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Abstract: This paper experimentally investigates social learning in a two-agent prediction 

game with both exogenous and endogenous ordering of decisions and a continuous action 

space. Given that individuals regularly fail to apply rational timing, we refrain from 

implementing optimal timing of decisions conditional on signal strength. This always renders 

it optimal to outwait the other player regardless of private signals and induces a gamble on the 

optimal timing and action. In this setting, we compare exogenous and endogenous ordering in 

terms of informational efficiency, strategic delay and social welfare. We find that more 

efficient observational learning leads to more accurate predictions in the endogenous 

treatments and increases informational efficiency compared to the benchmark exogenous 

treatment. Overall, subjects act sensitively to waiting costs, with higher costs fostering earlier 

decisions that reduce informational efficiency. For a simple implementation of waiting costs, 

subjects more successfully internalize information externalities by adjusting their timing 

according to signal strength. Simultaneous decisions in endogenous ordering avoid 

observational learning and compensate the higher degree of rational decisions. Overall, 

endogenous timing has no net effect on social welfare, as gains in accuracy are fully 

compensated by waiting costs. Our results hold relevance for social learning environments 

characterized by a continuous action space and the endogenous timing of decisions. 
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1. INTRODUCTION 

Studies on social learning emphasize the dismal effects of herding in information markets. 

Following the seminal papers by Banerjee (1992) and Bikhchandani et al. (1992), a number of 

studies show how rational subjects do not just follow private information but rather use public 

information constituted by prior decisions, thus frequently eliciting informational cascades. 

With individuals “following the crowd” (Fahr and Irlenbusch 2011), private information is 
left unrevealed. Although subjects are on average reluctant to rationally follow cascades in 

experiments (Weizsäcker 2010), socially non-optimal aggregation of information represents 

the core result of experimental studies following the seminal paper by Anderson and Holt 

(1997).
2
 

Recent studies by Sgroi (2003), Ziegelmeyer et al. (2005), Çelen and Hyndman (2012) and, 

most recently, Ivanov et al. (2013) have furthered the analysis of social learning by allowing 

for endogenous ordering of decisions.
3
 They point to fairly efficient observational learning, as 

well as deviations from rational timing that result in informational inefficiency. However, 

none of these studies allow for a quantification of the effect on informational efficiency and 

overall welfare, which requires comparison to a benchmark setting with exogenous decision 

order. The contribution of this paper is to investigate the degree to which information is used 

efficiently in a game of social learning with exogenous compared to endogenous timing of 

decisions. We further add to the discussions on non-optimal information aggregation by 

quantifying the net welfare effect of introducing endogenous rather than exogenous decision 

orders. To this end, we implement a two-player prediction game based on the theoretical 

model by Gul and Lundholm (1995). We compare a benchmark treatment of an exogenously 

fixed decision order with three treatments of endogenous ordering. To quantify information 

efficiency, we introduce continuous action spaces rather than binary action sets as used in 

previous studies. Continuous action spaces allow for a concise analysis of social welfare 

resulting from the tradeoff between costs of delay and increased informational efficiency.  

Our study constitutes an extension to the studies on observational learning that consider 

agents sequentially making binary choices in a fixed order, building on the seminal papers by 

Banerjee (1992) and Bikhchandani et al. (1992). Private information informs both agents 

imperfectly about the better alternative. Agents observe all preceding decisions. In the Nash 

Equilibrium (NE), subsequent agents might rationally discard their private information and 

information is aggregated inefficiently. The binary action set precludes the perfect 

                                                 
2
 Other studies using Anderson and Holt’s (1997) urn experiment include Willinger and Ziegelmeyer (1998), 

Anderson (2001), Hung and Plott (2001), Oberhammer and Stiehler (2003), Nöth and Weber (2003), Kübler and 

Weizsäcker (2004), Cipriani and Guarino (2005), Drehmann et al. (2005),  Alevy et al. (2007), Goeree et al. 

(2007), Ziegelmeyer et al. (2008), Dominitz and Hung (2009), and Fahr and Irlenbusch (2011) for group players. 
Çelen and Kariv (2004) use the basic frame, yet implement continuous rather than binary signals. 
3
 Many situations such as investment, market entry or forecasting are better characterized by endogenous 

ordering of choices. For instance, consider financial analysts forecasting future values of an economic variable. 

Analysts with little confidence in their private information may wait and observe other forecasts, as they are able 

to choose the point in time of their forecast. Since other analysts’ forecasts might reflect valuable information, 

analysts acting later tend to adjust their forecasts using the previous ones. Overall, information efficiency thus 

potentially improves. See Gul and Lundholm (1995) for an elaboration of these examples. 
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transmission of information (Bikhchandani et al. 1998).
4
 Chamley and Gale (1994) extend the 

models for the endogenous ordering of decisions and waiting cost. There is strategic timing, 

given that prior decisions are public and have informational value; however, delaying a 

decision leads to waiting cost. In the NE, information is revealed imperfectly as there is either 

excessive delay (“war of attrition”) or no investments.
5
 Most relevant for our investigation of 

informational efficiency is the model of Gul and Lundholm (1995), who consider two agents 

predicting a value that is the sum of their distinct private information in continuous time. 

Private information is the realization of a uniformly distributed random variable, and thus the 

action set is continuous. The strength of the private signal is inversely related to waiting cost. 

This determines the optimal time of decision as both agents face a trade-off between accuracy 

of their prediction and delay costs. Individual predictions become public information. The 

resulting equilibria depend on the agents’ strategies. Firstly, in a unique symmetric NE, both 

agents act sensitively to their private signal, according to the trade-off between accuracy and 

delay costs. Due to the inverse relationship of private signals and delay costs, the timing of 

decisions reveals information about the signal strength, which improves the agents’ 
predictions. Secondly, in an asymmetric equilibrium, the first agent waits indefinitely for the 

other prediction regardless of her own signal. Given that excessive waiting is uninformative 

for the second agent, she predicts immediately and the first players’ decision ensues. As both 

agents are insensitive to their signals, the result is similar to an exogenous decision sequence. 

In the symmetric NE, no informational cascades occur, but predictions of both agents are 

clustered due to two effects. The first mover anticipates that the other agent’s signal is lower 
as she has not yet acted; the second agent in turn infers a higher signal of the first mover from 

her earlier prediction. The continuous action set allows for a perfect transmission and 

revelation of information.
6
 However, due to waiting cost, the sum of agents’ expected utility, 

i.e. overall welfare, is lower compared to exogenous ordering. 

Sgroi (2003) presented the first experimental study implementing endogenous timing, adding 

non-informative signals to the seminal urn game by Anderson and Holt (1997). Facing 

constant waiting cost, subjects have 15 periods to pick an urn, and face a trade-off between 

waiting cost and potentially better predictions through the observation of prior decisions. 

