
Schmitt-Grohé, Stephanie; Uribe, Martín

Working Paper

Solving dynamic general equilibrium models using a
second-order approximation to the policy function

Working Paper, No. 2001-06

Provided in Cooperation with:
Department of Economics, Rutgers University

Suggested Citation: Schmitt-Grohé, Stephanie; Uribe, Martín (2001) : Solving dynamic general
equilibrium models using a second-order approximation to the policy function, Working Paper, No.
2001-06, Rutgers University, Department of Economics, New Brunswick, NJ

This Version is available at:
https://hdl.handle.net/10419/79154

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/79154
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Solving Dynamic General Equilibrium Models Using a
Second-Order Approximation to the Policy Function∗

Stephanie Schmitt-Grohé†

Rutgers University and CEPR
Mart́ın Uribe‡

University of Pennsylvania

July 17, 2001

Abstract

This paper derives a second-order approximation to the solution of rational expecta-
tions, dynamic, general equilibrium models. To illustrate its applicability, the method
is used to solve the dynamics of a simple neoclassical model. The paper closes with
a brief description of a set of MATLAB programs designed to implement the method.
JEL Classification: E0, C63.

Key words: Solving Dynamic General Equilibrium Models, Second Order Approximation,
Matlab code.

∗We benefited from discussions on second-order approximations with Fabrice Collard, Jinill Kim, and
Robert Kollmann.

†Phone: 732 932 2960. E-mail: grohe@econ.rutgers.edu.
‡Phone: 215 898 6260. E-mail: uribe@econ.upenn.edu.

1 Introduction

Since the seminal paper of Kydland and Prescott (1982) and King, Plosser, and Rebelo
(1988), it has become commonplace in macroeconomics to approximate the solution to non-
linear, dynamic, general equilibrium models using linear methods. Linear approximation
methods are useful to characterize certain aspects of the dynamic properties of complicated
models. In particular, if the support of the shocks driving aggregate fluctuations is small and
an interior stationary solution exists, first-order approximations provide adequate answers to
questions such as local existence and determinacy of equilibrium and the size of the second
moments of the variables describing the economy.

However, first-order approximation techniques are not well suited to handle questions
such as welfare comparisons across alternative stochastic or policy environments. For exam-
ple, Kim and Kim (1998) show that in a simple two-agent economy, a welfare comparison
based on a linear approximation to the policy function and a quadratic approximation to the
utility function may yield the spurious result that welfare is higher under autarky than under
full risk sharing. The problem with using linearized decision rules to evaluate second-order
approximations to the objective function is that some second-order terms of the objective
function are ignored when using a linearized decision rule.1 Such problems do not arise when
the policy function is approximated to second order or higher.

In this paper we derive a second-order approximation to the policy function of a dynamic,
rational expectations model. Our approach follows the perturbation method described in
Judd (1998) and developed further by Collard and Juillard (2001). We follow Collard and
Juillard closely in notation and methodology. An important difference separates this paper
from the work of Collard and Juillard. Namely, Collard and Juillard apply what they call
a ‘bias reduction procedure’ to capture the fact that the policy function depends on the
variance of the underlying shocks. Instead, we explicitly incorporate a scale parameter for the
variance of the exogenous shocks as an argument of the policy function. In approximating the
policy function, we take a second-order Taylor expansion with respect to the state variables
as well as this scale parameter. Because our approach is not iterative, it allows for a more
precise and efficient computation of the coefficients associated with the variance of the shocks.

A recent paper by Sims (2000) also derives second-order approximations to the solution
of dynamic general equilibrium models. Sims’s approach to finding the second-order approx-
imation to the policy functions is akin to the method of undetermined coefficients frequently
applied to solve non-stochastic difference equations. To facilitate comparison with Sims
work, later in the paper we apply our second-order approximation method to a simple model
economy that Sims has worked out using his proposed solution.

In the next section, we present the model. In section 3 we derive first- and second-order
approximations to the policy functions. In section 4 we illustrate the applicability of the
method by computing the solution to the basic neoclassical growth model. We close the
paper with a description of the MATLAB computer code we designed to implement the
second-order solution.

1See Woodford (1999) for a discussion of conditions under which it is correct up to second order to
approximate the level of welfare using first-order approximations to the policy function.

