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Department of Statistics, Bonn University
June 1998, this version June 1999

ABSTRACT. In this paper we present a tree model for defaultable bond prices which can be used
for the pricing of credit derivatives. The model is based upon the two-factor Hull-White (1994)
model for default-free interest rates, where one of the factors is taken to be the credit spread
of the defaultable bond prices. As opposed to the tree model of Jarrow and Turnbull (1992),
the dynamics of default-free interest rates and credit spreads in this model can have any desired
degree of correlation, and the model can be fitted to any given term structures of default-free and
defaultable bond prices, and to the term structures of the respective volatilities. Furthermore the
model can accommodate several alternative models of default recovery, including the fractional
recovery model of Duffie and Singleton (1994) and recovery in terms of equivalent default-free
bonds (see e.g. Lando (1998)). Although based on a Gaussian setup, the approach can easily be
extended to non-Gaussian processes that avoid negative interest-rates or credit spreads.

1. INTRODUCTION

In this paper we present a tree model for defaultable bond prices which can be used for the
pricing of credit derivatives. The model is based upon the two-factor Hull-White (1994) model
for default-free interest rates, where one of the factors is taken to be the credit spread of the
defaultable bond prices. As opposed to the tree model of Jarrow and Turnbull (1992), the
dynamics of default-free interest rates and credit spreads in this model can have any desired
degree of correlation, and the model can be fitted to any given term structures of default-free
and defaultable bond prices, and to the term structures of the respective volatilities. Further-
more the model can accommodate several alternative models of default recovery, including the
fractional recovery model of Duffie and Singleton (1994) and recovery in terms of equivalent
default-free bonds (see e.g. Lando (1998)). Although based on a Gaussian setup, the approach
can easily be extended to non-Gaussian processes that avoid negative interest-rates or credit
spreads.

The model contributes to the existing literature in two respects: First, it provides an imple-
mentation framework for most of the existing intensity-based credit risk models, and second, it
enables a quantitative comparison of the properties of these models and the relative importance
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of input parameters like recovery rates, volatility of credit spreads and the correlation between
credit spreads and interest rates.

The paper is structured as follows:

In the first section we discuss the credit risk model that we are going to use. The time of default
will be a (discretisation of a) totally inaccessible stopping time with a stochastic intensityλ,
and the recovery rate of a defaulted bond will be determined by using one of two models: the
fractional recovery model (where a bond loses a fraction of ist pre-default value in default, see
e.g. Duffie and Singleton), or the equivalent recovery model (where a defaulted bond recovers
a certain number of equivalent default-free bonds). It is also show, how the model can be
extended to incorporate stochastic recovery rates or recovery in terms of a fraction of the par
value of the defaulted bond. We discuss the relative merits of all recovery models, the extension
to stochastic recovery, and their influence on the results later on. Taking one node of the tree
as example it is show how these continuous-time models are incorporated into a discrete-time
tree setup and the branching scheme for default risk is demonstrated.

The next section demonstrates how to incorporate stochastic credit spreads into the model as-
suming independence of credit spreads and risk-free interest rates. Because of the indepen-
dence assumption, a separate tree for the credit risk can be built and fitted to the term structure
of credit spreads. The tree building and fitting procedure are demonstrated for the case of a
mean-reverting Gaussian diffusion process for the default intensity of the form

dλ = (k(t) − aλ)dt + σ(t)dW

wherek(t) andσ(t) are used to fit the tree. It is also shown how to combine this tree with a tree
for the default-free interest rates, where the default-free short rate follows a similar process of
the formdr = (k(t) − ar)dt + σ(t)dW .

In the following step correlation between credit spreads and default-free interest rates is intro-
duced by introducing correlation betweendW anddW . The tree-building and fitting procedure
now has to be done sequentially: First, the tree for the default-free interest rates is built and
fitted to the default-free term structures, then the tree for the credit spreads is built, then both
trees are combined and correlation between spreads and interest-rates is introduced, and fi-
nally, the combined tree is fitted to the term structure of defaultable bond prices. For this fitting
procedure a new set of defaultable state prices has to be introduced. The section is concluded
by examples that demonstrate the use of this model for the pricing of credit derivatives. The
credit derivatives are credit default swaps, callable credit default swaps, credit spread options
and asset swaptions. Finally, the extension of the model to the valuation of first-to-default bas-
ket credit derivatives is discussed, and it is shown how to modify the model to ensure positive
interest rates and credit spreads.

In the last section the model is used to analyse numerically the input parameters to the intensity-
based credit risk models that have been proposed in the literature. The effect on implied default
probabilities (and default swap prices) of correlation between credit spreads and default-free
interest rates is analysed and it is compared to the effect of misspecification in the expected
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recovery rate. Then we look at the effects of the different recovery models and how they influ-
ence the prices of default swaps and the implied default probabilities. The paper is concluded
with a summary of the main results.

2. THE CREDIT RISK MODEL

2.1. Model Setup and Notation. The model is set up in a filtered probability space(Ω, F , (Ft)(t≥0), P )
whereP is a pre-specified martingale measure. We assume the filtration(Ft)(t≥0) satisfies the
usual conditions1 and the initial filtration F0 is trivial. We also assume a finite time horizon
T̄ with F = FT̄ , all definitions and statements are understood to be only valid until this time
horizonT̄ . The notation used is:

◦ B(t, T ) : default free zero coupon bond price,
◦ r(t) : default free short rate,
◦ βt,T : discount factor over[t, T ],
◦ B(t, T ) : defaultable zero coupon bond price,
◦ P (t, T ) : survival probability for[t, T ].

2.2. The Time of Default. Although we are going to use two different models to model the
recoveryof defaulted bonds, the model for thetimeof the default(s) is the same for both:

We assume that the times of defaultτi are generated by a Cox process. Intuitively, a Cox
Process is defined as a Poisson process with stochastic intensityλ (see Lando (1998), p.101).
Formally the definition is:

Definition 1. N is called a Cox process, if there is a nonnegative adapted stochastic process
λ(t) (called theintensityof the Cox process) with

∫ t

0
λ(s)ds < ∞ ∀ t > 0, and conditional

on the realization{λ(t)}{t>0} of the intensity,N(t) is a time-inhomogeneous Poisson process
with intensityλ(t).

This definition follows Lando (1998) and differs from the usual definition of a Cox process
where the intensity processλ(t) is fully revealed immediately after time 0 (i.e. the intensity
is F0-measurable see e.g. Br´emaud (1981)). Mathematically, it is not necessary to reveal all
information about the future development of the intensity, and from the point of view of real-
ism and for the valuation of derivatives this modelling approach would even introduce pricing
errors2.

Assumption 1. (i) The default counting process

N(t) := max{i|τi ≤ t} =
∞∑
i=1

1{τi≤t}(1)

is a Cox process with intensity processλ(t).

1See Jacod and Shiryaev (1988).
2Consider e.g. an American Put option on a defaultable bond in a world with constant zero risk-free interest

rates. If all information aboutλ(t) is revealed att = 0 this would enable the investor to condition his optimal
exercise policy on the future development ofλ which is not realistic.
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(ii) In the equivalent recovery model the time of default is the time of the first jump ofN . To
simplify notation the time of thefirst default will be referred to withτ := τ1.

(iii) In the fractional recovery model the times of default are the times of the jumps ofN .

Remark1. By standard properties of inhomogenous Poissson processes, given the realisation
of λ, the probability of having exactlyn jumps is

(2) P
[

N(T ) − N(t) = n | {λ(s)}{T≥s≥t}
]

=
1

n!

(∫ T

t

λ(s)ds

)n

exp{−
∫ T

t

λ(s)ds}.

The probability of havingn jumps (without knowledge of the realisation ofλ) is found by
conditioning on the realisation ofλ within an outer expectation operator:

Pt [ N(T ) − N(t) = n ] = Et

[
P

[
N(T ) − N(t) = n | {λ(s)}{T≥s≥t}

] ]
= Et

[
1

n!

(∫ T

t

λ(s)ds

)n

exp{−
∫ T

t

λ(s)ds}
]

,(3)

Define the processP (t, T )

P (t, T ) = Et

[
e−

R T
t

λ(s)ds
]
.(4)

For τ > t (before default),P (t, T ) can be interpreted as thesurvival probabilityfrom time t
until timeT . In general,

1{τ>t}P (t, T ) = Et

[
1{τ>T}

]
.(5)

Givenτ > t the density of the time of the first default as seen fromt is for T > t

p(t, T ) = Et

[
λ(T ) exp{−

∫ T

t

λ(s)ds}
]

,(6)

andp(t, T ) = 0 for T ≤ t. 3

The law of iterated expectations as it was used above is extremely useful in Cox process based
default models, it was first used in a credit risk context by Lando (1998).

The specification of the default trigger process as a Cox process precludes a dependence of the
default intensity on previous defaults4 and also ensures totally inaccessible stopping timesτi as
times of default. Apart from this it allows rich dynamics of the intensity process, specifically,
we can reach stochastic credit spreads. If only the time of thefirst jump ofN is of interest, the
Cox-process specification is completely without loss of generality within the totally inaccessi-
ble stopping times.

