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Abstract

We consider the estimation of parametric models for stationary spatial or

spatio-temporal data on a d-dimensional lattice, for d ≥ 2. The achievement of

asymptotic efficiency under Gaussianity, and asymptotic normality more gen-

erally, with standard convergence rate, faces two obstacles. One is the "edge ef-

fect", which worsens with increasing d. The other is the difficulty of computing

a continuous-frequency form of Whittle estimate or a time domain Gaussian

maximum likelihood estimate, especially in case of multilateral models, due

mainly to the Jacobian term. An extension of the discrete-frequency Whit-

tle estimate from the time series literature deals conveniently with the latter

problem, but when subjected to a standard device for avoiding the edge ef-

fect has disastrous asymptotic performance, along with finite sample numerical

drawbacks, the objective function lacking a minimum-distance interpretation

and losing any global convexity properties. We overcome these problems by

∗Research supported by ESRC Grant R000239936. Thanks are due to Fabrizio Iacone for carrying

out the numerical work reported in Section 3.
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first optimizing a standard, guaranteed non-negative, discrete-frequency, Whit-

tle function, without edge-effect correction, providing an estimate with a slow

convergence rate, then improving this by a sequence of computationally conve-

nient approximate Newton iterations using a modified, almost-unbiased peri-

odogram, the desired asymptotic properties being achieved after finitely many

steps. A Monte Carlo study of finite sample behaviour is included. The asymp-

totic regime allows increase in both directions, unlike the usual random fields

formulation, with the central limit theorem established after re-ordering as a

triangular array. When the data are non-Gaussian, the asymptotic variances of

all parameter estimates are likely to be affected, and we provide a consistent,

non-negative definite, estimate of the asymptotic variance matrix.

AMS 2000 subject classifications. Primary 62M30; secondary 62F10, 62F12.

Key words and phrases. Spatial data, multilateral models, Whittle estima-

tion, edge effect, consistent variance estimation.

Abbreviated title. Estimation of spatial models.

1. INTRODUCTION

Consider a stationary process xt defined on a d-dimensional lattice, t being a mul-

tiple index (t1, ..., td) with tj ∈ Z = {0,±1, ...}, j = 1, ..., d, and having a spectral

density f(λ), λ = (λ1, ..., λd), λ ∈ Πd, Π = (−π, π]. This paper is concerned with

large sample inference on an unknownm-dimensional column vector θ0, given a known

functional form f(λ; θ) such that f(λ; θ0) ≡ f(λ).

Such parametric modelling is often approached in terms of linear filtering of a white

noise process. For θ ∈ Θ, where Θ ⊂ Rm is the set of admissible parameter values,
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and for z = (z1, ..., zd) having complex-valued elements, define

a(z; θ) =
pU1P

j1=−pL1
· · ·

pUdP
jd=−pLd

aj(θ)
dQ

i=1

zjii , (1.1)

b(z; θ) =
qU1P

j1=−qL1
· · ·

qUdP
jd=−qLd

bj(θ)
dQ

i=1

zjii , (1.2)

for j = (j1, ..., jd), given finite integers pLi ≥ 0, pUi ≥ 0, qLi ≥ 0, qUi ≥ 0 and real-

valued functions aj(θ), bj(θ). We call (1.1) and (1.2) multivariate polynomials, even

though they can involve negative powers. Denoting by B = (B1, ..., Bd) the operator

such that
Qd

i=1B
ji
i xt = xt−j, where t − j is the multiple index (t1 − j1, ..., td − jd),

suppose xt has the autoregressive moving average (ARMA) representation

ARMA (pL1, pU1; ...; pLd, pUd : qL1, qU1; ...; qLd, qUd) : a(B; θ0)(xt − µ) = b(B; θ0)εt,

(1.3)

where µ = Ext and

Eεt = 0, Eε
2
t = 1, Eεsεt = 0, all s 6= t, t ∈ Zd, (1.4)

a(z; θ) 6= 0, b(z; θ) 6= 0, for |zi| = 1, i = 1, ..., d, θ ∈ Θ. (1.5)

Under these conditions, f(λ) is finite and positive, and we take

f(λ; θ) = (2π)−d |b (E(iλ); θ) /a (E(iλ); θ)|2 , θ ∈ Θ, (1.6)

with E(z) = (ez1 , ..., ezd). Special cases of (1.3) are the autoregressive (AR) model

AR (pL1, pU1; ...; pLd, pUd) when b(z; θ0) ≡ 1 and the moving average (MA) model

MA (qL1, qU1; ...; qLd, qUd) when a(z; θ0) ≡ 1.

Any of the pLi, pUi, qLi, qUi can be positive, so these ARMA structures can be "mul-

tilateral", and they provide a flexible approach to modelling. It is necessary that θ be

identifiable from f(λ; θ), λ ∈ Πd, if xt is Gaussian or, more generally, if information is

confined to second moments of xt. In view of (1.6) this requires in the first place that

θ be identifiable from a(z; θ)−1b(z; θ). In the general ARMA case it is necessary that a
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and b not be over-specified, so they have no common factor, which implies, bearing in

mind that we have fixed Eε2t = 1, a suitable normalization of a or b, such as b0(θ) ≡ 1.

These requirements are innocuous in the AR or MA special cases, assuming θ is iden-

tifiable from the aj(θ) or bj(θ). However, in addition |a (z; θ)|2, |b (z; θ)|2 need not

uniquely determine a (z; θ), b (z; θ) . A given a(z; θ), with real-valued coefficients, can

be replaced by ã(z; θ) =
Qd

i=1 z
ji
i a(z; θ) for any positive or negative integer ji, but this

involves a trivial translation on Zd, which can be viewed as locating the innovation at

t− j rather than t (see Whittle, 1954), and is thus disregarded. To indicate a more

substantive concern, write for h ≥ 1,

a(z; θ) =
hQ

j=1

aj(z; θ), all θ ∈ Θ, (1.7)

where the aj(z; θ) are non-constant multivariate polynomials, with coefficients that

can be complex-valued. When h > 1, a(z; θ) is said to be factorizable, and if aj(z; θ)

is not factorizable, it is said to be irreducible (see e.g. van der Waerden, 1953, pp.58-

62). Denote by aj(z−1; θ) the function obtained by replacing zi by z−1i , for i = 1, ..., d,

in aj(z; θ). If all aj(z; θ) are irreducible, those of the 2h functions
Qh

j=1 aj (z
±1; θ) with

real-valued coefficients are indistinguishable.

When d = 1, and t denotes time, the ambiguity is commonly avoided by focussing on

"unilateral" models. Here, an irreducible factorization has h = pL1+ pU1, and a(z; θ)

is indistinguishable from a (pL1+ pU1)th-degree polynomial in z with all powers non-

negative, the usual automatic choice (and given (1.5) there is no loss of generality in

specifying all its zeros to be outside the unit circle, the usual "stationarity" condition).

On the other hand the requirement that coefficients be real can eliminate possibilities;

for example, commencing from a(z; θ) = θ1 + θ2z + θ3z
2, with complex-valued zeros,

where θj is the j-th element of θ, there is no equivalent bilateral AR(1, 1) model.

Unilateral structures have been studied when d ≥ 2 also. Tjostheim (1978), Ko-

rezlioglu and Loubaton (1986) discussed conditions under which xt has infinite AR
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and MA representations on a quadrant, so that xt (εt) is expressed in terms of εs (xs)

for sj ≤ tj, all j. See also Tjostheim (1983), Jiming (1991a). More general represen-

tations have also been referred to as "unilateral". Under conditions easily satisfied

by (1.3)-(1.5) and in our theorems, xt has an infinite linear MA representation in εs

for s ≤ t, with square summable coefficients, where ≤ denotes lexicographic order.

This extends the Wold representation theorem, and there is a corresponding unilat-

eral infinite AR representation if also f(λ) is everywhere positive; see Whittle (1954),

Helson and Lowdenslager (1958), Guyon (1982), Korezlioglu and Loubaton (1986).

These kind of unilateral representations can be used as a framework for extending

to d ≥ 2 ARMA order-determination methods and AR nonparametric spectral es-

timation methods developed in case d = 1 (see Huang and Anh (1992) and, in the

quadrant case, Tjostheim (1983)). They have also been employed in parametric mod-

elling (see e.g. Guyon (1982), Huang (1992), Yao and Brockwell (2002)). However,

for d ≥ 2 a multilateral finite ARMA given by (1.3)-(1.5) cannot necessarily be repre-

sented as a unilateral finite ARMA, as demonstrated in a simple example by Whittle

(1954), where d = 2, m = 1, a(z; θ) = 1 + θ2 − θ
¡
z1 + z2 + z−12

¢
, b(z; θ) ≡ 1. In this

case Whittle (1954) was able to give a closed form expression for the unilateral infinite

AR operator which can be shown to be equivalent to a(z; θ) (1− θz2)
¡
1− θz−12

¢−1
.

This trick can apply somewhat more generally, in particular in the case d = 2, m = 2,

a(z; θ) = 1 + θ22 − θ1z1 − θ2(z2 + z−12 ), b(z; θ) ≡ 1, since

a(z; θ)(1− θ2z2)(1− θ2z
−1
2 )

−1 = 1− 2θ2z2+ θ22z
2
2 + θ1θ2z1z2− θ1(1− θ22)(1− θ2z

−1
2 )

−1

is unilateral. (The same multilateral model was also considered by Jain (1981), but

the unilateral form that he derived, using a different approach, appears not to have

the same spectral density.) However, it does not work in general, where, even in simple

cases such as d = 2, m = 1, a(z; θ) = 1−θ(z1+z−11 +z2+z−12 ), b(z; θ) ≡ 1, as Whittle

(1954) also noted, formulae for unilateral representations can be intractable. Spatial
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dimensions may have no natural direction, so the choice of unilateral direction may

in any case be arbitrary.

