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REARRANGING EDGEWORTH-CORNISH-FISHER EXPANSIONS

VICTOR CHERNOZHUKOV† IVÁN FERNÁNDEZ-VAL§ ALFRED GALICHON‡

Abstract. This paper applies a regularization procedure called increasing rearrange-

ment to monotonize Edgeworth and Cornish-Fisher expansions and any other related

approximations of distribution and quantile functions of sample statistics. Besides sat-

isfying the logical monotonicity, required of distribution and quantile functions, the pro-

cedure often delivers strikingly better approximations to the distribution and quantile

functions of the sample mean than the original Edgeworth-Cornish-Fisher expansions.
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2 IMPROVING EDGEWORTH APPROXIMATIONS

1. Introduction

Higher order approximations to the distribution of sample statistics beyond the or-

der n−1/2 provided by the central limit theorem are of central interest in the theory

of asymptotic statistics, see e.g. (Blinnikov and Moessner 1998, Cramér 1999, Bhat-

tacharya and Ranga Rao 1976, Hall 1992, Rothenberg 1984, van der Vaart 1998). An

important tool for performing these refinements is provided by the Edgeworth expan-

sion (Edgeworth 1905, Edgeworth 1907), which approximates the distribution of the

statistics of interest around the limit distribution (often the normal distribution) by

a combination of Hermite polynomials, with coefficients defined in terms of moments.

Inverting the expansion yields a related higher order approximation, the Cornish-Fisher

expansion (Cornish and Fisher 1938, Fisher and Cornish 1960), to the quantiles of the

statistic around the quantiles of the limiting distribution.

One of the important shortcomings of either Edgeworth or Cornish-Fisher expansions

is that the resulting approximations to the distribution and quantile functions are not

monotonic, which violates an obvious monotonicity requirement. This comes from the

fact that the polynomials involved in the expansion are not monotone. Here we propose

to use a procedure, called the rearrangement, to restore the monotonicity of the approx-

imations and, perhaps more importantly, to improve the estimation properties of these

approximations. The resulting improvement is due to the fact that the rearrangement

necessarily brings the non-monotone approximations closer to to the true monotone

target function.

The main findings of the paper can be illustrated through a single picture given as

Figure 1. In that picture, we plot the true distribution function of a sample mean X

based on a small sample, a third order Edgeworth approximation to that distribution,

and a rearrangement of this third order approximation. We see that the Edgeworth

approximation is sharply non-monotone and provides a rather poor approximation to

the distribution function. The rearrangement merely sorts the value of the approximate
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Figure 1. Distribution function for the standarized sample mean of

log-normal random variables (sample size 5), the third order Edgeworth

approximation, and the rearranged third order Edgeworth approximation.

distribution function in an increasing order. One can see that the rearranged approx-

imation, in addition to being monotonic, is a much better approximation to the true

function than the original approximation.

We organize the rest of the paper as follows. In Section 2, we describe the rearrange-

ment and qualify the approximation property it provides for monotonic functions. In

section 3, we introduce the rearranged Edgeworth-Cornish-Fisher expansions and ex-

plain how these produce better estimates of distributions and quantiles of statistics. In

Section 4, we illustrate the procedure with several additional examples.
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2. Improving Approximations of Monotone Functions by Rearrangement

In what follows, let X be a compact interval. We first consider an interval of the form

X = [0, 1]. Let f(x) be a measurable function mapping X to K, a bounded subset of R.

Let Ff (y) =
∫
X 1{f(u) ≤ y}du denote the distribution function of f(X) when X follows

the uniform distribution on [0, 1]. Let

f ∗(x) := Qf (x) := inf {y ∈ R : Ff (y) ≥ x}

be the quantile function of Ff (y). Thus,

f ∗(x) := inf

{
y ∈ R :

[∫

X
1{f(u) ≤ y}du

]
≥ x

}
.

