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Abstract

The Finite Element Method is a well-studied and well-understood method of solving
partial differential equations. Its applicability to financial models formulated as
PDEs is demonstrated. Its advantage concerning the computation of accurate
“Greeks” is delineated. This is demonstrated with various exotic options.
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1 Introduction

Many pricing models can be cast into continuous time and as a result will naturally
lead to partial differential equations. These types of PDEs are usually linear and
parabolic. In order to avoid clutter in notation we restrict our attention to the case
of linear models depending on maximal two factors.! These models have been solved
traditionally with Finite Differences (FD). Many different FD techniques exist ([1],
ch. 2); the most important have been introduced to financial problems ([28], ch. 15;
[14], ch. 10; [50], ch. 16-22; [15]). The usefulness of Finite Elements (FE) has been
recognized by many authors ([24], p. 47; [14], p. 212; [16], p. 1664; [17], p. 582; [18],
p. 586; [46]; [9], [55], sec. 2.5.4) but to our knowledge the first to explore this idea
in some more detail were [31], [32], [21], [22], [23], and [48].

These authors have shown that FE approaches offer some advantages:

e A solution for the entire domain is computed, instead of isolated nodes as in
the case with FD codes.

e The boundary conditions involving derivatives are difficult to handle with
FD ([20], p. 501). Neumann conditions, however, are often easier to obtain
than Dirichlet conditions when estimating the behaviour of the option when
the price of the underlying goes to infinity. FE techniques can incorporate
boundary conditions involving derivatives easily.

e In addition, FE can easily deal with high curvature. In most FE codes this is
achieved by adaptive remeshing, a technique well-developed in theory and in
practice.

In this paper we will concentrate on some further advantages of FE:

e The irregular shapes of the PDE’s domain can easily be handled while in a FD
setting, the placing of the gridpoints is difficult. These irregular domains arise
naturally when knock-out barriers are imposed on a multiple-asset option.
Irregular shapes can also arise when only parts of the PDE’s domain are to be
approximated numerically because some parts can be determined by financial
reasoning.

e Most academic papers are concernened with pricing only while most
practioners are at least as much interested in measures of sensitivity to those
prices. Some of these measures of sensitivity, commonly called Greeks, can be
obtained more exactly with FE.

e Many FE codes (such as PDEase2D™ used for this paper) allow local
refinement. This allows precise local information without having to solve
the problem with accuracy on the entire domain. PDFEase2D™ also employs
adaptive remeshing. This feature automatically leads to local refinement in

'Most PDE-based option and bond pricing models belong to this class of problem. Notable
exceptions are the nonlinear models with transaction cost ([37]; [50], ch. 13; [51]) and the 3-factor
swaption model by Dempster and Hutton ([12]; [13]). These models can also be solved with FE,
but this will not be demonstrated here; see, for instance [54].
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areas of high curvature, for example near to the strike price or close to the
barrier.

We will demonstrate these ideas with options which are currently traded in the
marketplace. Some of them are listed on stock exchanges. While some of these
products are a simple application of the FE approach, many are more sophisticated.
We present an approach for valueing options on baskets with various barrier features.
This implies a two step procedure: First, some PDEs have to be solved in order to get
boundary conditions, and second, another PDE has to be approximated numerically
to price the product.

2 General Outline

The Pricing PDE Our aim is to explain some features from FE modeling which
are especially useful for option pricing. As in most codes available today this takes
place within a hybrid FD/FE* framework. This method discretizes time with FD
and the spatial variables with FE, and has been, until today, the predominant way of
dealing with time in FE analysis. Technical derivations with increasing levels of rigor
can be found in [8], [4], [1], and [45]. We convert the original backward parabolic
problem into a forward parabolic problem to be in accordance with most numerical
literature. The interpretation of 7 =T — ¢ therefore is time to maturity so that the
task is to an approximate solution to the following problem:?

1, ,0%f 1, ,0%f 0% f
50'1518—512 + 50'2528—522 + ,00'10'25152851852 + (1)
of of of
(r=a)Sigg +r—@)Shye = rf+ 5
f(Sl,SQ,O) = 91(51,52) mD (2)
f(Sl,SQ,T) = gg(Sl,SQ,T) on R1 (3)
0
% = 93(5’1, SQ, 7') on RQ (4)
R1 U R2 = R (5)

D is the interior of the convex domain, and R constitutes the boundary. % denotes
the gradient perpendicular to the boundary. Although boundary conditions eq. (3)
and eq. (4) and initial conditon eq. (2) may not be compatible, the problem is well-
posed [50]. The equations above can be used to price European options of many
kinds as the examples in the following chapter will show. We employ a two-asset
formulation of the Black-Scholes equation because the extension to more dimensions
is fairly straightforward from a financial and a numerical point of view, since this
approach incorporates correlations between the assets and allows for Finite Elements
with different geometric shapes. A general FE solution for European and American
options has been delivered by [23]. The pricing of American options, however, is more

2This term stems from Darrell Duffie; the typical name for this approach in the mathematical
and engineering literature is time-dependent FE methods.

3All notation is based on [28] with the only exception of S, denoting the price of the nth
underlying (instead of the price on the underlying S at time n.)
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difficult because an early exercise has to be taken into account. In the PDE setting
this naturally leads to moving boundary problems [50] which can also be solved with
FE [11]. In the option pricing setting there are currently two approaches: Either the
nodes in the elements are manipulated in the same way as they are in a FD setting
([22], p. 7f), or the problem is reformulated as a variational inequality which is solved
with FE ([50], p. 410ff).