1

2 The Model

The set of equilibrium conditions of a wide variety of dynamic general equilibrium models
in Macroeconomics is of the form

Etf(yt+1, yt, xt+1, xt) = 0, (1)

where Et denotes the mathematical expectations operator conditional on information avail-
able at time t. The state vector xt is of size nx × 1 and the co-state vector yt is of size
ny × 1. We define n = nx + ny. The function f maps Rny × Rny × Rnx × Rnx into Rn. The
state vector xt can be partitioned as xt = [x1

t ; x2
t]

′. The vector x1
t consists of endogenous

predetermined state variables and the vector x2
t of exogenous state variables. Specifically,

we assume x2
t follows the exogenous stochastic process given by

x2
t+1 = Λx2

t + η̃σεt+1; εt ∼ N(∅, I).
where both the vector x2

t and the innovation εt are of order nε × 1. The vector εt is indepen-
dently, identically, and normally distributed with mean zero and variance/covariance matrix
I. The scalar σ ≥ 0 and the nε × nε matrix η̃ are known parameters. All eigenvalues of the
matrix Λ are assumed to have modulus less than one.

2.1 Example

Consider the simple neoclassical growth model given by

c−γ
t = βEtc

−γ
t+1[αAt+1k

α−1
t+1 + 1− δ]

ct + kt+1 = Atk
α
t + (1− δ)kt

lnAt+1 = ρ lnAt + σεt+1

for all t ≥ 0, given k0 and A0. Let yt = ct and xt = [kt; lnAt]
′. Then

Etf(yt+1, yt, xt+1, xt) = Et

 y(1)−γ

t − βy(1)−γ
t+1[αe

x(2)t+1x(1)α−1
t+1 + 1− δ]

y(1)t + x(1)t+1 − ex(2)tx(1)αt − (1− δ)x(1)t
x(2)t+1 − ρx(2)t

2.2 Solution

The solution to the model given in equation (1) is of the form:

yt = g(xt, σ) (2)

xt+1 = h(xt, σ) + ησεt+1, (3)

where g maps Rnx ×R+ into Rny and h maps Rnx ×R+ into Rnx . The matrix η is of order
nx × nε and is given by

η =

[∅
η̃

]

We wish to find a second-order approximation of the functions g and h around the non-
stochastic steady state, xt = x̄ and σ = 0, where x̄ is defined next.

2

2.3 The non-stochastic steady state

We define the non-stochastic steady state as vectors (x̄, ȳ) such that

f(ȳ, ȳ, x̄, x̄) = 0

It is clear that ȳ = g(x̄, 0) and x̄ = h(x̄, 0). To see this, note that if σ = 0, then Etf = f .

3 Approximating the Solution

Substituting the proposed solution given by equations (2) and (3) into the model, equa-
tion (1), we can define

F (x, σ) = Etf(g(h(x, σ) + ησε′, σ), g(x, σ), h(x, σ) + ησε′, x) (4)

= 0 (5)

Here we are dropping time subscripts if the variable is dated in period t and use a prime to
indicate variables dated in period t+ 1.

Because F (x, σ) must be equal to zero for any possible values of x and σ, it must be the
case that the derivatives of any order of F must also be equal to zero. Formally,

Fxkσj (x, σ) = 0 ∀x, σ, j, k, (6)

where Fxkσj (x, σ) denotes the derivative of F with respect to x taken k times and with
respect to σ taken j times.

3.1 First-order approximation

We are looking for approximations to g and h around the point (x, σ) = (x̄, 0) of the form

g(x, σ) = g(x̄, 0) + gx(x̄, 0)(x− x̄) + gσ(x̄, 0)σ

h(x, σ) = h(x̄, 0) + hx(x̄, 0)(x− x̄) + hσ(x̄, 0)σ

As explained earlier,
g(x̄, 0) = ȳ

and
h(x̄, 0) = x̄.

The remaining unknown coefficients of the first-order approximation to g and h are identified
by using the fact that, by equation (6), it must be the case that:

Fx(x̄, 0) = 0

and
Fσ(x̄, 0) = 0.

3

Thus, using the first of these two expressions, gx and hx can be found as the solution to the
system

[Fx(x̄, 0)]
i
j = [fy′]iα[gx]

α
β [hx]

β
j + [fy]

i
α[gx]

α
j + [fx′]iβ[hx]

β
j + [fx]

i
j

= 0; i = 1, . . . n; j, β = 1, . . . nx; α = 1, . . . ny

Here we are using tensor notation. So, for example, [fy′]iα is the (i, α) element of the derivative
of f with respect to y′. The derivative of f with respect to y′ is an n×ny matrix. Therefore,
[fy′]iα is the element of this matrix located at the intersection of the i-th row and α-th column.
Note that the derivatives of f evaluated at (y′, y, x′, x) = (ȳ, ȳ, x̄, x̄) are known. The above
expression represents a system of n × nx equations in the n × nx unknowns given by the
elements of gx and hx.