This function f ∗ is called the increasing rearrangement of the function f . The rearrange-

ment is a tool that is extensively used in functional analysis and optimal transportation

(see e.g. Hardy, Littlewood, and Pólya (1952) and Villani (2003).) It originates in the

work of Chebyshev, who used it to prove a set of inequalities (Bronshtein, Semendyayev,

Musiol, Muehlig, and Mühlig 2004). Here we use this tool to improve approximations

of monotone functions, such as the Edgeworth-Cornish-Fisher approximations to the

distribution and quantile functions of the sample mean.

The rearrangement operator simply transforms a function f to its quantile function

f ∗. That is, x 7→ f ∗(x) is the quantile function of the random variable f(X) when

X ∼ U(0, 1). Another convenient way to think of the rearrangement is as a sorting

operation: Given values of the function f(x) evaluated at x in a fine enough mesh of

equidistant points, we simply sort the values in an increasing order. The function created

in this way is the rearrangement of f .

Finally, if X is of the form [a, b], let x̄(x) = (x−a)/(b−a) ∈ [0, 1], x(x̄) = a+(b−a)x̄ ∈
[a, b], and f̄ ∗ be the rearrangement of the function f̄(x̄) = f(x(x̄)) defined on X̄ = [0, 1].

Then, the rearrangement of f is defined as

f ∗(x) := f̄ ∗(x̄(x)).
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The following result is detailed in Chernozhukov, Fernandez-Val, and Galichon (2006).

Proposition 1 (Improving Approximation of Monotone Functions). Let f0 : X =

[a, b] → K be a weakly increasing measurable function in x, where K is a bounded

subset of R. This is the target function that we want to approximate. Let f̂ : X → K

be another measurable function, an initial approximation or an estimate of the target

function f0.

1. For any p ∈ [1,∞], the rearrangement of f̂ , denoted f̂ ∗, weakly reduces the estimation

error: [∫

X

∣∣∣f̂ ∗(x)− f0(x)
∣∣∣
p

dx

]1/p

≤
[∫

X

∣∣∣f̂(x)− f0(x)
∣∣∣
p

dx

]1/p

. (2.1)

2. Suppose that there exist regions X0 and X ′
0, each of measure greater than δ > 0, such

that for all x ∈ X0 and x′ ∈ X ′
0 we have that (i) x′ > x, (ii) f̂(x) > f̂(x′) + ε, and (iii)

f0(x
′) > f0(x) + ε, for some ε > 0. Then the gain in the quality of approximation is

strict for p ∈ (1,∞). Namely, for any p ∈ [1,∞],

[∫

X

∣∣∣f̂ ∗(x)− f0(x)
∣∣∣
p

dx

]1/p

≤
[∫

X

∣∣∣f̂(x)− f0(x)
∣∣∣
p

dx− δXηp

]1/p

, (2.2)

where ηp = inf{|v − t′|p + |v′ − t|p − |v − t|p − |v′ − t′|p} and ηp > 0 for p ∈ (1,∞), with

the infimum taken over all v, v′, t, t′ in the set K such that v′ ≥ v + ε and t′ ≥ t + ε; and

δX = δ/(b− a).

Corollary 1 (Strict Improvement). If the target function f0 is increasing over X and

f̂ is decreasing over a subset of X that has positive measure, then the improvement in

Lp norm, for p ∈ (1,∞), is necessarily strict.

The first part of the proposition states the weak inequality (2.1), and the second

part states the strict inequality (2.2). As an implication, the Corollary states that the

inequality is strict for p ∈ (1,∞) if the original estimate f̂(x) is decreasing on a subset

of X having positive measure, while the target function f0(x) is increasing on X (by

increasing, we mean strictly increasing throughout). Of course, if f0(x) is constant, then
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the inequality (2.1) becomes an equality, as the distribution of the rearranged function

f̂ ∗ is the same as the distribution of the original function f̂ , that is F bf∗ = F bf .
This proposition establishes that the rearranged estimate f̂ ∗ has a smaller estimation

error in the Lp norm than the original estimate whenever the latter is not monotone.