Subjects receiving informative signals optimally decide in the first period to avoid waiting 

cost, while subjects receiving non-informative signals rationally decide immediately 

afterwards, using public information. As subjects’ ordering works fairly well in Sgroi (2003), 

                                                 
4
 The finiteness of the action set is explained by Bikhchandani et al. (1998) who state that informational cascades 

are likely to be most important for decision situations with “an element of discreteness or finiteness” (p.159) and 
that individuals tend to sort actions in discrete categories, even when they are actually continuous. 
5
 There are a number of further models for endogenous ordering of choices, with Chamley (2004) providing an 

overview. Closest to our investigation is Zhang (1997), who extends the basic model by informing agents about 

the precision of private information that is correlated with the true state. Agents with more precise information 

face higher waiting cost and thus act first. Zhang shows that for any given precision informational cascades will 

always occur in equilibrium. The equilibrium is inefficient due to excessive delay and imperfect revelation of 

private information. Frisell (2003) in turn introduces pay-off externalities. Strategic delay is reduced, as the 

advantage of being well informed decreases the stronger the pay-off externalities. For a sufficiently negative 

pay-off externality, the worst-informed agent acts first.  
6
 What drives this result is the continuous action set. As emphasized by Lee (1993), since the continuous action 

set allows perfect transmission of private information, informational cascades become fully informational 

revealing and asymptotically converge to the optimal decision. 
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overall informational efficiency should be close to optimal. Nonetheless, normal and reversed 

cascades continue to occur, and thus no perfect revelation of information is achieved. 

In Ziegelmeyer et al. (2005), two subjects receive an integer signal as a realization of a 

random variable. Both subjects are asked to assess whether the sum of both signals is either 

positive or negative and face constant waiting cost. Both subjects are able to anticipate the 

strength of the other’s signal depending on the respective period of decision, which should 

lead to information efficiency. However, subjects deviate from rational behavior by acting too 

early according to their signals, which in turn reduces delay costs. The authors interpret this as 

an internalization of informational externalities to reduce welfare-damaging delay. 

In Çelen and Hyndman (2012), two subjects make a binary choice between an investment 

with fixed pay-off and a risky alternative with an unknown pay-off, and have 3 periods to take 

a decision. Decisions for the non-risky investment are reversible, while the choice of the risky 

option is not. Additionally, subjects receive private information on the actual payoff of the 

risky alternative. Subjects delay their decision in order to gather additional information, 

particularly when their signal does not favor the risky investment. Excessive waiting is partly 

explained by risk aversion when the accuracy of the private signal is low. 

Based on the model by Levin and Peck (2008), Ivanov et al. (2013) ask subjects to decide in 

discrete time whether to invest, not to invest or wait and decide later. Once a subject takes a 

decision, it becomes public information. Contrary to previous experiments, subjects receive 

two kinds of private information: a private signal about the return and a private signal 

concerning the cost of investment. Subjects generally use information correctly, yet deviate 

from rational timing.  

Following Ivanov et al. (2013), it is well established that individuals fail to apply rational 

timing. Therefore, we refrain from investigating deviations from optimal timing of decision 

and take a different angle on the timing of choices. While we implement a two-player game 

with a simple rational strategy for predictions in any given situation, we adjust costs of delay 

and accuracy rewards so there is no NE for the timing of decisions. Being second mover is 

always preferred unconditional on signal strength, yet one could end up bearing waiting cost 

and still be first mover as the time horizon is finite and the other player might act 

symmetrically. Accordingly, the timing of a choice does not perfectly convey private 

information and simultaneous decisions that preclude observational learning are possible. We 

thus implement a multi-dimensional decision situation that resembles a gamble on gathering 

additional information by strategically delaying decisions. We argue that this resembles real 

world decisions and renders our comparison of fixed-order efficiency and endogenous 

ordering more interesting in terms of external validity compared to studies that investigate 

deviations from rational timing. 

Implementing this concept, we find that endogenous timing on average increases the degree 

of rationality of predictions and thus their accuracy when compared to an exogenous setting. 

This increase is smaller when higher waiting cost are implemented, which leads to earlier and 

often simultaneous decisions that preclude observational learning. Therefore, subjects are 

sensitive to changes in waiting cost. In addition to observational learning, first movers 

correctly infer signal strength from the waiting time of the co-player when waiting cost are 

designed in a simple way, which adds to the overall increase in prediction accuracy for the 

endogenous setting. However, the gains in informational efficiency are compensated by 
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waiting cost, resulting in no positive net welfare effect of endogenous timing. Our results 

suggest that there are no positive welfare effects of introducing endogenous rather than 

exogenous ordering, yet improvements in overall informational efficiency. We find neither 

excessive waiting, i.e. waiting when no additional information can be obtained, nor accuracy 

maximizing behavior, i.e. waiting to always become second mover. In turn, there are many 

subjects minimizing waiting cost by making their prediction in the very first period, thereby 

passing on the opportunity of observational learning. 

The remainder of this paper is structured as follows. Section 2 derives our theoretical 

framework, while section 3 contains our experimental design. Section 4 presents the results 

and section 5 concludes. 

 

2. THEORETICAL FRAMEWORK 

To structure our analyses, we present a basic framework of rational predictions. It applies to 

both the benchmark experiment with a randomly fixed decision order (Exp1) and to Exp2, 

which implements endogenous ordering of choices comprising three treatments (high cost, 

low cost, signal dependent), thus varying the implementation of waiting cost. Subsequently, 

we present considerations on the individual timing of decisions.  

In both experiments, two players i = 1,2 are randomly matched and participate in seven 

repetitions  (r = 1,2,…7 denoted as “projects”) of a non-cooperative game. We denominate the 

respective other player as the co-player. Both players are asked to predict the value of a 

project W in discrete time periods t=1,…,T. Both players receive private information mi,r, 

which are independent realizations of a uniformly distributed random variable M ∈ [1,100]. 

W ∈ [2,200] is the sum of private information.
7
 W’s realizations are denoted as wr = m1r + 

m2r. Second movers can observe prior predictions. Following every project, the actual value 

of W, the two predictions and respective payoffs are shown to players.  

We denote zir as the prediction of subject i in project r. Players are rewarded according to the 

absolute accuracy dir = |wr - zir| of their prediction. To make the payoffs more accessible to 

participants, we define fixed payoff intervals. Players receive 2000 ECU for a deviation di ≤ 
5, 1600 ECU for 6 ≤ di ≤ 10, 1200 ECU for 11 ≤ di ≤ 15, 800 ECU for 16 ≤ di ≤ 20, 400 ECU 
for 21 ≤ di ≤ 25 and 0 ECU for di > 25. There are no pay-off externalities. 

For both experiments, a rational prediction is deducted as follows. 

 

 

2.1 PREDICTIONS  

Let t ∈ {1,2} denote the position in the decision order, i.e. t = 1 identifies the first mover. 