The problem stated above is a special case of the convection-diffusion problem
which has been studied for many decades. Therefore, many numerical techniques
are available. One of these is the FEM which is outlined in many textbooks; see for
instance [4], [8], and [52]. Here, we do not want to add another general outline of an
FE procedure for parabolic problems. Instead, we want to highlight some features
which are useful for option pricing in a readable manner. For European options as
stated in eq. (1) to (5) the hybrid FD/FE method leads to the following system of
ordinary differential equations.

qg = Au + Bu (6)
u(0) = u, (7)

Thus the problem of solving a PDE has been reduced to solving a system of
ordinary differential equations. This initial value problem is usually solved with a
FD technique. For a discussion of the most appropriate ones in this setting compare
[4] or [8]. The assembly of the elements has been performed implicitly.

Adaptive Time Steps Our software uses Crank-Nicholson time differencing to
solve the system above. In order to get an estimate of the error incurred by the time
steps a three-step approach is used. First, a half-step solution estimates the values
at the mid-step; then, a full-step estimates the values at step end. Then a half-step
advances from mid-step to end-step. These two estimates of the end-step value allow
the determination of a cubic time term in a Taylor expansion of the solution in time.
This cubic term in under the control of the user (by the command errlim).

Adaptive Meshing Since PDFase2D™ controls adaptively timesteps and spatial
gridding there is a problem of dividing the errors between temporal and spatial
controls. The technique employed here is propriatory. So, we will concentrate on the
spatial meshing. The software uses triangular elements.® This allows to discretrize
any domain with piecewise linear boundaries. Curved boundaries can only be
dicretized approximately but this is no disadvantage for financial applications where
all the boundaries are linear. In areas of high curvature the triangular elements are
divided into two new triangular elements. This process is repeated until some error
limit is met.

The Greeks Besides option premiums, one is also interested in the Greeks. The

FEM is especially for Delta (A = %) and Gamma (I’ = %), well-suited because

4 PDEase2D™ treats problems with only one spatial variable as having two spatial variables.
The second variable is a dummy.
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it delivers a polynomial approximation in the spatial variables.® The derivatives of
polynomials can be easily computed analytically and as a result very fast.® Obviously,
for this to Work,Sthe shape functions have to be at least quadratic. For higher Greeks,
like Speed, (%; compare ([55], p. 78) this approach becomes complicated due
to the fact that many types of elements become admissible. One can improve this
procedure by taking the Greeks at the so-called Moan Points. Moan points are
points of the FE approximation which have exact derivatives ([42], [4], [8]). Since
in financial problems, one is usually interested only in solutions to one or several
points in the parameter space, the elements can always be constructed in a way
that these points of interest become Moan points. Another possible approach is to
use low-order shape functions and employ a device called local smoothing from the

engineering literature [27].

3 Examples

3.1 Barrier Options
3.1.1 Double Barrier

We consider an up-and-out-down-and-out call option continuously monitored,” with
the following data:

| Parameter | Value |
Strike price 100
Down-and-out barrier 75
Up-and-out barrier 130
Rebates none
Interest rate 0.1
Volatility 0.2
Maturity 1 year

Table 1: Data Double Barrier Option

This leads to the following well-posed backward parabolic PDE problem:

af af 1 0 f
E—Fr %%—50252@ =rf (8)
f(T,S) = max(S— X,0) 9)
f(t’ 75) =0 (10)
£(£,130) = 0 (11)

The pricing PDE eq. (8) is the famous Black-Scholes equation [5]. Eq. (9) constitutes
the payoff at maturity. Eq. (10) and (11) are the knock-out barriers. The analytical

SThere are pure FE approaches which apply FE in time, too; compare [34], [19]. This, however,
is not the general methodology.

6The package used for this paper [38] only allows numerical derivatives.

"Solutions to problems with discrete monitoring can be found by applying the adjustment
formulae by [7] to the continuous-monitoring solution.
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solution involves a series which goes from —oo to oo ([26], p. 73). For numerical
purposes this series has to be cut off after some finite number of terms. It has been
shown in [35] that it is sufficient to consider only the terms from -2 to 2 because all
other terms are very close to zero. Here, for the analytical solution, we have taken
the terms from -5 to 5.8 The root mean sqare error RMS is controlled by the user.
The default, which is used for all other runs, is 0.001 ([38], p. 104). The value of
the underlying is varied in order to catch different degrees of the moneyness. Since
the program is adaptive in time and space the number of cycles, nodes, and cells
are chosen during the solution process by the program. The code to this and all
the other problems from this paper can be found on the disk which comes with this
paper.?

Underlying Fair Value
Analytical Numerical
RMS 0.01 RMS 0.001 RMS 0.0001
Error Error Error
76 0.27306 0.27376 | 0.26 % | 0.27317 | 0.04 % | 0.27317 | 0.04 %
80 1.22027 1.22357 | 0.27 % | 1.22092 | 0.05 % | 1.22087 | 0.05 %
90 2.90287 2.90875 | 0.20 % | 2.90378 | 0.03 % | 2.90378 | 0.03 %
100 3.52511 3.52456 | 0.02 % | 3.52395 | 0.03 % | 3.52533 | 0.01 %
110 2.89967 2.89187 | 0.27 % | 2.89670 | 0.10 % | 2.89932 | 0.01 %
120 1.47489 1.46833 | 0.44 % | 1.47269 | 0.15 % | 1.47458 | 0.02 %
129 0.13192 0.13137 | 0.42 % | 0.13181 | 0.08 % | 0.13192 | 0.01 %
Data of FE-Run
Cycles 25 57 72
Nodes 223 219 219
Cells 74 72 130

Table 2: Results Double Barrier Option

The root mean sqare error RMS is controlled by the user. Error is defined as relative

deviation:

result — resultpg (12)

error =
result

The reported errors and differences here and in following sections are based on more
significant digits than are shown in the tables.