Though we do not assume that the model of interest to the practitioner is multi-

lateral, our approach to asymptotic inference is influenced by this possibility. Follow-

ing Whittle (1954), lattice multilateral models driven by white noise, such as (1.3),

have been discussed by, for example, Ali (1979), Besag (1974), Cliff and Ord (1981),

Cressie (1993), Gleeson and McGilchrist (1980), Guyon (1995), Haining (1978), Jim-

ing (1991b), Mardia and Marshall (1984), Moran (1973), Ranneby (1982). The al-

lowance in (1.3) for the aj(θ) to bj(θ) to depend on a vector θ of possibly small

dimension m relative to the number, Πd
i=1 (pLi + pUi + 1) + Πd

i=1 (qLi + qUi + 1) − 1,

of ARMA coefficients can ease the identification problem. Symmetry restrictions (see

Ali (1979)) can be physically natural, and can lead to a(z; θ) or b(z; θ) being real-

valued, as with (3.1) of Section 3 below. More generally, inequality restrictions, for

example asserting that the coefficient of xt+1 is no less than that of xt−1, are easily

enforced in estimation and even when arbitrary are less drastic than choosing the di-

rection of a unilateral model. The structure of Martin (1979), in which h = d in (1.7)

and aj(z; θ) varies with zj only, can reduce the identification problem to the familiar

one when d = 1. Isotropic assumptions (see e.g. Stein (1999)) are another way of

introducing parsimony. The multilateral spatial aspect itself is only responsible for

finitely many observational equivalents, compared to the uncountable infinity due to

overspecified ARMA modelling.

Consider estimation of θ0 for xt observed on the rectangular lattice N = {t :

−nLi ≤ ti ≤ nUi, i = 1, ..., d}, for nUi, nLi ≥ 0, i = 1, ..., d. Define ni = nLi +

nUi + 1, n =
Qd

i=1 ni, and regard each ni = ni(n) as a function of the total number

of observations n. Though we only introduce parameter estimates that are based

on such a full lattice, our asymptotic construction regards observations as arising

singly; the sequence of estimates is defined only with respect to increase in one or
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the other of the ni but we can nest the consequent n sequences in Z+ = {1, 2, ...}.

Domains of observation are often more realistically viewed as bounded, where "infill"

asymptotics (see Cressie (1993), Stein (1999)) may have more appeal. This would

also require either modelling xt continuously across the domain, or making the model

n-dependent; our goal is to provide some justification for useful rules of inference in

finite samples, rather than explore issues of interpolation. Introduce assumption

A1. For all sufficiently large n, there exist ξ > 0, c1 > 0 such that

ni(n) ≥ c1n
ξ, i = 1, ..., d. (1.8)

The inequality between arithmetic and geometric means indicates that

dP
i=1

n−1i (n) ≥ dn−1/d, (1.9)

so that ξ ≤ 1/d, the equality here indicating that all ni increase at the same, n1/d,

rate. Assumption A1 can hold if, for all i, only one of nUi and nLi increases un-

boundedly with n, so that the usual random fields prescription nLi ≡ 0 is included.

It might sometimes seem artificial to suppose that further sampling is only possible

in particular directions, and multilateral increase seems a more natural asymptotic

regime when multilateral modelling is attempted.

We say that an estimate θ̂ of θ0 satisfies Property E if n1/2(θ̂ − θ0) converges in

distribution to a N (0,Φ−1ΨΦ−1) variate, where Φ and Ψ are non-singular matrices

given by

Φ = (2π)−d
R
Πd
∂(λ; θ0)∂

0(λ; θ0)dλ, ∂(λ; θ) =
∂ log f(λ; θ)

∂θ
,

Ψ = 2Φ+ κ

(
(2π)−d

R
Πd

∂(λ; θ0)dλ

)(
(2π)−d

R
Πd

∂(λ; θ0)dλ

)0
,

the prime denoting transposition and κ as defined in assumption
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A2. xt has representation

xt = µ+
P
j

βt−jεj,
P
j

¯̄
βj
¯̄
<∞,

where the εj satisfy (1.4) and are also independent and identically distributed

with finite fourth cumulant, denoted κ, and
P

j denotes
P

j∈Zd.

If xt has an ARMA representation (1.3), (1.5), with the εt as in (1.4) and A2,

the rest of A2 holds because b(E(iλ); θ0)/a(E(iλ); θ0) is an analytic function of λ,

and thus has absolutely convergent multiple Fourier series. Mixing conditions have

been popular in asymptotic theory for random fields; though α- and β-mixing can

sometimes be checked, they are likely to strengthen the moment condition in A2, and

given our focus on linear modelling, we prefer to strengthen assumptions on the white

noise innovations, as in A2.

Inspection of much real data suggests trending in mean and/or variance across the

domain, as Cressie (1993) has argued. Accounting for spatial correlation by means of

a parametric model is relevant to efficient trend estimation, especially when data are

in limited supply, and aspects of the methods and theory of stationary multilateral

models are extendable to many such nonstationary ones. Nonstationarity analogous

to unit roots in time series leads to a different type of theory, see Künsch (1987),

Bhattacharya, Richardson and Franklin (1997), Baran, Pap and van Zuijlen (2002).

The spatial literature has discussed the original, continuous-frequency, form of es-

timate proposed by Whittle, in relation to Property E. Define

QC1(θ) = (2π)−d
R
Πd

log f(λ; θ)dλ, QC2(θ;h) = (2π)
−d R

Πd

h(λ)

f(λ; θ)
dλ,

QC(θ;h) = QC1(θ) +QC2(θ;h), θ̂C(h) = argmin
Θ

QC(θ;h),

for an even function h(λ). Introduce the periodogram

I(λ) = (2π)−d
P
j

0cj cos(j.λ),
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where

cj = n−1
P
t(j)

(xt − x̄)(xt+j − x̄), x̄ = n−1
P
t∈N

xt,

such that
P0

j is a sum over 1 − ni ≤ j ≤ ni − 1, i = 1, ..., d,
P

t(j) is a sum over

−nLi ≤ ti, ti + ji ≤ nUi, i = 1, ..., d, and for d-dimensional quantities such as j that

are introduced as a multiple subscript rather than a vector we employ the notation

j.λ =
Pd

i=1 jiλi.

For d = 1, h(λ) = I(λ) is usual. With a finite AR model, QC1(θ; I) and its

derivatives in θ are easily analytically evaluated as a linear combination of finitely

many cj, but in MA or ARMA models the calculation is less simple. Even in the AR

case QC1(θ) can be difficult to calculate. In standard parameterizations of unilateral

models QC1(θ) is the log variance of the one-step-ahead predictor, and an element

of θ functionally unrelated to the remainder, but in multilateral models it in general

depends on the whole of θ, and does not have a neat closed form; even in quite simple

models, Whittle (1954) found only infinite series representations, and individual terms

of this can be complicated. Yao and Brockwell (2002) showed, with d = 2, that

the time-domain Gaussian pseudo-likelihood can be conveniently handled (even in

the presence of missing data) in case of unilateral finite ARMA models, but for

multilateral models it poses similar difficulties to QC(θ; I) (see e.g. Ali, 1979).

A statistical drawback of θ̂C(I) noted by Guyon (1982) is the edge effect: for fixed

j, as the ni → ∞ the bias of cj for γj = cov(x0, xj) is of order
Pd

i=1 n
−1
i , which by

(1.9) is of order no less than n−1/d. As (1.8) suggests, θ̂C(I) is nξ-consistent: for

d = 2 it is n
1
2 -consistent only when both ni increase at the same rate, and even then

n
1
2

³
θ̂C(I)− θ0

´
converges in distribution to a variate with non-zero mean, while for

d ≥ 3 θ̂C(I) is never n
1
2 -consistent; thus for d ≥ 2 θ̂C(I) lacks Property E.

The computational drawbacks of θ̂C(I) can be avoided by extending the discrete

form of Whittle estimate considered by Hannan (1973) in the time series case d = 1.
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Define

QD1(θ) =
1

n

P
j∈N
log f(ωj; θ), QD2(θ;h) =

1

n

P
j∈N

h(ωj)

f(ωj; θ)
,

QD(θ;h) = QD1(θ) +QD2(θ;h), θ̂D(h) = argmin
Θ

QD(θ;h),

where ωj = (2πj1/n1, ..., 2πjd/nd) . Regarding QD as an approximation to QC, the

quadrature rule employed is not arbitrary, since the ωj are just sufficiently finely

spaced for θ̂D(I) to have the same asymptotic properties as θ̂C(I); a coarser grid,

or one fixed with respect to n, would produce asymptotic bias. QD is motivated by

models in which f(λ; θ) has a simple closed form. This is not always the case; for

example Whittle (1954, 1963), Mardia and Marshall (1984), Stein (1999) stressed

models in which the spectral density of an underlying continuous model, on Rd, has

simple form, but application of the usual "folding" formula does not produce a neat

closed form for f(λ; θ); the infinite series can be truncated but at cost of asymptotic

bias unless the truncation rule is suitably n-dependent. However, in view of (1.5), QD

is convenient in case of, for example, multilateral ARMA models, as well as ARMA-

signal-plus-ARMA-noise ones, also motivated by Whittle (1954). Unlike when d = 1,

these signal-plus-noise processes do not necessarily have a finite ARMA representa-

tion, because a non-negative multivariate trigonometric polynomial cannot necessarily

be factored (see Kashyap, 1984). Likewise Rosanov (1967) motivated reciprocals of

such polynomials as models for f(λ) without requiring an AR representation. Kent

and Mardia (1996) discussed an objective function based on a matrix which would be

the covariance matrix of the data if xt, t ∈ Zd, form a circulant based on xt, t ∈ N.