Since the first mover is uninformed about the other player’s signal m-i, the optimal prediction 

z*|t=1 equals the sum of the private information mi and the expected value of m-i:  
(1) z*|t=1= mi+E(m-i)  

In the exogenous ordering case the expected value of the second mover’s signal E(m-i) is 

equal to E(M)=50.5 (henceforth 50.5 is rounded to 50). The same is true for the endogenous 

                                                 
7
 This basic structure is used in the model of Gul and Lundholm (1995) and was experimentally established by 

Ziegelmeyer (2005). Çelen and Kariv (2004) implement a similar structure of continuous signals and discrete 

action spaces into the seminal Anderson and Holt (1997) urn experiment. 
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case, when the timing of decisions does not depend on signal strength. In this case first 

movers cannot use the timing of the second mover as valuable information.  

Subsequently, the second mover can perfectly infer the first mover’s private information mi. 

Subtracting the expected value E(m-i) from the observed prediction z*|t=1 yields the private 

information of the first mover mi =[ z*|t=1- E(m-i)]. Thus, the optimal prediction of the second 

mover is given by: 

(2)  z*|t=2= m1+ m2 = w 

The private information of the first mover is thus perfectly transmitted to the second mover.  

Essentially, a rational first mover expects the co-player’s signal to be 50 in the case of 

exogenous ordering or endogenous ordering without anticipation. Adding 50 points to her 

private signal gives the optimal prediction, which yields on average an absolute deviation di 

of 25 points and an average payoff of 400ECU. The second mover is aware of this strategy, 

and thus derives the first mover’s signal by subtracting 50 from her prediction. This 
eliminates the first mover’s deviation, and consequently earns the second mover 2000ECU for 

a correct prediction. Applying these rules fully describes rational behavior in the exogenous 

case. However, in the endogenous case players have to choose when to act, which makes the 

definition of optimal behavior more complex.  

 

 

2.2 TIMING  

The endogenous game (Exp2) is a non-cooperative waiting game. Every project comprise five 

successive periods in which players decide to predict or wait. Once a prediction is made, its 

value is shown to the respective co-player in the next period. A project ends once both 

predictions are made or the five periods elapse. Let ti ∈ {1,2,3,4,5} now denote the chosen 

decision period of individual i in the respective project r.  

We implement a trade-off between an early prediction with low waiting cost and a delayed, 

yet potentially more accurate prediction with increased waiting cost for all treatments of 

Exp2. Waiting cost are presented to subjects as the reduction of a time bonus Bi,r to avoid 

triggering loss aversion. Universally, we implement Bi,r(ti,r,xr)=[(12-2ti,r)xr/α], where xr is 

equal to wr for the low cost, and high cost treatments and equal to mi,r for the signal dependent 

treatment. For low cost and signal dependent the weighting factor α is 2, while for high cost, α 

is 1. In all periods, subjects are informed about the time bonus for the respective round.
8
 For 

all treatments, waiting cost and signal strength are positively correlated in a linear way, and 

thus marginal waiting cost are constant. Compared to high cost, low cost reduces the weight 

of the time bonus by fifty percent in contrast to the accuracy bonus; the signal dependent 

treatment eliminates uncertainty concerning the exact value of waiting cost whereby the 

weight of the time bonus is between the two other treatments. Therefore, the treatments of 

Exp2 allow checking for sensitivity towards the level and specific implementation of waiting 

cost. 

Following the seminal experiment by Sgroi (2003), the experimental studies on endogenous 

timing implement a threshold of signal strength, making it optimal to decide in a specific 

period. This enables a comparison of optimal and actual timing of decisions. In contrast, we 

                                                 
8
 The time bonus is displayed to participants in an easily accessible form. For low cost and high cost, “'10…2 * 

project value” is displayed, for signal dependent, subjects are shown the exact time bonus. 
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implement a combination of signal strength and waiting cost that leads to an incentive to 

outwait the co-player for any given signal strength in any treatment. Consider for high cost, 

the highest possible private signal of mi = 100. The maximum waiting cost is incurred when 

the decision is delayed to the last period (ti = 5), whereby the player foregoes a time bonus of 

1200 ECU. Given that the average premium for the second mover is 1600 ECU, as shown 

above, players always have an incentive to become second movers. This would necessarily 

lead to a war of attrition situation (Ziegelmeyer et al. 2005), with both players deciding in the 

last possible round. However, if one player understands that this situation makes him a first 

mover anyways, it is preferable to decide in the first period in order to minimize the waiting 

cost. Subsequently, the co-player’s best response would be a decision in the second period. 

Given a decision in the second period, the first player’s best response is a decision in the third 

period. As this evidently leads back to the “war of attrition” situation, there is no NE. Note 

that this does not change the described optimal predictions conditional on the position in the 

order. If players predict simultaneously, the rationale for the first mover applies to both. 

While this setting obviously precludes an investigation of rational timing, it offers an insight 

into behavior under uncertainty with best responses being conditional on the co-player’s 
(unpredictable) timing.  

We argue that our setting resembles actual decision situations in the context of social learning 

in the sense that all players are confronted with a gamble, betting on becoming a second 

mover by the decision to wait.
9
 Second movers gain the opportunity to observe first movers’ 

decisions, enabling more accurate predictions, i.e. higher payoffs. This leads to an 

optimization problem characterized by comparing constant waiting cost and potential yet 

uncertain gains due to higher prediction accuracy. The probability of becoming second mover 

is evidently not calculable when the co-player has not acted yet. However, the higher waiting 

costs are relative to potential gains in accuracy, the less attractive the gamble becomes. Thus, 

as higher signals are related to higher waiting cost, the gamble’s attractiveness decreases with 
higher signal strength. In this respect despite the incentive to always outwait the other, timing 

might reveal private information. In this case first movers can derive valuable information 

from the timing of their co-player, a process we denote as anticipation. Delayed decisions 

might be related to weaker signals and E(m-i) is now smaller than E(M). Overall efficiency 

could increase compared to the exogenous case, since first movers are able to give more 

accurate predictions. Risk preferences might have a significant impact in this context, as risk-

averse players might tend to decide early, rejecting the gamble in favor of a fixed time bonus. 

Since we have fixed matching and seven repetitions of the game, players might try to build up 

reputation by signaling the willingness to become second mover no matter the amount of 

waiting cost. However, it is never optimal to wait another period if the co-player has already 

decided, given that such a behavior only increases waiting cost and cannot reveal further 

information. We denominate this behavior as excessive delay. Furthermore, it is always 

optimal to predict in the last period of a project rather than not predicting at all. In sum, there 

                                                 
9
 Note that the matching of players across the seven repetitions of both experiments is held constant to enable 

reputation effects related to individual preferences. For instance, consider a risk-averse player who develops a 

reputation of always deciding first. Understood by the second player, this should have a profound impact on the 

overall results. We chose this setting since the opportunity to build up reputation effects is a central feature of 

actual social learning environments where the set of participants remains mostly constant. 
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is no well-defined optimal solution to the gamble since the probability of becoming second 

mover is not calculable. Consequently, we are not testing for optimal Bayesian updating, but 

compare the results from endogenous and exogenous ordering in a more realistic social 

learning environment.  

