will also depress h’s utility by a first order effect, and this loss cannot necessarily 
be counter-balanced by the redistributive gain. 

Finally we should warn that proposition 5 says nothing about the sign of Lh at zero income. In 
the proofs new commodity bundles are constructed which contain less consumption and less 
income. At zero income such commodity bundles simply do not exist and the argument be-
comes void. This holds irrespective of whether the least skilled person has a zero wage rate, 
as assumed here, or has a strictly positive wage rate. Under the latter premise L0 is defined 
and may have any sign if y0 = 0. But if y0 > 0, arguments analogous to those above imply 
R0 > L0 > 0. In this case, which seems less relevant empirically and has therefore been ex-
cluded via the assumption w0 = 0, all numbers Lh must be strictly positive. 

5. Second-best Tax Schedules 

After these preparations it is easy to portray an attractive class of tax schedules supporting 
second-best optima. A tax schedule is a function T: Ro+→R which associates a positive or 
negative tax payment T(y) with any non-negative income. Negative tax payments are inter-
preted as welfare assistance. Subject to a given tax schedule each person solves 
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Every individual optimum satisfies T(yh) = yh – ch because of non-satiation. A tax schedule 
supports an allocation (ch, lh)h=0...H if each commodity bundle (ch, lh) is chosen in accordance 
with (11). Because the schedule is defined for all non-negative incomes one must make sure 
that each person k not only prefers the pair (ck, yk) intended for him to all pairs (ch, yh) in-
tended for somebody else but also prefers it to all (c, y) between these observable incomes. 
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Stiglitz (1987, p. 1003) argued that tax schedules for finite economies may be differentiable 
from the left, and Weibull (1989) showed that one can take them to be continuous. The fol-
lowing proposition provides a stronger characterization. 

Proposition 6 (Tax Schedule): Any second-best optimum can be supported by a continu-
ous tax schedule which has strictly positive derivatives from the left and the right at each 
income yh > 0 (h < H) and is otherwise differentiable with T'(y) > 0 for y< yH and T'(yH)≥0 for 
y≥ yH. 

Proof: The schedule is defined piecewise by T(y) = y– c(y) for all y∈[yh–1, yh] and all yh > yh–1 
where the function c(y) is defined on each such interval by 

 u(c(y), y/wh) = u(ch, lh) = u(ch–1, yh–1/wh).  (12) 

The second equality follows from the chain property. Each person can reach the pair intended 
for him because c(yh) = ch and c(yh–1) = ch–1 by construction. For every y∈(yh–1, yh) any pair 
(c(y), y) contains an income smaller than yh and larger than yh–1. Because person h is indiffer-
ent between these pairs and his own, agent monotonicity implies that every other person pre-
fers his own pair strictly to all (c(y), y) constructed this way. Hence the schedule in fact sup-
ports the optimum. On each open interval (yh–1, yh) the derivative T'(y) = 1 – c'(y) exists since 
substituting w = wh into (4) yields 
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Definitions (8) imply T'(y↓yh–1) = Rh–1 and T'(y↑yh) = Lh. From (9) we have Rh–1 > Lh and Lh is 
non-negative according to proposition 5. Hence Rh–1 and all values T'(y) between Lh and Rh–1 
are strictly positive. Because Rh > Lh the schedule is not differentiable at yh > 0 (h < H). But 
with h denoting the smallest index such that yh > 0 the derivative T'(0) = Rh–1 > Lh≥0 exists. 
Setting T(y) = (y– yH) LH + T(yH) for all y> yH shows that T'(yH) = LH≥0 exists, too.  █ 

The variables Lh and Rh turn out to be left-derivatives and right-derivatives, respectively. On 
the interval [0, yH] the above tax schedule is the point-wise minimum of all schedules sup-
porting the optimum. Of course every schedule which prescribes the same tax payments at the 
observable incomes and higher payments otherwise supports the optimum, too, but neither has 
such appealing continuity and differentiability properties. In particular the present tax sched-
ule is differentiable at y= 0. In proposition 5 we were unable to characterize what has now 
emerged as the left-derivative of the schedule at the bottom of the income distribution, but 
this left-derivative is meaningless because the schedule is only defined for non-negative in-
comes. According to (9) the right-derivative at y= 0 must be larger than the left-derivative at 
the smallest positive income, and the latter is non-negative according to proposition 5. Hence 
the marginal tax rate at the bottom must be strictly positive. 

