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Abstract

In this paper we study the impact of misreported treatment status on the estimation of
causal treatment effects. We characterise the bias introduced by misclassification on the
average treatment effect on the treated under the assumption of selection on observables.
Although the bias of matching-type estimators computed from misclassified data cannot in
general be signed, we show that the bias is most likely to be downward if misclassification
does not depend on variables entering the selection-on-observables assumption, or only
depends on such variables via the propensity score index. We extend the framework to
multiple treatments. We provide results to bound the returns to a number of educational
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variables to cancel out.
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1 Introduction

Countless theoretical and applied work has addressed itself to the evaluation problem, that is

to the measurement of the causal impact of a generic ‘treatment’ on one or more outcomes of

interest (for a review see Heckman, LaLonde and Smith, 1999, and Imbens, 2004). Especially in

applied work, interest mostly lies in recovering the average effect of the treatment on the sub-

population of participants - the average treatment effect on the treated (ATT in the following).

While endogeneity of treatment status has been the main preoccupation of both theoretical

and empirical research, measurement error in recorded treatment status and its consequences

for the estimation of causal effects has received far less attention (Molinari, 2004, Lewbel,

2005, and Mahajan, 2006, are the only examples we are aware of). However, in empirical

applications the possibility of misrecorded treatment status is far from negligible. Examples

include the returns to work-related training, where the occurrence of training is typically self-

reported by individuals who are asked to recall whether they have undertaken any course

for work purposes; the effects of programmes (or policy schemes) in which participation (or

eligibility) is not recorded in administrative data and the treatment status is obtained from

survey respondents, who have been typically shown to have rather poor recall or awareness

of the kind of schemes they are in; the effects of government schemes where the researcher

cannot directly observe or measure actual take-up and has to ‘impute’ the treatment status

(e.g. eligibility to some means-tested benefits); or a randomised study where the extent of

actual compliance (in terms of participants failing to take the treatment and/or controls taking

an alternative one) is not recorded in the data. A more general class of example applications

comprises those situations in which the treatment status is derived by splitting the sample

based on an underlying continuous variable which is itself potentially measured with error (e.g.

income or consumption to define poverty status, or firm size to define some form of eligibility).

Since the treatment indicator is a binary or categorical variable, any measurement error

will by construction vary with the true treatment status (e.g. Aigner, 1973, or Card, 1996).

In the presence of such non-classical errors, OLS estimates are biased, though not necessarily

downward, and so would standard IV (e.g. Bound, Brown and Mathiowetz, 2001).1

1By contrast, if it were a continuous variable to be affected by measurement error, standard results show
that OLS estimates would be downward biased, while appropriate IV methods applied to the linear regression
model would provide consistent estimates.
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In this paper we study the impact of misreported treatment status on the estimation of

causal treatment effects. In particular, we characterise the bias introduced by misclassification

on the ATT under the assumption of selection on observables, and derive results for partial

identification that do not rely on additional information (e.g. multiple measures or instrument-

like variables) and that can be implemented in a non/semi-parametric fashion. We further

extend the framework to multiple treatments.

The causal effects that motivated this paper are the wage returns to educational qualifica-

tions in the UK. While the estimation of the return to education is amongst the most explored

and prolific areas in labour economics and attracts constant policy interest (for a discussion, see

Blundell, Dearden and Sianesi, 2004), there is a real possibility of errors in education data: in

addition to data transcript errors, survey respondents may either over-report their attainment,

simply not remember, or just not know if the schooling they have had counts as a qualifica-

tion. As to the latter in particular, the British education system is remarkably complex, with a

plethora of different - and changing - sub-qualifications classified in broader levels, often based

on obtained grades.

The received wisdom from the studies on the returns to years of education has traditionally

been that the upward bias from omitted ‘ability’ variables and the downward bias from (clas-

sical) measurement error largely cancel each other out (for a review see in particular Griliches,

1977, and Card, 1999; for a recent UK study see Bonjour et al., 2003). Such a continuous

years-of-schooling measure, although particularly convenient, imposes the restriction that the

returns increase linearly with each additional year, irrespective of the level and type of educa-

tional qualifications the years refer to. In the UK and other European countries, however, there

are alternative nationally-based routes leading to quite different educational qualifications, and

the importance of distinguishing between different types of qualifications and allowing each to

have a separate effect on earnings is widely accepted (see the discussion in Blundell, Dearden

and Sianesi, 2005). With a categorical qualification-based measure of education, however, as

mentioned above the assumption of classical measurement error cannot hold, as individuals

in the lowest category can never under-report their education level and individuals in the top

category cannot over-report. Given that OLS estimates are not necessarily downward biased,

the cancelling out of the ability and measurement error biases cannot be expected to hold in

general. Moreover, the IV methodology cannot provide consistent estimates of the returns to
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qualifications.

To date, empirical evidence on the importance of these issues for the estimation of returns

to education is restricted to the US, where it was in fact shown that measurement error might

play a non-negligible role, as we review in the section below. For the UK there are no estimates

of the returns to educational qualifications that adequately correct for measurement error.

This is of great concern, in view of the stronger emphasis on returns to discrete levels of

educational qualifications in the UK and given the widespread belief amongst UK researchers

and policymakers that ability and measurement error biases still cancel out (Dearden, 1999b,

Dearden et al., 2002, and McIntosh, 2004).

When an instrument-like variable, or an additional, independent measure of the treatment

of interest becomes available, point identification of returns can be achieved (Lewbel, 2005, and

Mahajan, 2006). In our companion paper (Battistin and Sianesi, 2006) we exploit the charac-

terisation of the bias developed in this paper together with repeated measurements of individual

educational qualifications to arrive at point estimates of the returns to educational qualifications

that allow for measurement error. However, multiple measures are far from being the norm in

practical applications; this paper thus suggests a bounding approach and corresponding sensi-

tivity analysis that while easy to implement can provide an often quite informative robustness

check. In most instances, restrictions on the nature of reporting errors can be obtained by

looking at results from previous research and/or behavioural theories that seem reasonable for

the phenomenon under investigation; alternatively, bounds can be calculated for a range of

plausible values of reporting errors to assess the robustness of the evaluation inference to the

presence of misclassification.

This paper provides a number of new contributions of considerable policy and practical

relevance, as well as of more general methodological interest. We start by characterising the

bias introduced by misclassification on the average treatment effect on the treated under the

assumption of selection on observables (or conditional independence). To the best of our knowl-

edge, all papers dealing with this issue only consider the treatment effect for a given value of the

observable characteristics. Although the resulting bias of matching-type estimators computed

from misclassified data cannot in general be signed, we show that the bias is most likely to be

downward if misclassification does not depend on variables entering the selection-on-observables

assumption, or if misclassification only depends on such variables via the propensity score index.
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We further extend our approach to a multiple-treatment framework, which becomes neces-

sary if interest lies in estimating the incremental impacts of multiple treatments and in fact

the impacts of binary but more narrowly-defined treatments that do not split up the entire

population. In either of such cases, account needs to be taken of the potential misclassification

in the reporting of all treatment levels, not just in the two ones being considered. Further-

more, as we argue in more detail in Section 6, the move to a multiple treatment framework

is often necessary just to be able to justify the non-differential misclassification assumption

widely invoked in the literature (see Bound, Brown and Mathiowetz, 2001).

The characterisation of the bias we provide straightforwardly suggests the derivation of

bounds for the ATT(s) by making a priori assumptions on the extent of misclassification. Such

bounds can be derived by exploiting the observed propensity score in a non/semi-parametric

way, in particular allowing for arbitrarily heterogeneous individual returns, for arbitrary non-

linearities in the no-treatment outcome equation and for misreporting probabilities to depend

on individual characteristics, albeit only through the propensity score.

In our empirical application we implement this approach and provide bounds to the returns

to a number of educational qualifications in the UK, both in a binary and multiple-treatment

setting. To motivate the conditional independence assumption we rely on Blundell, Dearden

and Sianesi (2005) who could not find any strong evidence of remaining selection bias given the

information available in that data.

Further, by using the uniquely rich National Child Development Survey (NCDS) data we

assess the plausibility that the biases from measurement error and from omitted variables cancel

out in the estimation of returns in the UK. If this were the case, to estimate up-to-date returns

to qualifications policy-makers could simply rely on Labour Force Survey-type datasets, which

totally rely on recall about individuals’ and do not contain any information on individual ability

and family background.

The remainder of the paper is organized as follows. First, in Section 2 we start by reviewing

the evidence on measurement error and returns to educational qualifications. Section 3 sets out

the general evaluation framework, while Section 4 introduces the possibility of misclassification

in the treatment status. In Section 5 we show the consequences that such reporting errors

might have for the estimation of causal treatment effects. In Section 6 we discuss how to

extend our identification strategy to deal with misreporting of categorical treatments. Section
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7 discusses how information in the NCDS will allow us to implement this strategy under fairly

weak assumptions on the nature of the data collected, and defines our parameters of interest.

In Section 8 we first sketch our strategy for partial identification of causal effects in the presence

of misclassification, before presenting and discussing our results. Section 9 concludes.

2 The evidence so far

Whilst use of years of completed education has a long history in the US, for the UK most

authors prefer qualification-based measures of educational attainment. Recent examples include

Robinson (1997), Dearden (1999a,b), Blundell et al. (2000), Gosling, Machin and Meghir

(2000), Conlon (2001), Blanden et al. (2002), Dearden et al. (2002), Galindo-Rueda and

Vignoles (2003), McIntosh (2004) and Blundell, Dearden and Sianesi (2005).2

However despite the importance of schooling both as an outcome and as an explanatory

variable, hardly any effort has been devoted to assessing either the accuracy of widely used

survey reports of educational attainment in the UK, or the impact that misreporting might

have on estimated returns to education.3 To date, the only work in the latter direction is

Dearden (1999b) and Dearden et al. (2000 and 2002), who however ignore the non-classical

nature of measurement error caused by misreporting of discrete qualifications and conclude

that measurement error bias and omitted ability bias largely cancel out in the estimation of

returns. Indeed, some recent work based on the UK Labour Force Survey (e.g. McIntosh, 2004)

at times appeals to this result.

As a starting point and a benchmark it is thus worth considering the evidence on categorical

education measures available for the US, most of which being provided by the study by Kane,

Rouse and Staiger (1999) (see also the work referred to by Card, 1999). Overall, misreporting

was found to be more likely to happen for low levels of qualification, with over-reporting being

more likely than under-reporting (see also Black, Sanders and Taylor, 2003) and events such

as degree completion being more accurately reported than completed years of college. Inter-

estingly, transcript measures were often found to be subject to at least as much – and at times

even more! – measurement error as self-reported survey measures.