In the following sections we will consider timet as ‘today’, and assume that no default has
happened so farτ > t. (The statements forτ < t are trivial.)

3If a default has already happened,p(t, T ) = ετ the density of the first default reduces to the Dirac measure at
τ .

4It is therefore not possible to specify an intensity that jumps at defaults.
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2.3. The Fractional Recovery Model. The version of the fractional recovery model used
here is an extension of the Duffie-Singleton (1994) model to multiple defaults. More details
to the model can be found in Sch¨onbucher (1996; 1998). The new feature of this model is
that a default does not lead to a liquidation but a reorganisation of the issuer: defaulted bonds
lose a fractionq of their face value and continue to trade. This feature enables us to con-
sider European-type payoffs in our derivatives without necessarily needing to specify a payoff
of the derivative at default (although we will consider this case, too). The next assumption
summarises the fractional recovery model:

Assumption 2. There is an increasing sequence of stopping times{τi}i∈IN that define the times
of default. These times are given in definition 1 and assumption 1 as the times of the jumps of
the Cox processN .
At each defaultτi the defaultable bond’s face value is reduced by a factorqi, whereqi may be
a random variable itself. A defaultable zero coupon bond’s final payoff is the product

Q(T ) :=
∏
τi≤T

(1 − qi)(7)

of the face value reductions after all defaults until the maturityT of the defaultable bond. The
loss quotasqi can be random variables drawn from a distributionK(dq) at timeτi, but for the
first calculations we will assumeqi = q to be constant.

It is now easily seen5 that in this setup the price of a defaultable zero coupon bond is given by

B(t, T ) = Q(t)Et

[
e−

R T
t r(s)ds

]
.(8)

The processr is called the defaultable short rater and it is defined by

r = r + λq.(9)

Herer is the default-free short rate,λ the hazard rate of the defaults andq is the loss quota in
default. If q is stochastic thenq has to replaced by its (local) expectationqe

t =
∫

qKt(dq) in
equation (9).

It is convenient to decompose the defaultable bond priceB as follows:

B(t, T ) = Q(t)B(t, T )P̃ (t, T ).(10)

HereQ(t) represents the face-value reduction due to previous defaults (before timet). Fre-
quently we will be able to sett = 0 and thusQ(t) = 1, but for the analysis at intermediate
times it is important to be clear about the notation6. The defaultable bond priceB(t, T ) is
thus the product ofQ(t), the influence of previous defaults, and the product of the default-free
bond priceB(t, T ) and the third factor̃P (t, T ) which is uniquely defined by equation (10), or
equivalently:

P̃ (t, T ) =
1

Q(t)

B(t, T )

B(t, T )
.(11)

5Using the iterated expectations, see also Duffie and Singleton (1994) and Sch¨onbucher (1996; 1998) for a
more general proof.

6For example, at the expiry date of an option we would like to separate previous defaults and credit spreads in
the price of the underlying.
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Remark2. P̃ (t, T ) is related to thesurvival probabilityP (t, T ) of the defaultable bond: Ifr
andλ are independent and there is a total loss (q = 1) at default theñP (t, T ) is the probability
(under the martingale measure) that there is no default in[t, T ].
If r andλ are not independent andq = 1, thenP̃ (t, T ) is the survival probability under the
T -forward measureP T

P̃ (t, T ) = EP T

t

[
e−

R T
t

qλ(s)ds
]
.(12)

(Under independenceET
t

[
e−

R T
t qλ(s)ds

]
and Et

[
e−

R T
t qλ(s)ds

]
coincide.)

If r and λ are not independent and there is positive recovery (q < 1), then P̃ (t, T ) is the
expected final payoffunder theT -forward measure, but the implied survival probability cannot
be recovered without more knowledge about the distribution ofλ, q andr.

2.4. The Equivalent Recovery Model. The equivalent recovery model has been proposed by
several authors, amongst them Jarrow and Turnbull (1995) Lando (1998) and Madan and Unal
(1998). Here the recovery of defaulted debt is treated as follows:

Assumption 3. At the time of defaultτ , one defaultable bondB(τ, T ) with maturityT has a
payoff ofc equivalent (i.e. with the same maturity and face value) default free bondsB(τ, T ),
wherec may be random, too.

Under the equivalent recovery model (with constantc and given no default so farτ > t) the
price of a defaultable bond can be decomposed intoc default-free bonds and(1−c) defaultable
bonds with zero recovery

B(t, T ) = Et

[
βt,T1{τ>T} + cβt,τB(τ, T )1{τ≤T}

]
= Et

[
βt,T1{τ>T}

]
+ cEt [ βt,T ] − cEt

[
βt,T1{τ>T}

]
= (1 − c)B0(t, T ) + cB(t, T ),(13)

whereB0(t, T ) is the price of a defaultable bond under zero recovery:

Et

[
βt,T1{τ>T}

]
= 1{τ>t} Et

[
e−

R T
t

r(s)+λ(s)ds
]

It should be pointed out that the equivalent recovery model is not able to fit all term structures
of credit spreads with a given fixed common recovery ratec. Assumeτ > t and the term
structure of credit spreads is at a constant credit spreadh for all maturitiesT . Then

B(t, T )

B(t, T )
= e−h(T−t)

and for large enoughT − t (such thatT − t > −(ln c)/h),

P̃ (t, T ) =
1

1 − c

(
B(t, T )

B(t, T )
− c

)
=

1

1 − c

(
e−h(T−t) − c

)
< 0,

the survival probability (see below) that can be implied from the zero-recovery bondB0(t, T )
would become negative, which is obviously not sensible. In the equivalent recovery model
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there is a lower bound on the ratio of defaultable bond prices to default-free bond prices and
this bound is the recovery ratec. Therefore the zero coupon yield spread must satisfy

y(t, T ) − y(t, T ) < − ln c

T − t
,

which may not be satisfied by market prices for longer times to maturityT − t and high credit
spreads. E.g. for a recovery rate ofc = 50% and a time to maturity ofT − t = 10 years the
maximal (continuously compounded) credit spread ish = 6.93%.

Despite these different properties of the two modelling approaches, with a suitable choice of
(time dependent or stochastic) parameters, both models can be transformed into each other:
The value of the security in default is only expressed in different numeraires, once in terms
of defaultable bonds and once in terms of default-free bonds. Both approaches are therefore
equivalent and one should use the specification that is best suited for the issue at hand.

2.5. Implied Survival Probabilities. In the equivalent recovery model it is easy to recover
implied survival probabilitiesfrom a given term structure of defaultable bond prices and a
given value forc. From equation (13) we have

P̃ (t, T ) :=
B0(t, T )

B(t, T )
=

1

1 − c

(
B(t, T )

B(t, T )
− c

)
.(14)

P̃ (t, T ) is the probability of survival fromt to T under theT -forward measure (and also under
the spot martingale measure for independence of credit spreads and interest rates).

This survival probability and the prices of defaultable zero coupon bondsB0(t, T ) under zero
recovery are very useful to value survival contingent payoffs. For many pricing applications
knowledge ofB0(t, T ) is already sufficient. It is a great advantage of the equivalent recovery
model that it allows to derive the value of a survival contingent payoff just from the defaultable
and default-free term structures and an assumption about recovery ratesc.

In the fractional recovery model it is not possible to derive the value of a zero-recovery de-
faultable bond just from knowledge of the recovery rateq, the defaultable bond price and the
default-free bond prices unless the recovery rate is zero. Here a full specification of the dynam-
ics of r andλ is needed.

Given independence of interest rates and the default intensity, the implied survival probability
under the spot martingale measure is the ratio of the zero coupon bond prices:

P (t, T ) =
B0(t, T )

B(t, T )

Typically the survival probabilityP (t, T ) will change over time because of two effects: First, if
there was no default in[t, t+∆t] this reduces the possible default times, information has arrived
via the (non)-occurrence of the default. Secondly, additional default-relevant information could
have arrived in the meantime.

For the analysis of the local default probability in some future time interval it is instructive to
consider theconditionalprobability of survival. The probability of survival in[T1, T2], given
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that there was no default untilT1 and given the information at timet is:

P (t, T1, T2) =
P (t, T2)

P (t, T1)
=

B0(t, T2)

B(t, T2)

B(t, T1)

B0(t, T1)
.

This is a simple consequence of Bayes’ rule. The probability of survival untilT is the proba-
bility of survival until s < T times the conditional probability of survival froms until T :

P (t, T ) = P (t, s)P (t, s, T ).

There is a close connection between forward rates and conditional survival / default probabili-
ties.

Definition 2. The default-free simply compounded forward rateover the period[T1, T2] as
seen fromt is:

F (t, T1, T2) =
B(t, T1)/B(t, T2) − 1

T2 − T1

The zero-recoverydefaultable simply compounded forward rateover the period[T1, T2] as seen
from t is:

F (t, T1, T2) =
B0(t, T1)/B0(t, T2) − 1

T2 − T1

Proposition 1. Under independence, theconditional probability of defaultover [T1, T2] is
given by:

P def(t, T1, T2)

T2 − T1
=

F (t, T1, T2) − F (t, T1, T2)

1 + (T2 − T1)F (t, T1, T2)
.