This is equivalent to replacing the f(ωj; θ) in QD(θ; I) by quantities which differ if

f(λ; θ) is not a finite trigonometric polynomial (so is not an MA), and are in general

of complicated form.

The same edge-effect bias is found in θ̂D(I) as in θ̂C(I), with respect to which
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Guyon (1982) suggested replacing I(λ) by the almost-unbiased

I∗(λ) = (2π)
−dP

j

0c∗j cos(j.λ),

where

c∗j =

½
n/

dQ
i=1

(ni − |ji|)
¾
cj.

With nLi ≡ 0 and the nUi increasing, Guyon (1982) showed that θ̂C(I∗) satisfies Prop-

erty E, thereby avoiding edge-effect bias under a short range dependence condition

similar to A2; Heyde and Gay (1993) similarly covered long range dependent mod-

els. Dahlhaus and Künsch (1987) criticized θ̂C(I∗) as lacking a minimum-distance

interpretation and possibly being harder to locate than the minimizer of an objective

function that is guaranteed non-negative, citing numerical experience in support.

Theoretical properties of θ̂D(I∗) are disastrous. It suffices to look at the very simple

case of a unilateral AR(1) with d = m = 1, xt = θxt−1 + εt, |θ| < 1, where

QD2(θ; I∗) = c∗0(1 + θ2)− 2θ
¡
c∗1 + c∗n−1

¢
= QC2(θ; I∗)− 2θx1xn.

Since x1xn does not converge to a non-degenerate random variable (its variance tend-

ing to (1 − θ2)−2 in the Gaussian case), θ̂D(I∗) is not even consistent. In QD2(θ; I)

we have cn−1 = x1xn/n = Op(n
−1) instead of c∗n−1 = x1xn, so the "aliasing" of lags

causes no asymptotic problem, as demonstrated by Hannan (1973) in case d = 1.

These observations may explain the large numerical discrepancy between θ̂C(I∗) and

θ̂D(I∗) found by Mardia and Marshall (1984).

Yao and Brockwell (2002) handled the edge effect in their Gaussian pseudo-likelihood

by trimming out observations near the edges, thereby retaining the non-negativity of

the objective function. Dahlhaus and Künsch (1987) proposed an estimate θ̂C(IT ),

where IT is the periodogram of tapered xt, so IT and QC(θ; IT ) (plus a quantity in-

dependent of θ) are always non-negative. They showed that, for d ≤ 3 and the ni
increasing at the same rate, θ̂C(IT ) is n

1
2 -consistent and asymptotically normal, and
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fully satisfies Property E when a bandwidth number is suitably chosen. No doubt the

same desirable properties hold for θ̂D(IT ). It seems from their proof that Dahlhaus

and Künsch’s requirement that the ni increase at the same rate (ξ = 1/d for d ≤ 3)

can be relaxed to taking ξ ≥ 1
4
in (1.8), and perhaps their result can be further im-

proved, covering also d ≥ 4, if a smoother taper is employed, though this is liable to

make the choice of bandwidth a more delicate issue, and the need to choose both a

taper and a bandwidth introduces some ambiguity for the practitioner.

We propose an estimate of θ0 that enjoys some computational advantages of discrete-

frequency Whittle and achieves Property E, without tapering, in a quite general class

of processes that includes ARMA ones and ones in which autocorrelation falls off

more slowly, while falling short of long range dependence. All d are covered, with

arbitrary relative rates of increase of the ni subject to A1. The function QD(θ; I)

is first numerically optimized, and then finitely many iterations based on a suitably

modified objective function are carried out. The strategy is described in the follow-

ing section, along with regularity conditions and statement of asymptotic properties,

with a small Monte Carlo study of finite sample performance reported in Section

3. Section 2 also proposes a consistent, guaranteed non-negative definite, estimate

of the limiting covariance matrix Φ−1ΨΦ−1 when xt can be non-Gaussian. Proofs

are included in Sections 4 and 5. Though we are motivated in part by multilateral

representations, our work also offers something new for inference on unilateral ones.

2. MAIN RESULTS

We introduce first a truncated version of I∗(λ),

Ig(λ) = (2π)
−d P

· · ·
P

|ji|≤g(ni),i=1,...,d
c∗je

−ij.λ,

where g(x) satisfies assumption
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A3. g(x) is a positive, integer-valued, monotonically increasing function such that

g(x)→∞ as x→∞

and for all x > 0

g(x) ≤ c2x, some c2 < 1.

When averaged over the ωj, Ig is immune to the aliasing problems affecting I∗. The

truncation also has effects that are negligible asymptotically but may be significant in

finite samples, where it is a source of bias, but also reduces variance that is due to the

c∗j for large j. There is sensitivity to choice of g, though an overall sample size n that

justifies large sample inference in a given parametric model might entail individual ni

that are not very large, in which case the number of candidate integers g(ni) may not

be great. The aliasing can alternatively be avoided without truncating but instead

evaluating I∗ over a finer grid of frequencies, but ambiguity is only transferred, the

computations are heavier, and no asymptotic efficiency is gained.

Like I∗, Ig is not guaranteed non-negative, so QD(θ; Ig) has numerical properties

similar to those of QC(θ; I∗) criticized by Dahlhaus and Künsch (1987) and we do not

discuss θ̂D(Ig). Theorem 5 of Robinson (1988) suggests that finitely many Newton

iterations, based onQD(θ; Ig) and commencing from an nζ-consistent estimate, for any

ζ ∈ (0, 1
2
], will produce an estimate with Property E. His results built on development

by Hosoya and Taniguchi (1982) and others of LeCam’s (1956) observation that a

single Newton step can convert an n
1
2 -consistent estimate into an asymptotically

efficient one. The choice of initial estimate is addressed subsequently.

Define

r(θ) =
1

n

P
j∈N

∂(ωj; θ)

½
Ig(ωj)

f(ωj; θ)
− 1
¾
, R(θ) =

1

n

P
j∈N

∂(ωj; θ)∂
0(ωj; θ).
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We propose two possible recursions. For c = 1, 2, given an initial estimate θ̂
(c)

[1] of θ0,

define

θ̂
(1)

[u+1] = θ̂
(1)

[u] +R
³
θ̂
(1)

[1]

´−1
r
³
θ̂
(1)

[u]

´
, u ≥ 1, (2.1)

θ̂
(2)

[u+1] = θ̂
(2)

[u] +R
³
θ̂
(2)

[u]

´−1
r
³
θ̂
(2)

[u]

´
, u ≥ 1. (2.2)

Thus,
n
θ̂
(1)

[u]

o
entails no updating of the inner product matrix R, though θ̂

(1)

[1] = θ̂
(2)

[1]

implies θ̂
(1)

[2] = θ̂
(2)

[2] . Both sequences approximate solutions to the estimating equations

r(θ) = 0, which are first-order conditions for minimizing QD(θ; Ig). They are both

forms of Gauss-Newton iteration. Newton-Raphson iteration famously numerically

converges faster, in a suitable neighbourhood of the target, and Robinson (1988)

showed that this can be matched by a faster statistical convergence. However, he

stressed the improvements gained by further iterations on an estimate that already

has Property E, in reducing the stochastic order of the difference between the iterated

estimate and its target, with possible implications for matching higher-order efficiency.

In our case, it is Property E that is the goal, the difference between R and the

Hessian used in Newton-Raphson is of relatively small order, and Property E would

be achieved no faster. Moreover, the Hessian is more complicated to compute than

R, and unlike R is not guaranteed non-negative definite, thereby presenting possible

convergence problems.

We introduce the following additional assumptions.

A4. For ξ as in A1 and g−1 the inverse function of g given in A3, the autocovariance

function γj = cov(x0, xj) satisfiesP
j

½
dP

i=1

g−1(|ji|)1/(2ξ)
¾ ¯̄

γj
¯̄
<∞.

A5. In a neighbourhood of θ0, f(λ; θ) is positive and thrice boundedly differentiable

in θ; f(λ; θ) and its first three derivatives in θ are continuous in λ at θ = θ0.

14



A6. Φ is positive definite.

A7. For c = 1, 2, θ̂
(c)

[1] = θ0 +Op(n
−ζ), for some ζ ∈ (0, 1

2
).

Assumption A4 controls the bias. For ARMA models (1.3), f(λ) is analytic so the

γj decay exponentially; thus A4 holds for any ξ > 0 and for g(x) ∼ xρ, any ρ > 0,

allowing heavy truncation in Ig. Again in an ARMA context, A5 relies on smoothness

of the functions aj(θ), bj(θ), while the standard identifiability condition A6 rules out

common roots in a(z; θ0) and b(z; θ0). We postpone discussion of A7 until after

Theorem 1 Under Assumptions A1-A7:

(i) θ̂
(1)

[u] satisfies Property E for all

u > (2ζ)−1; (2.3)

(ii) θ̂
(2)

[u] satisfies Property E for all

u >
cnζ

cn(1
2
)
. (2.4)

The proof is left to Section 4. It follows from the inequality xx > (1
2
)
1
2 for 0 < x < 1

2

that (2.1) requires at least as many iterations as (2.2), reflecting the anticipated

benefit of updating R in (2.2).