 

3. EXPERIMENTAL DESIGN  

We run two separate experiments in a between-subjects design with fixed matching. Our 

benchmark experiment (Exp1) has an exogenously determined decision order, while the 

second experiment (Exp2) implements endogenous ordering. The latter comprises three 

treatments (high cost, low cost, signal dependent) in which waiting cost are varied. 

The experiments took place at the Laboratory for Behavioral Economics at the University of 

Göttingen in December 2012 with 228 Undergraduate students in different fields of study
10

 

participating in 13 sessions (58 in Exp1, 56/58/56 in the treatments of Exp2). Exp1 took 40 

minutes on average, and Exp2 80 minutes. 1000 ECU converted to 1.10 Euro in the 

exogenous game, to 0.80 Euro in the high cost endogenous treatment, and to 1.20 Euro in the 

low-cost and the signal dependent. The varying of conversion factors across treatments is 

intended to keep the average payoff per hour constant. The average payoff in Exp1 (high cost/ 

low cost/ signal dependent) amounts to 10.6 Euro (12.3/12.0/12.3) including a 2.50 Euro 

show-up fee. Participants were recruited using the online recruiting system ORSEE (Greiner, 

2004) and were allowed to take part in only one session. The games were programmed and 

conducted with the software z-Tree (Fischbacher 2007). See the Appendix for our 

instructions. 

 

4. RESULTS 

Our dataset consists of 228 participants making predictions in seven projects which provides 

us with 1596 observations in total. We analyze our results in three steps: first, we measure 

informational efficiency against the rational benchmark across our experiments and 

treatments; second, we present data on the extent of strategic delay in the endogenous game; 

and third, combining the changes in informational efficiency and costs of strategic delay, we 

assess the net impact of introducing endogenous ordering on social welfare. 

 

4.1 INFORMATIONAL EFFICIENCY 

We define informational efficiency as the overall accuracy of predictions. Given that 

predictions are observable, rational second movers should infer first movers’ signals and 

predict correctly, which would imply an efficient internalization of the information 

externality. The more accurate predictions become overall, the more efficient is the 

transmission of information. Table 1 shows that subjects overall fail to predict accurately. 

Recall that the rational prediction would have first movers adding 50 points=E(M) to their 

private signal and the second movers subtracting these 50 points from the observed prediction 

                                                 
10

 Participants had the following fields of study: humanities 11%, Law studies 12%, social sciences 14%, science 

26%, economics and business administration 35%. The mean age was 23.7 years, and 55% of participants were 

female. 
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to perfectly infer the first movers’ signals. Our results suggest that the average prediction 

error for first movers is significantly greater than 25, the value expected for rational players 

(t=4.5887, p=.0000 for Exp1; t=2.3345, p=.0215 for high cost; t=2.2878, p=.0237 for low 

cost; t=2.1060, p=.0372 for signal dependent; two-sided t-test). For second movers, we find 

the average prediction error to be significantly smaller for all treatments (z=4.246, p=.0000 

for Exp1; z=4.606, p=.0000 for high cost; z=6.146, p=.0000 for low cost; z=5.468, p=.0000 

for signal dependent; Wilcoxon signed-rank test for matched data), which indicates 

observational learning. However, subjects fail to reduce the absolute deviation to zero 

(t=14.5937, p=.0000 for Exp1; t= 8.6657, p=.0000 for high cost; t=13.4155, p=.0000 for low 

cost; t=11.4616, p=.0000 for signal dependent; two-sided t-test). 

 

 Exp1 Exp2  

(high cost) 

Exp2  

(low cost) 

Exp2  

(signal dependent) 

 absolute 

deviation 

decision 

period 

absolute 

deviation 

decision 

period 

absolute 

deviation 

decision 

period 

absolute 

deviation 

decision 

period 

First 

mover 

n=203 n=105 n=137 n=129 

33.33 

(25.86) 
1 

30.08 

(22.28) 

1.34 

(.70) 

28.57 

(18.26) 

1.59 

(.97) 

28.71 

(19.98) 

1.47 

(.89) 

Second 

mover 

n=203 n=102 n=135 n=126 

24.93 

(24.34) 
2 

18.79 

(21.90) 

2.37 

(.69) 

15.85 

(13.73) 

2.61 

(.92) 

16.82 

(16.47) 

2.51 

(.86) 

Same 

period 

 n=182 n=131 n=134 

  
31.35 

(23.22) 

1.3 

(.96) 

28.12 

(18.75) 

1.77 

(1.43) 

28.84 

(18.39) 

1.88 

(1.49) 

Overall 

n=406 n=389 n=403 n=389 

29.13 

(25.43) 
1.5 

27.71 

(23.20) 

1.59 

(.95) 

24.16 

(18.01) 

1.99 

(1.21) 

24.90 

(19.14) 

1.95 

(1.20) 

Table 1 Informational Efficiency and Strategic Delay 
Note: Values are averaged for the respective group; standard deviations presented in parentheses.  

This specific failure could reflect the poor performance of first movers, which we analyze in 

more detail in subsection 4.1.2. Overall absolute deviation is by far greater than 12.5, the 

theoretical minimum (t=13.1748, p=.0000 for Exp1; t=12.9355, p=.0000 for high cost; 

t=12.9987, p=.0000 for low cost; t=12.7777, p=.0000 for signal dependent; two-sided t-test).
11

  

                                                 
11

 The minimum average prediction error could be lower if timing reveals information, i.e. subjects conduct 

anticipation. However, decisions might be given simultaneously in Exp2 in which case the minimum error 

amounts to 25. Given the share of decisions in the same period the theoretical minimum error without 

anticipation is 18.48 in high cost, 16.67 in low cost and 16.9 in signal dependent. Obviously, actual absolute 

average deviations far outreach these hypothetical values.  



10 

 

Comparing the experiments, Exp1 and Exp2 differ, as second movers in Exp2 show 

significantly higher prediction accuracy (z=3.685, p=0.0002; Mann-Whitney U-Test), and 

thus the overall efficiency is higher. There is no significant difference for first movers 

(z=1.255, p=0.2094; Mann-Whitney U-Test). 

