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Abstract

We generalize the classical concept of a certainty equivalent to a model

where an investor can trade on a capital market with several future trad-

ing dates. We show that if a riskless asset is traded and the investor has a

CARA utility then our generalized certainty equivalent can be evaluated

using the sum of discounted one–period certainty equivalents. This is

not true if the investor has a HARA utility.
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1 Introduction

The concept of expected utility (dating back to Bernoulli (1738)) is used

in economics to describe the behavior of an investor choosing between

several lotteries or alternatives. Its applications include not only portfo-

lio choice but insurance and game theory as well. A certainty equivalent

(see Markowitz (1952)) of a risky outcome is a sure–thing lottery which

yields the same utility as a random lottery. If the investor is risk–averse

the outcome of the certainty equivalent will be less than the expected

outcome of the random lottery. A certainty equivalent can be defined

in a world where no capital market exists. Our goal is to show how this

idea has to be modified if the investor can trade on an incomplete market

with several future trading dates. In particular we show that for CARA

utility and a capital market with only riskless assets the generalized cer-

tainty equivalent can be evaluated using the discounted sum of classical

certainty equivalents. The same is not true if the investor has a HARA

utility function.

2 A Model with a Riskless Capital Market

To keep our approach as simple as possible we look at three points in

time, t = 0 (present) and t = 1,2 (future). The future is uncertain. A

project realizes cash–flows CF0, C̃F1 and C̃F2. Any investor valuing the

projects uses his expected utility functionu(x). We assume that the util-

ity function is not time–dependent, although there are discount factors

δ1, δ2. Hence, the utility of an investment is given by

u(CF0)+ δ1E [u(C̃F1)]+ δ2E [u(C̃F2)].
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We now add a capital market to our model and consider the simplest

capital market that is possible: only riskless assets can be traded. Let

Xt and Yt be the amount the investor can put on or get from a riskless

money market account. A first idea to generalize a certainty equivalent

would be a definition of the form

u(C0+Y0)+δ1 ·E
[
u(Y1 − (1+ rf )Y0)

]
+δ2 ·E

[
u(−(1+ rf )Y1)

]
=Def

u(CF0+X0)+δ1·E
[
u(C̃F1 +X1 − (1+ rf )X0)

]
+δ2·E

[
u(C̃F2 − (1+ rf )X1)

]
(1)

In the last equation the definition of the certainty equivalent depends

on the amount Xt and Yt which cannot be accepted. A rational investor

will optimize her strategy on the capital market: she will choose Xt and

Yt such that both sides on the equation will be as large as possible. Hence

max
Yt

u(C0+Y0)+δ1E
[
u(Y1 − (1+ rf )Y0)

]
+δ2E

[
u(−(1+ rf )Y1)

]
=Def

max
Xt

u(CF0+X0)+δ1E
[
u(C̃F1 +X1 − (1+ rf )X0)

]
+δ2E

[
u(C̃F2 − (1+ rf )X1)

]
.

(2)

This will be our generalization of a certainty equivalent if a capital market

is prevalent.

It is evident that riskless payments have to be valued using the risk-

less interest rate. Although this is obvious it has to be proven using our

model (2). To this end we assume that CF0 = 0 and show the following

result.

Theorem 1 If cash–flows are riskless then

C0 =
CF1

1+ rf
+ CF2

(1+ rf )2
.
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Our proof reveals that this result is not restricted to the time horizon we

have choosen. For simplicity we restrict ourselves to T = 2. The same

will be true if risky assets are traded – if a market price for these risky

assets exists our approach will yield the market price.

The utility functions are strictly concave. Hence, X∗t and Y∗t are

unique. We know that Y∗0 and Y∗1 maximize the left hand side of (2).

Substituting

Ŷ0 := − CF1

1+ rf
− CF2

(1+ rf )2
+X∗0 ,

Ŷ1 := − CF2

1+ rf
+X∗1

the right hand side can be written as

u
(
CF1

1+ rf
+ CF2

(1+ rf )2
+ Ŷ0

)
+δ1·E

[
u
(
Ŷ1 − (1+ rf )Ŷ0

)]
+δ2·E

[
u
(
−(1+ rf )Ŷ1

)]
.

Since CF0 = 0 this will be the optimal solution of the right hand side of

(2) iff

C0 =
CF1

1+ rf
+ CF2

(1+ rf )2

holds. But the optimization of the left and the right hand side must yield

identical values since the utility functions are strictly concave.