The θ̂
(c)

[1] are likely to be implicitly-defined extremum estimates that do not attempt

edge-effect correction. A promising candidate on computational grounds is θ̂D(I),

which has the desired minimum-distance interpretation, minimizing the objective

function QD(θ; I)+n−1
P

j∈N log I(ωj)−1, which is always non-negative and vanishes

only when I(ωj) = f(ωj; θ) for all j ∈ N. Indeed, in the AR case of (1.3) with a(z; θ)

linear in θ, QD(θ; I) is globally convex for all finite n, so that hill-climbing procedures

commencing from any starting value will always converge. To indicate how A7 is

satisfied, we first introduce the following additional assumptions.
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A8. Θ is a compact subset of Rm.

A9. θ0 is an interior point of Θ.

A10. f(λ; θ) 6= f(λ; θ0), θ ∈ Θ−{θ0}, for all λ in a subset of Πd of positive measure.

A11.
P
j

Ã
dX

i=1

|ji|
! ¯̄

γj
¯̄
<∞.

Theorem 2 Under Assumptions A1, A2, A5, A6 and A8-A11,

θ̂D(I)− θ0 = Op(n
−ξ), as n→∞. (2.5)

The rate in (2.5) was anticipated in Section 1, but in view of A7 it seems desir-

able to state formal justification, especially as we later discuss a modified estimate.

Nevertheless, Theorem 2 relates closely to results of Guyon (1982), Kent and Mardia

(1996) pertaining to θ̂C(I) for unilateral models with d > 1, and Hannan (1973) for

θ̂D(I) when d = 1, so we only comment briefly on the proof. Consistency, with no

rate, may be established much as in Hannan’s proof, using A2, A5 and A8-A10. Using

A5, A6, the mean value theorem is then applied to the first order conditions for a

minimum of QD(θ; I), around θ0, as if a central limit theorem is to be proved, but

(∂/∂θ)QD(θ0; I) is then seen to take the order of its expectation, n−ξ (applying A11

and (4.17) of Section 4). Note that A11 is milder than A4, and could be relaxed at

cost of a slower rate than in (2.5), and possibly an increase in the number of recursions

needed to achieve Property E.

When the ni increase at the same rate, ξ = 1/d, and Table 1 indicates the minimal

values of u, u(1) and u(2), satisfying (2.3) and (2.4) when θ̂
(c)

[1] = θ̂D(I) for c = 1, 2.

For the practically most typical d, θ̂
(1)

[u] dominates on computational grounds. On the

other hand if the ni increase at varying speeds, ξ < 1/d so for ζ = ξ the u(c), and
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the gap between them, can increase. If relative rates of the ni, or at least ζ, are not

assumed known, then the u(c) are unknown, albeit finite.

Table 1:

Minimum values u(c), c = 1, 2, of u satisfying (2.3) and (2.4) when ζ = 1/d.

d : 2 3 4 5 6

u(1) 2 2 3 3 4

u(2) 2 2 3 3 3

7 8 9 10

4 5 5 6

3 4 4 4

Since θ̂D(I) is real-valued and only implicitly-defined, strictly speaking it cannot

be obtained by finite computation. In practice one is content with accuracy to a

given number of decimal places and such a solution can be reached, using numerical

search of QD(θ; I), possibly combined with iteration, but even this can be expensive,

especially when m is large. From our statistical perspective we want only to satisfy

A7, which does not necessarily require a search that is exhaustive but rather one over

a grid that is regarded as becoming suitably finer as n increases. Robinson (1988)

showed, for a quite general objective function with an n
1
2 -consistent optimizer, that

of order nmψ search points suffice to achieve an nψ-consistent estimate, for ψ ≤ 1
4
. To

develop a corresponding approximation to θ̂D(I), define by Gn a set of points that is

regularly-spaced throughout Θ, and such that #{θ : θ ∈ Gn} ≥ c3n
mψ, c3 > 0, and

denote

θ̂
(s)

D (I) = arg min
θ∈Gn

QD(θ; I).

Theorem 3 Under Assumptions A1, A2, A5, A6 and A8-A11,

θ̂
(s)

D (I)− θ0 = Op(n
−ψ), as n→∞, (2.6)

for ψ ≤ ξ/2.
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We omit the proof because it largely applies Theorem 8 of Robinson (1988), whose

conditions are checkable much as would be done in proving Theorem 2. His conditions

would require that supΘ |QD(θ; I)−Q(θ)| = Op(n
−ζ) for ζ = 1

2
, where Q(θ) is the

probability limit of QD(θ; I), whereas only ζ = ξ is possible, explaining the weaker

result (2.6) that emerges by following his method of proof.

The strategy justified in Theorems 1 and 3 stresses statistical and computational

considerations to demonstrate that Property E can be achieved in a finite, relatively

well-defined, number of simple steps. However, a comprehensive search of QD(θ; I),

guided by advice from numerical analysis, and iterating (2.1) or (2.2) to achieve

satisfactory numerical convergence, would obviously be desirable.

When xt is Gaussian, estimates satisfying Property E are asymptotically efficient,

and have limiting variance matrix 2Φ−1, since κ = 0. Then Theorem 1 can be applied

in approximate inference on θ0 by consistently estimating Φ by Φ̂ = R(θ̂), where θ̂

is any consistent estimate of θ0. More generally, if we can partition θ in the ratio

ma : mb as θ = (θ0a, θ
0
b)
0, and correspondingly ∂(λ; θ) = (∂a(λ; θ)

0, ∂b(λ; θ)
0)0, such

that
R
Πd

∂a(λ; θ0)dλ = 0 and ∂b(λ; θ0) is constant, then the leading ma × ma sub-

matrix of Φ−1ΨΦ−1 is twice the inverse of the leading ma × ma sub-matrix of Φ

(which is block-diagonal), irrespective of whether or not κ = 0. Such circumstances

occur in standard unilateral parameterizations of ARMA models, where mb = 1 and

(2π)−d
R
Πd log f(λ; θ)dλ = log θb, but not in non-standard parameterizations, such as

signal-plus-noise and multilateral models, as the discussion of QC1(θ) in Section 1

suggests. Here, asymptotic inference requires consistently estimating Ψ, for which

several approaches have been suggested in case d = 1.

For unilateral models, Hannan, Dunsmuir and Deistler (1980) proposed a con-

sistent estimate of Ψ, involving time-domain filtering, that is advantageously guar-

anteed to be non-negative definite (nnd), but seems difficult to extend to multi-

lateral spatial models. Taniguchi’s (1982) frequency-domain proposal, for estimat-
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ing
R
Π2

ρ(λ, χ)f4(λ, χ,−χ)dλdχ, where f4 is the fourth cumulant spectral density

of xt, and ρ is a continuous function on Π2, does seem to be extendable to our

context, indeed it does not assume linearity of xt so it affords some robustness.

However, it is somewhat complicated, it requires choice of a kernel function and

bandwidth, and the resulting estimate of Ψ does not seem to be necessarily nnd.

Chiu (1988) proposed that n−2
P

j∈N
P

k∈N ρ(ωj)ρ(ωk)I(ωj)I(ωk), with ρ now a con-

tinuous function on Π, consistently estimates something with an additive compo-

nent (2π)−1
R
Π2

ρ(λ)ρ(χ)f4(λ,−λ, χ)dλdχ, the others being functionals of f and eas-

ily estimable. However, this estimate is actually uninformative about f4; it equalsn
n−1

P
j∈N ρ(ωj)I(ωj)

o2
→p

©
(2π)−1

R
Π
ρ(λ)f(λ)dλ

ª2
.

We propose an alternative approach, that would be useful also in time series prob-

lems and applies also to long range dependent processes. Since Φ is consistently

estimated by Φ̂, and Ξ by Ξ̂ = n−1
P

j∈N ∂(ωj; θ̂), it suffices, according to the form

of Ψ (which is due to the linearity assumption A2), to estimate κ. Given ε̂t, t ∈ N,

introduce

µ̂2 = n−1
P
t∈N

ε̂2t , µ̂4 = n−1
P
t∈N

ε̂4t . (2.7)

The simplest estimate of κ is κ̃ = µ̂4 − 3, but 2Φ̂ + κ̃Ξ̂Ξ̂0 is not necessarily nnd.

However, since 2
³
Φ̂− Ξ̂Ξ̂0

´
and

¡
µ̂4 − µ̂22

¢
Ξ̂Ξ̂0 are both nnd, so is their sum 2Φ̂ +¡

µ̂4 − µ̂22 − 2
¢
Ξ̂Ξ̂0, which is also consistent for Ψ if µ̂2 and µ̂4 are consistent for Eε

2
0

and Eε40 (explaining the introduction of µ̂2 despite Eε
2
0 = 1 being given). It remains

to obtain ε̂t that achieve this property.

