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A TREE IMPLEMENTATION OF A CREDIT SPREAD MODEL FOR CREDIT
DERIVATIVES

PHILIPP J. SCKONBUCHER

Department of Statistics, Bonn University
June 1998, this version June 1999

ABSTRACT. Inthis paperwe present a tree model for defaultable bond prices which can be used
for the pricing of credit derivatives. The model is based upon the two-factor Hull-White (1994)
model for default-free interest rates, where one of the factors is taken to be the credit spread
of the defaultable bond prices. As opposed to the tree model of Jarrow and Turnbull (1992),
the dynamics of default-free interest rates and credit spreads in this model can have any desired
degree of correlation, and the model can be fitted to any given term structures of default-free and
defaultable bond prices, and to the term structures of the respective volatilities. Furthermore the
model can accommodate several alternative models of default recovery, including the fractional
recovery model of Duffie and Singleton (1994) and recovery in terms of equivalent default-free
bonds (see e.g. Lando (1998)). Although based on a Gaussian setup, the approach can easily be
extended to non-Gaussian processes that avoid negative interest-rates or credit spreads.

1. INTRODUCTION

In this paper we present a tree model for defaultable bond prices which can be used for the
pricing of credit derivatives. The model is based upon the two-factor Hull-White (1994) model

for default-free interest rates, where one of the factors is taken to be the credit spread of the
defaultable bond prices. As opposed to the tree model of Jarrow and Turnbull (1992), the
dynamics of default-free interest rates and credit spreads in this model can have any desired
degree of correlation, and the model can be fitted to any given term structures of default-free
and defaultable bond prices, and to the term structures of the respective volatilities. Further-
more the model can accommodate several alternative models of default recovery, including the
fractional recovery model of Duffie and Singleton (1994) and recovery in terms of equivalent
default-free bonds (see e.g. Lando (1998)). Although based on a Gaussian setup, the approach
can easily be extended to non-Gaussian processes that avoid negative interest-rates or credit
spreads.

The model contributes to the existing literature in two respects: First, it provides an imple-
mentation framework for most of the existing intensity-based credit risk models, and second, it
enables a quantitative comparison of the properties of these models and the relative importance

Key words and phrasesredit derivatives; credit risk; implementation; Hull-White model.
Author’s address:Department of Statistics, Faculty of Economics, Bonn University, Adenauerallee 24-42,
53113 Bonn, Germany, Tel: +49 - 228 - 73 92 64, Fax: +49 - 228 - 73 50 50
The author would like to thank the Deutsche Forschungsgemeinschaft, SFB 303 at the University of Bonn for
financial support.
1



2 PHILIPP J. SCKONBUCHER

of input parameters like recovery rates, volatility of credit spreads and the correlation between
credit spreads and interest rates.

The paper is structured as follows:

In the first section we discuss the credit risk model that we are going to use. The time of default
will be a (discretisation of a) totally inaccessible stopping time with a stochastic inteysity
and the recovery rate of a defaulted bond will be determined by using one of two models: the
fractional recovery model (where a bond loses a fraction of ist pre-default value in default, see
e.g. Duffie and Singleton), or the equivalent recovery model (where a defaulted bond recovers
a certain number of equivalent default-free bonds). It is also show, how the model can be
extended to incorporate stochastic recovery rates or recovery in terms of a fraction of the par
value of the defaulted bond. We discuss the relative merits of all recovery models, the extension
to stochastic recovery, and their influence on the results later on. Taking one node of the tree
as example it is show how these continuous-time models are incorporated into a discrete-time
tree setup and the branching scheme for default risk is demonstrated.

The next section demonstrates how to incorporate stochastic credit spreads into the model as-
suming independence of credit spreads and risk-free interest rates. Because of the indepen-
dence assumption, a separate tree for the credit risk can be built and fitted to the term structure
of credit spreads. The tree building and fitting procedure are demonstrated for the case of a

mean-reverting Gaussian diffusion process for the default intensity of the form

dX\ = (k(t) —a\)dt + & (t)dW

wherek(t) anda(t) are used to fit the tree. Itis also shown how to combine this tree with a tree
for the default-free interest rates, where the default-free short rate follows a similar process of
the formdr = (k(t) — ar)dt + o(t)dWV.

In the following step correlation between credit spreads and default-free interest rates is intro-
duced by introducing correlation betweéi” andd1V. The tree-building and fitting procedure

now has to be done sequentially: First, the tree for the default-free interest rates is built and
fitted to the default-free term structures, then the tree for the credit spreads is built, then both
trees are combined and correlation between spreads and interest-rates is introduced, and fi-
nally, the combined tree is fitted to the term structure of defaultable bond prices. For this fitting
procedure a new set of defaultable state prices has to be introduced. The section is concluded
by examples that demonstrate the use of this model for the pricing of credit derivatives. The
credit derivatives are credit default swaps, callable credit default swaps, credit spread options
and asset swaptions. Finally, the extension of the model to the valuation of first-to-default bas-
ket credit derivatives is discussed, and it is shown how to modify the model to ensure positive
interest rates and credit spreads.

In the last section the model is used to analyse numerically the input parameters to the intensity-
based credit risk models that have been proposed in the literature. The effect on implied default
probabilities (and default swap prices) of correlation between credit spreads and default-free
interest rates is analysed and it is compared to the effect of misspecification in the expected
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recovery rate. Then we look at the effects of the different recovery models and how they influ-
ence the prices of default swaps and the implied default probabilities. The paper is concluded
with a summary of the main results.

2. THE CREDIT RISK MODEL

2.1. Model Setup and Notation. The model is set up in afiltered probability spafe F, (F;) >0, P)
whereP is a pre-specified martingale measure. We assume the filtrgfiop- satisfies the

usual conditionsand the initial filtration F, is trivial. We also assume a finite time horizon

T with F = F7, all definitions and statements are understood to be only valid until this time
horizonT. The notation used is:

B(t,T) : default free zero coupon bond price,
r(t) : default free short rate,

B - discount factor oveft, 17,

B(t,T) : defaultable zero coupon bond price,
P(t,T) : survival probability for(t, T').

O O O O O

2.2. The Time of Default. Although we are going to use two different models to model the
recoveryof defaulted bonds, the model for thiene of the default(s) is the same for both:

We assume that the times of defaujtare generated by a Cox process. Intuitively, a Cox
Process is defined as a Poisson process with stochastic inter{sgg Lando (1998), p.101).
Formally the definition is:

Definition 1. N is called a Cox process, if there is a nonnegative adapted stochastic process
A(t) (called theintensityof the Cox process) witmf A(s)ds < oo ¥t > 0, and conditional

on the realization{ A(¢) } 4~y Of the intensity/N (¢) is a time-inhomogeneous Poisson process
with intensityA(¢).

This definition follows Lando (1998) and differs from the usual definition of a Cox process
where the intensity processt) is fully revealed immediately after time O (i.e. the intensity

is Fyp-measurable see e.g. @naud (1981)). Mathematically, it is not necessary to reveal all
information about the future development of the intensity, and from the point of view of real-
ism and for the valuation of derivatives this modelling approach would even introduce pricing
errors.

Assumption 1. (i) The default counting process

1) N(t) == max{iln; <t} = 1<y

i=1
is a Cox process with intensity process).

!See Jacod and Shiryaev (1988).

2Consider e.g. an American Put option on a defaultable bond in a world with constant zero risk-free interest
rates. If all information abouk(t) is revealed at = 0 this would enable the investor to condition his optimal
exercise policy on the future developmentwoivhich is not realistic.
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(ii) In the equivalent recovery model the time of default is the time of the first jump db
simplify notation the time of thigst default will be referred to withr := 7.

(i) In the fractional recovery model the times of default are the times of the jumjys of

Remarkl. By standard properties of inhomogenous Poissson processes, given the realisation
of A, the probability of having exactly jumps is

@ PN - N0 =0 N0hraen] = & ([ 360as) o [ A

The probability of having: jumps (without knowledge of the realisation &f is found by
conditioning on the realisation of within an outer expectation operator:

P [N(T)=N(t)=n]=E [ P[N(T)=N@)=n|{\s)}rzs>t) ] ]

@ = [ 3 ([ ) oot [t ]

Define the procesB (¢, T')
(4) P(,T) = By | e 020 |

Forr > t (before default),P(¢,T) can be interpreted as tlsairvival probabilityfrom timet
until time7". In general,

(5) 1{T>t}p(t7 T) = E; |: ]-{7'>T} } .
Givenr > t the density of the time of the first default as seen frtasfor 7' > ¢
T
©) p(t,T) = E, [ ATy esp(- [ As)is) ] |
t

andp(t,T)=0forT <t.3

The law of iterated expectations as it was used above is extremely useful in Cox process based
default models, it was first used in a credit risk context by Lando (1998).