Themarginal probability of defaultat timeT is the spread of the continuously compounded
defaultable forward rate over the default-free forward rate:

lim
∆t↘0

P def(t, T, T + ∆t)

∆t
= f(t, T ) − f(t, T ).

Proof. (dropping thet-index)

P def(T1, T2) = 1 − P (T1, T2) = 1 − B0(T2)B(T1)

B(T2)B0(T1)

=
B(T2)B0(T1) − B0(T2)B(T1)

B(T2)B0(T1)

=
B(T2)[B0(T1) − B0(T2)] − B0(T2)[B(T1) − B(T2)]

B(T2)B0(T1)

=
B0(T2)

B0(T1)

B0(T1) − B0(T2)

B0(T2)
− B0(T2)

B0(T1)

B(T1) − B(T2)

B(T2)

therefore

P def(T1, T2)

T2 − T1
=

B0(T2)

B0(T1)

(
F (T1, T2) − F (T1, T2)

)
,
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and from definition 2 follows that

B0(T1)

B0(T2)
= 1 + (T2 − T1)F (T1, T2).

The result for the marginal default probability follows directly from taking the limit.

The default probability over the interval[T1, T2] equalsthe length of the intervaltimes the
spread of the simply compounded forward rates over the intervaltimesdiscounting with the
defaultable forward rates.

For small time intervals, the probability of default in[T, T +∆t] is approximatelyproportional
to the length of the interval with proportionality factor(f(t, T ) − f(t, T )).

These results highlight two points. First, there is an intimate connection between default prob-
abilities and credit spreads. A full term structure of credit spreads contains a wealth of infor-
mation about the market’s perception of the likelihood of default at each point in time. The
equivalent recovery model has the advantage of making this information more easily accessi-
ble than the fractional recovery model. Unfortunately, to reach this information in a practical
application, an assumption about the expected recovery ratec is needed, and independence
of defaults and default-free term structure of interest rates must be assumed. There is a large
degree of uncertainty about recovery rates with variation between 20% and 80%.

The second observation is the reason why processes like Poisson or Cox processes are so well
suited for credit-spread based default modelling. These processes have intensities, and the
probability of jump of a point process with an intensity is approximately proportional to the
length of the time interval considered (for small intervals). The proportionality factor is the
intensity at that point. This property is exactly equivalent to the second equation in proposition
1, and it also gives a link to models of defaultable forward credit spreads as for example in
Schönbucher (1998). But proposition 1 is also valid for default models that are not based on an
intensity model.

2.6. Comparison of Recovery Mechanisms.In real-world applications the recovery rate of
a defaulted bond is expressed as the fraction of itspar valuethat is paid out to the creditor.
A model that uses this approach can be found e.g. in Duffie (1998). Although it seems more
natural there are some complications as this recovery mechanism only makes sense for coupon
bonds, and not for zero-coupon bonds. To fit this model to observed bond prices we would like
to strip observed coupon bonds into coupon strips and principal. These two components now
have different recoveries in default, only the principal of the bond has a positive recovery while
the coupons recover nothing. Thus we have to model recovery in two different ways which
makes this modelling approach more complicated.

In figure 1 the effects of the different recovery models on zero coupon bonds of different ma-
turities are shown. Here default-free interest rates arer = 7%, credit spreads areh = 4% and
the recovery rate is50%. The recovery models are equivalent recovery, fractional recovery and
recovery of par.
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FIGURE 1. Equivalent, fractional and par recovery for different maturities. Pa-
rameter values: default-free interest ratesr = 7%, credit spreadh = 4%, re-
covery50%. The continuous line with circles are the defaultable bond prices,
continuous line with squares are the default-free bond prices and continuous
line with triangles are par values for different maturities. The recovery values
for 50% equivalent recovery are given by the squares, for50% fractional recov-
ery by circles and for50% recovery of par by triangles.

In all recovery models, the recovery of a full term structure of defaulted zero coupon bonds can
be represented as recovery rate times a certain reference price curve. In equivalent recovery, the
payoff to the defaultable bonds is50% times the equivalent default-free bond price (the default-
free bond prices are shown as continuous line with squares and the corresponding recovery
values are the dotted line with squares). The reference prices curve for the fractional recovery
model are the defaultable bond prices (shown with circles) and the reference price for the par
recovery model are marked with triangles.

The differences between the models increase with time to maturity, the further the defaultable
bond price is from par, the larger the differences in the recovery values. For times to maturity of
6.5 years and more the recovery of par model is inconsistent with the defaultable bond prices as
the recovery value exceeds the pre-default price of the defaultable bonds; for times to maturity
larger than 17 years the same problem occurs with the equivalent recovery model. This problem
was already discussed in section 2.4.
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3. IMPLEMENTATION: FIRST STEPS

3.1. Inputs to the Model. As mentioned in the introduction the aim of this paper is to provide
a tree implementation algorithm that can be fitted to both defaultable and default-free term
structures of bond prices and volatilities. We therefore need as inputs to the model (for all
T ≥ 0):

◦ B(0, T ): the initial default-free term structure of zero coupon bond prices. The construction
of such zero-coupon curves from market prices is now standard in interest-rate literature.

◦ a, k(T ) andσ(T ): the parameters of the dynamics of the default-free short rate. Here we use
the extended Vasicek (1977) model

dr(t) = (k(t) − ar)dt + σ(t)dW (t).(15)

The level of mean reversionk(t) will be used to fit the tree to the initial term structure of
bond prices and is therefore already implicitly defined. The spot volatility functionσ(t) can
be used to fit an initial term structure of volatilities.

◦ B(0, T ): the initial term structure of defaultable bond prices.
◦ a, k(T ) andσ(T ): the parameters of the dynamics of the default intensityλ. We also use the

extended Vasicek (1977) model for the intensity

dλ(t) = (k(t) − aλ)dt + σ(t)dW (t).(16)

We make provisions for the fitting of the volatilityσ(T ) of the default intensity to an initial
term structure of volatilities for the defaultable bonds although in typical applications there
will not be sufficient data to support this fitting. In this case one can set the volatility to a
constant:σ(T ) = σ = const.

◦ ρ: The correlation between the Brownian motionsW andW : dWdW = ρdt. The value of
this parameter will also introduce correlation between the motion of the credit spreads and
the default-free interest rates.

◦ c or q: A choice of recovery model (equivalent recovery or fractional recovery) and the
respective recovery rate (c) for equivalent recovery or loss quota (q) for fractional recovery.
If recovery isstochastic, one must also specify the distribution function of the recovery rate
and (derived from that) the expected recovery ratece or loss quotaqe.

◦ Finally, some numerical parameters like the time step size∆t and the number of time steps
have to be chosen.

3.2. Pre-Processing.

3.2.1. Equivalent Recovery to Zero Recovery Conversion.If the equivalent recovery model
is used, a first pre-processing step is required to derive an initial term structureB0(0, T ) of
defaultable bonds with zero recovery (see equation (13)):

B0(0, T ) =
1

1 − c
(B(0, T ) − cB(0, T )).(17)

If the recovery ratec is stochastic, the expected recovery ratece must be used in equation
(17). These zero recovery defaultable bond prices can now also be viewed as defaultable bond
prices under zero fractional recovery, i.e. a loss quota ofq = 1. It is therefore sufficient to
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demonstrate the implementation for the fractional recovery model, the modifications for the
equivalent recovery model are given where they are necessary.

3.2.2. Bond Volatility Fitting. The specification of a time-dependent interest-rate volatility
σ(t) translates into time-dependent bond price volatilities via

dB(t, T )

B(t, T )
= r(t)dt − σ(t)

1

a
(1 − e−a(T−t))dW (t)(18)

and forward rate volatilities via

df(t, T ) =
σ(t)2

a
e−a(T−t)(1 − e−a(T−t))dt + σ(t)e−a(T−t)dW (t)(19)

where the drift of the forward rates follows from the Heath-Jarrow-Morton (1992) drift restric-
tion. The parametersa andσ(t) can now be used to find a fit to a given volatility structure of
the bond prices or forward rates. Asσ(t) enters the model as a multiplicative factor we can thus
capture time dependence in the general interest-rate and bond price volatility, but the shape of
the forward volatilities of different maturitiesT at the same timet remains of the exponential
form.

3.2.3. Closed-Form Solutions.To specify the payoffs of the derivative securities in the tree we
need the prices of the corresponding underlying security at the nodes of the tree. Often the
underlying security are simple coupon bonds with defaultable or default-free payoffs at fixed
dates far in the future. To avoid building a ten-year tree for an option that expires in one year,
just because the underlying bond has a maturity of ten years, it is useful to have closed-form
solutions for these simple payoffs.