3.1.2 Single Barrier
The following example is based on the example in ([3], p. 225f).

81t is the normal case that analytical solutions to option pricing problems involve infinite series
and/or indefinite integrals. This has led ([50], p. 261) to the recommendation not to look for
analytical solutions (which are usually not easy to find provided they exist; compare ([43], sec.
2.3)) but to solve the PDE with numerical methods directly.

9 Available from the author upon request.
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| Parameter | Value |
Strike price 100
Up-and-out barrier 110
Rebate 10
Interest rate 0.05
Volatility 0.2
Maturity 0.5 year
Table 3: Data Single Barrier Option
This leads to the following well-posed backward parabolic PDE problem:
Of | Of 1 4,0
L 4 rS—L 4 o282 L — 13
ot T a7 Vg = (13)
£(T,S) = max(S — X,0) (14)
f(t,0) = 0 (15)
f(t,110) 10 (16)

Eq. (15) can be interpreted as a knock-out barrier: Once the price of the underlying
equity hits zero the company is bankrupt and will not recover in value [33].
Consequently, any call on this equity will be worthless. In eq. (16) a lump sum

rebate is introduced.

| Und. | Method [ Fair value | Delta | Gamma |

80 Analytical | 0.43223 0.08507 0.01295
Numerical | 0.43221 0.08507 0.01298

Error 0.0040 % | 0.0000 % | 0.1965 %
90 Analytical | 2.10253 0.26128 0.01999
Numerical | 2.10252 0.26130 0.01992

Error 0.0003 % | 0.0068 % | 0.3707 %
100 | Analytical | 5.60968 0.42205 0.00939
Numerical | 5.60975 0.42204 0.00927

Error 0.0012 % | 0.0014 % | 1.3159 %
105 | Analytical | 7.79972 0.44635 0.00031
Numerical | 7.79971 0.44635 0.00030

Error 0.0001 % | 0.0000 % | 3.3333 %

109 | Analytical | 9.56930 0.43406 -0.00625
Numerical | 9.56929 0.43405 -0.00620

Error 0.0001 % | 0.0029 % | 0.8342 %

3.1.3 Time-dependent Rebates

Table 4: Results Single Barrier Option

We consider the same problem as in sec. (3.1.2) except that the rebate becomes a
step-like function of time. Each month it doubles, starting with 1. In mathematical
terms, eq. (16) has to be replaced by:
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(1, 0 < t <&
1 2
2, 12—2 < t < 13—2
4 = < 1t <5
t,110) = ’ 12 12 17
f( ) ) S 8, 13_2 < t < 14;_2 ( )
16, 15—2 < t < 16—2
L 32, 13 < t < 12
30.00
Premium | ﬁ
2000 —
] J ~
i /b/ {
10.00
:\& /f_j/
o~ :///
0.00 ‘ l ‘ 0.20 ‘ ‘ I 040 Time to Maturity

Figure 1: Price of Option as a Function of Time with Underlying at 105 (a)

and 109 (b)
| Underlying | Fair value | Delta | Gamma |
80 0.18569 0.03352 | 0.00493
90 0.91468 0.13750 | 0.01774
100 4.48090 0.71799 | 0.09950
105 9.35280 1.21336 | 0.08385
109 14.63519 | 1.37108 | -0.00449

Table 5: Results Single Barrier Option with Time-dependent Rebate

3.1.4 Time-dependent Volatilities

One of the most often criticized weaknesses of the Black-Scholes model is its
assumption of constant volatility. This assumption, however, can be dropped without
leaving the Black-Scholes environment of lognormal returns. One approach is to
assume a term structure of volatility. The most simple model for a term structure
of volatility is to assume that the volatility is a linear function of time to maturity:

o(t)=at1+b (18)

No analytical formula is known for volatility models depending on the moneyness
and/or time-to-maturity. This leads to volatility surfaces which are widely used
([51], ch. 14.6). The FEM allows one to integrate complicated deterministic volatility
models as shown by [32]. Here we will contrast our results to the results reported
by [6] using a trinominal tree. Unfortunately, no details on the trinominal tree
calculations are provided.
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| Parameter | Value |
Asset price 95
Strike price 100
Down-and-out barrier 90
Interest rate 0.1
Maturity 1 year

Table 6: Data Single Barrier Option with with Time-dependent Volatility

Here we consider constant, increasing, and decreasing volatility:

| Problem | Initial volatility | Ending volatility | a | b |
1 0.25 0.25 0 0.25
2 0.177 0.306 -0.129 | 0.306
3 0.306 0.177 0.129 | 0.177

Table 7: Data Volatility Curve

Unfortunately, [6] does not provide any details on his trinominal tree computations.

| Problem | Method | Fair value | Delta |

Analytical 5.9968 1.120

1 FE 5.9969 1.119
Difference 0.0017 % | 0.0894 %

Trinominal tree | 6.4556 1.146

2 FE 6.4632 1.145
Difference 0.1176 % | 0.0873 %

Trinominal tree | 5.7286 1.093

3 FE 5.7169 1.089
Difference 0.2047 % | 0.3673 %

Table 8: Results Volatility Curve
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3.2 Power Options
3.2.1 Plain Vanilla Power Option