For finite AR models, this is straightforward. Define

ε̂
(1)
t = a

³
B; θ̂

´
(xt − x̄) , t ∈ N,

with a given by (1.1) and xs replaced by x̄ when s /∈ N. Other models, in particular

multilateral MA and ARMA ones, may be difficult to invert, and require proxies for xs

for all s /∈ N. For such models we develop an approach of Robinson (1987) (intended
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for unilateral models with d = 1) which assumes we know a function α(z; θ) of z and

θ such that f(λ; θ) = (2π)−d |α (E(iλ); θ)|−2; for example in the ARMA model (1.3),

α(z; θ) = a(z; θ)/b(z; θ). Define w(λ) = {(2π)dn}− 1
2

P
t∈N xte

it.λ and

ε̂
(2)
t = (2π)d/2n−

1
2
P
j∈N

α
³
E(iωj); θ̂

´
w(ωj)e

−it·ωj , t ∈ N. (2.8)

When expressed in the time domain, (2.8) effectively treats xt on Zd as a circulant,

with observations on N repeated periodically. This violates our assumptions, but we

show that, as with θ̂D(I), the consequent error is asymptotically negligible, and (2.8)

is computationally advantageous when α is a simple function, as in ARMA models,

and in making double use of the fast Fourier transform. Robinson (1987) studied

convergence of ε̂(1)t , ε̂
(2)
t and their use in kernel probability density estimation (in the

unilateral d = 1 case) but did not employ them in estimating moments.

We introduce the following assumptions.

A12. For all λ ∈ Πd, α (E(iλ); θ) is boundedly differentiable in a neighbourhood of

θ0, it is nonzero and has absolutely convergent Fourier series at θ = θ0, and xt

has representation

α(B; θ0)(xt − µ) = εt, t ∈ Zd,

where the εt are independent with zero mean, unit variance and uniformly

bounded fourth moment.

A13. θ̂ = θ0 +Op(n
−ζ) for ζ > 1

4
.

Unlike in the estimation of θ0, assumption A12 implies knowledge of a factorization

of f(λ; θ). However, it entails no strengthening of the fourth moment condition in

A2, and holds for stationary and invertible ARMA processes with coefficients that

are smooth in θ, as well as for many processes with long range dependence; there,

the summability of βj assumed in A2 will not hold, but square summability does, as
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under A12, while in long range dependent models AR weights are typically absolutely

convergent. It would be possible to still cover ARMA processes by strengthening A12

but relaxing A13 to only consistency of θ̂. However, in the context of estimating

Φ−1ΨΦ−1, we already have an n
1
2 -consistent estimate of θ0, though the θ̂

(c)

[1] in A7 also

satisfy A13 if ζ = 1/d for d ≤ 3. Proof details of the following theorem are left to

Section 5.

Theorem 4 Let Assumptions A12 and A13 hold. Then with α(z; θ) = a(z; θ) for

i = 1, as n→∞

µ̂
(i)
2 →p Eε

2
0, µ̂

(i)
4 →p Eε

4
0, i = 1, 2. (2.9)

If, further, Assumptions A1, A2, A5 and A6 hold,

2Φ−1 +
³
µ̂
(i)
4 − µ̂

(i)2
2 − 2

´³
Φ̂−1Ξ̂

´³
Φ̂−1Ξ̂

´0
, i = 1, 2, (2.10)

are non-negative definite and as n→∞ converge in probability to Φ−1ΨΦ−1.

3. MONTE CARLO STUDY OF FINITE-SAMPLE BEHAVIOUR

A small Monte Carlo study was carried out to study the finite-sample performance

of our estimates. We first consider the simple symmetric multilateral model

xt = σ0εt + ρ0σ0

1X
j1=−1

· · ·
1X

jd=−1
j 6=(0,...,0)

εt−j. (3.1)

This is an MA (1, 1; ...; 1, 1) representation defined as in Section 1 with a(z; θ) ≡ 1,

bj(θ) = σ for j = (0, ..., 0), bj(θ) = σρ for j = (±1, ...,±1), and bj(θ) ≡ 0 otherwise,

taking θ = (ρ, θ)0. Haining (1978) discussed a similar model. We deduce that

f(λ; θ) =
σ2

(2π)d
{1 + ρvd(λ1, ..., λd)}2 ,
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where

vd(λ1, ..., λd) =
dY

j=1

(1 + 2 cosλj)− 1.

An "invertibility" condition satisfying (1.5) is

|ρ0| <
¡
3d − 1

¢−1
. (3.2)

For given n∗, we generated NID(0, 1) εt for tc = 0,±1, ...,±(n∗ + 1), c = 1, ..., d,

and then xt t ∈ N = {t : tc = 0,±1, ...,±n∗, c = 1, ..., d}, using (3.1). Thus we study

only the regular case nLi = nUi = n∗, i = 1, ..., d, with n = (2n∗ + 1)d.

The experiment was carried out for d = 2 and 3, with the following specifications:

d = 2 : ρ0 = 0.05, 0.1; σ0 = 1; (n, g) = (121, 2), (121, 5), (361, 4), (361, 9),

d = 3 : ρ0 = 0.015, 0.03; σ0 = 1; (n, g) = (125, 1), (125, 2), (343, 1), (343, 3),

where g = g(ni) = g(2n∗ + 1). The g’s were determined by the rules g = [n∗/2] and

g = [n∗], noting that n∗ = 5, 9 for d = 2 and n∗ = 2, 3 for d = 3. The n∗ were chosen

so as to make n relatively stable across d. Note that (3.2) is satisfied.

The initial estimate θ̂[1] = θ̂
(1)

[1] = θ̂
(2)

[1] was computed according to the scheme jus-

tified in Theorem 3. Notice that our parameterization allows σ to be eliminated,

leaving an objective function

M(ρ) = log σ̂2(ρ) +
2

n

X
j∈N

log {1 + ρvd(ωj)} ,

where

σ̂2(ρ) =
(2π)d

n

X
j∈N

I(ωj)

{1 + ρvd(ωj)}2
.

We took θ̂[1] =
¡
ρ̂[1], σ̂

2(ρ̂[1])
¢0
, where ρ̂[1] minimizes M(ρ) over a set G

(d)
n , such that

G(2)
n =

½
r : r =

j

16n
1
4

, j = 0,±1, ...; |r| < 1/8
¾
,

G(3)
n =

½
r : r =

j

52n1/6
, j = 0,±1, ...; |r| < 1/26

¾
,
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indicating equally-spaced points over the set (3.2). Thus G(2)
n contains about 4n

1
4

points, and G
(3)
n about 4n1/6. Notice that Gn of Theorem 3 contains of order n1/d

points on the basis of m = 2 and ξ = 1/d, since it was assumed there that an

m-dimensional search is carried out. Due to the elimination of σ we can get the

n1/(2d)-consistency of θ̂
(s)

D (I) in the statement of Theorem 3 by searching over G(d)
n .

Both sequences of iterations (2.1) and (2.2) were pursued. Property E is first

achieved by ρ̂
(1)
[3] and ρ̂

(2)
[3] for d = 2, and by ρ̂

(1)
[4] and ρ̂

(2)
[3] for d = 3. We report Monte

Carlo bias and standard deviation, on the basis of 100 replications, for d = 2 with

ρ = 0.05 in Table 2, d = 2 with ρ = 0.01 in Table 3, d = 3 with ρ = 0.015 in Table

4, and d = 3 with ρ = 0.03 in Table 5. A constant feature is that the outcomes of

iterations (2.1) and (2.2) were almost identical, which is in line with the theory since

both employ the minimum number of iterations necessary to achieve Property E.

Biases are predominantly negative. The bias-reductions achieved in Table 2 are not

great though the bias of ρ̂[1] is about 16% of ρ when n = 121, and nearly 10% when

n = 361, and the percentage reductions are about 20% and 30% respectively. These

are greater in Table 3, more than halving the bias in case of the smaller sample size.

As feared, the iterations produce overall a worsening in standard deviation (though

there is a slight improvement for d = 2 and n = 361). For d = 2 and n = 121 the

smaller g does worst, for d = 3 and n = 125 it does best; though we expect to reduce

variability by omitting long lags from the periodogram, it could be increased by also

omitting short ones. As expected, biases were mostly smaller for the larger g. Notice

the enormous percentage bias reductions achieved by (2.1) and (2.2) when d = 3 and

n = 343.
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Table 2:

Monte Carlo Bias (Standard Deviation) with d = 2, ρ = 0.05

n, g 121, 2 121, 5 361, 4 361, 9

ρ̂[1] -.0081 (.0275) -.0081 (.0275) -.0046 (.0147) -.0046 (.0147)

ρ̂
(1)
[3] -.0065 (.0291) -.0046 (.0280) -.0032 (.0145) -.0028 (.0145)

ρ̂
(2)
[3] -.0064 (.0290) -.0046 (.0279) -.0032 (.0145) -.0027 (.0145)

Table 3:

Monte Carlo Bias (Standard Deviation) with d = 2, ρ = 0.10

n, g 121, 2 121, 5 361, 4 361, 9

ρ̂[1] -.0184 (.0265) -.0184 (.0277) -.0097 (.0148) -.0047 (.0148)

ρ̂
(1)
[3] -.0083 (.0331) -.0088 (.0277) -.0064 (.0144) -.0058 (.0145)

ρ̂
(2)
[3] -.0087 (.0324) -.0089 (.0276) -.0064 (.0144) -.0058 (.0145)

Table 4:

Monte Carlo Bias (Standard Deviation) with d = 3, ρ = 0.015

n, g 125, 1 125, 2 343, 1 343, 3

ρ̂[1] -.0053 (.0125) -.0053 (.0125) -.0044 (.0091) -.0044 (.0091)