2For a review and summary of some recent work on returns to qualifications, see Sianesi (2003).
3Ives (1984) only offers a descriptive study of the mismatch between self-reported and administrative infor-

mation on qualifications in the NCDS, finding serious discrepancies particularly for the lower-level academic
qualifications.
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With regard to their more specific findings, extensive measurement error was found in self-

reported measures for those completing less than 12 years of schooling (i.e. the high-school

drop-outs). As to bachelor’s degree attainment, they found that 95 percent of those with a

degree reported so accurately and less than 1 percent of those without a degree misreported

having one, with self-reported information being actually more accurate than information from

administrative data. As to years of college completed, however, both measures were found

to be often inaccurate. In particular, 6 percent of those with no completed years of college

misreported to have completed some, and 6 percent of those who had completed some college

misreported to have completed none. Estimates of returns that ignore such misclassification

were found to be severely biased, either upwards or downwards depending on the educational

level of interest. Similarly, the application in Lewbel (2005) points to seriously inaccurate

transcript information as to degree attainment and finds that allowing for misclassification has

a considerable impact on estimated returns to college, leading to around a 5-fold increase in

the return to a degree.

3 The evaluation set-up

3.1 Potential outcomes framework

The measurement of the causal impact of a generic ‘treatment’ can be fruitfully framed within

the potential outcome framework.4 In the next section we extend such a framework to study the

consequences for the identification of causal effects of allowing measurement error in recorded

treatment status. The specific evaluation problem we have in mind is the measurement of the

returns to educational qualifications – that is of the causal effects of qualifications on individual

(log) wages in the population of interest – when measurement error affects the reporting of

education.

To ease the exposition we start by considering the binary treatment setting, with treatment

defined by having achieved an educational outcome or not, denoted by D∗ = 1 and D∗ = 0. Ex-

amples include completing college compared to not doing so, or attaining any qualification com-

pared to dropping out of high-school with none. The generalization to the multiple-treatment

4For reviews of the evaluation problem see Heckman, LaLonde and Smith (1999) and Imbens (2004). For
the potential outcome framework, the main references are Fisher (1935), Neyman (1935), Roy (1951), Quandt
(1972) and Rubin (1974).
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case, though notationally more demanding, proceeds along the same lines and will be consid-

ered in Section 6. To ease the comparison with the general evaluation literature, we will often

refer to individuals with D∗ = 1 as the group of ‘participants’ (in the educational qualification

of interest) and to those with D∗ = 0 as the group of ‘non-participants’.

Letting Y1 be the wage if the individual were to achieve the qualification of interest and

Y0 the wage if the individual were not to achieve the qualification, the individual causal effect

(or return) of achieving the qualification is defined as the difference between the two potential

outcomes, Y1−Y0. The observed individual wage can then be written as Y = Y0 +D∗(Y1−Y0),

with Y = Y1 if the individual is a participant and Y = Y0 if the individual is a non-participant.

This set-up is extremely general, in particular it does not assume that the returns to a given

qualification are homogeneous across individuals.5

Since no individual can be in two different educational states at the same time, either Y1

or Y0 is missing, which makes it impossible to ever observe the individual return. A more

modest though still challenging aim is to identify the average return in some population of

interest. The group which has traditionally received most attention in the evaluation literature

is the group of treated. In our case, the average effect of treatment on the treated (ATT)

represents the average return to education for those individuals who have chosen to undertake

the qualification of interest:

∆∗ ≡ E(Y1 − Y0|D∗ = 1) = E(Y1|D∗ = 1)− E(Y0|D∗ = 1). (1)

This is the parameter of interest when the ‘treatment’ is voluntary, and is the one needed for a

cost-benefit analysis. Given that achievement of (post-compulsory) educational qualifications is

voluntary, in this paper we shall focus on the ATT, capturing the average payoff to individuals’

own educational choices.6

5Note however that for this representation to be meaningful, the stable unit-treatment value assumption
needs to be satisfied (Rubin, 1980), requiring that an individual’s potential outcomes as well as the chosen
education level are independent from the schooling choices of other individuals in the population.

6An additional reason to focus on this parameter relates to the relative ease of its identification. Identification
of the average effect of treatment on the non-treated, or of the average treatment effect requires more restrictive
assumptions, and was in fact found to be too demanding on the data we use (see Blundell, Dearden and Sianesi,
2005).
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3.2 Identification in the absence of misclassification

As to the identification of the ATT, the first term in (1) is observed, since E(Y1|D∗ = 1) =

E(Y |D∗ = 1) for individuals acquiring the qualification. The average unobserved counterfactual

E(Y0|D∗ = 1) needs however to be somehow constructed on the basis of some usually untestable

identifying assumptions.

As we aim to characterize the impact of measurement error in the reporting of D∗, in what

follows we will assume that the outcome-relevant differences in the composition of participants

and non-participants can purely be attributed to observable characteristics (selection on ob-

servables or conditional independence assumption), or, in other words, that D∗ is exogenous

given X:

Assumption 1 (Conditional Independence Assumption) Conditional on a set of observ-

able variables X, the educational choice D∗ is mean independent of the no-education outcome

Y0:

E(Y0|D∗, X) = E(Y0|X).

This assumption requires the evaluator to observe all those characteristics that jointly affect

the decision to acquire the qualification of interest and potential wages in the absence of that

educational investment. Its plausibility for our empirical application, and in particular the issue

of ‘ability bias’, will be addressed in the data section.

To give empirical content to Assumption 1, we also require the following condition on the

support of the X variables:

Assumption 2 (Common Support) For all values X, there are both participants and non-

participants, that is

0 < e∗(x) ≡ Pr(D∗ = 1|X = x) < 1, ∀x

where e∗(x) is the propensity score.

Under Assumptions 1 and 2, the causal effect of education for those who participated in

education – that is the ATT parameter (1) – is identified as:

∆∗ =

∫
∆∗(x)f(x|D∗ = 1)dx, (2)
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where

∆∗(x) ≡ E(Y1 − Y0|x) = E(Y |D∗ = 1, x)− E(Y |D∗ = 0, x)

is the conditional treatment effect, that is the average treatment effect (or average return) for

individuals with characteristics X = x. Note that, because of Assumption 2, the conditional

effect is well defined for all values X in the population. This effect is integrated with respect

to the distribution of X for participants.7

4 Misclassified treatment status

4.1 General formulation of the problem

Either because individuals are left to self-report their qualifications or because of transript

errors, the treatment status D which is recorded in the data may differ from the actual status

D∗. By analogy to the definition of D∗, let D = 1 be the group of individuals who self-report

to have attained the educational qualification of interest, and D = 0 the group of individuals

reporting not to have attained it.

In the absence of measurement error, data are informative about (Y, D∗, X); as seen above,

estimators based on Assumptions 1 and 2 establish a correspondence between this triple and

the parameter of interest in (1). By contrast when qualifications are misreported, data are

informative about the distribution of measurement-error contaminated variables. If measure-

ment error is ignored, or not perceived, causal effects will thus be inferred using realizations of

(Y, D,X) as if they were realizations of (Y, D∗, X), and analogue estimators of (2) will therefore

be constructed from (Y, D,X).

In particular, the object that can be computed from the observed data is:

∫

S
∆(x)f(x|D = 1)dx ≡ ∆, (3)

where:

∆(x) ≡ E(Y |D = 1, x)− E(Y |D = 0, x),

S ≡ {x : 0 < e(x) ≡ Pr(D = 1|X = x) < 1}.
7In its bare essentials, estimation proceeds by considering the empirical analogues of the quantities on

the right-hand-side of (2). In particular one can perform any type of semi/non-parametric estimation of the
conditional expectation function in the non-participation group, E(Y |D∗ = 0, x), and then average it over
the distribution of X in the participants’ group (within the common support). One way of implementing this
non-parametric regression is via matching methods (see Imbens, 2004, for a review).
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Hence S is the observed common support for the self-reported participants in education and

e(x) is the propensity score calculated from the mismeasured qualification D. It is worth noting

that, as we will discuss further below, although Assumption 2 implies that the true score e∗(x)

is strictly between zero and one, misclassification can cause the observed score e(x) to take on

values at the boundaries. It is also worth noting that estimators of the ATT based on e(x) (e.g.

estimators based on propensity score matching or re-weighting) are equivalent to the estimator

defined by the empirical analogue of (3), as we have that:

∆ =

∫

S
∆[e(x)]f [e(x)|D = 1]de. (4)

The result straightforwardly follows from x being finer than e(x) and by the balancing property

of the propensity scores (see Rosenbaum and Rubin, 1983).

Since some individuals with D∗ = 0 will erroneously be misclassified as participants on the

basis of the error-affected indicator D and only part of those individuals reporting D = 1 have

actually got the qualification of interest, the estimation of causal effects based on (Y,D,X) will

in general be biased for treatment effects, with the magnitude of this bias depending on the

extent of misclassification. This is shown in Section 5.3, where we derive the difference between

the causal parameter of interest that would consistently be estimated if we observed the correct

triple (Y,D∗, X) and the parameter that would instead be estimated from the observable triple

(Y, D,X) – namely ∆.

4.2 The misclassification probabilities

In what follows we build on Molinari (2004) to introduce the notation required to study this

problem, as well as the assumption on the classification errors we will maintain throughout

(Assumption 3). We start by defining the (mis)classification probabilities as

λij(x) ≡ Pr(D∗ = i|D = j, x), i, j ∈ {0, 1},

which may in general depend on X. In the binary case, there are two types of misclassification:

λ10(x), the proportion of true participants amongst those reporting D = 0; and λ01(x), the

proportion of true non-participants amongst those with D = 1.

Of recurrent use will be the probabilities of exact classification:

λ00(x) ≡ λ0(x) = Pr(D∗ = 0|D = 0, x),

λ11(x) ≡ λ1(x) = Pr(D∗ = 1|D = 0, x),

11



where for ease of notation only one subscript is retained.8 It is convenient to collect the

(mis)classification probabilities into the matrix of (mis)classification probabilities :

Π(x) =

[
λ0(x) 1− λ0(x)

1− λ1(x) λ1(x)

]
.

Throughout our discussion, we will assume that the classification error is non-differential,

as this can help us write down relatively detailed but still manageable models (see Bound,

Brown and Mathiowetz, 2001). Accordingly, we will maintain the assumption that, conditional

on a person’s actual qualification and on other covariates, reporting errors are independent of

earnings.

Assumption 3 (Non-Differential Misclassification given X) Any variable D which

proxies D∗ does not contain information to predict the outcome of interest Y conditional on D∗

and X:

E(Y |D∗, D,X) = E(Y |D∗, X).

For the binary treatment case, this amounts to the following two conditions:

(a) E(Y0|D∗ = 0, D = 1, X) = E(Y0|D∗ = 0, D = 0, X),

(b) E(Y1|D∗ = 1, D = 1, X) = E(Y1|D∗ = 1, D = 0, X).