The proof of proposition 6 deliberately ignores persons with different wage rates but identical 
incomes and thus does not bring out what the tax schedule looks like in the case of bunching. 
Take h as the smallest and k as the largest index such that yh = yk > 0. The left-derivative and 
the right-derivative now correspond to Lh and Rk, respectively. At a bunching point, Lk and 
Rk–1 are identical by definition. From (9) it follows that Rk > Lk = Rk–1 >...>Rh > Lh. So the non-
differentiability at income yh becomes more pronounced at a bunching point but it exists any-
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way. Bunching at y= 0 does not preclude differentiability because no left-derivative is defined 
at this point. 

Figure 8 
A Second-best Tax Schedule 
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Figure 8 shows a second-best tax schedule for an economy with four inhabitants. The mar-
ginal tax rate is strictly positive at the bottom of the income distribution and zero at the top. 
At the intermediate observable incomes y1 and y2 the schedule is not differentiable; the mar-
ginal tax rate jumps to a higher value. The marginal tax rates displayed on the right-hand side 
show a characteristic saw-tooth pattern, a direct consequence of (9). That second-best optima 
for finite economies cannot be supported by tax schedules which are differentiable on their 
entire domain, becomes evident from figure 1: If one adds an arbitrary straight line to the 
figure which runs through the point (ch–1, yh–1) there will always be some points on the line 
which are preferred by either person h or person h–1. 

From integrating T'(y) > 0  over an interval (yh–1, yh) it follows immediately that the discrete 
marginal tax rate, defined in the following equation, must be strictly positive for all yh > yh–1: 
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Thus in a finite economy there is a real zoo of marginal tax rates: Lh and Rh are implicit mar-
ginal tax rates which represent the left- and right-derivatives at the observable incomes. The 
T'(y) are ordinary derivatives at the unobservable incomes. Finally, the mh are discrete mar-
ginal tax rates indicating which additional tax payments are due when one moves up the in-
come scale. 

Following the traditional distinction between equity and efficiency objectives, the discrete 
marginal tax rate has the function of redistributing wealth whereas the local marginal tax rates 
have an incentive function. In a sense there are more tax instruments in a finite model than in 
the continuum case. For instance, if all left-derivatives vanished, the discrete marginal rates 
would nevertheless be strictly positive, though this would not be optimal. In the continuum 
model these different instruments collapse into one. 



 19

6. A Limit Theorem 

The preceding section has shown that second-best tax schedules for finite economies cannot 
be differentiable throughout. This result is somewhat irritating for two reasons. Firstly, differ-
entiability or at least differentiability from the left (Sadka 1976, p. 266) is habitually assumed 
in the continuum model. Secondly, most tax schedules used in reality are either differentiable 
or have only a small number of points of non-differentiability. One conjectures that the tax 
schedules presented above become smooth as the skill distribution grows dense. 

To make this notion precise, assume a limit probability distribution function F with a strictly 
positive density on its support [0, w̄], where w̄> 0. For n = 1, 2, ... let Wn denote a partition of 
the support, i. e. a finite set of wage rates such that 0 = w0 <...< wH = w̄. Subject to a chosen 
partition, the probability masses are given by f0 = F(0)  and fh = F(wh) – F(wh–1) for all h > 0. A 
finite economy is a quadruple En = (Wn, F, u, g) consisting of a partition, the distribution func-
tion, the utility function and a specific aggregate tax revenue. A sequence of increasingly fine 
economies is a sequence (En)n=1, 2, ... such that wh –wh–1→0 for all h > 0. 

When the economies become increasingly fine, the number H grows without bound and the 
limit distribution function is approximated by a sequence of step functions. The associated tax 
schedules, however, are not step functions but possess the properties described in proposition 
6. The length of the largest bunching interval is defined as  

 β(En) = max {wk – wh : wk, wh∈Wn and yk = yh > 0}. (15) 

This number vanishes if there is no bunching at any strictly positive income, otherwise it is 
strictly positive. Observe that bunching at y= 0 plays no role in the definition. 