When comparing the endogenous treatments to Exp1, the data might indicate a better 

performance of first movers in low cost and signal dependent. The average absolute deviation 

in Exp1 is about 17% (19%) higher compared to low cost (signal dependent). Note, however, 

that there are no differences measured by the absolute deviations at the conventional levels of 

significance (z=0.637, p=.5239 for high cost; z=1.361, p=.1734 for low cost; z=1.210, 

p=.2261 for signal dependent; Mann-Whitney U-Test). For second movers, the average 

prediction error is significantly lower in contrast to Exp1 (z=2.190, p=.0285 for high cost; 

z=3.185, p=.0014 for low cost; z=2.960, p=.0031 for signal dependent; Mann-Whitney U-

Test). Even though there are no significant differences in first movers’ performance across 
experiments, this result might partly be driven by the on average weaker performance of first 

movers in Exp1.  

Despite the better performance of second movers, we only find a positive and significant net 

effect on informational efficiency in low cost (z=0.339, p=.7346 for high cost; z=1.760, 

p=.0784 for low cost; z=1.468, p=.142 for signal dependent; Mann-Whitney U-Test) when 

considering overall performance. This is clearly due to the large number of simultaneous 

decisions, which preclude observational learning. 37.56% of subjects in Exp2 decided 

simultaneously (46.4% in high cost, 32.5% in low cost, 34.2% in signal dependent). Thus we 

conclude, that, on the one hand, endogenous ordering increases overall informational 

efficiency by improved observational learning. On the other, allowing for simultaneous 

decisions might fully compensate this effect or even reverse the results in an extreme 

scenario. 

It is interesting to take a closer look on the distribution of rationality. Therefore, we define 

decisions as being rational if prediction value does not deviate from the optimal value derived 

by solving the equations in the theoretical framework by more than 5 points (equal to the 

width of each payoff interval) in absolute terms. If second mover i follows a non-optimal 

prediction, her decision is assumed to be rational if the prediction value falls into the interval 

[mi,mi+100], which can be considered a rather lax criterion. The cumulative distribution of 

subjects giving rational decisions shows that around 25.9% (11.8%) decide rationally in one 

or less projects of Exp1 (Exp2). Moreover, around 79% (56%) do not reach more than three 

rational predictions, while 3.5% give more than 4 rational predictions in Exp1, and 10% in 

Exp2. We also apply a Fisher exact test, which shows a statistically significant relationship 

between the number of rational predictions and the ordering regime (Fisher’s exact=0.003). 
The differences between Exp1 and Exp2 regarding prediction accuracy are mirrored by 

differences in the number of rational predictions. Considering the relationship between the 

treatments of Exp2 and the number of rational predictions, we obtain significant results 

(Fisher’s exact=0.55). 
Furthermore, we test for learning effects by running a Skillings-Mack (SM) test for the 

differences of the absolute prediction errors over projects. For all the treatments, we find no 
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significant differences.
12

 However, it is to note that we find some predictions showing a weak 

or even a misunderstanding of the game, i.e. subjects expecting the co-player’s signal to be 0, 
negative or greater than 100. According to this definition there are 38 outliers (9.36% of all 

predictions) in Exp1; 15.52% in the first project, 10.34% in the second and 7.93% in later 

projects, a decrease that might point to some learning effects. For the treatments of Exp2, we 

find fewer predictions characterized by a weak understanding of the game (4.34% of all 

predictions for high cost, 3.2% in low cost and 2.55% in signal dependent). 

To summarize, we find increases in informational efficiency for endogenous timing when 

decisions are not taken simultaneously. Interestingly, our results point to a better performance 

of first movers for low cost and signal dependent, though differences are not significant. This 

result might be understood as evidence for anticipation effects that require both players in a 

decision pair to follow a similar strategy where timing depends on signal strength. However, 

this intuition is somewhat misleading: we show in the next subsection that, besides some 

evidence for anticipation in Exp2, there is a systematic deviation from rational behavior of 

first movers driving the results in Exp1. 

After considering first movers’ behavior, we turn to the second movers to investigate whether 

weak observational learning and differences between the experiments merely reflect the 

poorer performance of first movers.  

 

4.1.1 FIRST MOVER PERFORMANCE 

In order to understand the performance of first movers in detail, we test whether expectations 

of the co-player’s signals are derived rationally as proposed by Eq.1. We find that the average 

expectation (= prediction value – signal) of a co-player’s signal for Exp1 and high cost is 41.3 

and 46.6 respectively and thus significantly smaller than the rational value of 50=E(M). For 

low cost (49.0) and signal dependent (48.9), there is no such significant deviation from 50 on 

average (t=-4.5698, p=.0000 for Exp1; t=-2.4291, p=.0158 for high cost; t=-0.7831, p=.4342 

for low cost; t=-0.9725, p=.3317 for signal dependent; two-sided t-test).
13

  

We check for anticipation effects as a way of improving prediction accuracy. We define 

anticipation as the systematic adjustment of predictions in response to the decision period of 

the co-player. If anticipation is present, the co-player’s decision period should have a 

significant effect on prediction values. We find anticipation effects for signal dependent 

which can be best shown by considering Figure 1. 

 

 

 

 

 

                                                 
12

 We apply a Skillings-Mack (SM) test since we have repeated measures given by the predictions of the 

participants and also missing values when participants did not give a prediction in a project. For Exp1 we find 

(SM=9.933, p(no-ties)=0.1275 and empirical p(ties)~0.1280); for high cost (SM=4.004, p(no-ties)=0.6761 and 

empirical p(ties)~0.658); for low cost (SM=6.048, p(no-ties)=0.4178 and empirical p(ties)~0.421) and for signal 

dependent (SM=4.504, p(no-ties)=0.06088 and empirical p(ties)~0.585). 
13

 These results are partially driven by the outliers mentioned; therefore, we tested for the differences after taking 

out these values. However, we find the same significant effects (average expectation for Exp1 is 45.0 with t=-

3.7452 and p=.0002; average expectation for high cost is 47.4 with t=-2.3252 and p=.0208; two-sided t-test).   
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Figure 1 Performance of first movers 

 
Figure 1 presents the development of the mean absolute deviation, the mean expectation of 

the co-player’s signal and the actual mean of the co-player’s signal over periods.  