Power options can be subdivided into symmetric and asymmetric power options
according to their payoffs:

e symmetric power call: max((S — X)P,0)
e asymmetric power call: max(S? — X, 0)

The payoffs of the puts can be constructed accordingly. To both types, analytical
solutions are available ([55], ch. 30). Here, we will contrast our numerical solution
to the analytical solutions for the premium, Delta (A), and Gamma (I'). As a basis,
we take an example from ([55], p. 589) with the following data:

| Parameter | Value |
Asset price 555
Strike price 550
Interest rate 0.06
Volatility 0.15
Dividend Yield 0.04
Maturity 0.5 year

Table 9: Data Aysmmetric Power Option

In mathematical terms, this can be formulated as following:

of af 1 0’ f
E—i—rb’%—i—?ﬂSQ@ = Tf (19)
f(T,S) = max(S? — X,0) (20)
F(t,0) = 0 (21)
£(£,1000) = S” — Xe (22)

Eq. (22) denotes the value of the option deep in the money. It is common practice
to cut off the semi-infinite domain at some point to get a finite domain since most
numerical routines apply to finite domains ([39], p. 283; [36]; [49]) although numerical
techniques for semi-infinite techniques exist ([25]; [53]). The power parameter p is
varied.
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[ » [ 096 097 | 098 0.99 1.00

Analytical | 0.17614 | 1.01010 | 4.08800 | 12.21638 | 28.29032
FE 0.17615 | 1.01080 | 4.08802 | 12.21638 | 28.29040
Difference | 0.0037 % | 0.0027 % | 0.0003 % | 0.0001 % | 0.0003 %
A 0.00892 | 0.04218 | 0.13766 | 0.32420 | 0.58026

Ars 0.00892 | 0.04219 | 0.13767 | 0.32421 | 0.58026
Difference | 0.0215 % | 0.0114 % | 0.0064 % | 0.0016 % | 0.0001 %
T 0.00038 | 0.00141 | 0.00346 | 0.00570 | 0.00648

Trs 0.00039 | 0.00145 | 0.00354 | 0.00576 | 0.00647
Difference | 3.6430 % | 2.7837 % | 2.1628 % | 1.0376 % | 0.0000 %

Table 10: Results Asymmetric Power Calls (Part 1)

[ p [ 101 1.02 1.03 1.04 1.05

Analytical | 53.39500 | 86.29781 | 124.81669 | 167.30009 | 213.01648
FE 53.39502 | 86.29778 | 124.81670 | 167.30010 | 213.01650
Difference | 0.0000 % | 0.0000 % | 0.0000 % | 0.0000 % | 0.0000 %
A 0.83817 1.04341 1.19100 1.30579 1.41124

Arg 0.83817 1.04340 1.19099 1.30579 1.41124
Difference | 0.0004 % | 0.0011 % | 0.0004 % | 0.0003 % | 0.0001 %
T 0.00516 0.00297 0.00129 0.00048 0.00022

Teg 0.00515 0.00291 0.00126 0.00048 0.00022
Difference | 0.3056 % | 2.1197 % | 2.2855 % | 0.2417 % | 1.0919 %

Table 11: Results Asymmetric Power Calls (Part 2)

3.2.2 Capped Power Option

The Asymmetric Case

As mentioned previously, there are closed-form solutions

to symmetric and asymmetric power options. But within the market place, only
capped power calls and puts with a floor are traded,'® for which an analitical solution
is not known. In mathematical terms, the problem is to find a solution to the
following PDE with the data from the example in sec. 3.2.1:

af 1

02 f

— 7S+ 057 —

9SS 2

9S?
f(T,5)
f(t,0)

£(t,1000)

C

= rf

= min(max(S* — X,0),C)

0
20
= 50

23

(23)
(24)
(25)
(26)
(27)

10An Example: In Germany, Bankers Trust has issued capped symmetric FX power options on
US § (WKN 822512 - WKN 822521), Swiss Francs (WKN 822374, WKN 822376), and Japanese
Yen (WKN 826053f) with a power parameter of p = 2.
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| P | 0.96 | 0.97 | 0.98 | 0.99 | 1.00 |
Monte Carlo 0.163 0.909 3.442 9.327 18.887
FE 0.165 1.008 3.434 9.332 18.886
Arg 0.00814 | 0.04210 | 0.10882 | 0.21931 | 0.30711
| 0.00033 | 0.00141 | 0.00242 | 0.00278 | 0.00097
| P | 1.01 | 1.02 | 1.03 | 1.04 | 1.05 |
Monte Carlo | 29.897 39.098 44.745 47.327 48.219
FE 29.893 39.084 44.736 47.326 48.224
Arg 0.30619 | 0.22105 | 0.11743 | 0.04658 | 0.01398
| -0.00194 | -0.00356 | -0.00304 | -0.00167 | -0.00064

Table 12: Results Capped Asymmetric Power Calls

The Monte Carlo results have been achieved in the most simple way with 1,000,000
samplings.
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Figure 2: Premium of a Capped Symmetric Power Option
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Figure 3: Delta A of a Capped Symmetric Power Option

The Symmetric Case
be formulated accordingly:
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Figure 4: Gamma ' of a Capped Symmetric Power Option

f(T,S) = min(max((S—X)",0),C) (29)
f(t,0) = 0 (30)
£(1,1000) = 50 (31)
C = 50 (32)

We take the data from table (9) and vary the asset price from out-of-the-money
to in-the-money. The power parameter is set to p = 2 which is predominant in the
market place. We compare our results with a simple Monte Carlo approach based
on 1,000,000 samplings.