The specification of the default trigger process as a Cox process precludes a dependence of the
default intensity on previous defaultand also ensures totally inaccessible stopping timas

times of default. Apart from this it allows rich dynamics of the intensity process, specifically,

we can reach stochastic credit spreads. If only the time ditstgump of IV is of interest, the
Cox-process specification is completely without loss of generality within the totally inaccessi-
ble stopping times.

In the following sections we will consider timeas ‘today’, and assume that no default has
happened so far > t. (The statements far < ¢ are trivial.)

31f a default has already happenedt, T') = ¢, the density of the first default reduces to the Dirac measure at
T.
It is therefore not possible to specify an intensity that jumps at defaults.
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2.3. The Fractional Recovery Model. The version of the fractional recovery model used
here is an extension of the Duffie-Singleton (1994) model to multiple defaults. More details
to the model can be found in Smhucher (1996; 1998). The new feature of this model is
that a default does not lead to a liquidation but a reorganisation of the issuer: defaulted bonds
lose a fractiong of their face value and continue to trade. This feature enables us to con-
sider European-type payoffs in our derivatives without necessarily needing to specify a payoff
of the derivative at default (although we will consider this case, too). The next assumption
summarises the fractional recovery model:

Assumption 2. There is an increasing sequence of stopping tifnes. v that define the times

of default. These times are given in definition 1 and assumption 1 as the times of the jumps of
the Cox process/.

At each default; the defaultable bond’s face value is reduced by a fagtowhereq; may be

a random variable itself. A defaultable zero coupon bond’s final payoff is the product

(7) Q) =1]0-a)
7 <T
of the face value reductions after all defaults until the matufitgf the defaultable bond. The

loss quotag; can be random variables drawn from a distributiéi{dq) at timer;, but for the
first calculations we will assumg = ¢ to be constant.

It is now easily seehthat in this setup the price of a defaultable zero coupon bond is given by
8) B(t,T) = Q) B, | e k70 |

The procesg is called the defaultable short ratand it is defined by

9 =1+ M\

Herer is the default-free short rate,the hazard rate of the defaults apts the loss quota in

default. Ifg is stochastic thep has to replaced by its (local) expectatigh= [ ¢K;(dg) in
equation (9).

It is convenient to decompose the defaultable bond pBices follows:

(10) B(t,T) = Q()B(t, T)P(t,T).
Here Q(t) represents the face-value reduction due to previous defaults (before)tirfee-
quently we will be able to set = 0 and thusQ(¢) = 1, but for the analysis at intermediate
times it is important to be clear about the notatiorThe defaultable bond pricB(¢,T) is
thus the product of)(t), the influencegf previous defaults, and the product of the default-free
bond priceB(t, T') and the third facto® (¢, T') which is uniquely defined by equation (10), or
equivalently:

1 B(T)
Q(t) B(t,T)

5Using the iterated expectations, see also Duffie and Singleton (1994) andiBcher (1996; 1998) for a
more general proof.

SFor example, at the expiry date of an option we would like to separate previous defaults and credit spreads in
the price of the underlying.

(11) P(t,T) =
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Remark2. ﬁ(t, T) is related to thesurvival probability P(¢, T") of the defaultable bond: If
and)\ are independent and there is a total lags-(1) at default thenP(¢, T') is the probability
(under the martingale measure) that there is no defaldt .

If » and \ are not independent and= 1, thenﬁ(t,T) is the survival probability under the
T-forward measuré”

(12) P(t,T) = B [ e i |

(Under independenck! [e’ I q*“)ds] and E, [e’ I ax(s)ds } coincide.)

If » and A are not independent and there is positive recovery( 1), then 13(t,T) is the
expected final payofiinder theél'-forward measure, but the implied survival probability cannot
be recovered without more knowledge about the distributiok gfandr.

2.4. The Equivalent Recovery Model. The equivalent recovery model has been proposed by
several authors, amongst them Jarrow and Turnbull (1995) Lando (1998) and Madan and Unal
(1998). Here the recovery of defaulted debt is treated as follows:

Assumption 3. At the time of default, one defaultable bond(, T') with maturityT has a
payoff ofc equivalent (i.e. with the same maturity and face value) default free bB(d<"),
wherec may be random, too.

Under the equivalent recovery model (with constaand given no default so far > t) the
price of a defaultable bond can be decomposedduiefault-free bonds and — ¢) defaultable
bonds with zero recovery

B(t,T) = B, [ Birlir>y + B B(T, T) <1y |
= E [ ﬁt,Tl{r>T} ] +cE; [ ﬁt,T ] —cE; [ ﬁt,Tl{r>T} ]
(13) = (1—1¢)By(t,T) + cB(t,T),

whereB,(t, T) is the price of a defaultable bond under zero recovery:

T
E, [ Birlir>1) ] = 1oy By [ e i T }

It should be pointed out that the equivalent recovery model is not able to fit all term structures
of credit spreads with a given fixed common recovery ratéAssumer > t and the term
structure of credit spreads is at a constant credit spidadall maturities’’. Then

B(ta T) e—h(T—t)

B(t,T)
and for large enough’ — ¢ (such thafl’ — ¢ > —(Inc)/h),

~ 1 B(t,T) 1 W(T—t
P(t’T)_l—c<B(t,T)_C)_1—c<€ ( )—c)<0,

the survival probability (see below) that can be implied from the zero-recovery BeftdT")
would become negative, which is obviously not sensible. In the equivalent recovery model
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there is a lower bound on the ratio of defaultable bond prices to default-free bond prices and
this bound is the recovery rate Therefore the zero coupon yield spread must satisfy

Inc
T—t
which may not be satisfied by market prices for longer times to matiirityt and high credit

spreads. E.g. for a recovery ratecof= 50% and a time to maturity of” — ¢ = 10 years the
maximal (continuously compounded) credit spreald is 6.93%.

y(tv T) - y(ta T) < -

Despite these different properties of the two modelling approaches, with a suitable choice of
(time dependent or stochastic) parameters, both models can be transformed into each other:
The value of the security in default is only expressed in different numeraires, once in terms
of defaultable bonds and once in terms of default-free bonds. Both approaches are therefore
equivalent and one should use the specification that is best suited for the issue at hand.

2.5. Implied Survival Probabilities. In the equivalent recovery model it is easy to recover
implied survival probabilitiedrom a given term structure of defaultable bond prices and a
given value fore. From equation (13) we have

~ By, T) 1 (B(T)
(14) P T) = B(t,T) 1—c <B(t,T) a C) '

P(t,T) is the probability of survival from to 7" under thel’-forward measure (and also under
the spot martingale measure for independence of credit spreads and interest rates).

This survival probability and the prices of defaultable zero coupon bénds T') under zero
recovery are very useful to value survival contingent payoffs. For many pricing applications
knowledge ofB(t, T') is already sufficient. It is a great advantage of the equivalent recovery
model that it allows to derive the value of a survival contingent payoff just from the defaultable
and default-free term structures and an assumption about recovery.rates

In the fractional recovery model it is not possible to derive the value of a zero-recovery de-
faultable bond just from knowledge of the recovery r@téhe defaultable bond price and the
default-free bond prices unless the recovery rate is zero. Here a full specification of the dynam-
ics ofr and\ is needed.

Given independence of interest rates and the default intensity, the implied survival probability
under the spot martingale measure is the ratio of the zero coupon bond prices:

BO(t7 T)
Pit,T)= ——
( Y ) B(t, T)
Typically the survival probability” (¢, 7") will change over time because of two effects: First, if
there was no default if, ¢+ At] this reduces the possible default times, information has arrived
via the (non)-occurrence of the default. Secondly, additional default-relevant information could
have arrived in the meantime.

For the analysis of the local default probability in some future time interval it is instructive to
consider theconditionalprobability of survival. The probability of survival iff7, T3], given



8 PHILIPP J. SCKONBUCHER

that there was no default unfil and given the information at times:

P(t,T: By(t,Ty) B(t, T
P(t,Tv)  B(t,T2) Bo(t,Th)
This is a simple consequence of Bayes’ rule. The probability of survival &inslthe proba-
bility of survival until s < 7" times the conditional probability of survival frosuntil 7':
P(t,T) = P(t,s)P(t,s,T).