Similarly, gσ and hσ are identified as the solution to the following n equations:

[Fσ(x̄, 0)]
i = Et{[fy′]iα[gx]

α
β [hσ]

β + [fy′]iα[gx]
α
β [η]

β
φ[ε

′]φ + [fy′]iα[gσ]
α + [fy]

i
α[gσ]

α

+[fx′]iβ[hσ]
β + [fx′]iβ [η]

β
φ[ε

′]φ}
= [fy′]iα[gx]

α
β [hσ]

β + [fy′]iα[gσ]
α + [fy]

i
α[gσ]

α + [fx′]iβ[hσ]
β

= 0; i = 1, . . . n; α = 1, . . . , ny; β = 1, . . . , nx; φ = 1, . . . , nε. (7)

Note that this equation is linear and homogeneous in gσ and hσ. Thus, if a unique solution
exists, we have that

hσ = 0.

and
gσ = 0.

3.2 Second-order approximation

The second-order approximations to g and h around the point (x, σ) = (x̄, 0) are of the form

[g(x, σ)]i = [g(x̄, 0)]i + [gx(x̄, 0)]
i
a[(x− x̄)]a + [gσ(x̄, 0)]

i[σ]

+
1

2
[gxx(x̄, 0)]

i
ab[(x− x̄)]a[(x− x̄)]b

+
1

2
[gxσ(x̄, 0)]

i
a[(x− x̄)]a[σ]

+
1

2
[gσx(x̄, 0)]

i
a[(x− x̄)]a[σ]

+
1

2
[gσσ(x̄, 0)]

i[σ][σ]

[h(x, σ)]j = [h(x̄, 0)]j + [hx(x̄, 0)]
j
a[(x− x̄)]a + [hσ(x̄, 0)]

j[σ]

+
1

2
[hxx(x̄, 0)]

j
ab[(x− x̄)]a[(x− x̄)]b

+
1

2
[hxσ(x̄, 0)]

j
a[(x− x̄)]a[σ]

+
1

2
[hσx(x̄, 0)]

j
a[(x− x̄)]a[σ]

+
1

2
[hσσ(x̄, 0)]

j[σ][σ],

4

where i = 1, . . . , ny, a, b = 1, . . . , nx, and j = 1, . . . , nx. The unknowns of this expansion
are [gxx]

i
ab, [gxσ]

i
a, [gσx]

i
a, [gσσ]

i, [hxx]
j
ab, [hxσ]

j
a, [hσx]

j
a, [hσσ]

j , where we have omitted the
argument (x̄, 0). These coefficients can be identified by taking the derivative of F (x, σ) with
respect to x and σ twice and evaluating them at (x, σ) = (x̄, 0). By the arguments provided
earlier, these derivatives must be zero. Specifically, we use Fxx(x̄, 0) to identify gxx(x̄, 0) and
hxx(x̄, 0). That is,

2

[Fxx(x̄, 0)]
i
jk =

(
[fy′y′]iαγ [gx]

γ
δ [hx]

δ
k + [fy′y]

i
αγ [gx]

γ
k + [fy′x′]iαδ[hx]

δ
k + [fy′x]

i
αk

)
[gx]

α
β [hx]

β
j

+[fy′]iα[gxx]
α
βδ[hx]

δ
k[hx]

β
j

+[fy′]iα[gx]
α
β [hxx]

β
jk

+
(
[fyy′]iαγ [gx]

γ
δ [hx]

δ
k + [fyy]

i
αγ [gx]

γ
k + [fyx′]iαδ[hx]

δ
k + [fyx]

i
αk

)
[gx]

α
j

+[fy]
i
α[gxx]

α
jk

+
(
[fx′y′]iβγ [gx]

γ
δ [hx]

δ
k + [fx′y]

i
βγ[gx]

γ
k + [fx′x′]iβδ[hx]

δ
k + [fx′x]

i
βk

)
[hx]

β
j

+[fx′]iβ [hxx]
β
jk

+[fxy′]ijγ[gx]
γ
δ [hx]

δ
k + [fxy]

i
jγ[gx]

γ
k + [fxx′]ijδ[hx]

δ
k + [fxx]

i
jk

= 0; i = 1, . . . n, j, k, β, δ = 1, . . . nx; α, γ = 1, . . . ny.