| p | 500 | 950 | 955 | 560 | 600 |
Monte Carlo | 8.47390 | 23.50052 | 25.15097 | 26.78109 | 37.98719
FE 8.46219 | 23.51419 | 25.16434 | 26.79323 | 37.97783
Difference | 0.1297 % | 0.0582 % | 0.0532 % | 0.1745 % | 0.0246 %
Arg 0.23545 0.33162 0.32844 0.32311 0.22415
Ieg 0.00381 | -0.00015 | -0.00064 | -0.00107 | -0.00306

Table 13: Results Capped Symmetric Power Calls

3.3 Basket Options
3.3.1 Put on a Basket

For options on baskets, at present there is no known analytical solution ([29], p. 161).
Therefore, this option has to be priced with a numerical device or an approximation
like ([30]; [41]; [55], ch. 27). The basic idea of these approximations is to combine the
volatilities of the underlying and their correlations to a single volatility of the basket.
This basket is then treated as a single underlying. Using this approach, the problem
of pricing an option on a basket is reduced to pricing an option on a single equity.
Accordingly, the models to price options with exotic features can also be applied to
options on baskets. Precise error estimates are generally not provided ([29], p. 163).
Here, however, we price options on baskets using a multi-dimensional PDE. For a
plain vanilla put we first derive the boundary conditions. As one or both underlyings
become worth much more than the strike, the price of the options goes to zero. As
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the price of first underlying is zero, while the second is positive, the value of the
option behaves like the value of a plain vanilla put on a single equity. Therefore, the
boundary conditions at S; = 0 and Sy = 0 are the (time-dependent) solution to the
basic Black-Scholes problem of pricing a put ([29], p. 162) with strikes at wi and

w%, respectively. Together with the data this becomes the following PDE problem.

| Parameter | Value |
First asset price 18
Weight first asset 1
Second asset price 20
Weight second asset 1
Correlation 0.5
Strike price 40
Interest rate 0.1
Dividend Yields 0.0

Table 14: Data Put on a Basket

1oq0f 1 5,00 0 f
2015’1 957 + 20252 952 + ’001025152851852 + (33)
of of of
(r=a)Sigg +r—a)Syg = 1/-%
f(Sl, SQ, T) = maX(O,X — (’UJlSl + ’IUQSQ)) in D (34)
X
f(Sl,O,t) = g(Sla _7t) (35)
Wa
X
f(07 Sa, t) = 9(52’ w_at) (36)
1
F(100,5,) = 0 (37)

Here, the ¢ functions denote a plain vanilla European put with strikes of w% and

w% and appropriate volatilities. We compute the cumulative normal distributions in
equations (35) and (36) with an approximation which has four digit accuracy from
([28], p. 243).1' To compare the results, we also price the put on a basket using a
two-dimension binominal tree as implemented by ([26], ch. 3.3). This tree can be
interpreted as a simple explicit finite difference scheme; compare ([50], p. 279).

HFor higher accuracy see also ([28], p. 243f).
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[ Volatility | Time to Maturity [ Premium
[ o7 [ o3 | 005 0.5 095 |

1.8025 0.9543 0.6043 Tree
0.1 1.8065 0.9543 0.6035 FEM
0.2204 % 0.0022 % 0.1352 % Diff.
1.8333 1.4756 1.2408 Tree
0.1 0.2 1.8341 1.4764 1.2405 FEM
0.0473 % 0.0512 % 0.0305 % Diff.
1.9118 2.0186 1.9265 Tree
0.3 1.9138 2.0187 1.9270 FEM
0.1034 % 0.0041 % 0.0242 % Diff.
1.8271 1.4120 1.1607 Tree
0.1 1.8275 1.4127 1.1601 FEM
0.0236 % 0.0492 % 0.0489 % Diff.
1.8859 1.8835 1.7758 Tree
0.2 0.2 1.8856 1.8833 1.7754 FEM
0.0076 % 0.0125 % 0.0202 % Diff.
1.9816 2.3941 2.4389 Tree
0.3 1.9830 2.3942 2.4389 FEM
0.0602 % 0.0024 % 0.0004 % Diff.
1.8906 1.8941 1.7649 Tree
0.1 1.8915 1.8948 1.7647 FEM
0.0451 % 0.0395 % 0.0108 % Diff.
1.9683 2.3301 2.3557 Tree
0.3 0.2 1.9687 2.3298 2.3555 FEM
0.0210 % 0.0138 % 0.0095 % Diff.
2.0739 2.8112 2.9985 Tree
0.3 2.0747 2.8119 2.9979 FEM
0.0360 % 0.0021 % 0.0181 % Diff.

Table 15: Results Put Option on a Basket Computed on a Square Domain

A A

Strike Strike

> >

X g

Figure 5: Quadratic and triangular domains for options on baskets

As an alternative to pricing this option on a square domain, we also price it on a
triangle, compare fig. (5). Basically, we cut off the section of the domain where the
option is totally out of the money and therefore worthless. This, of course, reduces
computing time. The boundary conditions (35) to (38) are replaced by:

£(5,,0,8) = g<sl,w§2,t) (39)
(0,5, 1) = g(sg,wfl,t) (40)

f(Sl,SQ,t) = 0Oon SinaXSénax (41)
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[ Volatility | Time to Maturity [ Premium
[ o7 [ o3 | 005 0.5 095 |