These two conditions highlight how this assumption would not hold if an individual’s propen-

sity to misreport treatment status is related to outcomes. In particular, note that (b) is implied

by:

E(Y0|D∗ = 1, D = 1, X) = E(Y0|D∗ = 1, D = 0, X)

and

E(Y1 − Y0|D∗ = 1, D = 1, X) = E(Y1 − Y0|D∗ = 1, D = 0, X).

Thus Assumption 3 would be violated if those graduates (D∗ = 1) who experience a very

low Y1 - either because they have received a negative productivity shock to their no-education

earnings and/or because they have reaped a very low if not negative return from their degree

- are more inclined to deny possessing the qualification. In addition to such type of behaviour

by respondents, there is a more technical consideration that would in fact guarantee a violation

8The (mis)classification probabilities can also be defined conditional on the true treatment status: γ1 =
Pr(D = 1|D∗ = 1) and γ0 = Pr(D = 0|D∗ = 0). These γ’s are linked to our λ’s via Bayes’ Theorem.
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of this assumption. If in defining the treatment indicator one were to ignore a feature of the

treatment that affects both its effect and recall precision, Assumption 3 would by construction

break down. The obvious solution to this is to refine the treatment to fully reflect the feature

causing the violation, thus extending the framework to look at the treatment components

separately. We further elaborate on this issue in Section 6, where we turn to multiple treatments.

Under Assumption 3, individuals for whom we observe D = d are a mixture of participants

(D∗ = 1) and non participants (D∗ = 0), with mixing weights given by the (mis)classification

probabilities. This result can be written compactly in matrix algebra notation as

[
E(Y |D = 0, x)
E(Y |D = 1, x)

]
= Π(x)

[
E(Y |D∗ = 0, x)
E(Y |D∗ = 1, x)

]
,

from which we have that

Π−1(x)

[
E(Y |D = 0, x)
E(Y |D = 1, x)

]
=

[
E(Y |D∗ = 0, x)
E(Y |D∗ = 1, x)

]
. (5)

provided that det[Π(x)] = λ0(x) + λ1(x)− 1 6= 0. We formalise this condition as:

Assumption 4 (Informative Recorded Treatment Status) Misclassification is such that

λ1(x) + λ0(x)− 1 6= 0,

namely

Pr(D∗ = 1|D = 1, X) 6= Pr(D∗ = 1|D = 0, X)

for all values X.

Assumption 4 appears reasonable. It requires that conditional on X, the proportion of true

graduates among those who self-report having a degree be different from the proportion of true

graduates among those who self-report not having a degree; or in other words, that the marginal

effect of recorded status D on true status D∗ conditional on X is non-zero. Assumption 4 only

requires inequality; it is however convenient to spell out here the two possible cases:

4-(a) λ1(x) + λ0(x) > 1 ⇔ Pr(D∗ = 1|D = 1, X) > Pr(D∗ = 1|D = 0, X),

4-(b) λ1(x) + λ0(x) < 1 ⇔ Pr(D∗ = 1|D = 1, X) < Pr(D∗ = 1|D = 0, X).

Case 4-(b) represents a case of such extensive misclassification for it to be more likely

to randomly draw a true graduate from the group reporting no degree than from the group
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reporting a degree. By contrast, case 4-(a) is a situation of limited misclassification in the

sense that, given X, the proportion of true graduates among those reporting to have a degree is

higher than the proportion of true graduates among those reporting not to have a degree. This

represents the most likely case, and is also implied by the assumption that observations on D

are more accurate than pure guesses once X is corrected for, i.e. λ1(x) > 0.5 and λ0(x) > 0.5

(see e.g. Bollinger, 1996).9

5 The bias introduced by misclassification

5.1 Bias on the conditional treatment effect

In deriving how the parameter that can be recovered from the observed data (3) compares

to the causal parameter of interest (2), we start by considering the bias introduced in the

estimation of the causal treatment effect conditional on X, that is on ∆∗(x). This bias can be

straightforwardly characterized using (5). The result in (6) coincides with the result in Lewbel

(2005), and more in general follows from Aigner (1973). The proof is reported in the Appendix.

Proposition 1 (Bias on Treatment Effects given X) If Assumptions 1 to 4 are satisfied,

it follows that

∆∗(x) =
∆(x)

λ0(x) + λ1(x)− 1
. (6)

Accordingly, the estimates of ∆∗(x) based on the triple (Y,D, X) are always biased towards

zero, but possibly with the opposite sign if the measurement error is very strong (the denomina-

tor being negative in case 4-(b)). In terms of the conditional treatment effect, therefore, an at-

tenuation bias result still holds. An interesting implication of (6) is that ∆(x) = 0 ⇔ ∆∗(x) = 0,

so that the raw difference in observed outcomes given X being zero actually implies that

the true conditional treatment effect is zero. Finally, if there is no misclassification (that is,

λ0(x) = λ1(x) = 1), then of course ∆(x) = ∆∗(x); and if there is complete reversal in the

classification (that is, λ0(x) = λ1(x) = 0), then ∆(x) = −∆∗(x).

9Another way to look at this is to note that Cov(D, D∗|x) = (λ1(x) + λ0(x)− 1)V ar(D|x). Hence the sign
of λ1(x) + λ0(x)− 1 determines the sign of the correlation between D and D∗. Case 4-(a) can then be seen as
preventing measurement error to be so severe as to reverse the (positive) correlation between the observed and
the true treatment measures.
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5.2 Support condition

We have thus far defined the bias for the treatment effect conditional on a given value of

the vector X. In order to characterize the bias for the ATT, we have to integrate over the

distribution of X in the treated group, which brings us to discuss support issues. As we

pointed out earlier in this paper, although Assumption 2 ensures that at each point in the

support of the X distribution there are both individuals with D∗ = 1 and with D∗ = 0, the

extent of misclassification can be such that the same condition does not hold for individuals

with D = 1 and D = 0.

To see this, we use the law of iterated expectations to write e∗(x) in terms of e(x):

e∗(x) = [1− λ0(x)] + e(x)[λ0(x) + λ1(x)− 1],

so that, solving for e(x) and using Assumption 4:

e(x) =
e∗(x)− [1− λ0(x)]

λ0(x) + λ1(x)− 1
.

from which we see that e(x) will take on values at the boundaries according to:

e(x) = 0 ⇔ λ0(x) = 1− e∗(x),

e(x) = 1 ⇔ λ1(x) = e∗(x).

It follows that the parameter (3) estimated from the triple (Y, D, X) could in general refer to

a different population than the one implied by (Y, D∗, X).

To avoid this, we ensure that e(x) is strictly between 0 and 1 for all values of X by assuming:

Assumption 5 (Restriction on the extent of misclassification) Misclassification is

such that at each value X, at least one holds among

λ0(x) 6= 1− e∗(x)

λ1(x) 6= e∗(x)

(the other one holding automatically given Assumption 4).

We make this assumption for formal convenience, in that it allows us to treat the common

support in the presence of measurement error as the true common support. If this were not

the case, the integrals in the following would be defined over a different subset of the truly
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treated. More specifically, if Assumption 5 does not hold and we imposed common support

based on e(x), true participants not belonging to the observed S may be discarded so that the

ATT estimated from (Y, D,X) would refer to a different population of participants than the

population of participants the true ATT refers to.

5.3 Bias on the treatment effect on the treated

If one were interested in the average treatment effect (ATE), that is the average return for an

individual irrespective of whether the qualification of interest has been acquired or not:

E(Y1 − Y0) =

∫
∆∗(x)f(x)dx,

the discussion could stop here.10 In particular, one would only need to integrate the conditional

average treatment effect ∆∗(x) over the distribution of X in the population, the latter being

observed in the data. Note also that the attenuation-bias result from Proposition 1 would keep

holding unconditional on X, so that ignoring measurement error in treatment status would lead

to a downward-biased estimate of the ATE. The correspondence between a zero raw average

effect and a zero true average effect, however, no longer holds, unless the misclassification

probabilities are assumed not to depend on X.

By contrast, if interest lies in recovering the average return to education for those who

invested in that qualification (ATT), the conditional effect ∆∗(x) needs to be integrated over

the distribution of X in the (truly) treated group, f(x|D∗ = 1), which is not observed.11 The

following proposition provides a characterization of the bias introduced by measurement error

for the estimation of (1), that is the relationship between ∆∗ and ∆. The proof is reported in

the Appendix.

Proposition 2 (Bias on Treatment Effects) If Assumptions 1 to 5 are satisfied, the rela-

tionship between the true ATT and the effect estimated from raw data can be written as follows

∆∗ =

∫
ω(x)∆(x)f(x|D = 1)dx, (7)

= ∆ +

∫
[ω(x)− 1]∆(x)f(x|D = 1)dx,

10Note that identification of ATE requires a strengthened Assumption 1, implying in particular homogeneous
returns (given X) or the absence of selection into education based on unobserved returns.

11By contrast, this distribution could be directly inferred if information on the true treatment status D∗ and
X were available from an external survey. In this case, it can be easily shown that ∆ would underestimate ∆∗.
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where

ω(x) =
Pr(D = 1)

Pr(D∗ = 1)
[1 +

1

e(x)

1− λ0(x)

λ0(x) + λ1(x)− 1
],

and

Pr(D∗ = 1) =

∫
[1− λ0(x)]f(x)dx +

∫
[λ0(x) + λ1(x)− 1]e(x)f(x)dx.

This result shows that if the two λ’s were known, the ATT could be estimated by appropri-

ately re-weighting the conditional differences in outcomes based on recorded treatment data,

∆(x), with weights defined by ω(x). Note that, as it should be, ω(x) = 1 for all individuals if

there is no measurement error. Moreover, weights cannot be signed in general, implying that

∆∗ can be over- or under-estimated depending on the unknown probabilities λ1(x) and λ0(x).

A notable exception under limited mislcassification (4-(a)) is when the true incidence of treat-

ment in the population, P (D∗ = 1), is smaller than the one observed from raw data, P (D = 1).

This is a sufficient condition for ∆ to provide a downward-biased estimate of ∆∗, as all weights

would be larger than one. Although P (D∗ = 1) is in general unobserved, one could gauge the

relative size of the two probabilities if external validation data (e.g. government statistics on

educational attainment in our application) were available.

Furthermore, ∆ being zero no longer implies the absence of a treatment effect, as was the

case when conditioning on X.

Finally, it is worth noting that, because of (4), the result derived in Proposition 2 also

applies to the bias induced by misclassification when estimation is carried out with respect to

the observed propensity score e(x).

5.4 Special cases

In what follows we discuss two sets of restrictions that can be imposed on the probabilities

λ1(x) and λ0(x) to sign the bias induced by misclassification.