Since we know the derivatives of f as well as the first derivatives of g and h evaluated at
(y′, y, x′, x) = (ȳ, ȳ, x̄, x̄), it follows that the above expression represents a system of n×nx×nx

linear equations in the n× nx × nx unknowns given by the elements of gxx and hxx.
Similarly, gσσ and hσσ can be obtained by solving the linear system Fσσ(x̄, 0) = 0. More

explicitly,

[Fσσ(x̄, 0)]
i = [fy′]iα[gx]

α
β [hσσ]

β

+[fy′y′]iαγ [gx]
γ
δ [η]

δ
ξ[gx]

α
β [η]

β
φ[I]

φ
ξ

+[fy′x′]iαδ[η]
δ
ξ[gx]

α
β [η]

β
φ[I]

φ
ξ

+[fy′]iα[gxx]
α
βδ[η]

δ
ξ[η]

β
φ[I]

φ
ξ

+[fy′]iα[gσσ]
α (8)

+[fy]
i
α[gσσ]

α

+[fx′]iβ[hσσ]
β

+[fx′y′]iβγ[gx]
γ
δ [η]

δ
ξ[η]

β
φ[I]

φ
ξ

+[fx′x′]iβδ[η]
δ
ξ[η]

β
φ[I]

φ
ξ

= 0; i = 1, . . . , n; α, γ = 1, . . . , ny; β, δ = 1, . . . , nx; φ, ξ = 1, . . . , nε.

This is a system of n linear equations in the n linear unknowns given by the elements of gσσ

and hσσ.

2At this point, an additional word about tensor notation is in order. Take for example the expression
[fy′y′]iαγ . Note that fy′y′ is a three dimensional array with n rows, ny columns, and ny pages. Then [fy′y′]iαγ

denotes the element of fy′y′ located at the intersection of row i, column α and page γ.

5

Finally, we show that the cross derivatives gxσ and hxσ are equal to zero when evaluated
at (x̄, 0). We write the system Fσx(x̄, 0) = 0 taking into account that all terms containing
either gσ or hσ are zero at (x̄, 0). Then we have,

[Fσx(x̄, 0)]
i
j = [fy′]iα[gx]

α
β [hσx]

β
j + [fy′]iα[gσx]

α
γ [hx]

γ
j + [fy]

i
α[gσx]

α
j + [fx′]iβ [hσx]

β
j

= 0; i = 1, . . . n; α = 1, . . . , ny; β, γ, j = 1, . . . , nx. (9)

This is a system of n×nx equations in the n×nx unknowns given by the elements of gσx and
hσx. But clearly, the system is homogeneous in the unknowns. Thus, if a unique solution
exists, it is given by

gσx = 0

and
hσx = 0.

3.3 Higher-order approximations

It is straightforward to apply the method described thus far to finding higher-order ap-
proximations to the policy function. For example, given the first- and second-order terms
of the Taylor expansion of h and g, the third-order terms can be identified by solving a
linear system of equations. More generally, one can construct sequentially the nth-order
approximation of the policy function by solving a linear system of equations whose (known)
coefficients are the lower-order terms and the derivatives up to order n of f evaluated at
(y′, y, x′, x) = (ȳ, ȳ, x̄, x̄).

4 An Application: The Neoclassical Growth Model

In this section we apply the second-order approximation method to solve the the simple
neoclassical model, described in section 2.1.

We calibrate the model by setting β = 0.95, δ = 1, α = 0.3, ρ = 0, and γ = 2. We choose
these parameter values to facilitate comparison with the results obtained by applying Sims’s
(2000) method.3 Here we are interested in a quadratic approximation to the policy function
around the natural logarithm of the steady state. Thus, unlike in section 2.1, we now define:

xt =

[
ln kt

lnAt

]

and
yt = ln ct.

Then the steady-state values of yt and xt, which coincide with the constant terms of the
quadratic expansion of g and h, respectively, are:

ȳ = −0.8734.