As the graph for signal dependent shows, first movers correctly expect decreasing signal 

strengths over decision periods. Simply assuming the co-player’s signals to be 50 would yield 
higher prediction errors in later periods. To establish this result, we estimate a model with the 

randomly determined signals as the dependent variable and decision period as the explanatory 

variable for each treatment.
14

 Signal strength is estimated to decrease significantly by around 

7.9 points per period in signal dependent (t=-8.48; p=.0000), with the respective constant 

amounting to 66.88 points.
15

 The basic requirement for anticipation is fulfilled, i.e. decision 

periods reveal information about signal strength. To check whether this additional information 

is used, we turn to the player’s expectations of their co-player’s signal conditional on the 

decision period. Expectations of the co-player’s signal are estimated to decrease significantly 

by 4.3 points per period (t=-5.52; p=.001) in signal dependent; the regression shows a 

                                                 
14

 We run a pooled OLS regression applying robust Driscoll and Kraay standard errors.  Hence, we control for 

unobservable heterogeneity, heteroskedasticity, serial correlation in the idiosyncratic errors of order (2) and 

cross-sectional dependence. 
15

 For high cost the marginal effect of an additional period is estimated to reduce signal strength by -2.9 with a 

constant of 56.6. The effects is not significant (t=-1.65; p=.151). For low cost the coefficient is 2.55 and 

significant at the 5% level (t=2.85; p=.021), while the constant is 50. Applying fixed effects procedure also 

yields a significant decrease of signal strength estimated to be -6.56 points per period in high cost. For the other 

treatments results change only slightly.  
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constant of 56 points.
16

 Mirrored by decreasing prediction values over periods, anticipation 

thus improves, though not perfectly, prediction accuracy compared to the routine of expecting 

50 for the co-player’s signal in signal dependent. It remains unclear whether anticipation only 

occurs due to the less complex design of waiting cost in signal dependent or the weighing of 

time bonus in between low and high cost. However, we do not find anticipation for low cost 

and high cost. Signal strength slightly increases over periods in low cost, whereas 

expectations on co-player’s signals do not change. In high cost signal strength significantly 

decreases over decision periods; however, again the additional information is not reflected in 

player’s expectations. 

We conclude that the better performance of first movers in low cost and signal dependent can 

be best explained by the occurrence of a systematic downward bias of expectations by first 

movers in Exp1 and high cost. We additionally find anticipation for signal dependent, which 

improves prediction accuracy compared to the rational routine of expecting 50 as the co-

player’s signal.  

 

4.1.2 SECOND MOVER PERFORMANCE 

We now turn to the question of whether the poor performance of first movers is responsible 

for inefficient observational learning. Therefore, analogously to the previous analysis for the 

first movers, we consider the optimal routine described in Eq.2 in our theoretical framework. 

Recall that the optimal response for second movers when assuming rational behavior and no 

anticipation of first movers is given by z*|t=2= [z*|t=1 - E(M)] + mi= m1+m2= w; whereby t 

indicates the position in the decision sequence. We have already shown that predictions on 

average are not perfect. However, perfect predictions by second movers can only be obtained 

when first movers follow the rational routine described in Eq.1. Accordingly, we only 

consider observations for second movers that follow potentially rational predictions by the 

respective first movers. This applies to decisions following predictions that are equal or 

greater than 51 points (=min{M}+ E(M)) and smaller or equal than 151 points (=max{M}+ 

E(M)).
17

 Expectations of second movers should be characterized as perfectly revealing the 

first mover’s signals. We thus test whether [z*|t=1 - E(M)] equals the expectation of the second 

movers on average. For Exp1 (high cost/low cost/signal dependent), we find the absolute 

deviation of the second movers’ expectations from the optimal expectation amounting to 

22.94 (12.19/11.46/13.86) on average and thus to be significantly greater than zero (p=.0000 

for all treatments; two-sided t-test). The deviation from the optimal expectation is 

significantly higher for Exp1 in contrast to the treatments of Exp2 (z=4.453, p=.0000 for high 

cost; z=4.853, p=.0000 for low cost; z=3.220, p=.0013 for signal dependent; Mann-Whitney 

U-Test).  

                                                 
16

 The regression procedure is implemented as before. For high cost, we get a marginal effect of .025 points (t=-

0.02; p=.981) and for low cost the marginal effect is -.133 points (t=-0.25; p=.807), thus both are not significant. 

Using fixed effect procedure does not change coefficients substantially and significances remain the same.    
17

 Note that, for the analysis of second movers, relying solely on decisions following potentially rational 

predictions might be problematic. Players in a decision pair might have observed earlier irrational decisions thus 

causing project-interdependent assumptions regarding the co-player’s behavior. However, as this keeps the 
analysis simple and our results in this section are very robust, we refrain from integrating project-interdependent 

effects. 
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These results might be too pessimistic for signal dependent, since we have shown that for the 

first movers expectations of the co-player’s signal are significantly correlated with decision 

periods. Second movers could adjust their calculation of first movers’ signals respectively, 

thus outperforming the rule of Eq.2. As shown above, first movers reduce their expectation 

toward the co-player’s signal by a rate of 4.3 points per period in the signal dependent. 

Therefore, we check whether second movers account for that systematic adjustment. We run a 

regression implementing the same routine as before of the second mover’s expectation on 

decision period. We find that second movers are somewhat able to adjust for first movers’ 
anticipation by reducing their own expectation by a rate of 6.2 points per period (t=-6.36; 

p=.001) with a constant of 69.6 in signal dependent.
18

 

However, calculating the average of the absolute deviations of second mover expectations 

from realized first mover signals, we find a deviation of 25.9 for Exp1, 20.3 for high cost, 

16.6 for low cost and 17.7 for signal dependent. Again, this calculation only considers 

decisions taken after potentially rational predictions of first movers. If second movers had 

strictly followed the rational routine [z*|t=1 - E(M)] to guess the first mover’s signal, the 

difference to realized signals for Exp1 would be reduced to 14.4, 13.1 for high cost, 13.9 for 

low cost and 13.7 for signal dependent.  

We conclude that the non-optimal performance of second movers does not result from the 

poor performance of first movers; rather, it is a source of inefficiency in itself. This effect is 

strongest for Exp1, thus second movers in Exp2 treatments perform better on average by a 

more efficient observational learning. Consequently, c.p. informational efficiency tends to be 

higher when timing is endogenous. 

We essentially see two driving forces that improve informational efficiency when ordering is 

endogenous. Firstly, we would argue that there is a self-selection conditional on the 

understanding of the mechanism of observational learning. The rational routine for second 

movers is somewhat more complicated to understand, as one has to comprehend the 

expectations and potential anticipation of the preceding player. Thus, players with a deeper 

level of reasoning tend to decide later and more frequently achieve observational learning.
19

  

While this might explain the superior performance of second movers in Exp2, it does not 

explain equal or in tendency even higher levels of rationality for first movers. On the contrary, 

if players with a deeper understanding tend to decide as second movers, first movers should 

perform even worse due to self-selection in Exp2 as compared to Exp1. Therefore, we would 

argue that the level of understanding hinges on the structure of the decision situation. Having 

                                                 
18

 Although we showed that expectations of first movers in the high cost are not related to the decision period, 

second movers adjust their expectation significantly by a rate of -8.8 points (t=-3.72; p=0.01). Results for low 

cost show an insignificant marginal effect of 1.5 points (t=1.01; p=0.352) for decision period on the second 

mover’s expectation. The results do not change substantially when we only use decisions of second movers 

following potentially rational decisions of first movers or when we use a fixed effects procedure. 
19

 Therefore, one might consider a level-k approach to define an appropriate model of behavior in our experiment 

(Nagel 1995; Stahl and Wilson 1994, 1995; Crawford and Iriberri 2007), thus rationalizing predictions 

conditional on the first mover’s assumed depth of reasoning. However, even interdependent expectations 
regarding the depth of reasoning of the co-player might not explain the differences in informational efficiency 

between Exp1 and Exp2. However, an extensive analysis regarding the expectation on the depth of reasoning is 

beyond the scope of this paper.  
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subjects decide when to act induces considerations about the advantages and disadvantages of 

being the first and second mover. By inducing these reflections about the game itself, subjects 

are more likely to realize the relevance of the co-player’s signal. These considerations might 
add to the level of understanding for both the first and second movers in case of endogenous 

ordering, thereby eliciting more rational behavior overall. 