There is a close connection between forward rates and conditional survival / default probabili-
ties.

Definition 2. The default-free simply compounded forward rateer the period7}, 73] as
seen front is:
B(t,T7)/B(t,T) — 1

-1,
The zero-recoverglefaultable simply compounded forward rateer the period7}, 73] as seen
fromt is:

F(ta Tla T2) =

— Bo(t,T1)/Bo(t, Tp) — 1
Fit.1i, 1) = 2o 1;/ O;’ 2
2 — 41

Proposition 1. Under independence, theonditional probability of defaulbver [T}, T3] is
given by:

Pdef(t7 TlaTQ) o F(t7T17T2> - F(ta TlaTQ)

Th-T1 1+ (Ty—T)F(t T, Ty)

The marginal probability of defaulat time 7" is the spread of the continuously compounded
defaultable forward rate over the default-free forward rate:

. P® T T+AL) -

Proof. (dropping thet-index)

P Ty) =1 - P(Ty,Ty) = 1 — jg((’%)g gi;
_ B(Ty)Bo(Th) — Bo(T5) B(Th)
- B(Ty)Bo(Th)
_ B(T»)[Bo(T1) — Bo(T2)] — Bo(T%)[B(T1) — B(T3)]
B(T»)Bo(Th)
 Bo(Ty) Bo(Ty) - Bo(Ty)  Bo(Ty) B(Ty) — B(T)
B By(Th) By(Ty) N By(Th) B(T>)
therefore
PdEf(Tl,Tg) Eo(Tg) —
T,—-Ty  Bo(Th) <F(T1’T2) B F(Tl’T2))’
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and from definition 2 follows that

Bo(T)
By(Ty)

- 1 + (TQ - Tl)f(Tl,TQ).

The result for the marginal default probability follows directly from taking the limit. [

The default probability over the intervély, 75| equalsthe length of the intervaiimes the
spread of the simply compounded forward rates over the intémas discounting with the
defaultable forward rates

For small time intervals, the probability of default[ifi, 7'+ At] is approximatelyproportional
to the length of the interval with proportionality factof(t, ) — f(t,T)).

These results highlight two points. First, there is an intimate connection between default prob-
abilities and credit spreads. A full term structure of credit spreads contains a wealth of infor-
mation about the market’s perception of the likelihood of default at each point in time. The
equivalent recovery model has the advantage of making this information more easily accessi-
ble than the fractional recovery model. Unfortunately, to reach this information in a practical
application, an assumption about the expected recoverycrsteieeded, and independence

of defaults and default-free term structure of interest rates must be assumed. There is a large
degree of uncertainty about recovery rates with variation between 20% and 80%.

The second observation is the reason why processes like Poisson or Cox processes are so well
suited for credit-spread based default modelling. These processes have intensities, and the
probability of jump of a point process with an intensity is approximately proportional to the
length of the time interval considered (for small intervals). The proportionality factor is the
intensity at that point. This property is exactly equivalent to the second equation in proposition

1, and it also gives a link to models of defaultable forward credit spreads as for example in
Schonbucher (1998). But proposition 1 is also valid for default models that are not based on an
intensity model.

2.6. Comparison of Recovery Mechanismsin real-world applications the recovery rate of

a defaulted bond is expressed as the fraction gbatisvaluethat is paid out to the creditor.

A model that uses this approach can be found e.g. in Duffie (1998). Although it seems more
natural there are some complications as this recovery mechanism only makes sense for coupon
bonds, and not for zero-coupon bonds. To fit this model to observed bond prices we would like
to strip observed coupon bonds into coupon strips and principal. These two components now
have different recoveries in default, only the principal of the bond has a positive recovery while
the coupons recover nothing. Thus we have to model recovery in two different ways which
makes this modelling approach more complicated.

In figure 1 the effects of the different recovery models on zero coupon bonds of different ma-
turities are shown. Here default-free interest rates-are7%, credit spreads arke = 4% and

the recovery rate i80%. The recovery models are equivalent recovery, fractional recovery and
recovery of par.
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FIGURE 1. Equivalent, fractional and par recovery for different maturities. Pa-
rameter values: default-free interest rates: 7%, credit spreach = 4%, re-
covery50%. The continuous line with circles are the defaultable bond prices,
continuous line with squares are the default-free bond prices and continuous
line with triangles are par values for different maturities. The recovery values
for 50% equivalent recovery are given by the squaresH% fractional recov-

ery by circles and fob0% recovery of par by triangles.

In all recovery models, the recovery of a full term structure of defaulted zero coupon bonds can
be represented as recovery rate times a certain reference price curve. In equivalent recovery, the
payoff to the defaultable bondsig% times the equivalent default-free bond price (the default-

free bond prices are shown as continuous line with squares and the corresponding recovery
values are the dotted line with squares). The reference prices curve for the fractional recovery
model are the defaultable bond prices (shown with circles) and the reference price for the par
recovery model are marked with triangles.

The differences between the models increase with time to maturity, the further the defaultable
bond price is from par, the larger the differences in the recovery values. For times to maturity of
6.5 years and more the recovery of par model is inconsistent with the defaultable bond prices as
the recovery value exceeds the pre-default price of the defaultable bonds; for times to maturity
larger than 17 years the same problem occurs with the equivalent recovery model. This problem
was already discussed in section 2.4.
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3. IMPLEMENTATION: FIRST STEPS

3.1. Inputs to the Model. As mentioned in the introduction the aim of this paper is to provide

a tree implementation algorithm that can be fitted to both defaultable and default-free term
structures of bond prices and volatilities. We therefore need as inputs to the model (for all
T > 0):

o B(0,T): the initial default-free term structure of zero coupon bond prices. The construction
of such zero-coupon curves from market prices is now standard in interest-rate literature.

o a,k(T)ando(T): the parameters of the dynamics of the default-free short rate. Here we use
the extended Vasicek (1977) model

(15) dr(t) = (k(t) — ar)dt + o(t)dW (t).

The level of mean reversiok(t) will be used to fit the tree to the initial term structure of
bond prices and is therefore already implicitly defined. The spot volatility funetiphcan
be used to fit an initial term structure of volatilities.

o B(0,T): the initial term structure of defaultable bond prices.

o @, k(T) andz(T): the parameters of the dynamics of the default intensitye also use the
extended Vasicek (1977) model for the intensity

(16) dA(t) = (k(t) —a)\)dt + & (t)dW (t).

We make provisions for the fitting of the volatilig(7") of the default intensity to an initial
term structure of volatilities for the defaultable bonds although in typical applications there
will not be sufficient data to support this fitting. In this case one can set the volatility to a
constantz(7) = & = const.

o p: The correlation between the Brownian motidisandW: dWdW = pdt. The value of
this parameter will also introduce correlation between the motion of the credit spreads and
the default-free interest rates.

o ¢ or ¢: A choice of recovery model (equivalent recovery or fractional recovery) and the
respective recovery rate)(for equivalent recovery or loss quotg for fractional recovery.
If recovery isstochasticone must also specify the distribution function of the recovery rate
and (derived from that) the expected recovery réter loss quota“.

o Finally, some numerical parameters like the time step Aizand the number of time steps
have to be chosen.

3.2. Pre-Processing.

3.2.1. Equivalent Recovery to Zero Recovery Conversibithe equivalent recovery model
is used, a first pre-processing step is required to derive an initial term strugg(oe7’) of
defaultable bonds with zero recovery (see equation (13)):

(17) By(0.T) = 7—(B(0,T) - eB(0,T)).

If the recovery rate: is stochastic, the expected recovery retenust be used in equation
(17). These zero recovery defaultable bond prices can now also be viewed as defaultable bond
prices under zero fractional recovery, i.e. a loss quota ef 1. It is therefore sufficient to
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demonstrate the implementation for the fractional recovery model, the modifications for the
equivalent recovery model are given where they are necessary.