The price of a default-free bond for short rater(t) and the dynamics (15) is given by

B(t, T ) = eA(t,T )−B(t,T )r(t)(20)

where

B(t, T ) =
1

a
(1 − e−a(T−t))(21)

A(t, T ) =
1

2

∫ T

t

σ2(s)B(t, s)2ds −
∫ T

t

B(t, s)k(s)ds.(22)

The price of a defaultable bond for: short rater(t), default intensityλ(t), survival untilt and
dynamics (15) and (16) is

B(t, T ) = B(t, T )eA(t,T )−B(t,T )λ(t)(23)

where

B(t, T ) =
1

a
(1 − e−a(T−t))(24)

A(t, T ) =
1

2

∫ T

t

σ2(s)B(t, s)2ds −
∫ T

t

B(t, s)k̃(s)ds(25)

k̃(t) = k(t) + ρσ(t)σ(t)B(s, T ).(26)
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-

FIGURE 2. The branching to default at a typical node in the tree. Over one time
step fromt to t+∆t there is first a branch to default or survival, and only in the
survival node the tree is continued.

3.3. The Default Branching. In the following sections we are going to construct a tree model
for the development of the short term interest rate and the default intensity, and this tree has to
be joined with a model-consistent default and recovery mechanism. At each node in the tree
we will know the current defaultable and default-free bond price structures and thus the current
default intensityλ. By equation (4) the survival probability fromt to t + ∆t is given by

1 − p = E
[

e−
R t+∆t

t λ(s)ds
∣∣∣ Ft

]
.

The default intensity is constant over[t, t + ∆t[, thus

1 − p = e−λ(t)∆t(27)

is (by equation (4)) the survival probability over the next time interval[t, t + ∆t[, andp is the
corresponding default probability. If the time step∆t is not too large, we can assume without
much loss of accuracy that the default happens at the left endτ = t of the time interval (if it
happens in the time interval). If more precision is required one can use the expected time of
default, given that there is a default in[t, t + ∆t[. This is

τ e = E [ τ | τ ∈ [t, t + ∆t[ ] = t +
1

λ
− ∆t

e−λ∆t

1 − e−λ∆t
.

To incorporate the default an additional branching point has to be added to the tree in the way
indicated in figure 3.3. Thus, at each node of the tree, it isfirst decided, whether a default
has happened (branch down to default) or not (branch across), and then,given survival, the
‘normal’ tree continues with the evolution of interest-rates and default intensities. The default
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state is a ‘leaf’ of the tree and apart from the calculation of the payoffs in default the tree ends
there7.

Although the tree ends in default it is still possible to value default-free securities in this frame-
work (or payoff components that are unaffected by defaults): When the backwards induction
reaches the survival nodeS with a (local) value ofV for the default-free security, the payoff
in the default nodeD must be set toV , too. Thus the default branching will be effectively
ignored. Alternatively, by adding two lines of code to the program one can ensure that the
default branching is ignored altogether.

The probability of reaching nodeu andsurviving over the next time interval is nowp · pu, the
probability of reachingm and surviving isp · pm and for noded this isp · pd. Consider now a
survival contingent security with payoffsxu, xm andxd in nodesu, m andd, and zero at default.
Without the possibility of default this security would have the price8 x′ = xupu +xmpm +xdpd.
The price with default is on the other handx = (1 − p)x′, the possibility of default introduces
an additional discounting with the survival probability(1 − p) in each node. This fact can also
be proven in the continuous-time setup.

3.4. Recovery Modelling in the Default Branch. As the default-free interest rates are known
in the survival branch they are also known for the default branch. Therefore specifying the
equivalent recovery mechanism is straightforward in this setup.9

For fractional recovery the mechanism is slightly more complex because in the continuous-
time model there can be multiple defaults. There are two alternative ways of approximating
this model in discrete-time: Either, the number of defaults is restricted to one default per time
interval[t, t + ∆t[, or multiple defaults are allowed even within the interval[t, t + ∆t[.

Let Vn be the value of a defaultable security att = n∆t, andV ∗
n its value if it survived until

t = n∆t. If only one default is allowed, the following recursion holds forVn (ignoring the
discounting by default-free interest rates)

Vn = e−λn∆tV ∗
n+1 + (1 − e−λn∆t)(1 − q)V ∗

n+1 = (1 − q(1 − e−λn∆t))V ∗
n+1.(28)

If the full multiple default model is used over the interval[t, t + ∆t[ the value is given by

Vn = e−qλn∆tV ∗
n+1.(29)

The dynamics of equation (28) converge to (29) as∆t → 0, and for reasonably small time
step sizes the difference is negligible. If the time-step size is large (e.g. larger than 1/12), the
approach in equation (29) is more appropriate.

Stochastic recovery rates can be incorporated into the pricing algorithm by a direct specification
of the distribution of the recovery rate in default. This distribution has to be evaluated at all

7The branching method and the termination of the tree at default are different from the tree implementation in
Jarrow and Turnbull (1995). The procedure chosen here avoids an unnecessary expansion of the tree.

8Assuming zero default-free interest rates.
9The equivalent recovery model only has to be implemented for the pricing runs through the tree. For the tree

setup and fitting in the equivalent recovery model we will only use a term structure of zero-recovery defaultable
bond prices.
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branches to default. If the payoff in default is a functionf(q) of the loss quota, the value that
has to be used in the algorithm is the average payoff

V e =

∫
f(q)K(dq),(30)

whereK(dq) is the distribution function of the loss quotagiven a default has happened.The
implementation of stochastic recovery with the equivalent recovery model is similar. For the
pricing of defaultable bonds with stochastic recovery it is sufficient to use theexpectedrecovery
rate.

4. IMPLEMENTATION: THE INDEPENDENCECASE

4.1. Pricing Relationships. In this section we assume that the dynamics of the default-free
interest rates is independent from the credit spread and default processes. This enables us to
decouple defaults and discounting in most pricing problems:

Defaultable zero coupon bond prices (see equation (10))

B(t, T ) = Et [ βt,T Q(T ) ] = Et [ βt,T ]E [ Q(T ) ] = B(t, T )P̃ (t, T )(31)

where

P̃ (t, T ) = Et

[
e−

R T
t qλ(s)ds

]
.(32)

Zero-recovery defaultable zero coupon bond prices decouple to

B0(t, T ) = Et

[
βt,T1{τ>T}

]
= B(t, T )P (t, T )

Payoffsat default can be decoupled: ReceivingX at t if τ = t (a default happens att), has the
value

E
[

β0,τX1{τ<T}
]

=

∫ T

0

B(0, t)Xp(0, t)dt,

wherep(t, T ) is the density of the default time as seen from timet.

In general, the payoffs can be decoupled if [credit spreads and defaults] and interest rates appear
as asum of productsin the payoff function:

f(r, t)g(λ, τ, t)

wheref andg can be functionals that depend on the whole path ofr or λ. Payoffsat default
also fall into this category because – like in the preceding paragraph – they can be rewritten as
integral over the time horizon weighted with the density of the time of default.

There are also cases where the independence will not help to decouple the payoffs. A simple
example is a call option on a defaultable bond. The payoff is(B(T1, T ) − K)+, and the
defaultable bond price depends on both interest rates and credit spreads. The nonlinearity of
the function( · )+ does not allow to separate the payoff function into two factors.

The simplifications also carry through to the discrete-time tree model. Although the pricing
of some credit derivatives will not necessarily decouple, the prices of the defaultable bonds
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decouple and therefore thefitting of the interest-rate and the credit spread trees can be done
separately. The implementation goes in the following steps:

1. If the pricing of the credit derivative does not decouple, build the tree for the default-free
interest rate.

2. Fit the interest-rate tree to the initial default-free bond prices

B(0, T )

3. Build the tree for the short credit spreadqλ.
4. Fit the credit spread tree to the initial term structure of credit spreads, i.e. to

P̃ (0, T ) ∀ T > 0.

5. Add the branches to default.
6. If the payoff function of the credit derivative decouples, price it directly using only the

tree for the credit spreads. Use the default-free bond pricesB(0, T ) for discounting.
7. Otherwise combine both trees and price using the combined tree.

4.2. Building the Tree: The Hull-White Algorithm. The tree building and the tree-fitting
algorithm is based upon the Hull-White (1994a; 1994b; 1996) algorithm for default-free in-
terest rate modelling. As these algorithms are already well-known we restrict ourselves to a
concise summary, which is already extended to incorporate time dependency in the volatility
parameter.

All direct references to interest-rates were avoided and the algorithm is presented for a process
x (which can be thought of as the short rate process) and fitted to a term structureC(0, T )
(which can be seen as bond prices). This was done to point out the general nature of the
algorithm which we will use alternatively regardingx either as short-term interest ratex = r,
or as default intensityx = λ, or as short term credit spread in the fractional recovery model
x = λq. Furthermore, a common modification of this algorithm is to define the short rate as a
functionof the processx

r = f(x),(33)

so that now the direct interpretation ofx as interest-rate is lost, too. This trick can be used to
ensure positive interest rates (iff(x) > 0 ∀x, e.g.f(x) = ex).