1.8026 0.9543 0.6043 Tree
0.1 1.8035 0.9545 0.6035 FEM
0.0498 % 0.0155 % 0.0938 % Diff.
1.8333 1.4756 1.2408 Tree
0.1 0.2 1.8334 1.4770 1.2407 FEM
0.0048 % 0.0899 % 0.0097 % Diff.
1.9118 2.0186 1.9265 Tree
0.3 1.9135 2.0187 1.9262 FEM
0.0919 % 0.0053 % 0.0174 % Diff.
1.8271 1.4120 1.1607 Tree
0.1 1.8265 1.4119 1.1604 FEM
0.0324 % 0.0095 % 0.0247 % Diff.
1.8859 1.8835 1.7758 Tree
0.2 0.2 1.8850 1.8834 1.7753 FEM
0.0468 % 0.0033 % 0.0256 % Diff.
1.9818 2.3941 2.4389 Tree
0.3 1.9826 2.3940 2.4387 FEM
0.0426 % 0.0044 % 0.0098 % Diff.
1.8906 1.8941 1.7649 Tree
0.1 1.8908 1.8937 1.7644 FEM
0.0076 % 0.0218 % 0.0283 % Diff.
1.9683 2.3301 2.3557 Tree
0.3 0.2 1.9679 2.3299 2.3555 FEM
0.0165 % 0.0076 % 0.0081 % Diff.
2.0739 2.8120 2.9985 Tree
0.3 2.0747 2.8120 2.9988 FEM
0.0368 % 0.0006 % 0.0107 % Diff.

Table 16: Results Put Option on a Basket Computed on a Triangular Domain

Although it is possible to adjust FD schemes for non-rectangular domains (][40], ch.
2; [2], p. 258f; [1], sec. 1.9; [10]; [43], sec. 3.4) FE are the natural choice. This
is even more true for Neumann conditions which are difficult to integrate into
more advanced FD schemes in case of curved boundaries. In a FE setting, however,
Neumann conditions are even easier to consider than Dirichlet conditions.

NARN| L [
T

0 200 g1 400 600 0 200 g1 400 600
=0,0025 t=0,05

0 200 gq 400 600
t=0,5

Figure 6: History of FE Mesh

3.3.2 Call on a Basket

In [47] Rubinstein reports results on pricing a call on a basket with the following
data using a two-dimensional binominal tree:
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| Parameter | Value |

First asset price 100
Weight first asset 1
Second asset price 100
Weight second asset 1
Strike price 200
Correlation 0.5
Interest rate 0.0953102
Dividend yield first asset 0.0487902
Dividend yield second asset 0.0

Table 17: Data Call on a Basket

With a hundred time steps he achieves the following results:

Volatility | Time to Maturity
o | 05 ]0.05] 05[] 095
0.1 | 1.92 | 8.97 | 14.70
0.1] 0.2 | 272 | 11.22 | 17.45
0.3 | 3.58 | 13.70 | 20.59
0.1 | 272 | 11.15 | 17.28
0.2 0.2 | 3.45 | 13.33 | 20.13
0.3 | 4.24 | 15.72 | 23.25
0.1 | 3.57 | 13.56 | 20.25
0.3 ] 0.2 | 4.24 | 15.65 | 23.08
0.3 | 499 | 17.94 | 26.16

Table 18: Rubinstein’s example with 100 time steps

In order to achieve higher accuracy we redo the example with 200 time steps. These
computations have been performed with an implementation of the two-dimension
binominal tree by [26]. We compare these results to FE results using the Black-
Scholes formula for calls on S; = 0 and Sy, = 0 as boundary conditions. We solve the
appropriate PDE on a triangular domain assuming a 90 degree outward pointing
gradient on the third side.
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[ Volatility | Time to Maturity [ Method
[ o7 [ o3 | 0.05 0.5 0.95 |

1.9202 8.9685 14.6980 Tree

0.1 1.9198 8.9708 14.6979 FEM
0.02229 % 0.02548 % 0.00055 % Difference

0.1 2.7244 11.2200 17.4460 Tree

0.2 2.7316 11.2200 17.4451 FEM
0.2643 % 0.0007 % 0.0050 % Difference

3.5738 13.6926 20.5925 Tree

0.3 3.5805 13.6928 20.5872 FEM
0.1857 % 0.0014 % 0.0258 % Difference

2.7222 11.1506 17.2815 Tree

0.1 2.7317 11.1497 17.2804 FEM
0.3368 % 0.0087 % 0.0061 % Difference

3.4482 13.3308 20.1281 Tree

0.2 0.2 3.4563 13.3295 20.1273 FEM
0.2357 % 0.0093 % 0.0038 % Difference

4.2420 15.7150 23.2494 Tree

0.3 4.2473 15.7138 23.2472 FEM
0.1252 % 0.0079 % 0.0097 % Difference

3.5689 13.5534 20.2429 Tree

0.1 3.5779 13.5501 20.2406 FEM
0.2530 % 0.0244 % 0.0110 % Difference

0.3 4.2398 15.6421 23.0708 Tree

0.2 4.2453 15.6408 23.0686 FEM
0.1310 % 0.0090 % 0.0095 % Difference

4.9846 17.9382 26.1506 Tree

0.3 4.9878 17.9362 26.1459 FEM
0.0640 % 0.0110 % 0.01798 % Difference

Table 19: Rubinstein’s example with Dirichlet Boundary Conditions

Redoing the above example assuming a zero gradient on S; = 0 and S5 = 0 leads
to slightly less accurate results. This Neumann condition is obviously the easiest to