3.2.2. Bond Volatility Fitting. The specification of a time-dependent interest-rate volatility

o(t) translates into time-dependent bond price volatilities via
dB(t,T) 1 ~a(T—1)\ TV
1 ) _ _ (1 — a(T—t)

and forward rate volatilities via

(19) df (t,T) = %’5)2@@@%1 — e Tt 4 o (t)e T VW (t)

where the drift of the forward rates follows from the Heath-Jarrow-Morton (1992) drift restric-
tion. The parameters ando(¢) can now be used to find a fit to a given volatility structure of

the bond prices or forward rates. Aét) enters the model as a multiplicative factor we can thus
capture time dependence in the general interest-rate and bond price volatility, but the shape of
the forward volatilities of different maturitie€g at the same timé remains of the exponential

form.

3.2.3. Closed-Form SolutionsTo specify the payoffs of the derivative securities in the tree we
need the prices of the corresponding underlying security at the nodes of the tree. Often the
underlying security are simple coupon bonds with defaultable or default-free payoffs at fixed
dates far in the future. To avoid building a ten-year tree for an option that expires in one yeatr,
just because the underlying bond has a maturity of ten years, it is useful to have closed-form
solutions for these simple payoffs.

The price of a default-free bond for short rate) and the dynamics (15) is given by

(20) B(t’ T) — eA(t:T)—B(t,T)r(t)
where
(21) B(t, T) = é(l _ e*a(Tft)>
1 [T T
= AT = é/ o*(s)B(t, 5)°ds — / B(t, s)k(s)ds.
t t

The price of a defaultable bond for: short rate), default intensity\(¢), survival until¢ and
dynamics (15) and (16) is

(23) B(t,T) = B(t,T)eAtD=BEDAO

where

(24) B(1.T) = ~(1— ")

(25) A(t,T) = % /t " (5Bt 5)%ds — /t "B $)k(s)ds
(26) R(t) = F(t) + ()0 (t)B(s, T)
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gheJ_esLofrhe tree . _ _ _ _ _ _ .
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___________ .
l Default]
t t+ At time

FIGURE 2. The branching to default at a typical node in the tree. Over one time
step fromt to ¢t + At there is first a branch to default or survival, and only in the
survival node the tree is continued.

3.3. The Default Branching. In the following sections we are going to construct a tree model

for the development of the short term interest rate and the default intensity, and this tree has to
be joined with a model-consistent default and recovery mechanism. At each node in the tree
we will know the current defaultable and default-free bond price structures and thus the current
default intensity\. By equation (4) the survival probability fromto ¢t + At is given by

7.
The default intensity is constant oviert + At|[, thus

(27) 1 —p=e A

is (by equation (4)) the survival probability over the next time intefal+ At[, andp is the
corresponding default probability. If the time st&p is not too large, we can assume without
much loss of accuracy that the default happens at the lefread of the time interval if it
happens in the time interval). If more precision is required one can use the expected time of
default, given that there is a default[int + At[. Thisis

1 efx\At
Te:E[T ‘TE [t,t"‘AtH :t+x —Atm
To incorporate the default an additional branching point has to be added to the tree in the way
indicated in figure 3.3. Thus, at each node of the tree, firss decided, whether a default
has happened (branch down to default) or not (branch across), andgthem,survival the
‘normal’ tree continues with the evolution of interest-rates and default intensities. The default
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state is a ‘leaf’ of the tree and apart from the calculation of the payoffs in default the tree ends
ther€.

Although the tree ends in default it is still possible to value default-free securities in this frame-
work (or payoff components that are unaffected by defaults): When the backwards induction
reaches the survival nodewith a (local) value ofi” for the default-free security, the payoff

in the default nodeD must be set td/, too. Thus the default branching will be effectively
ignored. Alternatively, by adding two lines of code to the program one can ensure that the
default branching is ignored altogether.

The probability of reaching node and surviving over the next time interval is ngw p,, the
probability of reachingn and surviving i - p,,, and for nodel this isp - p;. Consider now a
survival contingent security with payofts,, =, andz, in nodesu, m andd, and zero at default.
Without the possibility of default this security would have the gtige= z,p, + 2 mpm + Tapa-
The price with default is on the other hamd= (1 — p)2’, the possibility of default introduces
an additional discounting with the survival probability— p) in each node. This fact can also
be proven in the continuous-time setup.

3.4. Recovery Modelling in the Default Branch. As the default-free interest rates are known
in the survival branch they are also known for the default branch. Therefore specifying the
equivalent recovery mechanism is straightforward in this s&tup.

For fractional recovery the mechanism is slightly more complex because in the continuous-
time model there can be multiple defaults. There are two alternative ways of approximating
this model in discrete-time: Either, the number of defaults is restricted to one default per time
interval(t, t + At[, or multiple defaults are allowed even within the interjat + At].

Let V,, be the value of a defaultable securitytat nAt, andV," its value if it survived until
t = nAt. If only one default is allowed, the following recursion holds gy (ignoring the
discounting by default-free interest rates)

(28) Vi = e At :+1 +(1 - eiAnm)(l —q) ’:+1 =(1—-q(1- eiAnAt)) ;+1'
If the full multiple default model is used over the interfalt + At[ the value is given by
(29) V= e A

The dynamics of equation (28) converge to (29)s— 0, and for reasonably small time
step sizes the difference is negligible. If the time-step size is large (e.g. larger than 1/12), the
approach in equation (29) is more appropriate.

Stochastic recovery rates can be incorporated into the pricing algorithm by a direct specification
of the distribution of the recovery rate in default. This distribution has to be evaluated at all

"The branching method and the termination of the tree at default are different from the tree implementation in
Jarrow and Turnbull (1995). The procedure chosen here avoids an unnecessary expansion of the tree.

8Assuming zero default-free interest rates.

9The equivalent recovery model only has to be implemented for the pricing runs through the tree. For the tree
setup and fitting in the equivalent recovery model we will only use a term structure of zero-recovery defaultable
bond prices.
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branches to default. If the payoff in default is a functiffy) of the loss quota, the value that
has to be used in the algorithm is the average payoff

(30) ve— / £(q) K (dg),

where K (dq) is the distribution function of the loss quogasen a default has happenet@he
implementation of stochastic recovery with the equivalent recovery model is similar. For the
pricing of defaultable bonds with stochastic recovery it is sufficient to usexgpectedecovery

rate.

4. IMPLEMENTATION: THE INDEPENDENCECASE

4.1. Pricing Relationships. In this section we assume that the dynamics of the default-free
interest rates is independent from the credit spread and default processes. This enables us to
decouple defaults and discounting in most pricing problems:

Defaultable zero coupon bond prices (see equation (10))

(32) Bt,T)=E [ BirQ(T) ] = E [ Ber |E[Q(T) | = B(t,T)P(t,T)
where
(32) ﬁ(t,T) = E, [6— I ax(s)ds } .

Zero-recovery defaultable zero coupon bond prices decouple to
EO(tu T) = Et [ﬁt,T1{7>T} } - B(ta T)P(t7T)

Payoffsat default can be decoupled: ReceiviAgatt if 7 = t (a default happens &}, has the
value

T
E [ o, X1pory | = / B(0, )X p(0, )dt,
0

wherep(t, T') is the density of the default time as seen from time

In general, the payoffs can be decoupled if [credit spreads and defaults] and interest rates appear
as asum of products the payoff function:

flr,t)g(A,7,1)
where f andg can be functionals that depend on the whole path @f A\. Payoffsat default

also fall into this category because — like in the preceding paragraph — they can be rewritten as
integral over the time horizon weighted with the density of the time of default.

There are also cases where the independence will not help to decouple the payoffs. A simple
example is a call option on a defaultable bond. The payoffd$I,7) — K)*, and the
defaultable bond price depends on both interest rates and credit spreads. The nonlinearity of
the function( - )* does not allow to separate the payoff function into two factors.

The simplifications also carry through to the discrete-time tree model. Although the pricing
of some credit derivatives will not necessarily decouple, the prices of the defaultable bonds
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decouple and therefore tigting of the interest-rate and the credit spread trees can be done
separately. The implementation goes in the following steps:

1. If the pricing of the credit derivative does not decouple, build the tree for the default-free
interest rate.
2. Fit the interest-rate tree to the initial default-free bond prices

B(0,T)

. Build the tree for the short credit spread
. Fit the credit spread tree to the initial term structure of credit spreads, i.e. to

W

P(0,T) VT >0.

5. Add the branches to default.

6. If the payoff function of the credit derivative decouples, price it directly using only the
tree for the credit spreads. Use the default-free bond pf¢esI’) for discounting.