The Hull-White algorithm is an algorithm for the discrete-time implementation of diffusion
models of the form:

dx = [k(t) − ax]dt + σdW.(34)

The aim is to find a discrete-time version of the model that has the following properties: It has
a recombining trinomial tree structure, it converges to the continuous-time model (34), and it
replicates a given initial term structure of expectations of the bond-price type:

C(0, T ) = E
[

e−
R T
0 x(t)dt

]
.(35)
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This is achieved in two steps: First, a discrete-time tree is built for the modified processx∗ with
the dynamics

dx∗ = −ax∗dt + σdW.(36)

Becausex∗(t)+
∫ t

0
k(s)ds = x(t) we can reach a tree forx in a second step by shifting the tree

for x∗ by a time-dependent offsetα(t). A suitable choice ofα(t) will enable us to fit it to the
initial term structure of interest rates.

Step 1: Building the Tree. First, a time step size∆t has to be chosen. This determines the
size of the step inx

∆x = σ̂
√

3
√

∆t,(37)

whereσ̂ = maxt σ(t) is the largestσ that we will encounter.

To describe the nodes of the tree we will use the following notation: Node(n, j) denotes the
node at timet = n∆t andx = j∆r. The time indexn ranges from zero through the positive
integers, while the ‘space’ indexj can take both positive and negative values10. The discretised
(grid) version ofx(t) will be denoted withxn where the time-indexn indicates that this is the
discretisation of the process. The value ofxn at nodej will be denoted withxn

j , and similar
notation applies tox∗.

To achieve consistency with the continuous-time dynamics (36) we require at all nodes(n, j)
that the first two moments of the discrete and the continuous process coincide (possibly up to
terms of order∆t2 and larger11), and that the branching probabilities add up to one:

E
[

x∗n+1 − x∗n ]
= pu∆xu + pm∆xm + pd∆xd = −ax∗n

j ∆t(38)

E
[

(x∗n+1 − x∗n)2
]

= pu∆x2
u + pm∆x2

m + pd∆x2
d = σ2∆t + a2(x∗n

j )2∆t2(39)

pu + pm + pd = 1,(40)

where∆xu, ∆xm and∆xd are the changes inx∗n depending on whether the next move in the
trinomial tree takesx∗n to the upper, the middle or the lower branch. Given the structure of the
tree these three equations uniquely determine the branching probabilities at each node.

There are three possible trinomial branches in the tree (see figure 4.2): The typical case is the
up-across-down branch (a) with∆xu = +∆x, ∆xm = 0 and∆xd = −∆x. This branch is
used at nodes in the interior of the tree.

The dynamics (36) ofx∗ incorporate a mean reversion to zero, where the strength of the mean
reversion is proportional to the value ofx∗. Therefore for largex ≥ jmax∆x, the mean
−ax∗n

j ∆t will be smaller than the lower branch−∆x and equation (38) cannot be satisfied
without having negative probabilities. The opposite will happen at a very low branch, such that
there are lower and upper limitsjmin andjmax at which we have to use the branching meth-
ods (b) and (c) respectively. Thus, for each time leveln, we will use the following branching
methods:

10For two- or three-dimensional variables the time-indexn is written as superscript, and the space-indices (j
for interest-rates andi for spreads or intensities) are written as subscripts. If the variable depends on time alone,
the indexn is written as subscript.

11The convergence to the continuous-time process will still be ensured if terms of order∆t2 are ignored.
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(a) standard branching
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pm
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(b) ‘up’ branching

pu
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(c) ‘down’ branching

FIGURE 3. The three branching types of the Hull-White trinomial tree. (a) is
the standard branching method at inner nodes of the tree, (b) is used at the lower
edge of the tree, and (c) is used at the upper edge of the tree.

(c) at the top nodejmax

(a) at intermediate nodes
(b) at the bottom nodejmin

For constantσ we can choose the boundaries of the tree as

jmax ≥ 0.184

a∆t
and jmin = −jmax.(41)

The branching probabilities are given by the solution of equations (38) to (40) which are for
constantσ

at node (a)

pu =
1

6
+

a2j2∆t2 − aj∆t

2

pm =
2

3
− a2j2∆t2

pd =
1

6
+

a2j2∆t2 + aj∆t

2

at node (b)

pu =
1

6
+

a2j2∆t2 + aj∆t

2

pm = −1

3
− a2j2∆t2 − 2aj∆t

pd =
7

6
+

a2j2∆t2 + 3aj∆t

2
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at node (c)

pu =
7

6
+

a2j2∆t2 − 3aj∆t

2

pm = −1

3
− a2j2∆t2 + 2aj∆t

pd =
1

6
+

a2j2∆t2 − aj∆t

2
.

Here it was used that∆x2 = 3σ2∆t which is only true for constantσ. If σ(t) is time-dependent,
equations (38) to (40) have to be solved withσ as parameter:

at node (a)

pu =
1

2

[
σ2 ∆t

∆x2
+ a2j2∆t2 − aj∆t

]
pm = 1 − pu − pd

pd =
1

2

[
σ2 ∆t

∆x2
+ a2j2∆t2 + aj∆t

]
at node (b)

pu =
1

2

[
σ2 ∆t

∆x2
+ a2j2∆t2 + aj∆t

]
pm = −σ2 ∆t

∆x2
− a2j2∆t2 − 2aj∆t

pd = 1 − pu − pd

at node (c)

pu = 1 − pm − pd

pm = −σ2 ∆t

∆x2
− a2j2∆t2 + 2aj∆t

pd =
1

2

[
σ2 ∆t

∆x2
+ a2j2∆t2 − aj∆t

]
.

Furthermore, for time-dependentσ it has to be decided at each time step where the limits of
the tree are, i.e. at which level±jmax the branching of type (b) and (c) becomes necessary. If
σ(t) is strongly decreasing it can happen that branching of type (b) and (c) will not only be
necessary on the outermost level of the tree (±jmax), but also one or more levels further to the
middle of the tree (on levels±(jmax −1),±(jmax −2), . . . ). This can be decided for each node
by checking whether a branching of type (a) would lead to negative transition probabilities in
one of the nodes.

A small example trinomial tree is shown in figure 4.2 on the left. At the time levelt + 2∆t the
special branching is shown for the top and bottom nodes of the tree. In a typical application
this branching back would happen at a later time level. If this tree is to be used for default risk
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t t + ∆t t + 2∆t t + 3∆t

-

t t + ∆t t + 2∆t t + 3∆t

-

FIGURE 4. The Hull-White trinomial tree with and without the additional
branches to default. At time levelt + 2∆t there is special branching at the
top and bottom nodes.

modelling, it has to be extended for branches to default as explained in the previous section,
resulting in the tree on the right in figure 4.2.

It is not necessary to save all transition probabilities in one large array. There are some proper-
ties that reduce memory requirements:
For everyn, the transition probabilities are symmetric aroundj = 0, i.e.

pu
n
j = pd

n
−j, pm

n
j = pm

n
−j.

For constantσ the transition probabilities do not depend onn:

pu
n
j = puj, pd

n
j = pdj , pm

n
j = pmj .

The transition probabilities for time-dependentσ(t) are easily calculated from the transition
probabilities for constantσ because they only have to be adjusted for a time-dependent dif-
ference. For example, let the ‘up’ probability for time-dependentσ(t) be p̃u

n
j and the ‘up’

probability for constantσ bepuj . Then

p̃u
n
j = puj −

1

6
+ (σn)2 1

2

∆t

∆x2
.

Similar formulae apply to the ‘middle’ and ‘down’ probabilities. Thus, only four one-dimensional
arrays are needed: The constant-σ transition probabilities (pu, pm, pd three arrays inj), and the
volatilitiesσn (one array inn). This will require much less memory than one(j×n) array, and
the loss in computing time will be small. Furthermore, the adjustments do not depend on the
branching type used.

Step 2: Fitting the Tree. Now that the tree forx∗ has been constructed it must be converted
into a tree forx via

x(t) = α(t) + x∗(t),
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such that the initial term structure is recovered:

C(0, T ) = E
[

e−
R T
0 x(s)ds

]
.

The tree forx then has the same transition probabilities and links between the nodes as the tree
for x∗, but the values ofxn

j at time levelt = n∆t have been shifted fromx∗n
j by αn := α(n∆t):

xn
j = x∗n

j + αn ∀jmin ≤ j ≤ jmax ∀n ≥ 0.

Note that for a given time leveln, all nodes are shifted by thesameamountαn. To shorten
notation, we denote withCn := C(0, n∆t) the price of the zero coupon bond maturing atn∆t.

In the continuous-time model a closed-form solution exists for this problem in terms of the
forward ratesf(0, T ) := − ∂

∂T
ln C(0, T )

α(t) = f(0, t) +
σ2

2a2
(1 − e−at)2,

but in the discrete tree model the solution for the continuous-time model will not exactly re-
produce the initial term structure. Furthermore, if a function ofx is used as short rate to ensure
positive interest rates as suggested in equation (33), a closed-form solution forα(t) may not
exist.

Defineπn
j to be thestate priceof node(n, j), i.e.