apply.
[ Volatility | Time to Maturity [ Method
[ oF [ o3 | 005 0.5 095 |
1.9202 8.9685 14.6980 Tree
0.1 1.9198 8.9712 14.6982 FEM
0.0223 % 0.0303 % 0.0020 % Difference
0.1 2.7244 11.2199 17.4460 Tree
0.2 2.7316 11.2210 17.4461 FEM
0.2644 % 0.0097 % 0.0004 % Difference
3.5738 13.6926 20.5925 Tree
0.3 3.5805 13.6942 20.5889 FEM
0.1855 % 0.0112 % 0.0177 % Difference
2.7222 11.1507 17.2815 Tree
0.1 2.7314 11.1506 17.2814 FEM
0.3368 % 0.0005 % 0.0006 % Difference
3.4482 13.3308 20.1281 Tree
0.2 0.2 3.4563 13.3306 20.1286 FEM
0.2358 % 0.0013 % 0.0028 % Difference
4.2420 15.7150 23.2494 Tree
0.3 4.2473 15.7152 23.2488 FEM
0.1253 % 0.0016 % 0.0024 % Difference
3.5689 13.5534 20.2429 Tree
0.1 3.5779 13.5517 20.2421 FEM
0.2530 % | 0.0129 % | 0.0035 % | Difference
0.3 4.2398 15.6421 23.0708 Tree
0.2 4.2454 15.6420 23.0704 FEM
0.1313 % 0.0006 % 0.0017 % Difference
4.9846 17.9382 26.1506 Tree
0.3 4.9878 17.9376 26.1477 FEM
0.0640 % 0.0031 % 0.0109 % Difference

Table 20: Rubinstein’s example with Neumann Boundary Conditions

3.3.3 Single Barrier Knock-Out Call on a Basket

Without Rebate

For the knock-out call on a basket the boundaries for S; = 0 and Sy = 0 first have
to be computed numerically due to the reasons explained in chapter 3.1. The third
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Figure 7: Domains of a Single and Double Barrier Knock-out Call

boundary is the rebate R = 10. This leads to the following system of PDEs. Eq.

(42) to (45) denote a barrier call on S; with Sy = 0. Accordingly, eq. (46) to

denote a barrier call on Sy with S; =0
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The parameters are again taken from Rubinstein’s example. We solve this problem
as a system although it could be solved sequentially. Solving this problem as system
avoids having to feed the numerical solutions back into the program. We do not have
a direct way of checking the results but the premiums should be below the ones from
Rubinstein’s example due to the knock-out feature (which they are).
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Volatility Time to Maturity

of | o3 005 | 05 | 095
0.1 | 1.7416 | 0.4645 | 0.1771
0.1 | 0.2 | 1.5198 | 0.1532 | 0.0581
0.3 | 1.0738 | 0.0643 | 0.0246
0.1 | 1.5218 | 0.1568 | 0.0608
0.2 | 0.2 | 1.1074 | 0.0727 | 0.0273
0.3 | 0.7361 | 0.0375 | 0.0140
0.1 | 1.0199 | 0.0665 | 0.0264
0.3 | 0.2 | 0.7368 | 0.0381 | 0.0144
0.3 | 0.5108 | 0.0225 | 0.0083

Table 21: Results Knock-out Call on a Basket without Rebate

With Rebate By introducing a rebate of R = 10 the problem above looses a
lot of its curvature. Again, we do not have a direct way of checking the results.
By arbitrage considerations, however, each premium should be worth more than
without rebate and less than in Rubinstein’s example. This is satisfied as can be
checked easily by inspecting the tables (21) and (19).

Volatility Time to Maturity

oi | o3 005 | 05 | 095
0.1 | 1.9161 | 6.5008 | 7.8353
0.1 ] 0.2 | 2.6963 | 7.0624 | 8.0269
0.3 | 3.4802 | 7.5058 | 8.2390
0.1 | 2.6944 | 7.0598 | 8.0308
0.2 | 0.2 | 3.3708 | 7.4913 | 8.2597
0.3 | 4.0531 | 7.8185 | 8.4395
0.1 | 3.4771 | 7.5017 | 8.2416
0.3 | 0.2 | 4.0517 | 7.8177 | 8.4410
0.3 | 4.6210 | 8.0668 | 8.5942

Table 22: Results Knock-out Call on a Basket with Rebate

3.3.4 Double Barrier Knock-Out Call on a Basket

In addition to the example above, in table (24) we introduce a second down-and-out
barrier at a value of the basket of 100. No rebate is paid on this barrier. The domain
now turns into an irregular strip.
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Volatility Time to Maturity

of | o3 005 | 05 | 095
0.1 | 1.9272 | 6.4709 | 7.8227
0.1 | 0.2 | 2.6108 | 7.0515 | 8.0222
0.3 | 3.4162 | 7.5003 | 8.2368
0.1 | 2.6218 | 7.0465 | 8.0245
0.2 | 0.2 | 3.3089 | 7.4847 | 8.2566
0.3 | 4.0078 | 7.8149 | 8.4379
0.1 | 3.4221 | 7.4949 | 8.2383
0.3 | 0.2 | 4.0064 | 7.8139 | 8.4394
0.3 | 4.5877 | 8.0653 | 8.5907

Table 23: Results Double Barrier Knock-out Call on a Basket

Volatility Time to Maturity

oi | a3 005 [ 05 [ 095
0.1 | 1.9272 | 6.4709 | 7.8227
0.1 | 0.2 | 2.6108 | 7.0515 | 8.0222
0.3 | 3.4162 | 7.5003 | 8.2368
0.1 | 2.6218 | 7.0465 | 8.0245
0.2 | 0.2 | 3.3089 | 7.4847 | 8.2566
0.3 | 4.0078 | 7.8149 | 8.4379
0.1 | 3.4221 | 7.4949 | 8.2383
0.3 ] 0.2 | 4.0064 | 7.8139 | 8.4394
0.3 | 4.5877 | 8.0653 | 8.5907

Table 24: Results Knock-out Call on a Basket with Rebate

The plausibility of these results can be checked with table (24). They are slightly
lower than in the example without down-and-out barrier. Since this additional
barrier is deeply out of the money it does have only little impact.