7. Otherwise combine both trees and price using the combined tree.

4.2. Building the Tree: The Hull-White Algorithm. The tree building and the tree-fitting
algorithm is based upon the Hull-White (1994a; 1994b; 1996) algorithm for default-free in-
terest rate modelling. As these algorithms are already well-known we restrict ourselves to a
concise summary, which is already extended to incorporate time dependency in the volatility
parameter.

All direct references to interest-rates were avoided and the algorithm is presented for a process
x (which can be thought of as the short rate process) and fitted to a term strGgturg)

(which can be seen as bond prices). This was done to point out the general nature of the
algorithm which we will use alternatively regardingeither as short-term interest rate= r,

or as default intensity: = A, or as short term credit spread in the fractional recovery model

x = A\q. Furthermore, a common modification of this algorithm is to define the short rate as a
functionof the process

(33) r=f(z),

so that now the direct interpretation ofas interest-rate is lost, too. This trick can be used to
ensure positive interest rates fifz) > 0 Vz, e.g. f(x) = €%).

The Hull-White algorithm is an algorithm for the discrete-time implementation of diffusion
models of the form:

(34) de = [k(t) — ax]dt + odW.

The aim is to find a discrete-time version of the model that has the following properties: It has
a recombining trinomial tree structure, it converges to the continuous-time model (34), and it
replicates a given initial term structure of expectations of the bond-price type:

(35) C0,7)=E [ e o at)it } .
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This is achieved in two steps: First, a discrete-time tree is built for the modified procesth
the dynamics

(36) dz* = —ax*dt + odW.

Becauser*(t) + f(f k(s)ds = x(t) we can reach a tree farin a second step by shifting the tree
for z* by a time-dependent offsef(t). A suitable choice of(¢) will enable us to fit it to the
initial term structure of interest rates.

Step 1: Building the Tree. First, a time step sizét has to be chosen. This determines the
size of the step i

(37) Az = 5V3VAL,

wheres = max; o(t) is the largest that we will encounter.

To describe the nodes of the tree we will use the following notation: Nadg¢ denotes the
node at timg = nAt andx = jAr. The time index: ranges from zero through the positive
integers, while the ‘space’ indexcan take both positive and negative valie3he discretised
(grid) version ofz(t) will be denoted withz™ where the time-index indicates that this is the
discretisation of the process. The valuextfat node;j will be denoted withe?, and similar
notation applies ta™*.

To achieve consistency with the continuous-time dynamics (36) we require at all foges
that the first two moments of the discrete and the continuous process coincide (possibly up to
terms of order\t? and larget!), and that the branching probabilities add up to one:

(38) E [x*”“ — " } = puAxy + Py, + piAxg = —ax;" At
(39)  E[ (2 —a™)? | = puAxl 4+ pnArl, + paAxi = o’ At + a*(2]")? A’
(40) Du + Pm +pd:17

whereAz,,, Az, and Az, are the changes i depending on whether the next move in the
trinomial tree takes*" to the upper, the middle or the lower branch. Given the structure of the
tree these three equations uniquely determine the branching probabilities at each node.

There are three possible trinomial branches in the tree (see figure 4.2): The typical case is the
up-across-down branch (a) withz, = +Ax, Az, = 0 andAxz, = —Axz. This branch is
used at nodes in the interior of the tree.

The dynamics (36) of* incorporate a mean reversion to zero, where the strength of the mean
reversion is proportional to the value of. Therefore for larger > j...Azx, the mean
—az;" At will be smaller than the lower branchAz and equation (38) cannot be satisfied
without having negative probabilities. The opposite will happen at a very low branch, such that
there are lower and upper limifg,;, andj.... at which we have to use the branching meth-
ods (b) and (c) respectively. Thus, for each time leyele will use the following branching
methods:

10For two- or three-dimensional variables the time-indeis written as superscript, and the space-indiges (
for interest-rates anilfor spreads or intensities) are written as subscripts. If the variable depends on time alone,
the indexn is written as subscript.

" The convergence to the continuous-time process will still be ensured if terms of/sttare ignored.
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(a) standard branching (b) ‘up’ branching (c) ‘down’ branching

FIGURE 3. The three branching types of the Hull-White trinomial tree. (a) is
the standard branching method at inner nodes of the tree, (b) is used at the lower
edge of the tree, and (c) is used at the upper edge of the tree.

(c) at the top nodeé,,, ..
(a) at intermediate nodes
(b) at the bottom nodg,.;,

For constant- we can choose the boundaries of the tree as
0.184

41 .max > and .min = - 'max'

(41) Jmax 2~ J J

The branching probabilities are given by the solution of equations (38) to (40) which are for
constantr

at node (a)
1 a?j2At? —ajAt
Dy = 7 +
6 2
2
P = 3 a’j2At?
1 a?2At? + ajAt
Dd = = +
6 2
at node (b)
1 a®j2At? +ajAt
Pu = 6 + 9

1
P = 3" a2 At? — 2aj At

T a?PAR + 3ajAt
6
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at node (c)

7 a’j?At* — 3ajAt
6 2
1
Pm=—3~ a’j?At? + 2aj At
1 N a2 At? — ajAt
Pa = 6 5 .

Here it was used thakz? = 302 At which is only true for constant. If o(¢) is time-dependent,
equations (38) to (40) have to be solved witlhs parameter:

at node (a)

L[, At 222 A 42 ]
puzi_a sz—i-ajAt —ajAt_
pmzl_pu_pd

1], At 222 A 42 ]
pdzﬁ_oA—xz+ajAt +ajAt_

at node (b)
1], At 222 A 42 ]
puzﬁ_aA—ﬁ—i_ajAt —i—ajAt_
At
_ 2 2 2 A 42 .
pm__aA—x?_&jAt — 2ajAt
Pa=1—pu—pa
at node (c)

Pu = 1- Pm — Pd
5 At
Pm =70 Ay
% 02% +a? 2 A — ajAt| .
Furthermore, for time-dependemtit has to be decided at each time step where the limits of
the tree are, i.e. at which level;,,... the branching of type (b) and (c) becomes necessary. If
o(t) is strongly decreasing it can happen that branching of type (b) and (c) will not only be
necessary on the outermost level of the treg, (,.), but also one or more levels further to the
middle of the tree (on levels (jima — 1), =(jmax — 2), - - . ). This can be decided for each node
by checking whether a branching of type (a) would lead to negative transition probabilities in
one of the nodes.

— a?J2A? + 2aj At

DPa =

A small example trinomial tree is shown in figure 4.2 on the left. At the time leve2 At the
special branching is shown for the top and bottom nodes of the tree. In a typical application
this branching back would happen at a later time level. If this tree is to be used for default risk
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t t4 At 1+ 2At t+ 3At t t4 At t+ 2At t+ 3At

FIGURE 4. The Hull-White trinomial tree with and without the additional
branches to default. At time level+ 2At¢ there is special branching at the
top and bottom nodes.

modelling, it has to be extended for branches to default as explained in the previous section,
resulting in the tree on the right in figure 4.2.

It is not necessary to save all transition probabilities in one large array. There are some proper-
ties that reduce memory requirements:
For everyn, the transition probabilities are symmetric aroyné 0, i.e.

Puj = Pd’; Pmj; = DPm” -
For constant the transition probabilities do not dependan
Puj = Dujy Pdj =Pdj;  Pmj = Pm;-

The transition probabilities for time-dependerit) are easily calculated from the transition
probabilities for constart because they only have to be adjusted for a time-dependent dif-
ference. For example, let the ‘up’ probability for time-dependeft) be p,; and the ‘up’
probability for constant bep,,;. Then

1 o1 At

6 +(9n) 2 Az’

Similar formulae apply to the ‘middle’ and ‘down’ probabilities. Thus, only four one-dimensional
arrays are needed: The constarttansition probabilitiesy,, p,., ps three arrays iry), and the
volatilitieso,, (one array im). This will require much less memory than ofyex n) array, and

the loss in computing time will be small. Furthermore, the adjustments do not depend on the
branching type used.

ﬁu? = puj -

Step 2: Fitting the Tree. Now that the tree for:* has been constructed it must be converted
into a tree forr via

x(t) = alt) + x*(t),
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such that the initial term structure is recovered:
C’(O7 T) = E |: e~ fOT z(s)ds :| ]

The tree forz then has the same transition probabilities and links between the nodes as the tree
for z*, butthe values af? attime levelt = nAt have been shifted from™ by o, := a(nAt):

fIf;l = xjn + o vjmin < J < Jmax Vn > 0.