πn
j := E

[
1{xn=xn

j }
n−1∏
m=0

e−xm∆t

]
.(42)

πn
j equals the probability that the discretised processxm on the tree hits the node(n, j), dis-

counted with the intermediate values ofxm.
If x is a short term interest rater, thenπn

j is the value of a payoff of 1 at node(n, j), and zero
otherwise.
If x is a default intensityλ, thenπn

j is the probability of reaching node(n, j) without having
defaulted before.
If x is a short credit spreadλq in the fractional recovery model, thenπn

j is the expected payoff
of a claim of 1 that is only paid out iff the node(n, j) is reached.

The tree is now fitted in a procedure which is known asforward induction.Starting from the
initial noden = 0, it is show how to fit the next time-leveln → n + 1 to the given priceCn+1.

Initialisation n = 0:
Forn = 0 the state price and the offsetα0 follow immediately

π0
0 = 1 α0 = − 1

∆t
ln C1.(43)

Iteration: n → n + 1:
Assume the tree has been fitted up to leveln, i.e. we knowαm andπm

j for all m ≤ n and allj.
Then the new state prices for leveln + 1 are:

πn+1
j =

∑
k∈Pre(n+1,j)

pn
kjπ

n
k e−rn

k ∆t.(44)
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The sum is over all nodes(n, k) which are predecessors of(n + 1, j), andpn
kj is the transition

probability of going from(n, k) to (n + 1, j). Equation (44) can be derived by rewriting the
definition ofπn

j as a sum over all possible paths thatx can take to(n, j), weighted with the
probability of that path and discounting withx along this path.

Equation (44) can also be implemented by writing a loop over the nodes(n, j) at time leveln.
Each of these nodes(n, j) contributes to the state prices of its three successor nodese−x∆tπn

j

times the respective branching probabilitypu, pm or pd. This loop may be more efficient as it
will not be necessary to keep track of predecessor nodes.

The newαn+1 is given by:

Cn+2 =
∑

j

πn+1
j e−xn+1

j ∆t =
∑

j

πn+1
j e−x∗n+1

j ∆te−αn+1∆t.(45)

thus

αn+1 =
ln

(∑
j πn+1

j e−x∗n+1
j ∆t

)
− ln Cn+2

∆t
.(46)

If the short rate / intensity / spread is a function of the parameter that is modelled (see e.g.
(33)), then it will be necessary to fit the tree by numerically finding a solutionαn+1 to equation
(45) (or its equivalent).

4.3. The Tree for Credit Risk. Now all the tools are in place for the tree model of default
risk. We will describe here the implementation of the tree for the fractional recovery model.
The adaptation to the equivalent recovery model only requires one additional pre-processing
step to reach zero-recovery defaultable bond prices. The implementation steps are:

1. Build a tree with nodes(n, j) for the default-free short rater, where

dr = (k(t) − ar)dt + σdW.

2. Fit this tree to the default-free bond pricesB(0, T ).
3. Build a tree with nodes(n, i) for the default intensityλ or the the short credit spreadλq.

dλ = (k(t) − aλ)dt + σdW.

4. Fit this tree to

P̃ (0, T ) = E
[

e−
R T
0 qλ(s)ds

]
=

B(0, T )

B(0, T )
.

5. Incorporate default branches into the credit spread tree.
6. Combine the two trees.
7. Price derivatives.

Remarks:The independence ofdW anddW (i.e. default-free interest rates and the default

intensity) allows us to expressE
[

e−
R T
0 qλ(s)ds

]
in terms of observed market prices and to fit

theλ-tree separately.
It makes no difference, ifλ or qλ are modelled, as one is only a linear multiple of the other and
the dynamics of both are Gaussian.
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r-move Marginal

down middle up

up p′upd p′upm p′upu p′u
λ-move middle p′mpd p′mpm p′mpu p′m

down p′dpd p′dpm p′dpu p′d
Marginal pu pm pd 1

Default probability:p

TABLE 1. Combined branching probabilities (independence). The table gives
the branching probabilities in the combined tree for the indicated combined
movements ofr andλ. These must be multiplied with(1 − p) to reach the
full probabilities of the indicated movesand survival over the next time inter-
val. The original probabilities are:r: up pu; middle pm; down pd. λ: up p′u;
middlep′m; downp′d. Defaultp.

Both trees should have the same time step size∆t, but they can have different space steps∆r
and∆λ and different numbers of nodesjmax − jmin andimax − imin.

To incorporate default branches to the credit spread tree (step 5), the additional branch to default
has to be added to each node(n, i) as described in section 3.3. If the short credit spread
is qλn

i in this node, the survival probability is1 − p = e−λn
i ∆t, and the default probability is

p = 1−e−λn
i ∆t. The branching probabilities must also be updated with the survival probability.

The key step in the full implementation is the combination of the two trees (step 6). The
combined tree is a tree inthree dimensions:two space dimensions (r andqλ) and the time
dimension. Nodes(n, i, j) carry therefore three indices:n for the timet = n∆t, i for the credit
spreadqλ = αλ

n + i∆λ, andj for the default-free short rater = αr
n + j∆r.

At time-leveln, the tree has(imax−imin)×(jmax−jmin) survival nodes and the same number of
‘default’ nodes. From node(n, i, j) there are 10 different branches: Both ratesr and intensities
λ have three possible branches which gives nine possible combinations, and there is a tenth
branch to default.

As shown in table 1, the branching probabilities simply multiply: If in node(n, j) of the interest
rate tree the probability for an ‘up’ move inr waspu, and in node(n, i) of the tree forqλ the
probability for a ‘down’ move inqλ wasp′d and the survival probability was(1 − p), then in
the combined tree the probability of a move from node(n, i, j) to (n + 1, i + 1, j − 1) (i.e.
‘up’ in r and ‘down’ in qλ) is pup

′
d. The default probabilityp remains unchanged, therefore

the probability of this moveand survivalis (1 − p)pup
′
d. The probabilitiesp′u, p

′
m, p′d for the

λ-movements in table 1 are the original branching probabilities from the tree forλ, before it
was extended for defaults.
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r-move Marginal

down middle up

up p′upd − ε p′upm − 4ε p′upu + 5ε p′u
λ-move middle p′mpd − 4ε p′mpm + 8ε p′mpu − 4ε p′m

down p′dpd + 5ε p′dpm − 4ε p′dpu − ε p′d
Marginal pu pm pd

TABLE 2. Combined branching probabilities (positive correlation). The table
gives the probabilities of the indicated combined movements ofr andλ in the
combined tree for a given positive correlationρ = 36ε. To reach the probabili-
ties for the movements with survival over the next time interval multiply them
with (1 − p). The original probabilities are:r: up pu; middlepm; downpd. λ:
upp′u; middlep′m; downp′d. Defaultp.

The combined tree is now fully described: It inherits and combines the branching possibilities
and the branching probabilities from the two original trees, and it is fully fitted to both the
default-free term structure of bond prices and the defaultable term structure of bond prices.

5. IMPLEMENTATION: CORRELATION

If there is correlationρ 6= 0 betweendW anddW in the dynamics of interest rates and default
intensities, the defaultable bond prices do not decouple any more as easily as in equation (31),
which makes fitting the tree to a. Therefore the strategy of the preceding section has to be
modified, the fitting of the defaultable term structure must be postponed. The new strategy is:

1. Build a tree for the default-free short rater, and Fit this tree to the default-free bond prices
B(0, T ).

2. Build a tree for the short credit spreadλq. Do not fit the tree yet.
3. Combine the two trees and incorporate the correlation.
4. Incorporate default branches into the tree.
5. Fit the combined tree to the defaultable bond pricesB(0, T ), while preserving the fit to the

default-free bond prices.
6. Price derivatives.

The algorithm was modified in points 3 and 5.

5.1. Combining the trees. The problem of introducing correlation into a two-dimensional tree
model has been treated in a similar context by Hull and White (1994b). For positive correlation
ρ > 0 they propose to modify the transition probabilities of table 1 as shown in tables 2 and 3.
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r-move Marginal

down middle up

up p′upd + 5ε p′upm − 4ε p′upu − ε p′u
λ-move middle p′mpd − 4ε p′mpm + 8ε p′mpu − 4ε p′m

down p′dpd − ε p′dpm − 4ε p′dpu + 5ε p′d
Marginal pu pm pd

TABLE 3. Combined branching probabilities (negative correlation). The table
gives the probabilities of the indicated combined movements ofr andλ in the
combined tree for a given negative correlationρ = −36ε. To reach the probabil-
ities for the movements with survival over the next time interval multiply them
with (1 − p). The original probabilities are:r: up pu; middlepm; downpd. λ:
upp′u; middlep′m; downp′d. Defaultp.

First, an auxiliary parameterε is defined

ε =

{
1
36

ρ for ρ > 0

− 1
36

ρ for ρ < 0.