This is a very useful and generally applicable property that is independent of the sample

size and of the way the original approximation f̂ to f0 is obtained.

Remark 1. An indirect proof of the weak inequality (2.1) is a simple but important

consequence of the following classical inequality due to Lorentz (1953): Let q and g be

two functions mapping X to K, a bounded subset of R. Let q∗ and g∗ denote their

corresponding increasing rearrangements. Then,
∫

X
L(q∗(x), g∗(x), x)dx ≤

∫

X
L(q(x), g(x), x)dx,

for any submodular discrepancy function L : R3 7→ R. Set q(x) = f̂(x), q∗(x) = f̂ ∗(x),

g(x) = f0(x), and g∗(x) = f ∗0 (x). Now, note that in our case f ∗0 (x) = f0(x) almost

everywhere, that is, the target function is its own rearrangement. Moreover, L(v, w, x) =

|w−v|p is submodular for p ∈ [1,∞). This proves the first part of the proposition above.

For p = ∞, the first part follows by taking the limit as p → ∞. In the Appendix,

for completeness, we restate the proof of Chernozhukov, Fernandez-Val, and Galichon

(2006) of the strong inequality (2.2) as well as the direct proof of the weak inequality

(2.1).

Remark 2. The following immediate implication of the above finite-sample result is also

worth emphasizing: The rearranged estimate f̂ ∗ inherits the Lp rates of convergence from

the original estimates f̂ . For p ∈ [1,∞], if λn = [
∫
X |f0(x)− f̂(x)|pdu]1/p = OP (an) for

some sequence of constants an, then [
∫
X |f0(x)− f̂ ∗(x)|pdu]1/p ≤ λn = OP (an). However,

while the rate is the same, the error itself is smaller.

Remark 3. Finally, one can also consider weighted rearrangements that can accentuate

the quality of approximation in various areas. Indeed, consider an absolutely continuous
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distribution function Λ on X = [a, b], then we have that for (f̂ ◦ Λ−1)∗(u) denoting the

rearrangement of u 7→ f̂(Λ−1(u))
[∫

[0,1]

∣∣∣(f̂ ◦ Λ−1)∗(u)− f0(Λ
−1(u))

∣∣∣
p

du

]1/p

≤
[∫

[0,1]

∣∣∣f̂(Λ−1(u))− f0(Λ
−1(u))

∣∣∣
p

du

]1/p

,

(2.3)

or, equivalently, by a change of variable, setting

f̂ ∗Λ(x) = (f̂ ◦ Λ−1)∗(Λ(x))

we have that
[∫

X

∣∣∣f̂ ∗Λ(x)− f0(x)
∣∣∣
p

dΛ(x)

]1/p

≤
[∫

X

∣∣∣f̂(x)− f0(x)
∣∣∣
p

dΛ(x)

]1/p

. (2.4)

Thus, the function x 7→ f̂ ∗Λ(x) is the weighted rearrangement that provides improvements

in the quality of approximation in the norm that is weighted according to the distribution

function Λ.

In the next section, we apply rearrangements to improve the Edgeworth-Cornish-

Fisher and related approximations to distribution and quantile functions.

3. Improving Edgeworth-Cornish-Fisher and Related expansions

3.1. Improving Quantile Approximations by Rearrangement. We first consider

the quantile case. Let Qn be the quantile function of a statistic Xn, i.e.