Special Case 1 (Only over-reporting of qualifications) The misclassification probabili-

ties are such that only over-reporting can happen:

λ0(x) = 1

for all values X.
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To see why this condition represents a situation where only over-reporting of qualifications

can occur, note that it corresponds to P (D∗ = 1|D = 0) = 0, which rules out that true

graduates may be found among those reporting not to have a degree, in other words, ruling out

under-reporting. By setting λ0(x) equal to one in (6) we get that the conditional treatment

effect is always right-signed for all X, but biased towards zero. Furthermore, it follows from

Proposition 2 that

ω(x) =
Pr(D = 1)

Pr(D∗ = 1)
=

∫
e(x)f(x|D = 1)dx∫

λ1(x)e(x)f(x|D = 1)dx
≥ 1

for all X, so that the estimated effect ∆ is always biased towards zero for ∆∗.12

Special Case 2 (Misclassification independent of X) The percentage of correct classifi-

cation is independent of the characteristics X of respondents:

λ1(x) = λ1 and λ0(x) = λ0

for all values X.

Although this assumption is clearly only made here for convenience, it could be weakened by

assuming constant probabilities within cells defined by X. Alternatively, the same arguments

made below would still apply if one allowed misclassification to vary with X but only through

the propensity score index, e(X).

Using Proposition 2 it follows that

ω(x) =
1 + 1

e(x)
1−λ0

λ0+λ1−1

1−λ0

Pr(D=1)
+ (λ0 + λ1 − 1)

.

Under the likely scenario of limited misclassification (assumption (4)-a), all the weights are

positive and a first-order approximation to ω(x) around (λ0 = 1, λ1 = 1) yields

ω(x) ' 1 + (1− λ0) + (1− λ1)[
1

e(x)
− 1− Pr(D = 1)

Pr(D = 1)
],

from which it can be seen that a sufficient (and testable) condition for ω(x) to be larger than

one is that the propensity score at x be smaller than the odds ratio, i.e. e(x) ≤ Pr(D=1)
1−Pr(D=1)

. From

12The assumption that individuals never under-report qualifications they have obtained can be weakened by
assuming that over-reporting is just more likely than under-reporting. This case of monotone misclassification
imposes that λ1(x) < λ0(x) for all values X, or, in a more intuitive form, P (D∗ = 0|D = 1) > P (D∗ = 1|D = 0).
Monotone misclassification reflects the idea supported by cognitive studies that when respondents are asked
questions about socially and personally sensitive topics, they tend to under-report undesirable behaviours and
attitudes, and over-report desirable ones.
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a study of ω(x) as a function of the λ’s, it can be shown that only for values of the parameter

P (D = 1) smaller than 0.3 is there the possibility that, depending on the value of e(x), the

corresponding weight at x is positive but smaller than one. However we found that even in this

case the distribution of weights is skewed towards values (often much) larger than one, so that

in most empirical applications the ‘raw’ estimate is most likely to be a lower bound.13

6 Extension to multiple treatments

So far we have considered treatments within the binary (single) treatment framework, and in

fact treatments where the specific educational level of interest cuts right through the entire

educational spectrum (e.g. any qualification versus none, or degree versus non-degree). This

does not of course rule out interest in the incremental returns to sequential multiple treatments,

or in the returns to binary treatments for a more narrowly defined educational split, such as the

return to college vis-à-vis stopping with high school diploma, or the return to college vis-à-vis

dropping out from school without qualifications, or the return to finishing school with some

qualifications vis-à-vis nothing.

It is important to note that even for considering such types of binary treatments, the analysis

needs to be extended to a multiple-treatment framework, since account needs to be taken of

the potential misclassification in the reporting of all educational levels, not just in the two

ones being considered. So for instance, even if one only wanted to compare college to high

school, the other categories would still need to be considered, since, first, individuals reporting

no qualifications might in reality have a high-school diploma or a college degree, and, second,

individuals reporting college or high school diploma might in reality have neither of the two

qualifications of interest.

In addition to the policy relevance of estimating returns to multiple educational qualifica-

tions and/or to more disaggregated ones, another important reason to turn to the multiple

treatment framework relates to the validity of the non-differential misclassification assumption.

As anticipated in Section 4, this assumption would by construction be violated if in defining

the treatment indicator one were to lump across features of the treatment that affect both its

effect and the precision of its recall. To see this, consider the treatment being defined as having

13More detailed results are available upon request.
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any qualification as opposed to none.14 In such a situation, an individual with a degree will be

more likely both to correctly report to have any qualification and to have higher earnings than

an observationally-equivalent individual who has only completed high school.

More generally, a need to consider an extended framework arises in any situation where

underlying the binary treatment indicator is a dose-response framework. In our application

we consider educational categories, which are inherently ordered and sequential, but such a

set-up can occur much more generally. For instance, when considering completion of college

for those who enrolled, or participation in a programme for the unemployed, the underlying

treatment – college or the programme – has itself a duration, which is likely to affect both recall

of the event and outcomes. Another example relates to treatments taken more or less recently;

recall is likely to depend on how long ago the treatment was received, and the treatment effects

themselves might evolve, in particular depreciate, over time.

Assumption 3 would thus appear to be most defensible when the treatment is disaggregated

into multiple treatments that fully embody the feature that if ignored would cause the violation

(sequential categories, duration, how long ago taken, etc.). In conclusion, extending the evalu-

ation framework to look at the treatment components/features as separate treatments not only

is often policy-relevant, but in the presence of misclassification it may often become a necessity

for justifying the widely invoked non-differential misclassification assumption.

With our educational application in mind, in the following we extend our framework to

consider three levels of qualifications (or more generally, of exposure), which we assume to be

of increasing intensity. Let these levels be defined by D∗ = 0, D∗ = 1 and D∗ = 2, denoting,

for example, high-school drop-outs, high-school graduates and college graduates, respectively.

We are interested in the estimation of pairwise incremental returns, that is the wage return of

obtaining a qualification of interest (e.g. college) relative to a lower qualification (e.g. high-

school), when the only available measure of educational attainment D is potentially affected

by error. We focus on the following three ATT’s:

∆∗
10 ≡ E(Y1 − Y0|D∗ = 1),

∆∗
21 ≡ E(Y2 − Y1|D∗ = 2),

∆∗
20 ≡ E(Y2 − Y0|D∗ = 2).

14We thank Peter Mueser for pointing this out to us.
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The conditional ATT’s based on true and observed attainment levels are respectively defined

as follows:

∆∗
ij(x) = E(Y |D∗ = i, x)− E(Y |D∗ = j, x),

∆ij(x) = E(Y |D = i, x)− E(Y |D = j, x),

where i > j and (i, j) ∈ {0, 1, 2}, for which the adding up conditions ∆∗
20(x) = ∆∗

10(x)+∆∗
21(x)

and ∆20(x) = ∆10(x) + ∆21(x) hold by definition. Along the lines of what discussed in Section

4, the relationship between true quantities and quantities observed from raw data depends on

the 3× 3 matrix of misclassification probabilities through the following expression:



E(Y |D = 0, x)
E(Y |D = 1, x)
E(Y |D = 2, x)


 = Π(x)




E(Y |D∗ = 0, x)
E(Y |D∗ = 1, x)
E(Y |D∗ = 2, x)


 .

If this matrix is invertible, each ∆∗
ij(x) can be written as a function of the ∆ij(x)’s, thus

providing an extension of the result in Proposition 1.

The ATT’s of interest can then be written as:

∆∗
10 =

∫
∆∗

10(x)f(x|D∗ = 1)dx,

∆∗
21 =

∫
∆∗

21(x)f(x|D∗ = 2)dx,

∆∗
20 =

∫
∆∗

20(x)f(x|D∗ = 2)dx = ∆∗
21 +

∫
∆∗

10(x)f(x|D∗ = 2)dx,

which depend on the conditional distributions of X given D∗ = 1 and D∗ = 2.

For the above quantities to have a causal interpretation we need suitably extended versions

of Assumptions 1 and 2 (see e.g. Imbens, 2000). Furthermore, to move to the unconditional

effects we need to invoke an extended version of Assumption 5. We combine all of these

Assumptions in:

Assumption 6 (Extended Conditional Independence, Common Support and Ex-

tent of Misclassification)

E(Yj|D∗ = i,X) = E(Yj|D∗ = j, X), (i, j) ∈ {0, 1, 2}, i > j

0 < e∗i (x) ≡ Pr(D∗ = i|X = x) < 1 i ∈ {0, 1}, ∀x.

Moreover, misclassification is such that the observed common support coincides with the true

one for each pairwise comparison.
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Restrictions imposed on the misclassification probabilities can help simplify the relation-

ship between moments involving D∗ and moments involving D, and therefore the analytical

tractability of the problem. With our application in mind we thus impose a particular struc-

ture for the misclassification problem by assuming that misclassification can occur only for

adjacent categories of education. This corresponds to assuming the following form for the

misclassification matrix:

Π(x) =




λ00(x) λ10(x) 0
λ01(x) λ11(x) λ21(x)

0 λ12(x) λ22(x)


 , (8)

which is a function of the four unknown probabilities (because of three adding up conditions):

λ00(x),λ11(x), λ22(x) and λ21(x). The following proposition extends Proposition 1 to the case

of multiple treatments. The proof is reported in the Appendix.

Proposition 3 (Bias on Treatment Effects given X) Provided that the determinant of

Π(x) is different from zero:

δ(x) ≡ λ00(x)[λ22(x)− λ21(x)]− λ22(x)[1− λ11(x)− λ21(x)] 6= 0

and if Assumptions 3 and 6 hold, we have that:

∆∗
10(x) =

λ22(x)− λ21(x)

δ(x)
∆10(x)− λ21(x)

δ(x)
∆21(x),

∆∗
21(x) =

λ11(x) + λ21(x)− 1

δ(x)
∆10(x) +

λ00(x) + λ11(x) + λ21(x)− 1

δ(x)
∆21(x),

∆∗
20(x) =

λ11(x) + λ22(x)− 1

δ(x)
∆10(x) +

λ00(x) + λ11(x)− 1

δ(x)
∆21(x).

A few comments are worth mentioning. The true conditional effects can be expressed as

weighted sums of the raw effects ∆10(x) and ∆21(x) (remember the adding up condition).

Weights are such that in the absence of misclassification raw effects coincide with true effects.

Most importantly, in sharp contrast to the binary treatment case (see Proposition 1), the effects

of misclassification on the relationship between ∆∗
ij(x) and ∆ij(x) is not easily pinned down;

depending on the extent and nature of misreporting across all categories, as well as on the

sign and magnitude of both ∆10(x) and ∆21(x), ∆ij(x) could be upward or downward biased

for ∆∗
ij(x). Nonetheless, by assuming that the mean response is monotonically increasing with

D∗ (which corresponds to assuming non-negative wage returns) and that the misclassification

error is non-differential, one can derive conditions on the extent of misclassification under which
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∆∗
ij(x) and ∆ij(x) have at least the same sign. We show in the Appendix that if λii(x) > 0.5

for all i ∈ {0, 1, 2} sign reversal is avoided.

The following proposition extends Proposition 2 to the case of multiple treatments.