3 CARA–utility

Assume the investor has a utility function of CARA type

u(t) = −e−at. (3)

Let CB1 and CB2 be the (classical Bernoulli–)certainty equivalents without

a capital market, i.e. riskless payments that yield the same utility as the
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random cash–flows

E [u(C̃F1)] = u(CB1 ), E [u(C̃F2)] = u(CB2 ). (4)

We want to clarify the relation between the fair valueC0 and the Bernoulli–

certainty equivalents. The following theorem holds.

Theorem 2 If the utility function is of CARA type our certainty equivalent

is the riskless discounted Bernoulli–certainty equivalent

C0 =
CB1

1+ rf
+ CB2
(1+ rf )2

.

To prove theorem 2 we denote by X∗t and Y∗t the optimal money

market account from (2). We will furthermore make use of the following

two well–known properties of CARA utility for any random variables X̃

and Ỹ

E
[
u(X̃ + Ỹ )

]
= E

[
u(X̃)

]
· E

[
u(Ỹ )

]
. (5)

If CF0 = 0 equation (2) simplifies to

u
(
C0 + Y∗0

)
+ δ1 · E

[
u(Y∗1 − (1+ rf )Y∗0 )

]
+ δ2 · E

[
u(−(1+ rf )Y∗1 )

]
= u

(
X∗0

)
+δ1·E

[
u(C̃F1 +X∗1 − (1+ rf )X∗0 )

]
+δ2·E

[
u(C̃F2 − (1+ rf )X∗1 )

]
,

which using (5) can be written as

u
(
C0 + Y∗0

)
+ δ1 · E

[
u(Y∗1 − (1+ rf )Y∗0 )

]
+ δ2 · E

[
u(−(1+ rf )Y∗1 )

]
= u(X∗0 )+ δ1 · E

[
u(C̃F1)

]
· E

[
u(X∗1 − (1+ rf )X∗0 )

]
+ δ2 · E

[
u(C̃F2)

]
· E

[
u(−(1+ rf )X∗1 )

]
.
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With (4) this is equivalent to

u
(
C0 + Y∗0

)
+ δ1 ·u

(
Y∗1 − (1+ rf )Y∗0

)
+ δ2 ·u

(
−(1+ rf )Y∗1

)
= u

(
X∗0

)
+δ1·u

(
CB1
)
·u
(
X∗1 − (1+ rf )X∗0

)
+δ2·u

(
CB2
)
·u
(
−(1+ rf )X∗1

)
.

(6)

We now evaluate the optimal values X∗t and Y∗t . We start with Y∗0 . The

FOC are

0 = u′
(
C0 + Y∗0

)
− δ1 (1+ rf )u′

(
Y∗1 − (1+ rf )Y∗0

)
u′
(
C0 + Y∗0

)
= δ1 (1+ rf )u′

(
Y∗1 − (1+ rf )Y∗0

)
.

Given our utility functions where u′ = −au we get

u
(
C0 + Y∗0

)
= δ1 (1+ rf )u

(
Y∗1 − (1+ rf )Y∗0

)
. (7)

Analogously

δ1u
(
Y∗1 − (1+ rf )Y∗0

)
= δ2 (1+ rf )u

(
−(1+ rf )Y∗1

)
. (8)

Using a similar approach we arrive at

0 = u′
(
X∗0

)
− δ1 (1+ rf )E

[
u′(C̃F1 +X∗1 − (1+ rf )X∗0 )

]
u′
(
X∗0

)
= δ1 (1+ rf )E

[
u′(C̃F1 +X∗1 − (1+ rf )X∗0 )

]
u
(
X∗0

)
= δ1 (1+ rf )E

[
u(C̃F1 +X∗1 − (1+ rf )X∗0 )

]
u
(
X∗0

)
= δ1 (1+ rf )E

[
u(C̃F1)

]
·u

(
X∗1 − (1+ rf )X∗0

)
u
(
X∗0

)
= δ1 (1+ rf )u

(
CB1
)
·u

(
X∗1 − (1+ rf )X∗0

)
. (9)

Finally this gives

u
(
CB1
)
·u

(
X∗1 − (1+ rf )X∗0

)
= δ2 (1+ rf )u

(
CB2
)
·u

(
−(1+ rf )X∗1

)
(10)
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We now plug (7) to (10) into (6) such that only u(X∗0 ) and u(C0+Y∗0 )

remain. This gives(
1+ 1

1+ rf
+ 1
(1+ rf )2

)
u(X∗0 ) =

(
1+ 1

1+ rf
+ 1
(1+ rf )2

)
u(C0+Y∗0 ),

and hence

u(X∗0 ) = u(C0 + Y∗0 )

or, since the utility function is strictly monotonous

X∗0 = C0 + Y∗0

X∗0 − Y∗0 = C0 . (11)