Qn(u) = inf{x ∈ R : Pr[Xn ≤ x] ≥ u},

which we assume to be strictly increasing. Let Q̂n be an approximation to the quantile

function Qn satisfying the following relation on an interval Un = [εn, 1− εn] ⊆ [0, 1]:

Qn(u) = Q̂n(u) + εn(u), |εn(u)| ≤ an, for all u ∈ Un. (3.1)

The leading example of such an approximation is the inverse Edgeworth, or Cornish-

Fisher, approximation to the quantile function of a sample mean. If Xn is is a stan-

dardized sample mean, Xn =
∑n

i=1(Yi − E[Yi])/
√

V ar(Yi) based on an i.i.d. sample
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(Y1, ..., Yn), then we have the following J-th order approximation

Qn(u) = Q̂n(u) + εn(u)

Q̂n(u) = R1(Φ
−1(u)) + R2(Φ

−1(u))/n1/2 + ... + RJ(Φ−1(u))/n(J−1)/2,

|εn(u)| ≤ Cn−J/2, for all u ∈ Un = [εn, 1− εn],

for some εn ↘ 0 and C > 0,

(3.2)

provided that a set of regularity conditions, specified in, e.g., Zolotarev (1991), hold.

Here Φ and Φ−1 denote the distribution function and quantile function of a standard

normal random variable. The first three terms of the approximation are given by the

polynomials,

R1(z) = z,

R2(z) = λ(z2 − 1)/6,

R3(z) = (3κ(z3 − 3z)− 2λ2(2z3 − 5z))/72,

(3.3)

where λ is the skewness and κ is the kurtosis of the random variable Y . The Cornish-

Fisher approximation is one of the central approximations of the asymptotic statistics.

Unfortunately, inspection of the expression for polynomials (3.3) reveals that this ap-

proximation does not generally deliver a monotone estimate of the quantile function.

This shortcoming has been pointed and discussed in detail e.g. by Hall (1992). The

nature of the polynomials constructed is such that there always exists a large enough

range Un over which the Cornish-Fisher approximation is not monotone, cf. Hall (1992).

As an example, in the case of the second order approximation (J = 2) we have that for

λ < 0

Q̂n(u) ↘ −∞, as u ↗ 1, (3.4)

that is, the Cornish-Fisher “quantile” function Q̂n is decreasing far enough in the tails.

This example merely suggests a potential problem that may apply to practically relevant

ranges of probability indices u. Indeed, specific numerical examples given below show

that in small samples the non-monotonicity can occur in practically relevant ranges. Of
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course, in sufficiently large samples, the regions of non-monotonicity are squeezed quite

far into the tails.

Let Q∗
n be the rearrangement of Q̂n. Then we have that for any p ∈ [1,∞], the rear-

ranged quantile function reduces the approximation error of the original approximation:

[∫

Un

∣∣∣Q̂∗
n(u)−Qn(u)

∣∣∣
p

du

]1/p

≤
[∫

Un

∣∣∣Q̂n(u)−Qn(u)
∣∣∣
p

du

]1/p

≤ (1− 2εn)an, (3.5)

with the first inequality holding strictly for p ∈ (1,∞) whenever Q̂n is decreasing on a

region of Un of positive measure. We can give the following probabilistic interpretation

to this result. Under condition (3.1), there exists a variable U = Fn(Xn) such that both

the stochastic expansion

Xn = Q̂n(U) + Op(an), (3.6)

and the expansion

Xn = Q̂∗
n(U) + Op(an), (3.7)

hold,1 but the variable Q̂∗
n(U) in (3.7) is a better coupling to the statistic Xn than Q̂n(U)

in (3.6), in the following sense: For each p ∈ [1,∞],

[E1n[Xn − Q̂∗
n(U)]p]1/p ≤ [E1n[Xn − Q̂n(U)]p]1/p, (3.8)

where 1n = 1{U ∈ Un}. Indeed, property (3.8) immediately follows from (3.5).