Proposition 4 (Bias on Treatment Effects) If Assumptions 3, 6 are satisfied and Π(x)

has a non-zero determinant, the relationship between the true incremental ATT’s and the effects

estimated from raw data can be written as follows

∆∗
ij =

∫
ω1,ij(x)∆10(x)f(x|D = 1)dx +

∫
ω2,ij(x)∆21(x)f(x|D = 2)dx,

where i > j and (i, j) ∈ {0, 1, 2}, and ω1,ij(x) and ω2,ij(x) are defined in the Appendix.

7 Data and educational qualifications of interest

7.1 Data

In this paper we only consider methods relying on Assumption 1, and we thus require very rich

background information capturing all those factors that jointly determine the attainment of

educational qualifications and wages. We use the uniquely rich data from the British National

Child Development Survey (NCDS), a detailed longitudinal cohort study of all children born

in a week in March 1958. There are extensive and commonly administered ability tests at

early ages (mathematics and reading ability at ages 7 and 11), as well as accurately measured

family background (parental education and social class) and school type variables, all ideal

for methods relying on the assumption of selection on observables. In fact, Blundell, Dearden

and Sianesi (2005) could not find evidence of remaining selection bias for the higher education

versus anything less decision once controlling for the same variables we use in this paper. We

thus invoke this conclusion in assuming that there are enough variables to be able to control

directly for selection. Our outcome is real gross hourly wages at age 33, and our measure of

educational qualifications is the one self-reported by respondents at age 33. Our sample of

3,642 is obtained by focusing on males only and restricting attention to those in work in 1991

with non-missing wage and education information.15

15Of the 5,606 males interviewed, the loss being mainly driven by non-response - less than 10% were not
currently in work.
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7.2 Educational qualifications of interest

We start by briefly outlining the educational system in Britain to put into context the edu-

cational qualifications to which we estimate the returns. Those students deciding to stay on

past the minimum school leaving age of 16 can either continue along an academic route or

else undertake a vocational qualification before entering the labour market. Until 1986, pupils

choosing the former route could take Ordinary Levels (O level) at 16 and then possibly move

on to attain Advanced Levels (A levels) at the end of secondary school at 18. A levels still

represent the primary route into higher education (HE). The vocational path is much more

heterogeneous, from job-specific, competence-based qualifications often delivered within a work

environment to more generic work-related qualifications. The academic and wide range of vo-

cational qualifications have been classified into equivalent National Vocational Qualification

(NVQ) levels, ranging from level 1 to level 5.

The British system is thus quite distinct from the one in the US; nevertheless, forcing some

comparisons, one could regard the no-qualifications group as akin to the group of high-school

drop-outs, A levels to High School, and Higher Education to College.16

In our binary framework we consider the following two parameters in turn:

1. the return to achieving any academic qualification compared to none17;

In the UK system, this translates into acquiring at least O levels compared to leaving

school at the minimum age of 16 without any formal qualification, the counterfactual

being thus akin to high-school drop-out status in the US. This parameters reflects a very

well defined and homogenous qualification, and it captures all the channels in which the

attainment of O levels can impact on wages later on in life, in particular the potential

contribution that attaining O levels may give to the attainment of A levels and then of

higher education. Additional policy relevance of the returns to O levels arises from the

finding that reforms raising the minimum school leaving age in the UK have impacted on

individuals achieving low academic qualifications, in particular O levels (Chevalier et al.,

2003, Del Bono and Galindo-Rueda, 2004).

16In such a comparison the group with O levels as highest qualification is quite atypical, being made up of
individuals who stop at the minimum leaving age with formal qualifications.

17The ‘None’ category also includes the level 1 academic qualification Certificates of Secondary Education
(CSE) at grade 2 to 5. (Students at 16 could take the lower-level CSE or the more academically demanding O
levels. The top grade (grade 1) achieved on a CSE was considered equivalent to an O level grade C. Most CSE
students tended to leave school at 16.)
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2. the return from undertaking some form of higher education (HE) compared to any-

thing less. This considers both the academic route and its vocational equivalent (levels 4

and 5).

When we extend our framework to multiple treatments we consider incremental returns to

the following three broad and sequential education levels:

1. no qualifications (neither academic nor vocational);

This treatment level basically reflects dropping out of school with no qualifications without

later undertaking any vocational studies or formally recognised practice.18

2. intermediate qualifications (level 2 – O levels or their vocational equivalent);

In addition to the academic O level exams held at age 16, this educational category

includes their level-2 vocational qualifications (e.g. intermediate City and Guilds and

Royal Society of Arts).

3. advanced qualifications (level 3 or above – at least A levels or their vocational equiv-

alent).

This collection of qualifications goes from high-school diploma (A levels) or level-3 vo-

cational qualifications (e.g. advanced City and Guilds and Royal Society of Arts, or

Ordinary National Diplomas, generally taken at age 16-18 and mostly in practical sub-

jects such as hairdressing, catering, building techniques, or computing), all the way up

to university and postgraduate studies or level-4 vocational (e.g. higher City and Guilds

and Royal Society of Arts, or Higher National Diplomas) and level-5 (professional degree)

qualifications.

Table 1 shows our sample split in our multiple treatment case, that is when we distinguish

between those who stopped education with no formal qualification, those who stopped after

completing level 2, and those who stopped after completing at least level 3. Note that this

educational split encompasses academic school-based qualifications as well as their vocational

equivalents. Next, the table shows the sample split into our two binary treatments: HE versus

anything less, and any academic qualification versus none.

18The ‘None’ category also includes very low-level qualifications at NVQ level 1 or less, i.e. CSE grade 2 to
5 qualifications, other business qualifications, other qualifications not specified and Royal Society of Arts level
1 qualifications.
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8 Partial identification of causal effects in the presence

of misclassification

8.1 Estimation issues

The aim of this section is to discuss how we derived estimates of the ATT for known values of

the misclassification probabilities and confidence intervals for the partially identified ATT. In

our empirical application we will implement the approach outlined in this section to provide

bounds to the returns to a number of educational qualifications in the UK. Such bounds can be

derived by exploiting the observed propensity score in a non/semi-parametric way, in particular

allowing for arbitrarily heterogeneous individual returns and leaving the no-treatment outcome

equation unspecified.19 Furthermore, both for the binary and the multiple treatment case,

we allow misreporting to depend on X, albeit only through the propensity score index. To

the best of our knowledge, we are the first ones to use the observed propensity score as a

solution to deal with the curse of dimensionality arising from all these sources. In fact, most

applications concerned with the estimation of the returns to educational attainment in the

presence of misreporting either ignore the presence of X (Black, Berger and Scott, 2000);

assume linearity, homogeneity in returns and misclassification independent of X (Kane, Rouse

and Staiger, 1999); or impose a parametric structure together with possibly doubtful restrictions

to ease estimation (Lewbel, 2005). The issue is further considered in our companion paper (see

Battistin and Sianesi, 2006b).

The idea is most simply put across by considering the case of binary treatments, though it

can be trivially extended to the case of multiple treatments. If the misclassification probabilities

are constant with respect to X, we have shown that the weights in Proposition 2 vary with X

only through the observed score e(x). By applying the law of iterated expectations to the term

on the right-hand-side of (7) we get

E{ω(x)∆(x)|D = 1} = E{ω(x)E{∆(x)|D = 1, e(x)}|D = 1},
= E{ω(x)∆[e(x)]|D = 1}, (9)

the last expression following since x is finer than e(x) and from the observed propensity score

19Note that although both simple OLS regression and non-parametric methods such as matching rely on
Assumption 1, matching is not subject to several potential misspecification biases for the ATT. In particular,
OLS may suffer from misspecification bias for the no-treatment outcome equation; it may use this imposed
functional form to extrapolate outside the common support, if need be; and in the presence of heterogeneous
effects it does not in general identify the ATT (see Angrist, 1998, and Blundell, Dearden and Sianesi, 2005).
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being a balancing score for the distribution of X for individuals with D = 1 and D = 0.

Known values of the probabilities of correct classification uniquely define the weights ω(x), and

alternative estimators of the ATT result from considering the empirical analogue of (9). For

example, one could match individuals with D = 1 to individuals with D = 0 and then integrate

the outcome difference in the two groups weighted by ω(x) with respect to the distribution of

the score for D = 1.

Note that semi-parametric estimation is also feasible if weights are constant within cells

defined by the propensity score e(x) or, alternatively, if the misclassification probabilities are

left to vary with X through e(x). In this case we have

P (D∗ = 1) = E{1− λ0[e(x)]}+ E{(λ0[e(x)] + λ1[e(x)]− 1)e(x)}

and weights in Proposition 2 can be used.

By using Proposition 2, bounds on the true ATT can be derived by taking the maximum

and the minimum value of the estimate of ∆∗ when the probabilities λ0(x) and λ1(x) vary over

the unit interval, or on a suitably chosen subset of [0, 1] × [0, 1]. Indeed, leaving the misclas-

sification probabilities to vary between zero and one is most likely to imply unreasonably high

misclassification rates for the problem under consideration. One possibility is to use a priori

restrictions on these probabilities derived from previous studies or from knowledge of the eco-

nomic context under investigation. For example, results from validation studies and behavioral

theories developed in the social sciences often suggest restrictions on misclassification. Some

fairly general restrictions that can be applied to the study of returns to education include the

three cases considered in Section 5.4.

In our application, we consider the empirical analogue of (9) by stratifying observations

on the value of the propensity score and by allowing the λ’s be stratum specific. Partial

identification of the relevant ATT is then obtained through Proposition 2 (in the binary case) or

Proposition 4 (in the multiple-treatment case) by considering the maximum and the minimum

values of the ∆∗’s over the set defined by the sum of the exact classification probabilities

exceeding a given value and by imposing that overreporting is more likely than underreporting.

As to the implementation details for the binary case, we first account for the high di-

mensionality of X by using stratification matching (see e.g Dehejia and Wahba, 1999) and

regression adjustment within each stratum.20 Specifically, we stratify the sample on 5 values

20Given our relatively small sample size, we performed the latter to account for residual imbalance of X
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of the estimated propensity score. Within each stratum k we run a regression of the outcome

Y on e(x), separately for the D = 1 and D = 0 groups, and calculate the corresponding raw

conditional treatment effect ∆(ek) as the difference in predicted outcomes at the mean stratum

propensity score. We then specify a grid of step 0.05 between 0.5 and 1 for λ0(x) and λ1(x),

and consider only the 25 points that are consistent with the identification region defined by

{λ1(x) + λ0(x) ≥ 1.6)} ∩ {λ1(x) ≤ λ0(x)}, where the latter restriction reflects overreport-

ing being more likely than underreporting (see Section 5.4). We thus end up with 255 possible

combinations of {λ1(x), λ0(x)} across strata. Finally, we compute the values of ∆∗ using Propo-

sition 2 for all admissibile combinations, and take the maximum and the minimum over the

sets defined by λ0(x) + λ1(x) ≥ k, where k ∈ [1.6, 2].