ρ̂
(1)
[4] -.0038 (.0168) .0023 (.0197) -.0015 (.0113) .0000 (.0113)

ρ̂
(2)
[3] -.0040 (.0165) -.0020 (.0197) -.0015 (.011) -.0002 (.0110)

Table 5:

Monte Carlo Bias (Standard Deviation) with d = 3, ρ = 0.03

n, g 125, 1 125, 2 343, 1 343, 3

ρ̂[1] -.0115 (.0121) -.0015 (.0121) -.0089 (.0091) -.0089 (.0091)

ρ̂
(1)
[4] -.0038 (.0224) .0051 (.0314) -.0001 (.0151) .0006 (.0132)

ρ̂
(2)
[3] -.0048 (.0202) .0017 (.0214) .0006 (.0179) -.0000 (.0123)
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The spatio-temporal model with d = 4,

xt = σ0εt + ρ0σ0

1X
j1=−1

1X
j2=−1

1X
j3=−1

(j1,j2,j3)6=(0,0,0)

εt1−j1,t2−j2,t3−j3,t4−1,

was also simulated. This is unilateral with respect to the fourth, "time" dimension,

and

f(λ; θ) =
σ2

(2π)4
©
1 + ρ2v3(λ1, λ2, λ3) + 2ρv3(λ1, λ2, λ3) cosλ4

ª
.

We took σ20 = 1 ρ0 = 0.015, 0.03 and (n, g) = (625, 1), (625, 2), (2401, 1), (2401, 3), the

n resulting from n∗ = 2 and 3. Tables 6 and 7 mostly reveal little difference between

the outcomes of (2.1) and (2.2). Both recursions definitely worsen standard deviation,

but there are substantial absolute bias reductions, which seem especially welcome as

ρ̂[1] exhibits biases between -ρ/3 and -ρ/2; the recursions also mostly reverse the sign

of the bias.

Table 6:

Monte Carlo Bias (Standard Deviation) with d = 4, ρ = 0.015

n, g 625, 1 625, 2 2401, 1 2401, 3

ρ̂[1] -.0067 (.0094) -.0067 (.0094) -.0050 (.0050) -.0050 (.0050)

ρ̂
(1)
[5] .0022 (.0104) .0044 (.0129) .0005 (.0066) .0006 (.0060)

ρ̂
(2)
[4] .0024 (.0108) .0042 (.0123) .0005 (.0066) .0006 (.0060)

Table 7:

Monte Carlo Bias (Standard Deviation) with d = 4, ρ = 0.03

n, g 625, 1 625, 2 2401, 1 2401, 3

ρ̂[1] -.0150 (.0090) -.0150 (.0090) -.0123 (.0048) -.0123 (.0048)

ρ̂
(1)
[5] -.0024 (.0125) .0020 (.0155) .0010 (.0072) .0004 (.0072)

ρ̂
(2)
[4] -.0031 (.0128) .0028 (.0167) .0011 (.0075) .0005 (.0071)
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4. PROOF OF THEOREM 1

Introduce the artificial estimate

θ̂ = θ0 +R(θ0)
−1r(θ0).

It suffices to show that θ̂ has Property E and

θ̂
(c)

[u] − θ̂ = op(n
− 1
2 ), c = 1, 2, (4.1)

when u satisfies (2.3) for c = 1 and (2.4) for c = 2.

The first statement will follow on showing

n
1
2 r(θ0)→d N (0,Ψ) (4.2)

and

R(θ0)→p Φ. (4.3)

With respect to the second write, with θ̃
(1)

[u] = θ̂
(1)

[1] , θ̃
(2)

[u] = θ̂
(2)

[u] ,

θ̂
(c)

[u+1] − θ̂ = θ̂
(c)

[u] − θ0 +R
³
θ̃
(c)

[u]

´−1
r
³
θ̂
(c)

[u]

´
−R(θ0)

−1r(θ0)

=

½
R
³
θ̃
(c)

[u]

´−1
−R(θ0)

−1
¾
r(θ0) +

½
Im +R

³
θ̃
(c)

[u]

´−1
S̃
(c)
[u]

¾³
θ̂
(c)

[u] − θ0
´
,

where Im is them-rowed identity matrix and S̃
(c)
[u] is the matrix obtained by evaluating

each row of S(θ) = (∂/∂θ0) r(θ) at a point on the line segment between θ̂
(c)

[u] and θ0.

On showing °°°°R³θ̃(c)[u]´−1 −R(θ0)
−1
°°°° = Op

³°°°θ̃(c)[u] − θ0

°°°´ , (4.4)°°°Im +R
³
θ̃
(c)

[u]

´
S̃
(c)
[u]

°°° = Op

³°°°θ̃(c)[u] − θ0

°°°+ n−
1
2

´
, (4.5)

where kAk = {tr(AA0)}
1
2 , we deduce

θ̂
(c)

[u+1] − θ̂ = Op

³³
n−

1
2 +

°°°θ̂(c)[u] − θ0

°°°´°°°θ̃(c)[u] − θ0

°°°´ .
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As in Robinson (1988) we have the solutions

θ̂
(1)

[u+1] − θ̂0 = Op

µ°°°θ̂(1)[1] − θ0

°°°u+1¶+ op(n
−1
2 ) = Op

¡
n−(u+1)ξ

¢
+ op(n

− 1
2 ),

θ̂
(2)

[u+1] − θ̂ = Op

µ°°°θ̂(2)[1] − θ0

°°°2u¶+ op(n
−1
2 ) = Op

¡
n−2

uξ
¢
+ op(n

− 1
2 ),

whence (4.1) holds under (2.3) and (2.4) respectively.

The proof of (4.4) involves standard application of the mean value theorem, given

A5, A6 and (4.3), which follows immediately from continuity of ∂(λ; θ0). The proof

of (4.5) uses similar arguments, the fact that

Im +R(θ)−1S(θ) = Im −R(θ)−1n−1
P
j∈N

∂(ωj; θ)∂
0(ωj; θ)

Ig(ωj)

f(ωj; θ)

+R(θ)−1n−1
P
j∈N

∂2 log f(ωj; θ)

∂θ∂θ0

½
Ig(ωj)

f(ωj; θ)
− 1
¾
,

and arguments employed in the proof of (4.2), which we now consider.

Write τ(λ) = ∂(λ; θ0)/f(λ) and then r(θ0) = r1 + r2, where

r1 = n−1
P
j∈N

τ(ωj) {Ig(ωj)−EIg(ωj)} , r2 = n−1
P
j∈N

τ(ωj) {EIg(ωj)− f(ωj)} .

For brevity of proof we assume µ = 0 and replace xt − x̄ by xt; it is straightforward

to show that this has negligible effect, x̄ being n
1
2 -consistent for µ under A2. Now

EIg(λ)− f(λ) = (2π)−d
P
· · ·
P

j:|ji|>g(ni), some i
γj cos(j.λ).

This is bounded by

K
dP
i=1

P
|ji|>g(ni)

P
· · ·
P

|jk|<∞,k 6=i

¯̄
γj
¯̄
≤ K

dP
i=1

n
−1/(2ξ)
i

P
|ji|>g(ni)

g−1(|ji|)1/(2ξ)
P
· · ·
P

|jk|<∞,k 6=i

¯̄
γj
¯̄
= o(n−

1
2 )

under A1 and A4, K being a generic, positive constant. Thence r2 = o(n−
1
2 ) and it

suffices to establish (4.2) with r(θ0) replaced by r1.

Introduce the Cesaro sum of the multiple Fourier series of τ(λ),

τL(λ) =
P
c∈AL

dQ
i=1

µ
1− |ci|

L

¶
τ ce

−ic.λ,
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for c = (c1, ..., cd), AL = {c : |ci| ≤ L, i = 1, ..., d} and

τ c = (2π)
−d
Z
Πd

τ(λ)eic.λdλ.

Fix η1 > 0. By continuity of τ(λ) we can choose L such that

sup
λ
|τ(λ)− τL(λ)| < η1. (4.6)

Writing

r1L = n−1
P
j∈N

τL(ωj) {Ig(ωj)− EIg(ωj)} ,

r1 − r1L has mean zero and variance

n−2
P
j∈N

P
k∈N

τ̃L(ωj)τ̃L(ωk)cov {Ig(ωj), Ig(ωk)}

= {(2π)dn}−2
P
j∈N

P
k∈N

τ̃L(ωj)τ̃L(ωk)

½P
u

00P
v

00cov(c∗u, c
∗
v)e

i(v.ωk−u.ωj)
¾
, (4.7)

where τ̃L(λ) = τ(λ)− τL(λ) and
P00

u =
P
· · ·
P

|ui|≤g(ni), i = 1, ..., d. The proof that

(4.7) = o(n−1) is somewhat different from that (in the time series literature) when Ig

is replaced by I in r1L. With n(u) = Πd
i=1(ni − |ui|), the term in braces in (4.7) is

P
u

00P
v

00[n(u)n(v)]−1
P
s(u)

P
t(v)

©
γt−s−uγt+v−s + γt−sγt−s+v−u

+ cum (xs, xs+u, xt, xt+v)} ei(v.ωk−u.ωj)

=
P
u

00P
v

00[n(u)n(v)]−1
P
s(u)

P
t(v)

∙Z
Πd

Z
Πd

f(λ)f(χ)

×
©
ei(t−s−u).λ−i(t+v−s).χ + ei(t−s).λ−i(t−s+v−u).χ

ª
dλdχ

+κ
P
c

βs−cβs+u−cβt−cβt+v−c

¸
ei(v.ωk−u.ωj). (4.8)
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The contribution to (4.7) from the first term in braces in (4.8) is

{(2π)dn}−2
Z
Πd

Z
Πd

P
j∈N

P
k∈N

τ̃L(ωj)τ̃L(ωk)
P
u

00P
v

00 {n(u)n(v)}−1

×e−iu.(λ+ωj)−iv.(χ−ωk)
P
s(u)

P
t(v)

ei(t−s).(λ−χ)f(λ)f(χ)dλdχ

= {(2π)dn}−2
Z
Πd

Z
Πd

(P
j∈N

τ̃L(ωj)
P
u

00n(u)−1e−iu.(λ+ωj)
P
s(u)

eis.(χ−λ)

)

×
(P

k∈N
τ̃L(ωk)

P
v

00n(v)−1eiv.(ωk−χ)
P
t(v)

eit.(λ−χ)

)
f(λ)f(χ)dλdχ.