 

4.2 STRATEGIC DELAY 

Strategic delay is the central feature of Exp2 (Table 1 also includes the average decision 

periods). While an average decision period of 1.5 is predetermined for Exp1, it is 1.84 for 

pooled data of Exp2. The subjects react sensitive towards waiting cost: in high cost, decisions 

are taken earlier (1.58) compared to low cost (1.99) and signal dependent (1.94). Only 17 

predictions are not given in the subsequent period after a co-player has decided, and thus 

excessive delay only occurs in 2% of all projects. 

On the individual level, distinct strategies regarding timing can be revealed. There are around 

16% of participants in Exp2 always predicting in the first round (26.9% in high cost, 12.1% in 

low cost and 9% in signal dependent). These participants minimize waiting cost without 

trying to gain additional information by outwaiting the co-player. In 81 of the 91 projects with 

simultaneous decisions in high cost, predictions are given in the very first period; 46 of 66 in 

low cost and 45 of 67 in signal dependent.  

In turn, only 4.1% of participants always predict as second mover or in the last period (3.57% 

in high cost, 5.17% in low cost and 3.57% in signal dependent). Thus, only few try to 

maximize accuracy regardless of signal strength or waiting cost. 

Combining the analyses on informational efficiency and strategic delay, we now investigate 

the overall effects on social welfare. 

 

4.3 SOCIAL WELFARE 

We measure social welfare by aggregate payoffs. To assess welfare effects, we calculate 

average waiting cost and accuracy bonuses. Given that waiting costs are manipulated over 

treatments of Exp2, we calculate hypothetical waiting cost for Exp1 according to the payoff 

structure of the respective Exp2 treatment in order to enable a comparison. 

In Exp1 subjects earn on average 708ECU per projects as accuracy reward compared to 

slightly higher 719ECU in the high cost. Subjects take decisions relatively early in the high 

cost yielding an average time bonus of 886ECU, which is equivalent to average waiting cost 

of 117ECU. Applying the same waiting cost structure to Exp1 gives an average time bonus of 

924ECU or average waiting cost of 103ECU. Thus, the total expected payoff in a project of 

Exp1 is 1632ECU and 1605ECU for the high cost. On aggregate for the whole game (7 

projects), this gives a difference of 189ECU or 21 Cent, which is around 2.1% of the average 

payoff (excluding show-up fee). Following the same procedure leads to a 126ECU (14Cent) 

lower payoff for the low cost game aggregated for seven projects. The signal dependent game 

has a lower payoff of 21ECU (2 Cent). Obviously, these differences are of low relevance. 

Another way of looking at this result is to exclude same period decisions, as there might be 

several real-world situations where simultaneous decisions are highly unlikely, e.g. high 

frequency trading in financial markets. When excluding simultaneous decisions from 

calculating the averages, effects on social welfare do not change substantially. The largest 
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treatment effect is given for the signal dependent, in which the average increase in total 

payoff amounts to 530ECU, which convert to 58 Cent or 5.9% of average payoff (for high 

cost difference amounts to -13ECU and for low cost to 25ECU).   

Overall, gains in informational efficiency are realized at the expense of increased waiting 

cost, such that no relevant effects on social welfare are elicited by introducing endogenous 

ordering. In the given gambling structure, waiting cost and informational efficiency turn out 

to be strongly interdependent, causing the absence of net effects on social welfare. Placing 

different relative weights on waiting cost shows no influence on social welfare, given that 

participants adjust their timing of decisions accordingly.  

 

5. CONCLUDING REMARKS 

The present study investigates informational efficiency in a game of social learning, 

comparing exogenous and endogenous ordering of choices. By quantifying the effect of 

observational learning and waiting cost, we show the welfare effects of these different 

regimes of ordering. Based on the model by Gul and Lundholm (1995), we run a two-player 

prediction game with a benchmark treatment of exogenous ordering and three treatments of 

endogenous ordering. Rather than the classic binary action sets following the seminal 

Anderson and Holt (1997) paper, we introduce a continuous action space to more precisely 

determine the success of observational learning. We refrain from implementing an optimal 

timing conditional on signal strength to expose subjects to a situation where gambling on the 

co-player’s uncertain action is required. We argue that both the continuous action space and 

gambling situation that our subjects faced depict actual decisions in social learning 

environments more closely than the informational cascade games characterized by binary 

decisions and exogenous ordering. 

In our treatments, endogenous timing enhances the rationality of predictions and thus their 

accuracy, yet also leads to higher waiting cost. Subjects react sensitively to changes in waiting 

cost and adjust their timing accordingly. This leads to earlier and often simultaneous decisions 

that inhibit observational learning. For lower waiting cost, subjects tend to wait longer, which 

fosters observational learning, yet increases waiting cost to the same degree. Thus, there are 

no overall positive welfare effects in our endogenous treatments. However, despite the 

specific incentive to always outwait the co-player, we rarely find war of attrition situations 

that would massively reduce welfare. We suggest that making subjects take a timing decision 

in the endogenous game fosters a deeper level of reasoning in general, which leads to a more 

efficient observational learning. Additionally, observational learning might be improved by a 

self-selection according to the understanding of second mover advantages. Our results show 

that introducing an endogenous rather than exogenous ordering regime leads to higher 

informational efficiency but does not increase overall social welfare. 

We add to the literature on social learning by introducing an experiment that enables 

comparison between exogenous and endogenous ordering of choices. This allows us to 

combine the discussions following the seminal urn experiment by Anderson and Holt (1997) 

with the studies on endogenous ordering following Sgroi (2003). Both strands of literature 

investigate the success of social learning and informational efficiency, yet fail to compare the 

two settings. We qualify the extent of informational efficiency in a unitary setting across 

regimes of ordering. While informational efficiency is effectively increased with the 
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introduction of endogenous ordering, as suggested by previous studies, we cannot conclude 

that this leads to a positive effect on social welfare. However, it also does not deteriorate 

welfare altogether, as situations with extreme waiting cost are rare. Our results suggest that 

social learning is fairly effective when implementing a continuous action space and 

endogenous timing. Therefore, the informational inefficiency in situations of rational herding 

emphasized by numerous studies is limited to specific decision situations and should not be 

generalized. 
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Your Information +  Co-player’s Information  =  Project value 

      (1 to 100)     (1 to 100)     (2 to 200)  

Example: 25   +   50   =          75                       

APPENDIX 

Instructions for Experiment 1 

The Game 

In this game you and a co-player will estimate the value of a project. The value of the project 

consists of two parts: your own information and your co-player’s information. 
Your information and the information of your co-player are randomly determined numbers 

between 1 and 100. Therefore, project value that you have to estimate is always between 2 

and 200. All of the possible information is equally likely. 