In the multiple treatment case, we deal with the high dimensionality of X by defining strata

on the two scores e1(x) ≡ P (D = 1|x) and e2(x) ≡ P (D = 2|x). To ensure cells of reasonable

sample size, we stratify observations on 2 values of each score, thus obtaining 4 strata. We

again perform regression adjustment within each stratum to account for residual imbalance,

this time regressing Y on e1(x), e2(x) and e1(x) · e2(x) separately for each subgroup defined

by D. For given values of λ22 and λ21, we then construct a grid of step 0.25 between 0.5 and

1 for λ00(x) and λ11(x), and impose that λ11(x) ≤ 1 − λ21(x). This restriction is needed to

ensure that the resulting Π(x) is indeed a probability matrix. Note that, as in the binary

case, the assumption we maintain that observations on (each value of) D are more accurate

than pure guesses, λii(x) ≥ 0.5 for i = 0, 1, 2, implies that sign reversal is avoided and that

misclassification is limited, in the sense that the probability of picking someone who truly has

a given qualification is higher when drawing randomly from the group that claims to have that

qualification rather than from the group claiming to have a different one. We finally further

ensure that overreporting is more likely than underreporting, which in the multiple-treatment

case translates into the condition that λ00(x) ≥ max{λ11(x) + λ21(x), λ22(x)}.21 We finally

derive bounds on the incremental ATT’s using Proposition 4 and by proceeding as in the

binary case.

A final issue concerns the significance of our estimates. A growing body of research in the

within stratum. Both in the case of any academic qualification and HE we could reject joint balancing of the
observables at 10% for only one stratum.

21This translates into the assumption that all elements of Π(x) above the diagonal are smaller than those
below.
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last years has looked into the problem of constructing confidence intervals for partially identified

parameters. In our application, we follow Horowitz and Manski (2000) and derive confidence

intervals for bounds that cover the entire identification region with 95 percent probability. By

denoting with L̂ and Û the lower and the upper bounds, respectively, we report confidence

intervals of the form [L̂ − ζ, Û + ζ], where ζ is a positive constant obtained by bootstrapping

the distribution of bounds so to ensure the required probability of coverage. As stated in Imbens

and Manski (2004; see Lemma 1), the probability that the interval considered covers the true

ATT is at least 95 percent (thus leading to conservative inference).

8.2 Results

8.2.1 Binary levels of attainment

The return ∆ from attaining any academic qualification at 16 for those who chose to do so is

estimated at 23.4 percent in the raw data (using the full set of controls outlined in Section 7.1).

The average return to higher education for graduates is estimated at 23.1 percent (see Table

2).

We investigated the sensitivity of these estimates to the presence of misclassification by

performing several types of analyses. We first used Proposition 2 to bound the true returns ∆∗

by considering the case of misclassification independent of X when λ0 and λ1 are left to vary

between 70 percent (very severe misclassification) and 100 percent (exact reporting). The first

panel in Figure 1 plots how the value of the true return to any academic qualification varies

as a function of the extent of misclassification. The minimum and the maximum values of the

true return are 23.4 percent and 55.7 percent and are achieved for λ0 = 1 and λ1 = 1 and

for λ0 = 0.7 and λ1 = 0.7. We thus find that, in line with our previous discussion, returns

estimated from raw data represent a lower bound for the true return. A similar result holds for

the return to higher education, for which the identification region corresponds to (23.1, 60.1).

The second panel in Figure 1 considers the identifying power of assuming that over-reporting

is more likely than under-reporting. Such restriction embodies the finding of cognitive studies

that respondents tend to over-report desirable features and behaviours. As we have pointed

out in Section 5.4, this corresponds to finding the maximum and the minimum in the region

for which λ0 ≥ λ1. It is evident from the figure that such a restriction on the nature of

misclassification does not help improve the identification power, as the lower and upper bounds
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coincide with those defined from the unconstrained region.

A further sensible restriction that can be imposed to obtain tighter bounds is λ0+λ1 ≥ k > 1

for increasing values of k. This corresponds to consider the intersection of the second panel

in Figure 1 with two-dimensional planes that increasingly shift to the right of the figure for

higher values of k. We implemented this idea for the case of misclassification probabilities

dependent on x as described in the previous section. Table 2 reports the lower and upper

bounds for the return to attaining any academic qualification and for the return to completing

higher education for a number of values of k. Each set of lower and upper bounds thus relates

to a different value of the sum of the misclassification probabilities. The table also reports

the 95 percent confidence intervals for the identification region, which as mentioned lead to

conservative inference for the parameter of interest.

As expected, the bounds become more informative (narrower) as sum of λ’s approaches 2.

An interesting result is that even when we allow for a non-negligible extent of misclassification

- up to 10 percent of individuals misreporting their attainment in either direction - the point

estimates of the lower and upper bounds for the returns are quite close (i.e. around 23-26

percent for both any academic qualification and HE).

By using the uniquely rich NCDS data we can assess the plausibility that the biases from

measurement error and from omitted variables cancel out in the estimation of returns in the

UK. If this were the case, to estimate up-to-date returns to qualifications policy-makers could

simply rely on Labour Force Survey-type datasets, which totally rely on recall about individuals’

educational attainment and do not contain any information on individual ability and family

background.

To perform this exercise, we have estimated the return from the raw data controlling only

for the Labour Force Survey-style variables of gender, age, ethnicity and region (gender and

age implicitly via sample choice), ∆LFS. For academic qualifications, ∆LFS is 32.9 percent

and for HE 35.9 percent. As to returns to any academic qualification, for the sum of the λ’s

roughly larger than 1.8, ignoring both measurement error and ability biases yields an upper

bound. More generally, we find that there is a chance for the two biases to cancel out only

if measurement error is rather severe, in particular when at least 20 percent of individuals

misreport their qualifications in either direction. In fact, for the case where λ0 + λ1 ≥ 1.9,

which is in line with the little available evidence so far (see in particular Kane, Rouse and
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Staiger, 1999), even the conservative confidence intervals do not contain the point estimate of

∆LFS. As to the returns to HE, it is even harder to appeal to the cancelling of the two biases.22

We also derived the bounds for the case of constant λ’s. As expected, they turned out to

be sharper; they however led to the same inferential conclusions about the true effect and its

relationship with ∆LFS.

8.2.2 Multiple levels of attainment

We now turn to a more disaggregated analysis in a multiple treatment framework that focuses

on the incremental returns to three broad education levels. We consider a sequence starting

with no (or extremely low-level) qualifications, O levels or vocational equivalent (“intermedi-

ate”) qualifications and at least A levels or vocational equivalent (“advanced”) qualifications.

Ignoring potential misclassification, the incremental ATT’s to acquire intermediate qualifica-

tions is 10.6 percent, to move from intermediate to advanced qualifications is 18.4 percent, and

to acquire advanced qualifications compared to remaining with none is 28.3 percent.

As done for the binary case, we proceeded to assess the robustness of these estimates

to the presence of misclassification in recorded educational attainment. Starting with the

case of misclassification independent of X, we considered the bounds which arise when letting

the exact classification probabilities (λ00, λ11 and λ22) vary between 70 percent (very severe

misclassification) and 100 percent (exact classification), and the probability of ‘forgetting’ their

advanced qualifications by those stating to have only intermediate ones (λ21) between 0 and 15

percent.

As was the case for our binary treatments, the ensuing identification regions are quite wide:

(5.8, 27.1) for ∆∗
10, (11.3, 33.0) for ∆∗

21, and (27.9, 39.9) for ∆∗
20. In our multiple-treatment

application, imposing the restriction that over-reporting is more likely than underreporting

does however improve identification power, albeit only for ∆∗
10 (a 5.6 percentage reduction in

width by lowering the upper bound) and ∆∗
21 (a 14.1 percentage reduction by raising the lower

bound).

To gain some further insight we move to a graphical analysis. This is similar to what done for

the binary treatment; however to overcome the additional difficulty that we now are working in

22This discussion is heuristic in that it takes no account of the uncertainty of the estimated ∆LFS . A more
formal indicator would be obtained by considering the proportion of bootstrapped values of ∆LFS that fall
within the corresponding bootstrapped upper and lower bounds.
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a 5-dimensional space, we fix two dimensions, λ22 and λ21. Specifically, we consider two rather

extreme but still plausible profiles: one of severe misclassification in these two dimensions

(λ22 = 0.90, λ21 = 0.05) and one of little misclassification (λ22 = 0.95, λ21 = 0.01).

In contrast to the binary case, one can visually appreciate from Figures 2-3 that the re-

striction in terms of over/under-reporting significantly increases identifying power. As can be

evinced from the graphs, the percentage gain is in fact larger in the case of little as opposed

to severe misclassification in terms of λ22 and λ21. For ∆∗
10 and ∆∗

20, the gain from the restric-

tion arises from ‘cropping’ the top, i.e. lowering the upper bound; for ∆∗
21 , from raising the

lower bound instead. Comparing the three ATT’s, the percentage reduction in bounds width is

largest for ∆∗
20 for either {λ22, λ21} profile. The identification regions for the three parameters

under the restriction are in fact quite similar for the two profiles, and are roughly 10 to 15

percent for for ∆∗
10, 16 to 20 percent for ∆∗

21, and 29 to 30 percent for ∆∗
20. Indeed, under our

restriction, ∆∗
20 is very tightly bound under either profile.

Next, we allow for heterogeneity in the two misclassification probabilities λ00(x) and λ11(x)

and investigate the identifying power of considering bounds that, whilst keeping the values of

{λ22, λ21} constant to those of either of the two profiles and meeting the over/under-reporting

restriction, further satisfy λ00(x) + λ11(x) ≥ k, for increasing values of k. The results are

reported in Table 3, together with the 95 percent confidence intervals for the identification

region, which as mentioned leads to conservative inference for the ATT of interest.

As expected, for given {λ22, λ21} profile, the bounds monotonically narrow as λ00(x)+λ11(x)

approaches 2. For ∆∗
10, bounds become more informative because of a lowering of the upper

bound, for ∆∗
21 because of a raising of the lower bound. For ∆∗

20, however, the bounds remain

unchanged for k = 1.6 and k = 1.7, and for higher levels of k both the lower and upper bounds

move closer. Interestingly, the result that bounds either stay the same or become narrower as

we get closer to exact reporting in terms of λ00 and λ11 no longer applies in terms of λ22 and

λ21. Specifically, bounds do not always become more informative when moving from severe to

little misclassification in terms of λ22 and λ21 (see k = 1.6 for ∆∗
10 and k = 1.6, 1.7, 1.8 for ∆∗

20).