Note that for a given time level, all nodes are shifted by treameamountc,,. To shorten
notation, we denote witty,, := C'(0, nAt) the price of the zero coupon bond maturing.att.

In the continuous-time model a closed-form solution exists for this problem in terms of the
forward ratesf (0, 7) := —2 InC(0,T)

2

Oé(t) = f(O,t) + ;t—az(l _ 6—(115)2’

but in the discrete tree model the solution for the continuous-time model will not exactly re-
produce the initial term structure. Furthermore, if a function & used as short rate to ensure
positive interest rates as suggested in equation (33), a closed-form solutieft fanay not
exist.

Definer to be thestate priceof node(n, j), i.e.

n—1
—z™ At
1{xn:x;l} H (& ] .
m=0

77 equals the probability that the discretised processon the tree hits the node, j), dis-
counted with the intermediate valuesadt.

If = is a short term interest rate thenn? is the value of a payoff of 1 at node, j), and zero
otherwise.

If = is a default intensity\, thenz? is the probability of reaching node:, j) without having
defaulted before.

If = is a short credit spreaky in the fractional recovery model, ther} is the expected payoff
of a claim of 1 that is only paid out iff the node, ;) is reached.

(42) W;‘ =EK

The tree is now fitted in a procedure which is knowrf@svard induction. Starting from the
initial noden = 0, it is show how to fit the next time-level — n + 1 to the given price”,, ;.

Initialisation n = 0:
Forn = 0 the state price and the offsef follow immediately

1
(43) =1 = —EIHC&.

Iteration: n — n + 1:
Assume the tree has been fitted up to levele. we know,, andz?" for all m < n and ally.
Then the new state prices for level 1 are:

(44) W?H = Z ijWZe_TZAt.

kePrgn+1,5)
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The sum is over all nodgs:, k) which are predecessors @f + 1, j), andpj; is the transition
probability of going from(n, k) to (n + 1, j). Equation (44) can be derived by rewriting the
definition of 7} as a sum over all possible paths thatan take ta(n, j), weighted with the
probability of that path and discounting withalong this path.

Equation (44) can also be implemented by writing a loop over the npdg$ at time leveh.
Each of these nod€s, j) contributes to the state prices of its three successor nacdééw;‘
times the respective branching probability, p,,, or p;. This loop may be more efficient as it
will not be necessary to keep track of predecessor nodes.

The newx,, . is given by:
_ +1, 2" AL +1_ -2 T AL —an1 At
(45) Chio —ZW;‘ e i —Zﬂ'? e i e t1at,
j j

thus

n+l —z"tIAe
1n<2j7rj e i >—lnCn+2

At

If the short rate / intensity / spread is a function of the parameter that is modelled (see e.g.
(33)), then it will be necessary to fit the tree by numerically finding a solutign to equation

(45) (or its equivalent).

(46) Oén+1 =

4.3. The Tree for Credit Risk. Now all the tools are in place for the tree model of default
risk. We will describe here the implementation of the tree for the fractional recovery model.
The adaptation to the equivalent recovery model only requires one additional pre-processing
step to reach zero-recovery defaultable bond prices. The implementation steps are:
1. Build a tree with nodegn, j) for the default-free short rate where

dr = (k(t) — ar)dt + odW.
Fit this tree to the default-free bond pricB&0, T').
Build a tree with nodegn, i) for the default intensity\ or the the short credit spread.

d\ = (k(t) — a\)dt +cdW.

w N

4. Fitthistreeto

~ _ B(0,T)

P0,7) = [ el o] = 201
( ) ) € o B(O,T)

5. Incorporate default branches into the credit spread tree.

6. Combine the two trees.

7. Price derivatives.

Remarks: The independence efi¥ anddWW (i.e. default-free interest rates and the default
intensity) allows us to expreds [ e~ Jo ar(s)ds } in terms of observed market prices and to fit

the \-tree separately.
It makes no difference, iX or ¢\ are modelled, as one is only a linear multiple of the other and
the dynamics of both are Gaussian.
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r-move Marginal

down middle up

/

up PuPd DyPm  Dybu Pu
A-move middle  pl.ps  PLPm PhDu D,
down  plps Pibm  Pipu Py

Marginal p, DPm Dd 1

Default probability:p

TABLE 1. Combined branching probabilities (independence). The table gives
the branching probabilities in the combined tree for the indicated combined
movements of- and \. These must be multiplied withl — p) to reach the

full probabilities of the indicated moveand survival over the next time inter-
val. The original probabilities are:: up p,; middle p,,,; downp,. A: up p.;
middlep/,; downp/,. Defaultp.

Both trees should have the same time step Aizebut they can have different space stéps
and A\ and different numbers of N0déS.x — jmin @Ndiax — Fmin-

To incorporate default branches to the credit spread tree (step 5), the additional branch to default
has to be added to each no@le i) as described in section 3.3. If the short credit spread

is g\ in this node, the survival probability is— p = e=*'2!, and the default probability is

p = 1—e~ 'A% The branching probabilities must also be updated with the survival probability.

The key step in the full implementation is the combination of the two trees (step 6). The
combined tree is a tree ithree dimensionstwo space dimensions @ndg)\) and the time
dimension. Nodesén, i, j) carry therefore three indices:for the timet = nAt, i for the credit
spready)\ = o)) + iA), andj for the default-free short rate= o’ + jAr.

At time-leveln, the tree ha§iax — imin) X (Jmax — Jmin) SUrvival nodes and the same number of
‘default’ nodes. From nodg, 7, j) there are 10 different branches: Both ratesd intensities

A have three possible branches which gives nine possible combinations, and there is a tenth
branch to default.

As shown in table 1, the branching probabilities simply multiply: If in n¢dgj) of the interest
rate tree the probability for an ‘up’ move inwasp,, and in nodgn, i) of the tree forg\ the
probability for a ‘down’ move igA wasp/, and the survival probability wad — p), then in
the combined tree the probability of a move from nddei, j) to (n + 1,7 + 1,5 — 1) (i.e.
‘up’ in r and ‘down’ in ¢)) is p,p},. The default probability remains unchanged, therefore
the probability of this movend survivalis (1 — p)p,p),. The probabilitieg)!, p!,, p!, for the
A-movements in table 1 are the original branching probabilities from the trek foefore it
was extended for defaults.
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r-move Marginal
down middle up
up PuPd — €  DyPm —4€ Py + 5e Pl
A-move middle pl ps—4e pl.pm+ 8¢ pl.p. — 4de o,
down Pipa + 5 phpm —4e  plp. — € i
Marginal Du D Dd

TABLE 2. Combined branching probabilities (positive correlation). The table
gives the probabilities of the indicated combined movementsasfd A in the
combined tree for a given positive correlatipr= 36¢. To reach the probabili-
ties for the movements with survival over the next time interval multiply them
with (1 — p). The original probabilities are:: up p,,; middlep,,; downp,. A:

up pl,; middlep; ; downp/,. Defaultp.

The combined tree is now fully described: It inherits and combines the branching possibilities
and the branching probabilities from the two original trees, and it is fully fitted to both the
default-free term structure of bond prices and the defaultable term structure of bond prices.

5. IMPLEMENTATION: CORRELATION

If there is correlatiorp # 0 betweendV anddWV in the dynamics of interest rates and default
intensities, the defaultable bond prices do not decouple any more as easily as in equation (31),
which makes fitting the tree to a. Therefore the strategy of the preceding section has to be
modified, the fitting of the defaultable term structure must be postponed. The new strategy is:

1. Build a tree for the default-free short rateand Fit this tree to the default-free bond prices
B(0,T).

Build a tree for the short credit spreagl. Do notfit the tree yet.

Combine the two trees and incorporate the correlation.

Incorporate default branches into the tree.

Fit the combined tree to the defaultable bond priB¢s, T'), while preserving the fit to the
default-free bond prices.

6. Price derivatives.

abrwn

The algorithm was modified in points 3 and 5.

5.1. Combining the trees. The problem of introducing correlation into a two-dimensional tree
model has been treated in a similar context by Hull and White (1994b). For positive correlation
p > 0 they propose to modify the transition probabilities of table 1 as shown in tables 2 and 3.
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r-move Marginal
down middle up
up PuPd+5€  DPupm —4€  pup.—€ 28
A-move middle pl ps—4e pl.pm+ 8¢ pl.p. — 4de o,
down PaPd — € PgPm — 4€  pypu + 5S¢ P
Marginal Du Dm Dd

TABLE 3. Combined branching probabilities (negative correlation). The table
gives the probabilities of the indicated combined movementsasfd A in the
combined tree for a given negative correlatiopa: —36¢. To reach the probabil-
ities for the movements with survival over the next time interval multiply them
with (1 — p). The original probabilities are:: up p,,; middlep,,; downp,. A:

up pl,; middlep; ; downp/,. Defaultp.