3.3.5 Capped Call on a Basket

Analytical Boundary Conditions The pricing of this product!? leads to the
PDE eq. (34) with the following initial and boundary conditions:

f(Sl, SQ, 0) = min(cap, max((], X — (w151 + U)QSQ)) (55)
X

f(Slaoat) = 9(5'1,w—,t)—g(51,cap,t) (56)
2
X

f(OaSQat) = g(527w_at) _g(SZacapat) (57)
1

f(S1,S2,t) = 0 on SmaxSmex (58)

12In Germany, examples for capped basket options are WKN 822361, WKN 822362, WKN
822380, and WKN 822399 which are traded at the stock exchanges in Frankfurt, Diisseldorf, and
Stuttgart.
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The data, again, are taken from Rubinstein’s example with an additional cap of
10. Again, this PDE can be solved either on a square or triangular domain. For
reasons outlined above, we chose the triangle. The boundary conditions at S; = 0
and S, = 0 represent the prices of capped European call options with strike prices
of wi and wi, respectively. This capped call can be priced either by entering a bull
2 1 . . . . . . . .
spread and pricing its parts individually with the analytical formula for European
calls or numerically.

Volatility Time to Maturity

o3 | o3 0.05 | 0.5 | 0.95
0.1 | 1.9062 | 5.3075 | 6.1865
0.1 | 0.2 | 2.5549 | 4.9940 | 5.4814
0.3 | 3.0139 | 4.7564 | 5.0111
0.1 | 2.5534 | 5.0002 | 5.5096
0.2 | 0.2 | 29701 | 4.8713 | 5.1819
0.3 | 3.2831 | 4.7214 | 4.8849
0.1 | 3.0124 | 4.7643 | 5.0459
0.3 | 0.2 | 3.2825 | 4.7260 | 4.9005
0.3 | 3.4980 | 4.6436 | 4.7225

Table 25: Results Capped Call on a Basket with Analytical Boundary Conditions

Again, we do not have a direct way of checking the results. By arbitrage
considerations, however, each premium should be worth less than the example above
with a rebate of R = 10 table (24) and more than the example without rebate table
(21).

Gradient Boundary Conditions An alternative to eq. (56 and (57) is to assume
a zero gradient on S; = 0 and S; = 0. The results differ only slightly; compare table
(26).

Volatility Time to Maturity

oi | 03 005 | 05 | 095
0.1 | 1.9073 | 5.3112 | 6.1885
0.1 | 0.2 | 2.5604 | 4.9959 | 5.4823
0.3 | 3.0206 | 4.7575 | 5.0116
0.1 | 2.5559 | 5.0002 | 5.5110
0.2 | 0.2 | 29735 | 4.8723 | 5.1825
0.3 | 3.2873 | 4.7220 | 4.8853
0.1 | 3.0138 | 4.7654 | 5.0467
0.3 | 0.2 | 3.2844 | 4.7266 | 4.9011
0.3 | 3.5009 | 4.6442 | 4.7223

Table 26: Results Capped Call on a Basket with Numerical Boundary Conditions

3.3.6 Capped Power Call on a Basket with a Down-and-out Barrier

In this section we apply some of the exotic features of the previous sections on a
symmetric power call on a basket. The power parameter is set to p = 2. Additionally,
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we introduce a cap of 20 on the option and a down-and-out barrier when the basket
becomes worth less than 100.

Volatility Time to Maturity

o | o3 005 | 05 | 09
0.1 | 5.5636 | 11.8290 | 13.1566
0.1 | 0.2 | 6.8347 | 10.7868 | 11.5071
0.3 | 7.5183 | 10.1014 | 10.4334
0.1 | 6.8742 | 10.8144 | 11.5788
0.2 | 0.2 | 7.5100 | 10.3587 | 10.7864
0.3 | 7.9196 | 9.9305 | 10.1068
0.1 | 7.5528 | 10.1310 | 10.5182
0.3 | 0.2 | 7.9261 | 9.9433 | 10.1431
0.3 | 8.1958 | 9.6955 | 9.7287

Table 27: Results Power Call on a Basket with Floor and Knock-out Barrier

4 Conclusions

In the previous sections it has been demonstrated how to use FE to price options
of various kinds. It has been delineated that the FEM has some advantages in
computing accurate Greeks due to its polynominal approximation of the PDE. It has
also been outlined how non-rectangular domains arise in option pricing and how to
deal with these in a FE setting. This has been demonstrated with various options on
baskets, but this can easily be generalized to other rainbow options. The possibility
of being able to handle arbitrary domains is the main reason for the predominance
of FE in civil and mechanical engineering. This allows a wealth of knowledge and
software to be on hand. The package used for this paper is PDFase2D™ | clearly its
high accuracy has been demonstrated. A computer run for a single problem takes
from a few seconds to several minutes.!® Since PDEase2D™™ is a general purpose
program for linear and nonlinear PDEs of various types and arbitrary domains, the
solution process could be made substantially faster by coding only parabolic PDEs.

13Since many different PCs were used for this paper, CPU time of individual problems are not
shown.
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