As to how the ‘raw’ incremental effects ∆ij’s relate to the bounds, in contrast to the binary

case no clear pattern applies. In fact, although the ∆ij’s are mostly downward biased, in

terms of point estimate, at times the estimated lower bound proves sharper than the raw

effect. Furthermore, the raw effects could at times be upward biased, even though in our
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application this could happen only for ∆∗
21 and, interestingly, only for a situation of more

severe misclassification in all dimensions (λ00, λ11, λ22 and λ21).

Finally, we consider the relationship between the bounds for the true incremental ATT’s

and the naive estimates based on the raw data and LFS-style controls. For the two sets of

values of {λ22, λ21} we have considered, ignoring misreporting and ability biases (∆LFS) yields

an upward biased estimate, in the sense that the ∆LFS’s always lie well outside of the bounds.

Whatever the sum of λ00 and λ11, we thus find no evidence that there is a chance for the two

biases to cancel out. For ∆∗
20, this conclusion keeps holding in terms of the (conservative) CI

for the identification region - estimating returns to advanced qualifications compared to none

ignoring misclassification and selection yields severely upward biased estimates. For ∆∗
10, and

especially ∆∗
21, this conclusion is more likely to hold, as one would expect, in the case of less

severe misclassification (k = 1.8, 1.9, and λ00 = 0.95,λ21 = 0.01).

In contrast to the ‘traditional’ binary treatment case, when account is taken of potential

misclassification across multiple treatments, the results in this section show that the patterns

that emerge can be exceptionally varied. However, the conclusion that in our application we

cannot expect measurement error to cancel out all ability bias keeps holding in our multiple-

treatment extension. More generally, our results show that under relatively mild restrictions we

can obtain strong conclusions regarding our question of interest, although more assumptions

are needed to obtain statistical significance.

9 Conclusions

In this paper we have looked at the bias introduced by misclassification of the treatment

indicator on the average treatment effect on the treated (ATT) under the assumption of selection

on observables. Matching-type estimators of the treatment effect computed from misclassified

data are in general biased for the true ATT. The true ATT can be over- or under-estimated

depending on the amount of misclassification. However, if misclassification does not depend on

variables entering the selection on observables assumption, or only depends on them via the

propensity score, the attenuation bias result is still most likely to hold.

We have extended the framework to multiple treatments.

We have provided results to bound the returns to a number of important educational qual-

ifications in the UK semi-parametrically, and by using the unique nature of our data we have
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assessed the plausibility for the two biases from measurement error and from omitted variables

cancel out.

In future work we plan to investigate the extent to which our discussion could be extended

to deal with the potentially interesting case in which some observables are known to affect only

the (mis)classification probabilities and not to enter the selection-on-observables assumption.
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Table 1: Educational sample split (N=3,642)

Multiple treatment HE vs Less Any Academic vs None
None 895 (25%)
O/eq. 941 (26%)
A/eq.+ 1,806 (50%)
No Acad 1,243 (34%)
Any Acad 2,399 (66%)
Below HE 2,472 (68%)
HE 1,170 (32%)

See main text for the definition of the educational categories of interest.

Table 2: Bounds on returns from Any Academic Qualification and from Higher Education

Any Acad Qual Higher Educ
∆∗ Estimate 95% CI Estimate 95% CI

lower upper lower upper lower upper lower upper
λ0(x) + λ1(x) ≥ 1.6 0.2336 0.3975 0.1421 0.4890 0.2310 0.4032 0.1926 0.4416
λ0(x) + λ1(x) ≥ 1.7 0.2336 0.3340 0.1517 0.4159 0.2310 0.3378 0.1923 0.3765
λ0(x) + λ1(x) ≥ 1.8 0.2336 0.2947 0.1595 0.3688 0.2310 0.2956 0.1947 0.3319
λ0(x) + λ1(x) ≥ 1.9 0.2336 0.2607 0.1646 0.3297 0.2310 0.2597 0.1941 0.2966

Raw data:
Full controls: ∆ = 0.2336 ∆ = 0.2310
LFS controls: ∆LFS = 0.3286 ∆LFS = 0.3588

Bounds are derived from Proposition 2 by allowing the misclassification probabilities to depend on x through the
propensity score and by imposing that over-reporting is more likely than under-reporting. Confidence intervals
covering the identification region with 95 percent probability have been derived from 500 bootstrap replications
following Horowitz and Manski (2000).
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Table 3: Bounds on returns to incremental levels of attainment

λ22(x) = 0.95 and λ21(x) = 0.01 λ22(x) = 0.90 and λ21(x) = 0.05
∆∗

10 Estimate 95% CI Estimate 95% CI
lower upper lower upper lower upper lower upper

λ0(x) + λ1(x) ≥ 1.6 0.1057 0.1591 0.0331 0.2317 0.0981 0.1566 0.0249 0.2298
λ0(x) + λ1(x) ≥ 1.7 0.1057 0.1504 0.0352 0.2209 0.0981 0.1392 0.0261 0.2112
λ0(x) + λ1(x) ≥ 1.8 0.1057 0.1314 0.0358 0.2013 0.0981 0.1200 0.0285 0.1896
λ0(x) + λ1(x) ≥ 1.9 0.1057 0.1156 0.0361 0.1852 0.0981 0.1046 0.0285 0.1742

Raw data:
Full controls: ∆10 = 0.1060, LFS controls: ∆10,LFS = 0.1922

λ22(x) = 0.95 and λ21(x) = 0.01 λ22(x) = 0.90 and λ21(x) = 0.05
∆∗

21 Estimate 95% CI Estimate 95% CI
lower upper lower upper lower upper lower upper

λ0(x) + λ1(x) ≥ 1.6 0.1519 0.1944 0.0886 0.2577 0.1766 0.2159 0.1100 0.2825
λ0(x) + λ1(x) ≥ 1.7 0.1550 0.1944 0.0926 0.2568 0.1820 0.2159 0.1166 0.2813
λ0(x) + λ1(x) ≥ 1.8 0.1725 0.1944 0.1176 0.2493 0.1981 0.2159 0.1399 0.2741
λ0(x) + λ1(x) ≥ 1.9 0.1860 0.1944 0.1341 0.2463 0.2107 0.2159 0.1549 0.2717

Raw data:
Full controls: ∆21 = 0.1843, LFS controls: ∆21,LFS = 0.2432

λ22(x) = 0.95 and λ21(x) = 0.01 λ22(x) = 0.90 and λ21(x) = 0.05
∆∗

20 Estimate 95% CI Estimate 95% CI
lower upper lower upper lower upper lower upper

λ0(x) + λ1(x) ≥ 1.6 0.2874 0.2944 0.1899 0.3919 0.2975 0.3104 0.2015 0.4064
λ0(x) + λ1(x) ≥ 1.7 0.2874 0.2944 0.1905 0.3913 0.2975 0.3104 0.2015 0.4064
λ0(x) + λ1(x) ≥ 1.8 0.2883 0.2944 0.1908 0.3919 0.2991 0.3076 0.2016 0.4051
λ0(x) + λ1(x) ≥ 1.9 0.2889 0.2917 0.1908 0.3898 0.3004 0.3029 0.2017 0.4016

Raw data:
Full controls: ∆20 = 0.2825, LFS controls: ∆20,LFS = 0.4339

See main text for the definition of ∆∗
10, ∆∗

21 and ∆∗
20. Bounds are derived from Proposition 4 by allowing

the misclassification probabilities to depend on x through the propensity scores and by imposing that over-
reporting is more likely than under-reporting. Confidence intervals covering the identification region with 95
percent probability have been derived from 500 bootstrap replications following Horowitz and Manski (2000).
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Proof of Proposition 1

By using (5) we have that

∆∗(x) =
[ −1 1

]
Π−1(x)

[
E(Y |D = 0)
E(Y |D = 1)

]
,

=
[ −1 1

] 1

det[Π(x)]

[
λ1(x) λ0(x)− 1

λ1(x)− 1 λ0(x)

] [
E(Y |D = 0)
E(Y |D = 1)

]
,

=
∆(x)

λ0(x) + λ1(x)− 1
.

The same result can be derived by noting that Assumption 3 implies

E(Y |D = 1, x) = E(Y |D∗ = 0, x) + ∆∗(x)λ1(x),

E(Y |D = 0, x) = E(Y |D∗ = 0, x) + ∆∗(x)λ10(x),

so that by taking the difference of the last two expressions

∆(x) = ∆∗(x)[λ1(x)− λ10(x)],

so that the result follows since λ10(x) = 1− λ0(x).

Proof of Proposition 2

Using Bayes’ theorem we get

f(x|D = 1) =
e(x)f(x)

Pr(D = 1)
,

f(x|D∗ = 1) =
e∗(x)f(x)

Pr(D∗ = 1)
,

where e(x) is the propensity score calculated from D. Since by the law of iterated expectations

we have

e∗(x) = [1− λ0(x)] + e(x)[λ0(x) + λ1(x)− 1],

it also follows that

Pr(D∗ = 1) =

∫
e∗(x)f(x)dx,

=

∫
[1− λ0(x)]f(x)dx +

∫
e(x)[λ0(x) + λ1(x)− 1]f(x)dx.
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Since

f(x|D∗ = 1) =
f(x|D∗ = 1)

f(x|D = 1)
f(x|D = 1)

=
Pr(D = 1)

Pr(D∗ = 1)

e∗(x)

e(x)
f(x|D = 1)

=
Pr(D = 1)

Pr(D∗ = 1)
[
1− λ0(x)

e(x)
+ λ0(x) + λ1(x)− 1]f(x|D = 1),

we can use (6) to write

∆∗ =

∫
∆∗(x)f(x|D∗ = 1)dx,

=
Pr(D = 1)

Pr(D∗ = 1)

∫
∆(x)[1 +

1

e(x)

1− λ0(x)

λ0(x) + λ1(x)− 1
]f(x|D = 1)dx,

=

∫
ω(x)∆(x)f(x|D = 1)dx,

where

ω(x) =
Pr(D = 1)

Pr(D∗ = 1)
[1 +

1

e(x)

1− λ0(x)

λ0(x) + λ1(x)− 1
],

and
Pr(D∗ = 1)

Pr(D = 1)
=

∫
[1− λ0(x)]f(x)dx∫

e(x)f(x)dx
+

∫
[λ0(x) + λ1(x)− 1]e(x)f(x)dx∫

e(x)f(x)dx
.