The distance of a particular economy from an economy with a differentiable tax schedule is 
denoted as ∆(En). In the preceding section it has become clear that the tax schedules are dif-
ferentiable almost everywhere and that, where this is not the case, finite left- and right-
derivatives exist. Hence it is natural to define the said distance as the largest difference be-
tween the one-sided derivatives or, to put it more vividly, as the largest jump in the marginal 
tax rate schedule: 

 ∆(En) = max {Rk – Lh : wk+1, wh∈Wn and yk = yh > 0}. (16) 

The distance is zero if y= 0 and yH > 0 are the only observable incomes, because according to 
proposition 6 the tax schedule is always differentiable at the lowest and the highest income. 
Apart from this exception ∆(En)  must be strictly positive. Its limit behavior depends crucially 
on whether or not the length of the largest bunching interval converges to zero. 

Proposition 7 (Limit Theorem): If a unique second-best optimum exists for each element 
of a sequence of increasingly fine economies, then ∆(En)→0 if and only if β(En)→0. 

Proof: The premise β(En)→0 implies wk→wh for all wk, wh∈Wn where yk = yh > 0. As the 
economies become increasingly fine, wk+1→wk for all wk+1, wk∈Wn, thus wk+1→wh for all 
wk+1, wh∈Wn

 where yk = yh > 0. Substituting into (8) shows that the differences Rk – Lh become 
arbitrarily small, hence ∆(En)→0. Conversely, with bunching in the limit Rk – Lh will be 
bounded away from zero for some k and h.  █ 
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This proposition renders the usual differentiability assumption of the continuum model valid 
in certain cases. If the tax schedules converge toward some limit and if there is no bunching in 
the limit, then the limit tax schedule will be differentiable on its entire domain. But in case of 
bunching even the limit tax schedule will be non-differentiable. From the proposition it fol-
lows that if there is exactly one bunching point in the limit, say at income y, then the limit 
schedule will be non-differentiable at y but will be differentiable at all other income levels. 
An example of non-differentiability at a single point was provided by Ebert (1992). The proof 
of the limit theorem does not require yk+1 to converge to yh and hence holds irrespective of 
whether there are gaps in the limit income distribution. 

7. Illustrations 

A distinct advantage of the finite approach to optimal income taxation is that it allows calcu-
lating optima for arbitrary utility functions and skill distributions using standard optimization 
algorithms or a simple grid search. By contrast, the continuum approach has produced results 
for only a small number of utility functions (Tuomala 1986) because computations turn out to 
be hard; explicit solutions are available for quasi-linear utility functions only (Lollivier and 
Rochet, 1983). 

Assume a Cobb-Douglas utility function u(c, l)=[c (500 –l)]0.4 (which increases strictly 
monotonically only in the interior of the consumption space, but this does not matter), an 
initial labor endowment lmax of 500 working hours per month, and a per capita tax revenue of 
100, implying that the sum of positive tax payments makes up roughly a fifth of national in-
come in the following examples. The wage rates are distributed uniformly (the probability 
masses fh all being equal to 20 per cent) unless stated otherwise, and their respective values 
are shown in the first columns of the following tables. 

 

 

Table 1 
The Falling Marginal Tax Rate 

w c y T L R m 
0 861 0 -861 -- 57% -- 
4 962 209 -753 46% 75% 52%
8 1548 1644 96 34% 64% 59%
12 2343 3122 779 19% 52% 46%
16 3381 4619 1239 0% -- 31%

 

The second column in Table 1 displays monthly consumption (net income) and the third gross 
income. The fourth column gives the difference between these, the tax payment. The last 
columns report the respective marginal tax rates. As one infers from the third and forth col-
umn, the average tax burden T/y increases strictly with income so that the tax schedule is 
progressive in this sense. But the left-derivatives Lh fall from 46% over 34% and 19% to zero. 
Slemrod et al. (1994) found a corresponding result for a two-bracket linear income tax. The 
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falling marginal tax rate is also present in Mirrlees’ (1971) original and most subsequent 
simulations; counter-examples were constructed by Kanbur and Tuomala (1994) and Dia-
mond (1998). An economic explanation of the falling marginal tax rate has never been of-
fered, which is a pity since it contradicts the idea of a graduated income tax (though it agrees 
with the high implicit rates characterizing most contemporary transfer schemes). 