Tables 2 and 2 give the probabilities of the indicated combined movements ofr andλ in the
combined tree for a given positive (table 2) or negative (table 3) correlationρ = ±36ε. Default
and survival are ignored in these tables, to reach the probabilities for the movementsand sur-
vival over the next time interval, the probabilities must be multiplied with(1−p). The original
probabilities are:r: uppu; middlepm; downpd. λ: upp′u; middlep′m; downp′d. Defaultp.

The adjustment for correlation in tables 2 and 3 only work ifε is not too large. Thus there is
a maximum value for the correlation that can be implemented for a given time step size∆t.
As the refinement is increased (∆t → 0) this restriction becomes weaker and the maximum
correlation approaches one.

5.2. Fitting to the defaultable bond prices. As in section 4 the idea behind the fitting al-
gorithm is to shift the tree by a deterministic amountαn. If the shift only takes place in the
λ-dimension, the development of the default-free interest rater remains unaffected and the fit
to the default-free term structure is preserved.

We define the fitting algorithm recursively over the time-stepn. Inputs are: a combined tree
(n, i, j) (indices:n time,i intensity,j interest rate) which is fitted to a term structure of default-
free bond pricesB(0, T ) by a shiftαn in ther-dimension. Define thedefaultable state price
πn

ij to be the state price of node(n, i, j), i.e. the value of a defaultable claim on $ 1 at node
(n, i, j). The tree is built for the default intensityλ directly (and not for the short credit spread
λq).
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Initialisation n = 0:
Set

π0
00 = 1 α0 = − 1

q∆t
ln(B(1) − B(1)).(47)

Iteration: n → n + 1:
The tree has been fitted up to leveln, i.e. we knowαm andπm

ij for all m ≤ n and alli andj.
The new state prices for leveln + 1 are:

πn+1
ij =

∑
(k,l)∈Pre(n+1,i,j)

pn
(kl)(ij)π

n
kle

−(qλn
k +rn

l )∆t.(48)

Again we sum over all state prices of the predecessors of the node(n, i, j). The predecessors’
state prices are weighted with the transition probabilitiespn

(kl)(ij), the discounting with the risk-
free interest ratee−r∆t and the discounting with the fractional recovery factore−qλ∆t.

The fractional recovery factore−qλ∆t reflects the expectation of a defaultable payoff∆t in the
future if the fractional recovery model is used as a continuous-time model (with defaults at any
time in [t, t + ∆t[). If one assumes that defaults happen only at the beginning of the interval,
then the factor1 − q(1 − e−λ∆t) has to be used. This factor gives the expectation of1 in
survival and(1 − q) in default. For normal parameter values both approaches yield almost the
same results.

Again it will be simpler to implement equation (48) using a loop over the nodes on time level
n and adding up the contributions to the successor nodes at leveln + 1.

The newαn+1 is given by:

B(n + 2) =
∑
ij

πn+1
ij e−(rn+1

j +qλn+1
i )∆t =

∑
ij

πn+1
ij e−(rn+1

j +qλ∗n+1
i )∆te−αn+1∆t.(49)

thus

αn+1 =
1

∆t
ln

(∑
ij πn+1

ij e−(rn+1
j +qλ∗n+1

i )∆t

B(n + 2)

)
.(50)

Again, if a function of the short intensity is modelled (see (33)) a numerical solution of (49)
becomes necessary.

6. USING THE TREE

Once the tree is constructed and fitted to the initial bond prices it can be used to price other
derivative securities. A derivative security is characterised by its payoff in default, in survival
and by American / Bermudan early exercise features:

◦ fn
ij The payoff of the derivative if a default happens in node(n, i, j).

◦ F n
ij The payoff of the derivative if node(n, i, j) is reached.

◦ Gn
ij The early exercise payoff in node(n, i, j).
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Fees and other payments are specified as negative payoffs. Very frequently these payoffs will
be in terms of underlying securities whose prices cannot be derived directly from the values of
the state variablesr andλ in the node. In this case the underlying securities must be priced
in the tree first, and only then they can be substituted as payoffs to the derivative. This can be
done in the same backwards induction as the pricing of the derivative, one only has to keep
track of the prices of both securities.

Sometimes it may be inefficient to value these payoffs in the full tree model: One might end up
with building a ten-year tree for an option that expires in one year, just because the underlying
bond has a maturity of ten years. Here the computational effort can be reduced by increasing the
time step size from year one onwards. Furthermore, if the prices of the underlying security are
the values of defaultable or default-free fixed payoffs (e.g. the underlying is a coupon bond) and
if the model uses the original specification (15) and (16), we can use the closed-form solutions
given in equations (20) and (23) to reach the prices of these bonds directly.

Having specified all payoffs the priceV n
ij of the credit derivative is derived by standard back-

wards induction:

Initialisation: n = N
At the final level of the tree set its value to the final payoff

V N
ij := F N

ij .

Iteration: n + 1 → n
For every node(n, i, j) the value of the credit derivative at the survival node of the default
branch is given by

V ′′n
ij =

∑
k,l∈Succ(n,i,j)

pn
kle

−rn
j ∆tV n+1

kl ,(51)

where Succ(n, i, j) gives the successor nodes of(n, i, j) (except the default node) andpn
kl is the

transition probability from node(n, i, j) to node(n + 1, k, l). If there is no early exercise, the
value at node(n, i, j) is then

V ′n
ij = e−λn

i ∆tV ′′n
ij + (1 − e−λn

i ∆t)fn
ij + F n

ij .(52)

With early exercise the value is

V n
ij = max(V ′n

ij , Gn
ij),(53)

where we assumed that the early exercise right is with us (i.e. the person that receives any
positive payoffs) and that we can exercisebeforewe receive or payF n

ij. (For early exercise
rights of the counterparty we would have to use a minimum-function.)

To exemplify the usage of the tree we will show which specifications have to be used for some
popular credit derivatives. We will call counterpartyA the protection buyer, and counterparty
B the protection seller, and we will take the point of view of counterpartyA.

6.1. Default Digital Swap. In a default digital swap, counterpartyB pays $ 1 to counterparty
A if a default happens and at the time of default. CounterpartyA pays a periodic fee ofs per
annum for this protection.
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This is one of the most basic credit derivatives one can imagine. It would not be necessary
to price this security in a tree as closed-form solutions can be derived within this model setup
easily (see e.g. Sch¨onbucher (submission fall 1999)).

The payoffs in the tree model are

◦ The payoff of the derivative if a default happens in node(n, i, j):
fn

ij = 1.
◦ The payoff of the derivative if node(n, i, j) is reached:

F n
ij = −s if n∆t is a fee payment date12 , F n

ij = 0 otherwise.
◦ The early exercise payoff in node(n, i, j):

Gn
ij = −∞: early exercise does not apply.

6.2. Default Swap. In the default swap, counterpartyB pays [par]-[recovery of a reference
bondB

∗
] to counterpartyA if a default happens, payment is at the time of default. Again

CounterpartyA pays a periodic fee ofs per annum for this protection.

Next to the total return swap, the default swap is one of the most common credit derivatives.
Often its pricing can be reduced to the pricing of a default digital swap, but we will use the
tree model. Because the payoff is conditioned on a defaultable reference bond13 B

∗
, we need

the value of this reference bond in every node of the tree, which can be done for fixed-coupon
bonds using the closed-form solutions in equations (20) and (23). The payoffs are then

◦ The payoff of the derivative if a default happens in node(n, i, j):
fn

ij = 1 − (1 − q)B
∗n
ij for fractional recovery

fn
ij = 1 − cB

∗n
ij for equivalent recovery.

◦ The payoff of the derivative if node(n, i, j) is reached:
F n

ij = −s if n∆t is a fee payment date,F n
ij = 0 otherwise.

◦ The early exercise payoff in node(n, i, j):
Gn

ij = −∞: early exercise does not apply.

6.3. Callable Default Swap. A callable default swap is a default swap where counterparty
A has the right to cancel the default swap at pre-determined dates. Usually this is combined
with an increasing fee schedule which will make the security acallable step-up default swap.
The motivation is often that for regulatory capital reasons counterpartyA needs a default swap
whose maturity matches that of the underlying reference asset, although economically she only
wants protection for a shorter period. With a sufficiently steep step-up schedule counterparty
B can be almost certain that counterpartyA will exercise early but the regulatory requirements
are satisfied.

This very simple variation on the classical default swap is already impossible to price in closed-
form with pencil and paper, and can be priced with Monte-Carlo methods only at a prohibitive
cost in computation time.

12Here some care has to be taken when payment dates do not fall on the time-grid.
13Note that the reference bond is not a zero-coupon bond.
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To model the callability we must specify the early exercise payoff in the nodes where a cancel-
lation is possible:
Gn

ij = 0: early exercise if the value of the default swap is negative.

Because of the increasing fee structure early exercise will become optimal after some time.

6.4. Credit Spread Options. In a credit spread put option, counterpartyA has the right to sell
the defaultable reference bondB

∗
at a given timeT in the future at a given strike credit spread

k over a default-free reference bondB∗ to counterpartyB.