Proof of Proposition 3

Conditioning on X = x is left implicit throughout. Start from




E[Y |D = 0]
E[Y |D = 1]
E[Y |D = 2]


 =




λ00 1− λ00 0
1− λ11 − λ21 λ11 λ21

0 1− λ22 λ22







E[Y |D∗ = 0]
E[Y |D∗ = 1]
E[Y |D∗ = 2]


 ,

= Π




E[Y |D∗ = 0]
E[Y |D∗ = 1]
E[Y |D∗ = 2]


 ,

where we need

det(Π) = λ00(λ22 − λ21)− λ22(1− λ11 − λ21) 6= 0.
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∆10 = E[Y |D∗ = 0](1− λ11 − λ21 − λ00)

+ E[Y |D∗ = 1](λ11 + λ00 − 1)

+ E[Y |D∗ = 2](λ21),

= E[Y |D∗ = 0](1− λ11 − λ21 − λ00)

+ E[Y |D∗ = 0](λ11 + λ00 − 1)

+ ∆∗
10(λ11 + λ00 − 1)

+ E[Y |D∗ = 2](λ21),

= ∆∗
10(λ11 + λ00 − 1) + ∆∗

20λ21,

= ∆∗
10(λ11 + λ00 + λ21 − 1) + ∆∗

21λ21,

where the last equality follows (under CIA) from ∆∗
20 = ∆∗

21 + ∆∗
10. By assuming ∆∗

10 ≥ 0 and

∆∗
21 ≥ 0, restrictions on the λ’s can be defined to avoid sign reversal. For example, a sufficient

condition for this is λ11 + λ00 ≥ 1.

∆21 = E[Y |D∗ = 0](−1 + λ11 + λ21)

+ E[Y |D∗ = 1](1− λ22 − λ11)

+ E[Y |D∗ = 2](λ22 − λ21),

= E[Y |D∗ = 0](−1 + λ11 + λ21)

+ E[Y |D∗ = 1](1− λ22 − λ11)

+ E[Y |D∗ = 1](λ22 − λ21)

+ ∆∗
21(λ22 − λ21),

= ∆∗
21(λ22 − λ21) + ∆∗

10(1− λ11 − λ21).

By assuming ∆∗
21 ≥ 0 and ∆∗

10 ≥ 0, a sufficient condition for not having sign reversal is

λ22 ≥ λ21. It therefore follows that

∆20 = ∆21 + ∆10,

= ∆∗
10(λ00 − λ21) + ∆∗

20λ21 + ∆∗
21(λ22 − λ21),

= ∆∗
10λ00 + ∆∗

21λ22.
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The previous expressions can be written with matrix notation by

(
∆10

∆21

)
=

(
λ00 − (1− λ11 − λ21) λ21

1− λ11 − λ21 λ22 − λ21

)(
∆∗

10

∆∗
21

)
,

so that (
λ00 − (1− λ11 − λ21) λ21

1− λ11 − λ21 λ22 − λ21

)−1 (
∆10

∆21

)
=

(
∆∗

10

∆∗
21

)
.

By solving the last expression we get

∆∗
10 =

λ22 − λ21

det
∆10 − λ21

det
∆21,

∆∗
21 =

λ11 + λ21 − 1

det
∆10 +

λ00 + λ11 + λ21 − 1

det
∆21.

Proof of Proposition 4

Start from the parameters of interest

∆∗
10 =

∫
∆∗

10[x]f [x|D∗ = 1]dx,

∆∗
21 =

∫
∆∗

21[x]f [x|D∗ = 2]dx,

∆∗
20 =

∫
∆∗

20[x]f [x|D∗ = 2]dx = ∆∗
21 +

∫
∆∗

10[x]f [x|D∗ = 2]dx,

where we have

f [x|D∗ = 1] =
P [D∗ = 1|x]f [x]

P [D∗ = 1]
,

f [x|D∗ = 2] =
P [D∗ = 2|x]f [x]

P [D∗ = 2]
.

Computation of f [x|D∗ = 1]

By using the adding up condition P [D = 0|x] = 1− P [D = 1|x]− P [D = 2|x] we can write

P [D∗ = 1|x] = (1− λ00)P [D = 0|x] + λ11P [D = 1|x] + (1− λ22)P [D = 2|x],

= (1− λ00) + (λ00 + λ11 − 1)P [D = 1|x] + (λ00 − λ22)P [D = 2|x],

so that

f [x|D∗ = 1] = (1− λ00)
f [x]

P [D∗ = 1]
+ (λ00 + λ11 − 1)

P [D = 1]

P [D∗ = 1]
f [x|D = 1]

+ (λ00 − λ22)
P [D = 2]

P [D∗ = 1]
f [x|D = 2].
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The following two expressions follow. First, we have

f [x|D∗ = 1] = (1− λ00)
P [D = 1]

P [D∗ = 1]

1

P [D = 1|x]
f [x|D = 1]

+ (λ00 + λ11 − 1)
P [D = 1]

P [D∗ = 1]
f [x|D = 1]

+ (λ00 − λ22)
P [D = 1]

P [D∗ = 1]

P [D = 2|x]

P [D = 1|x]
f [x|D = 1],

so that

f [x|D∗ = 1] = η1(x)f [x|D = 1],

η1(x) =
P [D = 1]

P [D∗ = 1]
[

1− λ00

P [D = 1|x]
+ (λ00 + λ11 − 1) +

(λ00 − λ22)P [D = 2|x]

P [D = 1|x]
].

Second, we have

f [x|D∗ = 1] = (1− λ00)
P [D = 2]

P [D∗ = 1]

1

P [D = 2|x]
f [x|D = 2]

+ (λ00 + λ11 − 1)
P [D = 2]

P [D∗ = 1]

P [D = 1|x]

P [D = 2|x]
f [x|D = 2]

+ (λ00 − λ22)
P [D = 2]

P [D∗ = 1]
f [x|D = 2],

so that

f [x|D∗ = 1] = η2(x)f [x|D = 2],

η2(x) =
P [D = 2]

P [D∗ = 1]
[

1− λ00

P [D = 2|x]
+

(λ00 + λ11 − 1)P [D = 1|x]

P [D = 2|x]
+ (λ00 − λ22)].

Computation of f [x|D∗ = 2]

By using

P [D∗ = 2|x] = λ21P [D = 1|x] + λ22P [D = 2|x],

we have

f [x|D∗ = 2] = λ21
P [D = 1]

P [D∗ = 2]
f [x|D = 1] + λ22

P [D = 2]

P [D∗ = 2]
f [x|D = 2],

= λ21
P [D = 1]

P [D∗ = 2]
f [x|D = 1] + λ22

P [D = 1]

P [D∗ = 2]

P [D = 2|x]

P [D = 1|x]
f [x|D = 1],

= λ21
P [D = 2]

P [D∗ = 2]

P [D = 1|x]

P [D = 2|x]
f [x|D = 2] + λ22

P [D = 2]

P [D∗ = 2]
f [x|D = 2],
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so that

f [x|D∗ = 2] = η3(x)f [x|D = 1],

η3(x) =
P [D = 1]

P [D∗ = 2]
[λ21 + λ22

P [D = 2|x]

P [D = 1|x]
],

or

f [x|D∗ = 2] = η4(x)f [x|D = 2],

η4(x) =
P [D = 2]

P [D∗ = 2]
[λ21

P [D = 1|x]

P [D = 2|x]
+ λ22].

Computation of ∆∗
10

∆∗
10 =

∫
∆∗

10[x]f [x|D∗ = 1]dx,

=

∫
λ22 − λ21

det
∆10[x]f [x|D∗ = 1]dx−

∫
λ21

det
∆21[x]f [x|D∗ = 1]dx,

=

∫
ω1,10(x)∆10[x]f [x|D = 1]dx +

∫
ω1,10(x)∆21[x]f [x|D = 2]dx,

ω1,10(x) =
λ22 − λ21

det
η1(x),

=
P [D = 1](λ22 − λ21)(λ11 + λ00 − 1 + P [D=2|x](λ00−λ22)+1−λ00

P [D=1|x]
)

det(1− λ00 + (λ11 + λ00 − 1)P [D = 1] + (λ00 − λ22)P [D = 2])
,

the last expression following from having misclassification independent of X. Moreover we have

ω2,10(x) = −λ21

det
η2(x),

= −
P [D = 2]λ21(λ00 − λ22 + P [D=1|x](λ00+λ11−1)+1−λ00

P [D=2|x]
)

det(1− λ00 + (λ11 + λ00 − 1)P [D = 1] + (λ00 − λ22)P [D = 2])
,

where the last expression follows under misclassification constant with respect to X. In what

follows, we report similar expressions for ∆∗
21 and ∆∗

20, where weights are derived with and

without imposing constant misclassification probabilities.
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Computation of ∆∗
21

∆∗
21 =

∫
∆∗

21[x]f [x|D∗ = 2]dx,

=

∫
λ11 + λ21 − 1

det
∆10[x]f [x|D∗ = 2]dx +

∫
λ00 + λ11 + λ21 − 1

det
∆21[x]f [x|D∗ = 2]dx,

=

∫
ω1,21(x)∆10[x]f [x|D = 1]dx +

∫
ω2,21(x)∆21[x]f [x|D = 2]dx,

ω1,21(x) =
λ11 + λ21 − 1

det
η3(x),

=
P [D = 1](λ11 + λ21 − 1)(λ21 + λ22

P [D=2|x]
P [D=1|x]

)

det(λ21P [D = 1] + λ22P [D = 2])
,

ω2,21(x) =
λ00 + λ11 + λ21 − 1

det
η4(x),

=
P [D = 2](λ00 + λ11 + λ21 − 1)(λ22 + λ21

P [D=1|x]
P [D=2|x]

)

det(λ21P [D = 1] + λ22P [D = 2])
.

Computation of ∆∗
20

∆∗
20 = ∆∗

21 +

∫
∆∗

10[x]f [x|D∗ = 2]dx,

= ∆∗
21 +

∫
λ22 − λ21

det
∆10[x]f [x|D∗ = 2]dx−

∫
λ21

det
∆21[x]f [x|D∗ = 2]dx,

=

∫
ω1,20(x)∆10[x]f [x|D = 1]dx +

∫
ω2,20(x)∆21[x]f [x|D = 2]dx,

ω1,20(x) =
λ11 + λ22 − 1

det
η3(x),

=
P [D = 1](λ11 + λ22 − 1)(λ21 + λ22

P [D=2|x]
P [D=1|x]

)

det(λ21P [D = 1] + λ22P [D = 2])
,

ω2,20(x) =
λ00 + λ11 − 1

det
η4(x),

=
P [D = 2](λ00 + λ11 − 1)(λ22 + λ21

P [D=1|x]
P [D=2|x]

)

det(λ21P [D = 1] + λ22P [D = 2])
.
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Figure 1: Identification region for the return to any academic qualification, assuming constant
misclassification probabilities and, in the right-hand-side panel, that overreporting is more likely
than underreporting
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Figure 2: Identification region for returns to incremental levels of attainment, assuming constant
misclassification probabilities and by imposing λ22 = 0.90 and λ21 = 0.05; the assumption that
overreporting is more likely than underreporting is superimposed in the right-hand-side panels
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Figure 3: Identification region for returns to incremental levels of attainment, assuming constant
misclassification probabilities and by imposing λ22 = 0.95 and λ21 = 0.01; the assumption that
overreporting is more likely than underreporting is superimposed in the right-hand-side panels
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