In the several hundred simulations we have run, the falling marginal tax rate Lh has turned out 
to be a fairly robust feature. Proposition 5c) demonstrated that starting from an undistorted 
choice Lh = 0 (h < H) and increasing the marginal tax rate a bit keeps the right-hand neighbor 
from mimicking and thus allows additional redistribution from person h+1 to person h. This 
story sufficed to prove the positivity of Lh but it has a natural continuation: Once person h+1 
has been made worse off by the extra redistribution, additional slacks in the subsequent 
downward constraints will emerge, making it possible to also levy higher taxes on persons 
h+2, h+3, ... Hence the social value of distorting a person’s choice becomes all the smaller the 
fewer persons with higher skills exist. Because the number of such persons decreases as one 
moves up the income scale, the left-derivative will decrease as a rule. But there are important 
exceptions to this rule. Since the optimization process weighs redistributive gains against 
deadweight losses, the marginal tax rate will be low if a person reacts particularly elasticially 
or if the probability mass fh is large. 

The results reported in Table 2 rest on unchanged assumptions, except that the tax schedule 
was required to be linear. Owing to the complexity of the nonlinear income tax, linear income 
taxation has found some interest in the literature (Svensson and Weibull 1986). The required 
linearity has bold consequences. Comparing the tables one sees, for instance, that the con-
sumption of the least skilled person falls from 861 to 553. More generally, low-skilled per-
sons are worse off and high-skilled persons are better off under the linear income tax as com-
pared with the nonlinear tax. This is due to the fact that with a linear tax schedule – as with 
any differentiable tax schedule – the downward adjacent self-selection constraints have slack, 
so that there is still room for further redistribution. 

Table 2 
An Optimal Linear Tax Schedule 

w c y T L m 
0 553 0 -553 -- -- 
4 876 540 -336 40% 40%
8 1476 1539 63 40% 40%
12 2076 2539 463 40% 40%
16 2676 3539 863 40% 40%

 

Returning to nonlinear taxation, the setting behind Table 3 is the same as before except that f1 
has been increased to 36% and f2 decreased to 4%, correspondingly. Bunching at gross in-
come 388 emerges. The left-derivative at this income level is 34% and the right-derivative is 
81% whereas the figures R1 = L2 = 71% are meaningless implicit rates. The reason why bunch-
ing is optimal in this instance should be obvious: As there are many persons with wage rate 4, 
the aggregate deadweight loss from distortionary taxation is high. Hence a low tax rate seems 
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appropriate whereas keeping the persons with wage rate 8 away from this income level would 
require a high tax rate. The optimizing process accepts that the latter persons mimic the for-
mer, because the redistributive loss from doing so is insignificant. Thus bunching can be op-
timal in particular if adjacent probability masses differ substantially. 

Table 3 
The Social Value of Bunching 

w c y T L R m 
0 852 0 -852 -- 57% -- 
4 1057 388 -668 34% 71% 47%
8 1057 388 -668 71% 81% 71%
12 2170 3267 1097 21% 54% 61%
16 3205 4795 1591 0% -- 32%

 

Table 4 presents the last example with Cobb-Douglas utility. It was constructed by filling all 
integer values between skill levels zero and sixteen, leaving the rest of the assumptions behind 
Table 1 unchanged. Whereas “fighting unemployment” is usually considered an important 
business of social policy, the present case shows that it has a price: In order to induce the less 
skilled persons to work one must offer them attractive pairs containing more consumption and 
income. Then agent monotonicity implies that the higher skilled – who have to be prevented 
from mimicking – become better off. The present optimum accepts a certain degree of unem-
ployment in order to make more redistribution possible. Somewhat paradoxically, insisting on 
full employment would reduce utilities at the bottom of the income scale and increase utilities 
at the top. 