The above improvements apply in the context of the sample mean Xn. In this case,

the probabilistic interpretation above is directly connected to the higher order central

limit theorem of Zolotarev (1991), which states that under (3.2), we have the following

higher-order probabilistic central limit theorem,

Xn = Q̂n(U) + Op(n
−J/2). (3.9)

1Q̂∗n(U) is defined only on Un, so we can set Q̂∗n(U) = Qn(U) outside Un, if needed. Of course,

U 6∈ Un with probability going to zero.
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The term Q̂n(U) is Zolotarev’s high-order refinement over the first order normal terms

Φ−1(U). Sun, Loader, and McCormick (2000) employ an analogous higher-order proba-

bilistic central limit theorem to improve the construction of confidence intervals.

The application of the rearrangement to the Zolotarev’s term in fact delivers a clear

improvement in the sense that it also leads to a probabilistic higher order central limit

theorem

Xn = Q̂∗
n(U) + Op(n

−J/2), (3.10)

but the leading term Q̂∗
n(U) is closer to Xn than the Zolotarev’s term Qn(U), in the

sense of (3.8).

We summarize the above discussion into a formal proposition.

Proposition 2. If expansion (3.1) holds, then the improvement (3.5) necessarily holds.

The improvement is necessarily strict if Q̂n is decreasing over a region of Un that has a

positive measure. In particular, this improvement property applies to the inverse Edge-

worth approximation defined in (3.2) to the quantile function of the sample mean.

3.2. Improving Distributional Approximations by Rearrangement. We next

consider distribution functions. Let Fn(x) be the distribution function of a statistic

Xn, and F̂n(x) be the approximation to this distribution such that the following relation

holds:

Fn(x) = F̂n(x) + εn(x), |εn(x)| ≤ an, for all x ∈ Xn, (3.11)

where Xn = [−bn, bn] is an interval in R for some sequence of positive numbers bn possibly

growing to infinity.

The leading example of such an approximation is the Edgeworth expansion of the

distribution function of a sample mean. If Xn is a standardized sample mean, Xn =
∑n

i=1(Yi − E[Yi])/
√

V ar(Yi) based on an i.i.d. sample (Y1, ..., Yn), then we have the
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following J-th order approximation

Fn(z) = F̂n(z) + εn(z)

F̂n(x) = P1(x) + P2(x)/n1/2 + ... + PJ(x)/n(J−1)/2,

|εn(x)| ≤ Cn−J/2, for all x ∈ Xn,

(3.12)

for some C > 0, provided that a set of regularity conditions, specified in e.g. Hall (1992),

hold. The first three terms of the approximation are given by

P1(x) = Φ(x),

P2(x) = −λ(x2 − 1)φ(x)/6,

P3(x) = −(3κ(x3 − 3x) + λ2(x5 − 10x3 + 15x))φ(x)/72,

(3.13)

where Φ and φ denote the distribution function and density function of a standard

normal random variable, and λ and κ are the skewness and kurtosis of the random

variable Y . The Edgeworth approximation is one of the central approximations of the

asymptotic statistics. Unfortunately, like the Cornish-Fisher expansion it generally does

not provide a monotone estimate of the distribution function. This shortcoming has

been pointed and discussed in detail by (Barton and Dennis 1952, Draper and Tierney

1972, Sargan 1976, Balitskaya and Zolotuhina 1988), among others.

Let F ∗
n be the rearrangement of F̂n. Then, we have that for any p ∈ [1,∞], the

rearranged Edgeworth approximation reduces the approximation error of the original

Edgeworth approximation:

[∫

Xn

∣∣∣F̂ ∗
n(x)− Fn(x)

∣∣∣
p

dx

]1/p

≤
[∫

Xn

∣∣∣F̂n(x)− Fn(x)
∣∣∣
p

dx

]1/p

≤ 2bnan, (3.14)

with the first inequality holding strictly for p ∈ (1,∞) whenever F̂n is decreasing on a

region of Xn of positive measure.

Proposition 3. If expansion (3.11) holds, then the improvement (3.14) necessarily

holds. The improvement is necessarily strict if F̂n is decreasing over a region of Xn
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that has a positive measure. In particular, this improvement property applies to Edge-

worth approximation defined in (3.12) to the distribution function of the sample mean.