By the Schwarz inequality and A5 this is bounded by a constant times

{(2π)dn}−2
⎧⎨⎩
Z
Πd

Z
Πd

°°°°°Pj∈N τ̃L(ωj)
P
u

00n(u)−1e−iu.(λ+ωj)
P
s(u)

eis.(χ−λ)

°°°°°
2

dλdχ

×
Z
Πd

Z
Πd

°°°°°Pk∈N τ̃L(ωk)
P
v

00n(v)−1eiv.(ωk−χ)
P
t(v)

eit.(λ−χ)

°°°°°
2

dλdχ

⎫⎬⎭
1
2

= n−2
P
u

00n(u)−1

°°°°°Pj∈N τ̃L(ωj)e
−iu.ωj

°°°°°
2

since
P

s(u) 1 = n(u). For |ui| ≤ g(ni), i = 1, ..., d, A3 implies that n(u)−1 ≤ Kn−1,

so the last displayed expression is bounded by a constant times

n−3
P
u

00

°°°°°Pj∈N τ̃L(ωj)e
−iu.ωj

°°°°°
2

≤ n−3
P
u

000

°°°°°Pj∈N τ̃L(ωj)e
−iu.ωj

°°°°°
2

(4.9)

where
P000

u is the sum
P
· · ·
P

1−ni≤ui≤ni,i=1,...,d. Because

0P
uc=1−nc

e2πi(kc−jc)/nc =
ncP

uc=1

e2πi(kc−jc)nc = nc1(jc = kc) (4.10)

for 1 ≤ jc, kc ≤ nc, it follows that the bound in (4.9) is

2dn−2
P
j∈N
kτ̃L(ωj)k2 ≤ 2dη2n−1.
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The contribution to (4.7) from the second term in braces in (4.8) is readily found to

be of the same order. The contribution to (4.7) from the fourth cumulant term in

(4.8) is bounded by

Kn−2
P
u

00P
v

00 {n(u)n(v)}−1
°°°°°Pj∈N τ̃L(ωj)e

−iu.ωj

°°°°°
°°°°P
k∈N

τ̃L(ωk)e
iv.ωk

°°°°
×
P
s(u)

P
t(v)

P
c

¯̄
βs−cβs+u−cβt−cβt+v−c

¯̄
≤ Kn−4

P
u

00P
v

00

⎧⎨⎩
°°°°°Pj∈N τ̃L(ωj)e

−iu.ωj

°°°°°
2

+

°°°°P
k∈N

τ̃L(ωk)e
iv.ωk

°°°°2
⎫⎬⎭

×
P
s(u)

P
t(v)

P
c

¯̄
βs−cβs+u−cβt−cβt+v−c

¯̄
≤ Kn−4

P
u

00

°°°°°Pj∈N τ̃L(ωj)e
−iu.ωj

°°°°°
2 P
s(u)

P
c

¯̄
βs−c

¯̄P
t

¯̄
βt−c

¯̄P
v

¯̄
βt+v−c

¯̄
≤ Kn−3

P
u

00

°°°°°Pj∈N τ̃L(ωj)e
−iu.ωj

°°°°°
2

≤ Kη2n−1

as before.

We now wish to show that for fixed L

n
1
2 r1L →d N (0,ΨL) , (4.11)

where

ΨL =
2

(2π)d

Z
Πd

τL(λ)τ
0
L(λ)f(λ)

2dλ+ κ

½Z
Πd

τL(λ)f(λ)dλ

¾½Z
Πd

τ 0L(λ)f(λ)dλ

¾
.

Using (4.10),

r1L = (2π)
−d P

c∈AL

dQ
i=1

µ
1− |ci|

L

¶
τ c (c

∗
c − γc)

for n sufficiently large, because then L+g(ni) < ni for all i and there is no contribution

from aliased terms. In view of A2,

c∗c − γc = n(c)−1
P
j

P
k

βjβk
P
t(c)

{εt−jεt+c−k − 1(j = k − c)} . (4.12)
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Fix η2 > 0. We may choose M such that

P
j /∈AM

¯̄
βj
¯̄
< η2.

The difference between (4.12) and

qc,M = n(c)−1
P

j,j+c∈AM

βjβj+c
P
t(c)

¡
ε2t−j − 1

¢
+n(c)−1

P
j∈AM

P
k∈AM

k 6=j+c

βjβk
P
t(c)

εt−jεt+c−k (4.13)

has mean zero and variance that is readily shown to be O (η2n
−1) = o(n−1) as η2 → 0.

In view of the Cramer-Wold device we seek to establish asymptotic normality of

n
1
2
P
c∈AL

acqc,M (4.14)

for arbitrary ac, not all zero. In other words, we establish asymptotic normality of a

linear combination of finitely many terms of the forms

n
1
2n(c)−1

P
t(c)

{εt−jεt+c−k − 1} , j 6= k − c,

and

n
1
2n(c)−1

P
t(c)

¡
ε2t−j − 1

¢
,

since L and M are fixed.

We map Zd into Z+ in order to employ a standard martingale central limit theo-

rem for triangular arrays. There is considerable literature on asymptotic theory for

random fields, including work based on multilateral models (see Jiming (1991b)) but

on the basis of unidirectional increase, i.e. with only the nUi increasing. For k ≥ 1,

denote by C
(d)
k the lattice points on the surface of the d-dimensional cube with ver-

tices (±k, ...,±k); there are m(d)
k = (2k + 1)d − (2k − 1)d such points. Consider an

arbitrary ordering of the points j ∈ C
(b)
k , namely j

(k)
(1) , ..., j

(k)

(m
(d)
k )
. Introduce a function
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φ : Zd → Z+ such that

φ(0, ..., 0 = 1

φ
³
j
(1)
(1)

´
= 2, ..., φ

³
j
(1)

(3d−1)

´
= 3d,

...
...

φ
³
j
(k)
(1)

´
= (2k − 1)d + 1, ..., φ

³
j
(k)

((2k+1)d−(2k−1)d)

´
= (2k + 1)d,

and so on. For example, in case d = 2 we might have the "spiral" ordering

j
(k)
(1) = (−k, k), j

(k)
(2) = (−k, 1− k), ..., j(3d−1) = (1− k,−k).

When nLi = nUi = n∗ for all i, so N = A2n∗+1, the (2n∗ + 1)d observations have thus

accumulated first at {0, ..., 0}, followed by C(d)
1 , ..., C

(d)
n , in that order.

For more general circumstances, define

ψn(j) = φ(j)−# {k : k /∈ N; φ(k) < φ(j)} , j ∈ N;

thus, having ordered on Amax(nLi, nUi, i = 1, ..., d) we drop points outside N and then

close up the gaps, re-labelling and preserving the order. Introduce the triangular array

δn(s), 1 ≤ s ≤ n, of iid variates with zero mean, variance 1 and fourth cumulant κ,

such that

δn (ψn(j)) = εj, j ∈ N.

Considering now the contribution to (4.14) from the "squared" terms ε2t−j in qc,M ,P
t(c)

¡
ε2t−j − 1

¢
(4.15)

differs from P
t∈N

¡
ε2t − 1

¢
(4.16)

by

O

Ã
dX

i=1

dY
j=1,j 6=i

nj

!
= O

Ã
n

dX
i=1

n−1i

!
= O

¡
n1−ξ

¢
(4.17)
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terms, uniformly in j ∈ AM , c ∈ AL. Thus, because the ε2t − 1 are iid with zero mean

and finite variance, the difference between (4.15) and (4.16) is Op

¡
n(1−ξ)/2

¢
. As for

product terms, note that in P
t(c)

εt−jεt+c−k (4.18)

we have for each summand either φ(t− j) > φ(t+ c− k) or φ(t− j) < φ(t+ c− k).

Overall there are n−O
¡
n1−ξ

¢
summands, and, possibly after finite translation across

Zd, each can be written in the form δn(s)δn(s− rsn(j, k, c)) for suitable s and positive

integer rsn(j, k, c). Thus because these summands are uncorrelated across s, (4.18)

differs by Op

¡
n(1−ξ)/2

¢
from

nP
s=1

δn(s)δn (s− rsn(j, k, c)) .