In accordance with the warning after proposition 5, there is a strictly negative left-derivative 
at zero income (-39% in Table 4). This figure is meaningless; the explicit marginal tax rate at 
income zero equals R2 =54%. Starting at the first meaningful left-derivative (L3 = 53%) we 
encounter again the nice regularity of the falling marginal tax rate. Note also that the largest 
difference between left- and right-derivatives at strictly positive incomes was thirty points in 
Table 1 but is only twelve points in Table 4. This illustrates the limit theorem which states 
that the differences will become smaller and smaller as we add more and more skill levels to 
the original distribution. 
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Table 4 
The Social Value of Unemployment 

w c y T L R m 
0 695 0 -695 -- -39% -- 
1 695 0 -695 -39% 30% -- 
2 695 0 -695 30% 54% -- 
3 698 5 -693 53% 65% 53% 
4 820 303 -517 52% 63% 59% 
5 957 617 -340 49% 60% 56% 
6 1109 943 -166 46% 57% 53% 
7 1275 1277 2 43% 53% 50% 
8 1457 1618 160 39% 49% 46% 
9 1656 1963 307 35% 45% 43% 
10 1871 2312 441 30% 41% 38% 
11 2103 2664 561 26% 37% 34% 
12 2353 3018 665 21% 32% 29% 
13 2622 3375 754 16% 28% 25% 
14 2909 3734 824 11% 23% 20% 
15 3217 4094 877 6% 18% 15% 
16 3545 4455 910 0% -- 9% 

 

The last  two  tables were produced with a CES utility function u(c, l) = [cρ+ (500 – l)ρ]1/2ρ, all 
other premises the same as above. The results sustain the widely held expectation that optimal 
marginal tax rates would become smaller as the elasticity of substitution σ= (ρ–1)/ρ increases. 
Stern (1976) showed this in the case of linear income taxation. With a CES utility function the 
continuum approach fails to provide examples of nonlinear income taxes because the differen-
tial equations cannot be solved. The finite approach avoids such roundabout procedures and 
allows optimizing directly with any conceivable utility function. An interesting route for fu-
ture research would be to take some flexible utility function, fit it to the data and calculate 
optimal tax schedules for economies where individuals are grouped into finitely many classes. 

Table 5 
Elasticity of Substitution equals 2 

w c y T L m 
0 1653 0 -1653 -- -- 
4 2237 1012 -1225 25% 42% 
8 3309 3337 29 21% 54% 
12 4363 5513 1151 14% 52% 
16 5461 7659 2198 0% 49% 
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Table 6 
Elasticity of Substitution equals 0.5 

w c y T L m 
0 507 0 -507 -- -- 
4 544 128 -416 66% 71% 
8 764 917 153 51% 72% 
12 1086 1635 549 26% 55% 
16 1456 2177 721 0% 32% 

 

8. Conclusion 

This paper presented an axiomatic restatement of the standard approach to nonlinear income 
taxation. The present approach differed from the standard model invented by Mirrlees (1971) 
in that it assumed a finite number of taxpayers rather than an uncountable infinity. All other 
assumptions were basically the same. The finite framework allowed proving the standard 
results in a simply and rigorous fashion which highlighted the economic forces at work. By 
contrast, the infinite approach is not rigorous since the usual optimality conditions are neither 
necessary nor sufficient for a true optimum. 

The most important economic insight was that positive marginal tax rates have an important 
incentive function rather than merely a redistributive function: High marginal tax rates pre-
vent more productive people from mimicking the less productive. As a result, marginal tax 
rates are likely to decline over the entire income range. This finding contradicts the traditional 
idea of income tax graduation. 