3.3. Weighted Rearrangement of Cornish-Fisher and Edgeworth Expansions.

In some cases, it could be worthwhile to weigh different areas of support differently

than the Lebesgue (flat) weighting prescribes. For example, it might be desirable to

rearrange F̂n using Fn as a weight measure. Indeed, using Fn as a weight, we obtain a

better coupling to the P-value: P = Fn(Xn) (in this quantity, Xn is drawn according

to the true Fn). Using such weight will provide a probabilistic interpretation for the

rearranged Edgeworth expansion, in analogy to the probabilistic interpretation for the

rearranged Cornish-Fisher expansion. Since the weight is not available we may use the

standard normal measure Φ as the weight measure instead. We may also construct an

initial rearrangement with the Lebesgue weight, and use it as weight itself in a further

weighted rearrangement (and even iterate in this fashion). Using non-Lebesgue weights

may also be desirable when we want the improved approximations to weight the tails

more heavily. Whatever the reason might be for further non-Lebesgue weighting, we

have the following properties, which follow immediately in view of Remark 3.

Let Λ be a distribution function that admits a positive density with respect to the

Lebesgue measure on the region Un = [εn, 1− εn] for the quantile case and region Xn =

[−bn, bn] for the distribution case. Then if (3.1) holds, the Λ-weighted rearrangement

Q̂∗
n,Λ of the function Q̂ satisfies

[∫

Un

∣∣∣Q̂∗
n,Λ(u)−Qn(u)

∣∣∣
p

dΛ(u)

]1/p

≤
[∫

Un

∣∣∣Q̂n(u)−Qn(u)
∣∣∣
p

dΛ(u)

]1/p

(3.15)

≤ (Λ[1− εn]− Λ[εn])an, (3.16)

where the first equality holds strictly when Q̂ is decreasing on a subset of positive Λ-

measure. Furthermore, if (3.11) holds, then the Λ-weighted rearrangement F̂ ∗
n,Λ of the
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function F̂ satisfies

[∫

Xn

∣∣∣F̂ ∗
n,Λ(x)− Fn(x)

∣∣∣
p

dΛ(x)

]1/p

≤
[∫

Xn

∣∣∣F̂n(x)− Fn(x)
∣∣∣
p

dΛ(x)

]1/p

(3.17)

≤ (Λ[bn]− Λ[−bn])an. (3.18)

4. Numerical Examples

In addition to the lognormal example given in the introduction, we use the gamma dis-

tribution to illustrate the improvements that the rearrangement provides. Let (Y1, ..., Yn)

be an i.i.d. sequence of Gamma(1/16,16) random variables. The statistic of interest is

the standardized sample mean Xn =
∑n

i=1(Yi−E[Yi])/
√

V ar(Yi). We consider samples

of sizes n = 4, 8, 16, and 32. In this example, the distribution function Fn and quantile

function Qn of the sample mean Xn are available in a closed form, making it easy to com-

pare them to the Edgeworth approximation F̂n and the Cornish-Fisher approximation

Q̂n, as well as to the rearranged Edgeworth approximation F̂ ∗
n and the the rearranged

Cornish-Fisher approximation Q̂∗
n. For the Edgeworth and Cornish-Fisher approxima-

tions, as defined in the previous section, we consider the third order expansions, that is

we set J = 3.

Figure 2 compares the true distribution function Fn, the Edgeworth approximation

F̂n, and the rearranged Edgeworth approximation F̂ ∗
n . We see that the rearranged Edge-

worth approximation not only fixes the monotonicity problem, but also consistently does

a better job at approximating the true distribution than the Edgeworth approximation.

Table 1 further supports this point by presenting the numerical results for the Lp ap-

proximation errors, calculated according to the formulas given in the previous section.