 

 

 

 

 

There are 7 projects in which you will estimate the project value. In every project, it will be 

randomly determined if you or your co-player will give the estimation first. The first 

estimation is always displayed to the other player. Once both players have made their 

estimation, the next project begins. 

You will have the same co-player in all projects. You have a maximum of one minute for 

each estimation. If you do not type in an estimation in time, you will not receive a payoff for 

this project! 

The payoff 

You will receive a precision bonus in every project, which depends on how precise your 

estimation was. The precision bonus depends on the deviation of your estimation from the 

correct project value. 1000 ECU equals a payoff of 1.70€. Additionally, you will receive an 

independent payoff of 2.50€. The following table clarifies the precision bonus: 

 

Distance from correct 

project value 

Precision bonus 

(in ECU) 

Example: The project value is 100. 

Your estimation  

was… 
The precision bonus is… 

  0  –  5   points    2000   …96 …2000 ECU 

  6  – 10  points    1600 …109  …1600 ECU 

11  – 15  points    1200   …87  …1200 ECU 

16  – 20  points      800 …118    …800 ECU 

21  – 25  points      400   …75    …400 ECU 

from 26  points         0   …12       …0 ECU 
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Example 

At the beginning of a project your information is 45. Therefore, you know that the project 

value is at least 45 plus the information of your co-player. Your co-player decides before you 

and estimates a project value of 120. You decide after him and estimate a project value of 

105. The correct project value is 95. Thus, you receive a precision bonus of 1600 ECU, as 

your estimation deviated from the correct project value by 10 points. 
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Your Information +  Co-player’s Information  =  Project value 

      (1 to 100)     (1 to 100)     (2 to 200)  

Example: 25   +   50   =          75                                   

Instructions for Experiment 2. 

 Note that the instructions refer to the high cost treatment. The differences from the other 

treatments are indicated as follows: information in square brackets corresponds to the signal 

dependent treatment, braces corresponds to the low cost treatment. 

The Game 

In this game you and a co-player will estimate the value of a project. The value of the project 

consists of two parts: your own information and your co-player’s information. 
Your information and the information of your co-player are randomly determined numbers 

between 1 and 100. Therefore, the project value that you have to estimate, is always between 

2 and 200. All of the possible information is equally likely. 

 

 

 

 

 

There are 7 projects in which you will give an estimation of the project value. All projects 

have 5 rounds of 2 minutes each. You must decide in which round you want to give your 

estimation. 

All projects end once both players have given their estimation. Subsequently, the next project 

starts. You will have the same co-player in all projects. The following table provides an 

example of the course of the game: 

 

At the beginning of each project, both players receive their information. Your co-player’s 
information is unknown to you. You will have to decide in every round if you want to give an 

estimation (YES/NO). If you allow 2 minutes per round to elapse, you will not get a payoff 

for this project! If you choose NO, please wait for the next round of the project. If you choose 

YES, you will be told if your co-player will give an estimation in the same round. 

Subsequently, you will enter your estimation. Meanwhile, you will see an overview of the last 

rounds and, if applicable, the estimation of your co-player. If you decide before your co-

player, your estimation will also be shown to him. The following table exemplifies the course 

of the game and your possible actions: 

project 1 project 2 

round 1 round 2 round 3 round 4 round 5 round 1 … 

2 min. 2 Min. 2 min. 2 min. 2 min. 2 min. … 

 Round 1 Round 2 Round 3 Round 4 Round 5 

Action by 

Player 1 NO NO NO 

YES! 

Enters the 

estimation Project 

completed! Action by 

Player 2 NO 

YES! 

Enters the 

estimation 

Wait for the co-player… 
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The payoff 

The total payoff consists of two parts: the accuracy bonus (I.) and the time bonus (II.). For 

every round you wait with your estimation, your time bonus will be reduced. The precision 

bonus is higher, the closer your estimation gets to the correct project value. 1000 coins equal a 

payoff of 0.80€ {1.20€}, [1.20€]. Additionally, you will receive an independent payoff of 

2.50€. 
I. Precision bonus 

You receive a bonus in every project which depends on the precision of your 

estimation, based upon its distance to the correct project value. The following table 

clarifies the precision bonus: 

 

II. Time bonus 

You receive a time bonus in every project, depending on the size of the project 

value {on the size of your information}. For every round you wait with your 

estimation, your time bonus will be reduced. The following table clarifies the time 

bonus: 

 

 

 

 

Distance from the 

correct project value 

Precision bonus 

(in ECU) 

Example: The project value is 100. 

Your estimation  

was… 
The precision bonus is… 

  0  –  5   points    2000   …96 …2000 coins 

  6  – 10  points    1600 …109  …1600 coins 

11  – 15  points    1200   …87  …1200 coins 

16  – 20  points      800 …118    …800 coins 

21  – 25  points      400   …75    …400 coins 

ab     26  points         0   …12       …0 coins 

Estimation in 

round 
Time bonus 

Example: The project value is 100. 

Estimation in round… Time bonus… 

1 

10{5} x  project 

value [10 x 

Information] 

…1 

…1000{500} ECU 

[1000  ECU] 

2 

8{4}  x  project 

value 

[8 x Information] 

…2 

  …800{400} ECU 

[800  ECU] 

3 

6{3}  x  project 

value 

[6 x Information] 

…3 

  …600{300} ECU 

[600  ECU] 

4 

4{2}  x  project 

value 

[4 x Information] 

…4 

  …400{200} ECU 

[400  ECU] 

5 

2{1}  x  project 

value 

[2 x Information] 

…5 

  …200{100} ECU 

[200  ECU] 
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Example: 

At the beginning of a project, your information is 45. Therefore, you know that the project 

value is at least 45 plus the information of your co-player. Your co-player decides before you 

and estimates in round 3 that the project value is 120. You decide in round 4 and estimate that 

the project value is 105. The correct project value is 95. Therefore, you receive a time bonus 

of 380 (time bonus in round 4 = 4 x project value) {190 (time bonus in round 4 = 2 x project 

value)} [180 (time bonus in round 4 = 4 x information)]. Additionally, you receive a precision 

bonus of 1600 coins, as your estimation deviates from the correct project value by 10 points. 
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