It follows from this discussion that (4.14) differs by op(1) from n−
1
2

Pn
s=1 un(s),

where

un(s) =
©
δ2n(s)− 1

ª P
c∈AL

ac{n/n(c)}
P

j,j+c∈AM
βjβj+c

+δn(s)
P
c∈AL

ac{n/n(c)}
PP

j∈AM ,k∈AM

k 6=j+c

βjβkδn (s− rsn(j, k, c)) .

The un(s) thus comprise a martingale difference array. Denote by Fs,n the σ-field of

events generated by δn(t), t ≤ s. It follows from Scott (1973), Hall and Heyde (1980,

Chapter 2), that if

lim
n→∞

n−1
nP

s=1

Eu2n(s) (4.19)

is positive and finite and

n−1
nP

s=1

E
n
u2n(s)1

³
|un(s)| ≥ η3n

1
2

´o
→ 0, all η3 > 0, (4.20)

n−1
nP

s=1

£
E
©
u2n(s)

¯̄
Fs−1,n

ª
−Eu2n(s)

¤
→ p 0, (4.21)

then

n−
1
2

nP
s=1

un(s)→d N (0, σ2),
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where σ2 is given by (4.19).

To prove (4.20) write un(s) = u1n(s) + u2n(s), where u1n(s) consists of the terms

in {δ2n(s)− 1}. It suffices to show that

n−1
nP

s=1

E
n
u2in(s)1

³
|uin(s)| > ηsn

1
2

´o
→ 0, all η3 > 0, i = 1, 2.

For i = 1 this follows from identity of distribution and finite fourth moment of the

δn(s), boundedness of n/n(c) and summability of the βj. For i = 2 it follows from

the same facts after applying Cauchy and elementary inequalities.

Next consider (4.21), which is equivalent to

n−1
nP

s=1

⎡⎢⎣
⎧⎪⎨⎪⎩ P

c∈AL

ac
n

n(c)

P
j∈AM

P
k∈AM

k 6=j+c

βjβkδn (s− rsn(j, k, c))

⎫⎪⎬⎪⎭
2

−E

⎧⎪⎨⎪⎩ P
c∈AL

ac
n

n(c)

P
j∈AM

P
k∈AM

k 6=j+c

βjβkδn (s− rsn(j, k, c))

⎫⎪⎬⎪⎭
2⎤⎥⎦

+2Eε30n
−1

nP
s=1

( P
c∈AL

ac
n

n(c)

P
j,j+c∈AM

βjβj+c

)
(4.22)

×

⎧⎪⎨⎪⎩ P
c∈AL

ac
n

n(c)

P
j∈AM

P
k∈AM

k 6=j+c

βjβkδn (s− rsn(j, k, c))

⎫⎪⎬⎪⎭→p 0

because the squared terms in δ2n(s)− 1 contribute nothing due to independence. For

any fixed j(i), k(i) ∈ AM and c(i) ∈ AL, i = 1, 2, consider

n−1
nP

s=1

{δn(s− rsn1)δn(s− rsn2)−Eδn(s− rsn1)δn(s− rsn2)} (4.23)

where rsni = rsn
¡
j(i), k(i), c(i)

¢
. Now (4.23) has mean zero and variance

n−2
nP

s=1

nP
t=1

[Eδn(s− rsn1)δn(t− rtn1)Eδn(s− rsn2)δn(t− rtn2)

+Eδn(s− rsn1)δn(t− rtn2)Eδn(s− rsn2)δn(t− rtn1) (4.24)

+cum {δn(s− rsn1), δn(t− rtn1), δn(s− rsn2), δn(t− rtn2)}].
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All summands are finite. Summands for s = t contribute O(n−1). For s 6= t, there is

a difference from the case d = 1 in that the rsni depend on n, but because C(d)
k has

O(kd−1) lattice points as k →∞, and the surface of N has O
³Pd

i=1

Qd
j=1,j 6=i nj

´
lat-

tice points, and because of (4.17), it follows that rsni = O(n1−ξ) uniformly as n→∞.

Thus, splitting the sum into two parts, one containing terms for which |s− t| ≤ n1−ξ/2

and one terms for which |s− t| > n1−ξ/2 the first component contributes O(n−ξ/2)

to (4.24), and the second, zero. Since only finitely many terms of form of (4.23)

are involved, and because clearly n−1
Pn

i=1 δn (s− rsn(j, k, c)) = Op(n
−1
2 ), (4.22) is

established.

We can evaluate (4.19) as

P
c∈AL

P
m∈AL

acam

( P
i∈AM

P
j∈AM

P
k,k−i+j−c+m∈AM

βiβjβkβk−i+j−c+m

+
P

i∈AM

P
j∈AM

P
k,k+i−j−c+m∈AM

βiβjβkβk+i−j+c+m

+κ

Ã X
j,j+c∈AM

βjβj+c

!Ã X
j,j+m∈AM

βjβj+m

!)
.

Since this differs by O(η2) from

P
c∈AL

P
m∈AL

acam

(P
i

P
j

P
k

βiβjβk(βk−i+j−c+m + βk+i−j+c+m) + κγcγm

)

=
P
c∈AL

P
m∈AL

acam

∙
(2π)−d

Z
Πd

f(λ)2 exp {i(c−m)λ+ i(c+m)λ} dλ+ κγcγm

¸
we deduce (4.11) via Bernstein’s lemma. From (4.6), ΨL → Ψ as L→∞, so we then

likewise deduce (4.2). ¤
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5. PROOF OF THEOREM 4

Given (2.9), we have already justified the claims about (2.10), and for (2.9) we only

prove the second statement with i = 2, because the other proofs are easier. We have

µ̂
(2)
4 − µ4 = n−1

P
t∈N

³
ε̂
(2)4
t − ε4t

´
+ n−1

P
t∈N

¡
ε4t − µ4

¢
.

The second term on the right is op(1) by the law of large numbers, while by the

identity x4− y4 = (x− y)(x3+ x2y+ xy2+ y3) and Hölder’s inequality the first term

is op(1) if

n−1
P
t∈N

³
ε̂
(2)
t − εt

´4
→p 0. (5.1)

Write

ε̂
(2)
t − εt = Et + Ft,

where

Et = (2π)d/2n−
1
2
P
j∈N

n
α
³
E(iωj); θ̂

´
− α (E(iωj); θ0)

o
w(ωj)e

−it.ωj ,

Ft = (2π)d/2n−
1
2
P
j∈N

α (E(iωj); θ0)w(ωj)e
−it.ωj − εt.

Again, for brevity we assume µ = 0 and replace xt − x̄ by xt.

By direct calculation, using (4.10) again,

Ft =
P
s/∈N

αt−sxs +
P
s∈N

xs
P
k 6=0

αt−s+k(n),

where αj = (2π)−d
R
Πd α (E(iλ); θ0) e

−ij.λdλ and k(n) = (k1n1, ..., kdnd). It follows

from A12 that xt has a linear representation as in A2 but with the βj possibly being

only square-summable. Nevertheless,

Ex4t = 3

ÃP
j

β2j

!2
+
P
j

β4jEε
4
t−j ≤ K

ÃP
j

β2j

!2
<∞.
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Thus

E

µP
s/∈N

αt−sxs

¶4
≤ K

µP
s/∈N
|αt−s|

¶4
≤ K

P
s/∈N
|αt−s| .

It follows that

n−1
P
t∈N

E

µP
s/∈N

αt−sxs

¶4
≤ Kn−1

P
t∈N

P
s/∈N
|αt−s|

≤ Kn−1
P
j

|αj|
dQ

c=1

{|jc| 1 (|jc| ≤ nc) + nc1 (|jc| ≥ nc)} ,

which tends to zero as n → ∞ by summability of the αj and the Toeplitz lemma.

Beginning in the same way,

E

ÃP
s∈N

xs
P
k 6=0

αt+s+k(n)

!4
≤ K

ÃP
s∈N

P
k 6=0

¯̄
αt−s+k(n)

¯̄!4
.

For any of the finitely many k such that |kc| ≤ 1 for all c, and kc 6= 0 for some c,

n−1
P
t∈N

µP
s∈N

¯̄
αt−s+k(n)

¯̄¶4
≤ Kn−1

P
t∈N

P
s∈N

¯̄
αt−s+k(n)

¯̄
≤ Kn−1

P
j∈N2

|αj|
dQ

c=1

|jc| ,

where N2 = {j : |jc| ≤ 2nc, c = 1, ..., d}. This is o(1) as before. Denoting by K the

remaining k ∈ Zd, by elementary inequalities the proof that n−1
P

t∈NEF
4
t → 0 is

completed by the calculation

n−1
P
t∈N

µP
s∈N

P
k∈K

¯̄
αt−s+k(n)

¯̄¶4
≤ K

dP
c=1

P
j:|jc|≥nc

|αj|→ 0,

by summability of αj.

Finally,

n−1
P
t∈N

E4
t ≤ n−1

µP
t∈N

E2
t

¶2
(5.2)

and from (4.10)P
t∈N

E2
t = (2π)d

P
j∈N

¯̄̄
α
³
(E(iωj); θ̂

´
− α (E(iωj); θ0)

¯̄̄2
I(ωj)

≤ K
°°°θ̂ − θ0

°°°2 P
j∈N

I(ωj) ≤ K
°°°θ̂ − θ0

°°°2P
t∈N

x2t
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with probability approaching 1 as n → ∞, in view of A12 and A13. Then (5.2)

= Op(n
1−4ζ) = op(1) for ζ > 1

4
. This completes the proof of (5.1). ¤
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