Appendix 

Firstly, the inequalities introduced with assumptions B and C are derived. Consider a person 
that maximizes utility u(c, l) subject to the budget constraint c≤wl+e ,  where e denotes a 
virtual income. Differentiating the Lagrangean L= u(c, l) +λ(wl+ e – c) yields the usual first-
order conditions for an interior individual optimum: 

 
.0wu

,0u
,0cew

c

=λ+
=λ−

=−+

l

l

 (17) 

If consumption is a gross substitute for leisure, an increase in w will induce an increase in 
consumption. If leisure is non-inferior, an increase in e will induce an increase in leisure or, 
what amounts to the same, a reduction in labor supply. Both assumptions should hold in the 
entire interior of the consumption space but not necessarily on its boundary. The determinant 
of the Jacobian matrix J of (17) is strictly positive according to assumption A. From the im-
plicit function theorem we obtain after substituting λ= uc and w = –ul/uc: 
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These two inequalities are used in the text. In order to motivate the next proof observe that λ 
equals the marginal utility of consumption. Hence changes in the marginal utility of consump-
tion following an increase in e or w, respectively, can again be calculated using the implicit 
function theorem. First we have ∂uc/∂e = –|Hess u|/|J|< 0 which says that the marginal utility of 
consumption is smaller for persons with a higher exogenous income. This follows directly 
from the strict concavity of the utility function and is pretty clear. However, 
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Thus marginal utilities need not be smaller for persons with higher wage rates, see also Chris-
tiansen (1983, p. 367). But when leisure is a non-inferior good the second term will be non-
positive and since the first term is strictly negative, the expected result is obtained. 

Proof of lemma 2: Let c(z) = z ck + (1– z) ch and l(z) = z lk + (1– z)lh. The strict concavity of 
the utility function implies u(c(z), l(z)) > z u(ck, lk) + (1 –z) u(ch, lh) for all z∈(0; 1). An analo-
gous inequality holds if one substitutes 1 –z for z. Adding the two inequalities yields 

 u(c(z), l(z)) + u(c(1 – z), l(1 – z)) > u(ck, lk) + u(ch, lh) . (21) 

Assume lk <lh. Because proposition 2b) implies ck≥ch, consumption of k decreases and con-
sumption of h increases; aggregate consumption remains unchanged. As person k has a higher 
wage rate aggregate output rises. Reducing person k’s work to lk + wh/wk (1– z) (lh –lk) <l(z) 
increases overall utility anew and leaves output unchanged. Thus consumption and leisure of 
value ε= (1 – z)(ck – ch)+ (1 –z) wh (lh –lk) > 0 are distributed from k to h. 

Now assume lk≥ lh. Let ∆c = ck – ch and ∆l=lk –lh. The functions c(z) and l(z) defined above 
possess derivatives c'(z) =∆c and l'(z) =∆l. The premise u(ck, lk) > u(ch, lh) and strict convex-
ity of the preference ordering imply u(c(z), l(z)) > u(ch, lh) for all z∈(0; 1] so that the deriva-
tive of the utility function with respect to z is strictly positive almost everywhere: 

 ll
l

ll ∆−>∆⇒>∆+∆= cc uuc0ucudz
))z(),z(c(du . (22) 

All derivatives are evaluated at (c(z), l(z)). Differentiating the marginal utility of consump-
tion with respect to z yields 

 l
l
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Since ucc < 0 the right-hand inequality in (22) is equivalent to ucc∆c < – ucc ul/uc∆l. Hence 
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The last inequality follows from ∆l≥0 and (19). Thus duc/dz is strictly negative so that 
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This implies u(ck – ε, lk)+ u(ch +ε, lh)> u(ck, lk) +u(ch, lh) for ε> 0 small enough. As person k 
has higher utility and lk≥ lh we must have ck > ch≥0 implying that such reallocations, which 
leave aggregate consumption unchanged, are indeed feasible.  █ 

The proof shows that one must follow different redistribution strategies depending on which 
labor supply is greater. If lk <lh, which may well occur at a second-best optimum, the sum 
u(ck, lk) + u(ch, lh) can be increased by distributing consumption and leisure from k to h. But 
if lk≥ lh the same goal is reached if one distributes consumption only from k to h. Dixit and 
Seade (1979) pointed out that when one moves up the utility scale, at least one marginal util-
ity must decline if both goods are non-inferior. The premise of non-inferiority of consumption 
is not needed here. Dixit and Seade’s conclusion is too weak for our purposes because at 
corner solutions lk =lmax or lh = 0 it becomes impossible to redistribute leisure from person k 
to person h. Both corner solutions imply lk≥ lh, however, and the second part of the above 
proof shows that redistribution of consumption only suffices in this case. 
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