We see that the rearrangement reduces the approximation error quite substantially in

most cases.

Figure 3 compares the true quantile function Qn, the Cornish-Fisher approximation

Q̂n, and the rearranged Cornish-Fisher approximation Q̂∗
n. Here too we see that the
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rearrangement not only fixes the non-monotonicity problem, but also brings the approx-

imation closer to the truth. Table 2 further supports this point numerically, showing

that the rearrangement reduces the Lp approximation error quite substantially in most

cases.

5. Conclusion

In this paper, we have applied the rearrangement procedure to monotonize Edgeworth

and Cornish-Fisher expansions and other related expansions of distribution and quantile

functions. The benefits of doing so are twofold. First, we have obtained estimates

of the distribution and quantile curves of the statistics of interest which satisfy the

logical monotonicity restriction, unlike those directly given by the truncation of the

series expansions. Second, we have shown that doing so resulted in better approximation

properties.

Appendix A. Proof of Proposition 1

We consider the case where X = [0, 1] only, as the more general intervals can be dealt

similarly. The first part establishes the weak inequality, following in part the strategy

in Lorentz’s (1953) proof. The proof focuses directly on obtaining the result stated in

the proposition. The second part establishes the strong inequality.

Proof of Part 1. We assume at first that the functions f̂(·) and f0(·) are simple

functions, constant on intervals ((s− 1)/r, s/r], s = 1, ..., r. For any simple f(·) with r

steps, let f denote the r-vector with the s-th element, denoted fs, equal to the value of

f(·) on the s-th interval. Let us define the sorting operator S(f) as follows: Let ` be an

integer in 1, ..., r such that f` > fm for some m > l. If ` does not exist, set S(f) = f . If

` exists, set S(f) to be a r-vector with the `-th element equal to fm, the m-th element

equal to f`, and all other elements equal to the corresponding elements of f . For any

submodular function L : R2 → R+, by f` ≥ fm, f0m ≥ f0` and the definition of the



IMPROVING EDGEWORTH APPROXIMATIONS 15

submodularity,

L(fm, f0`) + L(f`, f0m) ≤ L(f`, f0`) + L(fm, f0m).

Therefore, we conclude that
∫

X
L(S(f̂)(x), f0(x))dx ≤

∫

X
L(f̂(x), f0(x))dx, (A.1)

using that we integrate simple functions.

Applying the sorting operation a sufficient finite number of times to f̂ , we obtain a

completely sorted, that is, rearranged, vector f̂ ∗. Thus, we can express f̂ ∗ as a finite

composition f̂ ∗ = S ◦ ... ◦ S(f̂) . By repeating the argument above, each composition

weakly reduces the approximation error. Therefore,
∫

X
L(f̂ ∗(x), f0(x))dx ≤

∫

X
L(S ◦ ... ◦ S︸ ︷︷ ︸

finite times

(f̂), f0(x))dx ≤
∫

X
L(f̂(x), f0(x))dx. (A.2)

Furthermore, this inequality is extended to general measurable functions f̂(·) and f0(·)
mapping X to K by taking a sequence of bounded simple functions f̂ (r)(·) and f

(r)
0 (·)

converging to f̂(·) and f0(·) almost everywhere as r → ∞. The almost everywhere

convergence of f̂ (r)(·) to f̂(·) implies the almost everywhere convergence of its quantile

function f̂ ∗(r)(·) to the quantile function of the limit, f̂ ∗(·). Since inequality (A.2) holds

along the sequence, the dominated convergence theorem implies that (A.2) also holds

for the general case. ¤

Proof of Part 2. Let us first consider the case of simple functions, as defined in Part