3See the MATLAB script sessionEG.m in Sims’s website (http://eco-
072399b.princeton.edu/yftp/gensys2/GrowthEG)

6

and

x̄ =

[−1.7932
0

]

The coefficients of the linear terms are:

gx = [0.2525 0.8417]

and

hx =

[
0.4191 1.3970
0.0000 0.0000

]

The coefficients of the quadratic terms are given by:

gxx(:, :, 1) = [−0.0051 − 0.0171]

gxx(:, :, 2) = [−0.0171 − 0.0569]

and

hxx(:, :, 1) =

[−0.0070 −0.0233
0 0

]

hxx(:, :, 2) =

[−0.0233 −0.0778
0 0

]

Finally, the coefficients of the quadratic terms in σ are:

gσσ = −0.1921

and

hσσ =

[
0.4820

0

]
.

A more familiar representation is given by the evolution of the original variables. Let

ĉt ≡ ln(ct/c̄)

and
k̂t ≡ ln(kt/k̄).

Then, the laws of motion of these two variables is given by

ĉt = 0.2525k̂t + 0.8417Ât +
1

2

[
−0.0051k̂2

t − 0.0341k̂tÂt − 0.0569Â2
t − 0.1921σ2

]

and

k̂t+1 = 0.4191k̂t + 1.3970Ât +
1

2

[
−0.0070k̂2

t − 0.0467k̂tÂt − 0.0778Â2
t + 0.4820σ2

]
.

7

5 Matlab Codes

We prepared a set of Matlab codes that implements the second-order approximation devel-
oped above. The programs can be found on line at http://www.econ.upenn.edu/∼uribe/2nd order.htm.

The program gx hx.m computes the matrices gx and hx. The inputs to the program are
the first derivatives of f evaluated at the steady state. That is, fy, fx,fy′ , and fx′. This
step amounts to obtaining a first-order approximation to the policy functions. A number
of packages are available for this purpose. We use the one prepared by Paul Klein of the
University of Western Ontario, which consists of the three programs solab.m, qzswitch.m,
and reorder.m.

The program gxx hxx.m computes the arrays gxx and hxx. The inputs to the program
are the first and second derivatives of f evaluated at the steady state and the matrices gx

and hx produced by gx hx.m.
The program gss hss.m computes the arrays gσσ and hσσ. The inputs to the program are

the first and second derivatives of f evaluated at the steady state, the matrices gx and hx

produced by the program gx hx.m, the array gxx produced by the program gxx hxx.m, and
the matrix η.

5.1 Computing the derivatives of f

Computing the derivatives of f , particularly the second derivatives, can be a daunting task if
the model is large. We approach this problem as follows. The MATLAB Toolbox Symbolic
Math can handle analytical derivatives. We wrote programs that compute the analytical
derivatives of f and evaluate them at the steady state:

The program anal deriv.m computes the analytical derivatives of f and the program
num eval.m evaluates the analytical derivatives of f at the steady state.

5.2 Example: The Neoclassical Growth Model

To illustrate the use of the programs described thus far, we include the programs needed to
obtain the second-order approximation to the decision rules of the simple neoclassical model
discussed in section 4. To obtain the second-order approximation to the policy functions
of the neoclassical growth model run the program neoclassical model run.m. The output of
this program are the matrices gx and hx and the arrays gxx, hxx, gσσ and hσσ.

This program calls the program neoclassical model.m, which produces the first- and
second derivatives of f . More generally, neoclassical model.m illustrates how to write down
analytically the equations of a DSGE model using the MATLAB Toolbox Symbolic Math.

8

References

Collard, Fabrice, and Michel Juillard, “Perturbation Methods for Rational Expectations
Models,” Manuscript. Paris: CEPREMAP, February 2001.

Judd, Kenneth, Numerical Methods in Economics, Cambridge, MA, MIT Press, 1998.

Kim, Jinill and Sunghyun Henry Kim, “Inaccuracy of Log-Linear Approximation in Welfare
Calculations: The Case of International Risk Sharing,” Manuscript. Charlottesville: The
University of Virginia, October 1998.

King, R.G., C.L. Plosser and S.T. Rebelo, “Production, Growth and Business Cycles I: The
Basic Neoclassical Model,” Journal of Monetary Economics 21, 1988, 191-232.

Kydland, Finn and Edward Prescott, “Time to Build and Aggregate Fluctuations,” Econo-
metrica 50, November 1982, 1345-1370.

Sims, Christopher, “Second Order Accurate Solution of Discrete Time Dynamic Equilibrium
Models,” Manuscript. Princeton: Princeton University, December 2000.

Woodford, Michael, “Inflation Stabilization and Welfare,” Manuscript. Princeton: Prince-
ton University, June 1999.

9