Now using (7) to (10) in (6) such that only the terms u
(
X∗1 − (1+ rf )X∗0

)
and u

(
Y∗1 − (1+ rf )Y∗0

)
left gives

(
1+ rf + 1+ 1

1+ rf

)
δ1u

(
Y∗1 − (1+ rf ) Y∗0

)
=
(

1+ rf + 1+ 1
1+ rf

)
δ1u

(
CB1
)
·u

(
X∗1 − (1+ rf )X∗0

)
or (using (5))

u
(
Y∗1 − (1+ rf )Y∗0

)
= u

(
CB1 +X∗1 − (1+ rf )X∗0

)
.

This is equivalent to

Y∗1 −X∗1
1+ rf

−
(
Y∗0 −X∗0

)
= CB1

1+ rf
. (12)

We now use (7) to (10) again in (6) such that only the termsu
(
−(1+ rf )X∗1

)
und u

(
−(1+ rf )Y∗1

)
remain and we get

(
(1+ rf )2 + 1+ rf + 1

)
δ2u

(
−(1+ rf ) Y∗1

)
=
(
(1+ rf )2 + 1+ rf + 1

)
δ2u

(
CB2
)
·u

(
−(1+ rf )X∗1

)
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or using (5)

u
(
−(1+ rf )Y∗1

)
= u

(
CB2 − (1+ rf )X∗1

)
.

Since the utility function is strictly monotonous

X∗1 − Y∗1 = CB2
1+ rf

(13)

and (11) to (13) finish our proof. This proof reveals that the restriction

to T = 2 is not a necessary restriction.

4 HARA–utility

We are convinced that our theorem 2 is not valid for any utility function.

To this end we use a HARA–utility function

u(t) = ln(t) (14)

and will show that the riskless discounted Bernoulli–certainty equivalent

is not the certainty equivalent of our theory. We restrict ourselves to

T = 1 and only two possible states of nature ω1 and ω2. Both states

may occur with the same probability. The equation (2) now for CF0 = 0

reads

ln(C0 + Y∗0 )+ δ ln(−(1+ rf )Y∗0 )

= ln(X∗0 )+
δ
2

(
ln(CF1(ω1)−(1+rf )X∗0 )+ ln(CF1(ω2)−(1+rf )X∗0 )

)
.

The optimal value Y∗0 can easily be evaluated

0 = 1
C0 + Y∗0

+ δ
Y∗0

=⇒ Y∗0 = − C0

1+ 1
δ
.
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To get X∗0 we need the FOC on the right hand side

0 = 1
X∗0

+ δ
2

(
−(1+ rf )

CF1(ω1)− (1+ rf )X∗0
+

−(1+ rf )
CF1(ω2)− (1+ rf )X∗0

)
.

Some algebraic manipulations lead to

X∗0 =
2+ δ

4(1+ rf )(1+ δ)

(
CF1(ω1)+ CF1(ω2)

±
√
CF2

1 (ω1)+ CF2
1 (ω2)+ 2CF1(ω1)CF1(ω2)

δ2 − 4δ− 4
δ2 + 4δ+ 4

)

Let without loss of generality CF1(ω1) ≤ CF1(ω2). Then, X∗0 has to

be between CF1(ω1)
1+rf and CF1(ω2)

1+rf . Hence, the solution of the quadratic

equation can only be the one with −. Now plugging the optimal values

in C0 we get an equation for C0 that was solved numerically. We also

evaluated the riskless discounted Bernoulli–certainty equivalent

CB1 =
√
CF1(ω1)CF1(ω2) .

To show that theorem 2 with a HARA utility does not hold we consid-

ered a numerical example. To this end we have choosen CF1(ω1) = 1,

rf = 5 % and δ = 0.95. A variation of CF1(ω2) ∈ (1,7] yielded several

values for the riskless discounted Bernoulli–equivalent and C0. The fig-

ure 1 shows a plot of both values. In our plot both values do not coincide,

the difference is larger the larger the volatility of the cash–flow is.

5 Conclusion

We generalized the classical concept of a certainty equivalent to a model

where aa riskless capital market with several future trading dates exists.
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Figure 1: riskless discounted Bernoulli–equivalent and depending on

volatility (with rf = 5 %, δ = 0.95)

If the investor has a CARA utility then our generalized certainty equiva-

lent can be evaluated using the sum of discounted one–period certainty

equivalents. The same is not true with HARA utility.
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