This credit derivative has two underlying securities:B
∗

andB∗. To explicitly calculate the
payoffs atT = N∆t we must calculate for each possible interest rater = j∆r at timeT the
corresponding default-free reference bond priceB∗ and the strike price of the option: the price
KN

j that is equivalent to the price of the defaultable reference bondB
∗

at a credit spread ofk
overB∗.

If the option is knocked out at default, we specify zero payoffsfn
ij = 0 at the default nodes,

and the option payoff at the final nodes:

FN
ij = max(KN

j − B
∗N
ij , 0).

If the option survives defaults, we have to add the payoff that the option will have in default. If
a default has happened we can be sure that the option will be exercised. CounterpartyA will
getKN

j for sure inT and has to deliver a defaultable (and defaulted) bondB
∗

for that. CallKn
ij

the node-(n, i, j)-value of receivingKN
j for sure at timeT (this has to be valued recursively,

too). The payoff in default is then
fn

ij = Kn
ij − (1 − q)B

∗n
ij for fractional recovery, and

fn
ij = Kn

ij − cB
∗n
ij for equivalent recovery.

6.5. Asset Swaptions.An asset swap packageis a combination of a (defaultable) fixed coupon
bondB

∗
with couponx, and a fixed-for-floating interest-rate swap where the fixed side paysx

and the floating side paysR + s LIBOR R plus a spreads (theasset swap spread). The spread
s is chosen such that the whole package is valued at 1 (par). This instrument allows the investor
to change the cash-flow of the defaultable fixed coupon bond into a floating coupon plus the
asset swap spread. This only works as long as there is no default because the swap is a plain
interest-rate swap which remains in place even if a default happens on the underlying bondB

∗
.

An asset swaptionis an option on an asset swap package. It gives counterpartyA the right to
enter an asset swap package at timeT at spread̂s (call option), or the right to put the asset swap
package to counterpartyB at timeT for ŝ over LIBOR (put option).

To price the asset swaption we first have to find the fair asset swap spread at the nodes in our
tree. Basic calculations yield that

s =
1

A
(B∗ − B

∗
)(54)
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whereB∗ is the value of a default-free bond with the same couponx, principal and maturity as
the defaultable bondB

∗
; andA is the value of an annuity,A =

∑
i B(0, Ti) is the (default-free)

value of receiving 1 at every coupon dateTi.

The value of the right to enter an asset swap package atŝ if the fair asset swap rate iss is then

FN
ij = A max(ŝ − s, 0) = max(Aŝ − B∗ + B

∗
, 0) = max(B

∗ − (B∗ − Aŝ), 0),(55)

where all quantities are evaluated at the node(N, i, j). The call asset swaption is thus equivalent
to an option to exchange the defaultable bond for an equivalent default-free bond whose coupon
is reduced by the asset swap spread. All the quantities in the payoff function (defaultable
coupon bond price, default-free coupon bond price, value of default-free annuity) are given in
closed-form in the model.

Next we need to consider the payoff in default. A call asset swaption will be worthless if the
underlying asset has defaulted, but the put asset swaption will be exercised for sure. Thus we
know at the time of default that counterpartyA will receive at maturityB

∗ − (B∗ − Aŝ), we
have to deliver a defaultable (and defaulted) bond and receive a default-free bond with adjusted
coupon. This payoff can be reached by investing in the respective bonds14, thus its value at
time t = n∆t is
fn

ij = (1 − q)B
∗n
ij − (B∗n

ij − An
ij ŝ) for fractional recovery, and

fn
ij = cB

∗n
ij − (B∗n

ij − An
ij ŝ) for equivalent recovery.

6.6. First-to-Default Baskets. The tree model can be extended to a model for several default-
able issuers by sequentially building a credit spread tree for each issuer, and then combining
the trees similarly to the procedure demonstrated in section 5. This brute-force approach would
lead to a very high-dimensional tree and an exponential increase in computation time and mem-
ory requirement.

To reduce this computation requirements we can use the fact that

λ(t) =

M∑
m=1

λm(t)(56)

is the intensity of thefirst-jump processN if the individual jumps are driven by Cox processes
Nm(t) with intensitiesλm(t). In equation (56) the individual intensitiesλm can be correlated,
but given the intensitiesλm, the jump processesNm must be independent inhomogeneous
Poisson processes with intensitiesλm.

Thus the problem of the pricing of a first-to-default swap can be reduced to the problem of
a default swap with a modified intensity process. Unfortunately, if the default intensities are
not independent, the market prices are not given in the form that we need to apply the fitting
algorithm of section 5. This is an area of further research. For independent default intensities
the combined model (56) can be fitted to

B(0, T ) = B(0, T )
M∏

m=1

Bm(0, T )

B(0, T )
,(57)

14When valuing these bonds we have to ignore any coupon payments before the maturity of the option.
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FIGURE 5. Implied default probabilities as a function of the correlationρ be-
tweenr andλ.

using the methods of section 4.

7. NUMERICAL RESULTS

7.1. Numerical Analysis of Parameter Sensitivities.Unless otherwise stated, the calcula-
tions were performed with the following inputs: Default-free continuously compounded zero
bond yield curve flat at 6%; short rate volatilityσ = 0.02, short rate mean reversiona = 0.15;
defaultable continuously compounded zero coupon bond yields flat at9%; intensity volatility
σ = 0.01, intensity mean reversiona = 0.10; correlationρ = 0; zero recovery; time horizon:
T = 5 years; 21 time-steps.

Figure 5 shows the 5-year default probability that is implied by the model as a function of the
correlationρ between the dynamics of the intensity and the default-free interest-rates. It can
be seen, that the implied default probability increases with increasing correlation. There is an
intuitive explanation of the direction of the effect:

If interest rates and credit spreads are positively correlated (ρ > 0) this means that defaults are
slightly more likely in states of nature when interest rates are high. Because of the higher inter-
est rates these states are discounted more strongly when they enter the price of the defaultable
bond, and conversely states with low interest rates enter with less discounting and simulta-
neously fewer defaults. To reach agivenprice for a defaultable bond, the absolute default
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FIGURE 6. Default digital swap prices as a function of the correlationρ be-
tweenr andλ.

likelihood must therefore be higher. This implies a lower survival probability which is also
the result of the numerical simulation. The argument runs conversely for negative correlation
ρ < 0.

Figure 6 shows the corresponding default digital swap prices. Here the influence of the cor-
relation parameter is much smaller, because default digital swap prices contain thediscounted
expected payoffs, and the discounting counteracts the effect of the correlation on the implied
default probabilities.

To get a feeling for the order of magnitude of the error that is committed when a wrong corre-
lation is specified, we show in figures 7 and 8 the effect of the specification of the (equivalent
or fractional) recovery rate on the prices of a default digital swap and a default swap. A higher
expected recovery rate means a higher likelihood of default for given defaultable bond prices.
This in turn increases the value of the default digital swap.

In figure 8 we show the prices for a default swap with the different recovery rates in both the
fractional and the equivalent recovery model. An increase in the expected recovery rate leads
to an increase in the implied default probability, but it also leads to a lower payoff of the default
swap in default. These two effects cancel out to a large extent which makes the default swap
more robust to errors in the expected recovery rate than the default digital swap. Interestingly,
for the fractional recovery model the increase in default probability dominates and leads to an
increasing function, while for the equivalent recovery model the both effects exactly cancel.
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FIGURE 7. Five year default digital swap price (up-front) as a function of the
fractional recovery rate1 − q or the equivalent recovery ratec of the default-
able bond. (Prices for equivalent recovery are shown with squares, fractional
recovery with triangles.)

The recovery rate is one of the most uncertain input parameters in the model and it can be seen
that its influence is much larger than the influence of the correlation. It will therefore be more
important to improve the estimate of the recovery rate than the correlation.

8. CONCLUSION

This article offers several conclusions. First, a viable approach was presented to build and fit
a combined tree model for defaultable and default-free bonds. We discussed the mathematical
theory, on which the model is based, and showed how to apply the model to real-world pricing
problems. In the last section the model was used to explore some of the subtler aspects of
recovery modelling.

Secondly, the implementation method which was presented in this paper is not restricted to
the Hull-White model for interest-rates alone. Along similar lines almost any tree model for
default-free interest rates can be adapted to a tree model for the default intensity and thus to a
combined tree model for defaultable and default-free bond prices. The only modifications are
the addition of default branches to the intensity tree and the combination of both trees.
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FIGURE 8. Five-year default swap price (up-front) as a function of the frac-
tional recovery rate1 − q or the equivalent recovery ratec of the defaultable
bond. (Prices for equivalent recovery are shown with squares, fractional recov-
ery with triangles.)

The Hull-White model can also be extended in many directions, notably to ensure positive
interest-rates and intensities, or to reach more realistic dynamics for the factors. Many exten-
sions of this kind have been proposed in the literature for default-free interest-rate models and
their adaptation to the defaultable case is usually straightforward. Nevertheless these exten-
sions have been designed for problems arising in the default-free interest-rate world (like the
fitting to cap and swaption prices) which need not be of first importance in the world of de-
faultable bonds. Here it may be more important to address the problems of recovery modelling,
rating transitions and the dynamics of the credit spreads in a crisis.
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