First, an auxiliary parameteris defined

w=p forp>0
€ =
—%p for p < 0.

Tables 2 and 2 give the probabilities of the indicated combined movementaraf \ in the
combined tree for a given positive (table 2) or negative (table 3) correlation-36¢. Default
and survival are ignored in these tables, to reach the probabilities for the moveandrgsr-
vival over the next time intervathe probabilities must be multiplied with — p). The original
probabilities arer: up p,; middlep,,; downp,. A: uppl; middlep!,; downp/,. Defaultp.

The adjustment for correlation in tables 2 and 3 only workig not too large. Thus there is
a maximum value for the correlation that can be implemented for a given time stepize
As the refinement is increased\¢ — 0) this restriction becomes weaker and the maximum
correlation approaches one.

5.2. Fitting to the defaultable bond prices. As in section 4 the idea behind the fitting al-
gorithm is to shift the tree by a deterministic amoant If the shift only takes place in the
A-dimension, the development of the default-free interestrraggnains unaffected and the fit
to the default-free term structure is preserved.

We define the fitting algorithm recursively over the time-stegnputs are: a combined tree
(n,1,j) (indices:n time, i intensity,; interest rate) which is fitted to a term structure of default-
free bond prices3(0,T) by a shifta,, in ther-dimension. Define thdefaultable state price
77, to be the state price of node, 7, j), i.e. the value of a defaultable claim on $ 1 at node
(n,1,j). The tree is built for the default intensitydirectly (and not for the short credit spread
Aq).
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Initialisationn = 0:
Set

47) T =1 Qp = —ﬁ In(B(1) — B(1)).

Iteration: n — n + 1:
The tree has been fitted up to leveli.e. we knowa,, andn;; for all m < n and alli and;.
The new state prices for level+ 1 are:

(48) = DD By O

(k,l)ePren+1,3,5)
Again we sum over all state prices of the predecessors of the(ngdeg). The predecessors’
state prices are weighted with the transition probabilkﬁ(gg,(i i) the discounting with the risk-
free interest rate~"*! and the discounting with the fractional recovery factot~.

The fractional recovery factar-#*2! reflects the expectation of a defaultable paydffin the

future if the fractional recovery model is used as a continuous-time model (with defaults at any
time in [¢,t + At[). If one assumes that defaults happen only at the beginning of the interval,
then the factorl — ¢(1 — e=*2!) has to be used. This factor gives the expectation of
survival and(1 — ¢) in default. For normal parameter values both approaches yield almost the
same results.

Again it will be simpler to implement equation (48) using a loop over the nodes on time level
n and adding up the contributions to the successor nodes atlevél

The newx,, . is given by:
n+1 n+1 n+1 nt1
(49) B TL-'- 2 Zﬂ.nJrl — g\ AL Zﬂ.nJrl — +qX] YAt 7ozn+1At

thus

1 7Tn+16_( n+1+q>\*n+1)At
50 W1 = — ln( g
(50) n= ¥
Again, if a function of the short intensity is modelled (see (33)) a numerical solution of (49)
becomes necessary.

6. USING THE TREE

Once the tree is constructed and fitted to the initial bond prices it can be used to price other
derivative securities. A derivative security is characterised by its payoff in default, in survival
and by American / Bermudan early exercise features:

g} The payoff of the derivative if a default happens in n¢dei, ;).
" The payoff of the derivative if nodg, 7, j) is reached.
o G” The early exercise payoff in node, i, j).
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Fees and other payments are specified as negative payoffs. Very frequently these payoffs will
be in terms of underlying securities whose prices cannot be derived directly from the values of
the state variables and A in the node. In this case the underlying securities must be priced

in the tree first, and only then they can be substituted as payoffs to the derivative. This can be
done in the same backwards induction as the pricing of the derivative, one only has to keep
track of the prices of both securities.

Sometimes it may be inefficient to value these payoffs in the full tree model: One might end up
with building a ten-year tree for an option that expires in one year, just because the underlying
bond has a maturity of ten years. Here the computational effort can be reduced by increasing the
time step size from year one onwards. Furthermore, if the prices of the underlying security are
the values of defaultable or default-free fixed payoffs (e.g. the underlying is a coupon bond) and
if the model uses the original specification (15) and (16), we can use the closed-form solutions
given in equations (20) and (23) to reach the prices of these bonds directly.

Having specified all payoffs the pridg] of the credit derivative is derived by standard back-
wards induction:

Initialisation: n = N
At the final level of the tree set its value to the final payoff

N . 7N
vy =Y.

Iteration:n +1 —n
For every nod€n, i, j) the value of the credit derivative at the survival node of the default
branch is given by

(51) V7= Z pre” VI,

k,leSucdn,i,j)
where Sucgn, i, j) gives the successor nodegof i, j) (except the default node) amf, is the
transition probability from nodén, i, j) to node(n + 1, k, ). If there is no early exercise, the
value at nodén, i, j) is then

(52) Vil = e NAWTE 4 (1= e NN R 4 B
With early exercise the value is
(53) Vii= maX(V’% , G),

where we assumed that the early exercise right is with us (i.e. the person that receives any
positive payoffs) and that we can exerclseforewe receive or pay;;. (For early exercise
rights of the counterparty we would have to use a minimum-function.)

To exemplify the usage of the tree we will show which specifications have to be used for some
popular credit derivatives. We will call counterpadythe protection buyer, and counterparty
B the protection seller, and we will take the point of view of counterpArty

6.1. Default Digital Swap. In a default digital swap, counterpaBypays $ 1 to counterparty
A if a default happens and at the time of default. Counterparnpays a periodic fee of per
annum for this protection.
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This is one of the most basic credit derivatives one can imagine. It would not be necessary
to price this security in a tree as closed-form solutions can be derived within this model setup
easily (see e.g. Sonbucher (submission fall 1999)).

The payoffs in the tree model are

o The payoff of the derivative if a default happens in néde, j):
fh =1

o The payoff of the derivative if noden, i, j) is reached:
Fj» = —sif nAtis a fee payment dalte, F}} = 0 otherwise.

o The early exercise payoff in node, i, j):
G}, = —oo: early exercise does not apply.

6.2. Default Swap. In the default swap, counterparB/pays [par]-[recovery of a reference
bond B'] to counterpartyA if a default happens, payment is at the time of default. Again
CounterpartyA pays a periodic fee of per annum for this protection.

Next to the total return swap, the default swap is one of the most common credit derivatives.
Often its pricing can be reduced to the pricing of a default digital swap, but we will use the
tree model. Because the payoff is conditioned on a defaultable referencé Eonave need

the value of this reference bond in every node of the tree, which can be done for fixed-coupon
bonds using the closed-form solutions in equations (20) and (23). The payoffs are then

o The payoff of the derivative if a default happens in nédei, j):
n=1-(1- q)E*% for fractional recovery
" =1— cB'y, for equivalent recovery.
o The payoff of the derivative if node, i, j) is reached:
Fl; = —sif nAt is a fee payment daté;; = 0 otherwise.
o The early exercise payoff in node, i, j):
G}, = —oc! early exercise does not apply.

6.3. Callable Default Swap. A callable default swap is a default swap where counterparty

A has the right to cancel the default swap at pre-determined dates. Usually this is combined
with an increasing fee schedule which will make the securitgliable step-up default swap

The motivation is often that for regulatory capital reasons counterpangeds a default swap
whose maturity matches that of the underlying reference asset, although economically she only
wants protection for a shorter period. With a sufficiently steep step-up schedule counterparty
B can be almost certain that counterpaktyvill exercise early but the regulatory requirements

are satisfied.

This very simple variation on the classical default swap is already impossible to price in closed-
form with pencil and paper, and can be priced with Monte-Carlo methods only at a prohibitive
cost in computation time.

2Here some care has to be taken when payment dates do not fall on the time-grid.
3Note that the reference bond is not a zero-coupon bond.
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To model the callability we must specify the early exercise payoff in the nodes where a cancel-
lation is possible:
G}, = 0: early exercise if the value of the default swap is negative.