1. We take the functions to satisfy the following hypotheses: there exist regions X0 and

X ′
0, each of measure greater than δ > 0, such that for all x ∈ X0 and x′ ∈ X ′

0, we have

that (i) x′ > x, (ii) f̂(x) > f̂(x′) + ε, and (iii) f0(x
′) > f0(x) + ε, for ε > 0 specified in

the proposition. For any strictly submodular function L : R2 → R+ we have that

η = inf{L(v′, t) + L(v, t′)− L(v, t)− L(v′, t′)} > 0,

where the infimum is taken over all v, v′, t, t′ in the set K such that v′ ≥ v + ε and

t′ ≥ t + ε.
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We can begin sorting by exchanging an element f̂(x), x ∈ X0, of r-vector f̂ with an

element f̂(x′), x′ ∈ X ′
0, of r-vector f̂ . This induces a sorting gain of at least η times 1/r.

The total mass of points that can be sorted in this way is at least δ. We then proceed to

sort all of these points in this way, and then continue with the sorting of other points.

After the sorting is completed, the total gain from sorting is at least δη. That is,
∫

X
L(f̂ ∗(x), f0(x))dx ≤

∫

X
L(f̂(x), f0(x))dx− δη.

We then extend this inequality to the general measurable functions exactly as in the

proof of part one. ¤
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Table 1. Estimation errors for approximations to the distribution func-

tion of the standarized sample mean from a Gamma(1/16, 16) population.

First Order Third Order TO - Rearranged Ratio (TO/RTO)

A. n = 4

L1 0.07 0.05 0.02 0.38

L2 0.10 0.06 0.03 0.45

L3 0.13 0.07 0.04 0.62

L4 0.15 0.08 0.07 0.81

L∞ 0.30 0.48 0.48 1.00

B. n = 8

L1 0.06 0.03 0.01 0.45

L2 0.08 0.04 0.02 0.63

L3 0.10 0.05 0.04 0.85

L4 0.11 0.06 0.06 0.96

L∞ 0.23 0.28 0.28 1.00

C. n = 16

L1 0.05 0.01 0.01 0.97

L2 0.06 0.02 0.02 0.99

L3 0.08 0.03 0.03 1.00

L4 0.08 0.04 0.04 1.00

L∞ 0.15 0.11 0.11 1.00

D. n = 32

L1 0.04 0.01 0.01 1.00

L2 0.05 0.01 0.01 1.00

L3 0.06 0.01 0.01 1.00

L4 0.06 0.01 0.01 1.00

L∞ 0.09 0.03 0.03 1.00
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Table 2. Estimation errors for approximations to the distribution func-

tion of the standarized sample mean from a Gamma(1/16, 16) population.

First Order Third Order TO - Rearranged Ratio (TO/RTO)

A. n = 4

L1 0.50 0.24 0.09 0.39

L2 0.59 0.32 0.11 0.35

L3 0.69 0.42 0.13 0.31

L4 0.78 0.52 0.15 0.29

L∞ 2.04 1.53 0.49 0.32

B. n = 8

L1 0.39 0.08 0.03 0.37

L2 0.47 0.11 0.04 0.35

L3 0.56 0.16 0.05 0.32

L4 0.65 0.21 0.06 0.30

L∞ 1.66 0.67 0.22 0.33

C. n = 16

L1 0.28 0.02 0.02 0.97

L2 0.35 0.04 0.03 0.84

L3 0.43 0.05 0.04 0.71

L4 0.51 0.07 0.04 0.63

L∞ 1.34 0.24 0.10 0.44

D. n = 32

L1 0.20 0.01 0.01 1.00

L2 0.26 0.01 0.01 1.00

L3 0.31 0.02 0.02 1.00

L4 0.37 0.02 0.02 1.00

L∞ 1.02 0.07 0.07 1.00
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Figure 2. Distribution Functions, First Order Approximations, Third

Order Approximations, and Rearrangements for the standarized sample

mean from a Gamma(1/16, 16) population.
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Figure 3. Quantile Functions, First Order Approximations, Third Order

Approximations, and Rearrangements for the standarized sample mean

from a Gamma(1/16, 16) population.