Because of the increasing fee structure early exercise will become optimal after some time.

6.4. Credit Spread Options. In a credit spread put option, counterpaithas the right to sell
the defaultable reference bo at a given timel” in the future at a given strike credit spread
k over a default-free reference bond to counterpartyB.

This credit derivative has two underlying securitigs: and B*. To explicitly calculate the
payoffs atl” = N At we must calculate for each possible interest rate jAr at timeT the
corresponding default-free reference bond prfi¢eand the strike price of the option: the price
KJN that is equivalent to the price of the defaultable reference @nat a credit spread of
overB*.

If the option is knocked out at default, we specify zero paygffs= 0 at the default nodes,
and the option payoff at the final nodes:
N N DN
P =max(K;' — B ;;,0).
If the option survives defaults, we have to add the payoff that the option will have in default. If
a default has happened we can be sure that the option will be exercised. Count&rpaity
getKjV for sure inT" and has to deliver a defaultable (and defaulted) bBnébr that. CallK7;
the nodefn, i, j)-value of receivingk’}" for sure at timel” (this has to be valued recursively,
too). The payoff in default is then
n=Kp—(1- q)E*% for fractional recovery, and

- _
= KJ; — cB [ for equivalent recovery.

6.5. Asset Swaptions.An asset swap packaggea combination of a (defaultable) fixed coupon
bondB" with couponz, and a fixed-for-floating interest-rate swap where the fixed sidepays

and the floating side pay8 + s LIBOR R plus a spread (theasset swap spreadThe spread

s is chosen such that the whole package is valued at 1 (par). This instrument allows the investor
to change the cash-flow of the defaultable fixed coupon bond into a floating coupon plus the
asset swap spread. This only works as long as there is no default because the swap is a plain
interest-rate swap which remains in place even if a default happens on the underlying bond

An asset swaptiois an option on an asset swap package. It gives counterfdttg right to
enter an asset swap package at tifret spread (call option), or the right to put the asset swap
package to counterparB/at timeT" for s over LIBOR (put option).

To price the asset swaption we first have to find the fair asset swap spread at the nodes in our
tree. Basic calculations yield that

—*

(54) s=—(B"-B)

| =
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whereB™ is the value of a default-free bond with the same coupgurincipal and maturity as
the defaultable bon®"; andA is the value of an annuityl = > B(0,T;) is the (default-free)
value of receiving 1 at every coupon ddte

The value of the right to enter an asset swap packagd #te fair asset swap rate isis then
(55)  FJY = Amax(s —s,0) = max(43 — B* + B",0) = max(B — (B* — A3),0),

where all quantities are evaluated at the n@¥le;, j). The call asset swaption is thus equivalent

to an option to exchange the defaultable bond for an equivalent default-free bond whose coupon
is reduced by the asset swap spread. All the quantities in the payoff function (defaultable
coupon bond price, default-free coupon bond price, value of default-free annuity) are given in
closed-form in the model.

Next we need to consider the payoff in default. A call asset swaption will be worthless if the
underlying asset has defaulted, but the put asset swaption will be exercised for sure. Thus we
know at the time of default that counterpasywill receive at maturityB™ — (B* — A3), we
have to deliver a defaultable (and defaulted) bond and receive a default-free bond with adjusted
coupon. This payoff can be reached by investing in the respective Hotlass its value at
timet = nAt is

"= (1_*_ q)B 7 — (B*} — A}3) fqr fractional recovery, and
=cB - (B n— A?js) for equivalent recovery.

6.6. First-to-Default Baskets. The tree model can be extended to a model for several default-
able issuers by sequentially building a credit spread tree for each issuer, and then combining
the trees similarly to the procedure demonstrated in section 5. This brute-force approach would
lead to a very high-dimensional tree and an exponential increase in computation time and mem-
ory requirement.

To reduce this computation requirements we can use the fact that

(56) At) =D An(t)

is the intensity of thdirst-jump processV if the individual jumps are driven by Cox processes
N,.(t) with intensities\,,,(¢). In equation (56) the individual intensities, can be correlated,
but given the intensities,,,, the jump processed,, must be independent inhomogeneous
Poisson processes with intensities.

Thus the problem of the pricing of a first-to-default swap can be reduced to the problem of

a default swap with a modified intensity process. Unfortunately, if the default intensities are

not independent, the market prices are not given in the form that we need to apply the fitting
algorithm of section 5. This is an area of further research. For independent default intensities
the combined model (56) can be fitted to

(57) B(0,7)=B(0,7) [[ %O’TT)),

m=1

“wWhen valuing these bonds we have to ignore any coupon payments before the maturity of the option.
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FIGURE 5. Implied default probabilities as a function of the correlatiobe-
tweenr and\.

using the methods of section 4.

7. NUMERICAL RESULTS

7.1. Numerical Analysis of Parameter Sensitivities.Unless otherwise stated, the calcula-
tions were performed with the following inputs: Default-free continuously compounded zero
bond yield curve flat at 6%; short rate volatility= 0.02, short rate mean reversian= 0.15;
defaultable continuously compounded zero coupon bond yields fié#aintensity volatility

o = 0.01, intensity mean reversian = 0.10; correlationp = 0; zero recovery; time horizon:

T = 5 years; 21 time-steps.

Figure 5 shows the 5-year default probability that is implied by the model as a function of the

correlationp between the dynamics of the intensity and the default-free interest-rates. It can

be seen, that the implied default probability increases with increasing correlation. There is an
intuitive explanation of the direction of the effect:

If interest rates and credit spreads are positively correlated({) this means that defaults are
slightly more likely in states of nature when interest rates are high. Because of the higher inter-
est rates these states are discounted more strongly when they enter the price of the defaultable
bond, and conversely states with low interest rates enter with less discounting and simulta-
neously fewer defaults. To reachgasen price for a defaultable bond, the absolute default
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likelihood must therefore be higher. This implies a lower survival probability which is also
the result of the numerical simulation. The argument runs conversely for negative correlation
p <0.

Figure 6 shows the corresponding default digital swap prices. Here the influence of the cor-
relation parameter is much smaller, because default digital swap prices contdisdbhented
expected payoffs, and the discounting counteracts the effect of the correlation on the implied
default probabilities.

To get a feeling for the order of magnitude of the error that is committed when a wrong corre-
lation is specified, we show in figures 7 and 8 the effect of the specification of the (equivalent
or fractional) recovery rate on the prices of a default digital swap and a default swap. A higher
expected recovery rate means a higher likelihood of default for given defaultable bond prices.
This in turn increases the value of the default digital swap.

In figure 8 we show the prices for a default swap with the different recovery rates in both the
fractional and the equivalent recovery model. An increase in the expected recovery rate leads
to an increase in the implied default probability, but it also leads to a lower payoff of the default
swap in default. These two effects cancel out to a large extent which makes the default swap
more robust to errors in the expected recovery rate than the default digital swap. Interestingly,
for the fractional recovery model the increase in default probability dominates and leads to an
increasing function, while for the equivalent recovery model the both effects exactly cancel.
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The recovery rate is one of the most uncertain input parameters in the model and it can be seen
that its influence is much larger than the influence of the correlation. It will therefore be more
important to improve the estimate of the recovery rate than the correlation.

8. CONCLUSION

This article offers several conclusions. First, a viable approach was presented to build and fit
a combined tree model for defaultable and default-free bonds. We discussed the mathematical
theory, on which the model is based, and showed how to apply the model to real-world pricing
problems. In the last section the model was used to explore some of the subtler aspects of
recovery modelling.

Secondly, the implementation method which was presented in this paper is not restricted to
the Hull-White model for interest-rates alone. Along similar lines almost any tree model for
default-free interest rates can be adapted to a tree model for the default intensity and thus to a
combined tree model for defaultable and default-free bond prices. The only modifications are
the addition of default branches to the intensity tree and the combination of both trees.
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The Hull-White model can also be extended in many directions, notably to ensure positive
interest-rates and intensities, or to reach more realistic dynamics for the factors. Many exten-
sions of this kind have been proposed in the literature for default-free interest-rate models and
their adaptation to the defaultable case is usually straightforward. Nevertheless these exten-
sions have been designed for problems arising in the default-free interest-rate world (like the
fitting to cap and swaption prices) which need not be of first importance in the world of de-
faultable bonds. Here it may be more important to address the problems of recovery modelling,
rating transitions and the dynamics of the credit spreads in a crisis.
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