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Abstract

This paper analyzes equilibria in hedonic economies and presents conditions for identify-
ing structural preference and technology parameters with nonadditive marginal utility and
marginal product functions. The nonadditive class is very general, allows for heterogene-
ity in the curvature of consumer utility, and can result in bunching. Such bunching has
largely been ignored in the previous literature. The paper presents methods to identify and
estimate marginal utility and marginal product functions that are nonadditive in the unob-
servable random terms, using observations from a single hedonic market. The new methods
for nonadditive models are useful when statistical tests reject additive specifications or when
prior information suggests that consumer or firm heterogeneity in the curvature of utility
or production functions is likely to be important. The paper provides conditions under
which nonadditive marginal utility and marginal product functions are nonparametrically
identified, and proposes nonparametric estimators for them. The estimators are consistent
and asymptotically normal. The paper also formalizes and extends existing results in the
literatures on identifying structural parameters using multimarket data.
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1 Introduction

In hedonic models, the price of a product is a function of the attributes that characterize
the product. These models are also used to estimate consumer preferences for the attributes
of goods, and to determine how much consumers value attributes and the variability in
consumer valuations. Hedonic models have been used to study prices for job safety, environ-
mental quality, school quality, and automobile fuel efficiency among other applications.

In seminal papers, Tinbergen (1956) and Rosen (1974) pioneered the theoretical and
empirical study of hedonic models in perfectly competitive settings. In their models, an
economy is specified by a distribution of buyers and a distribution of sellers. A buyer could
be a consumer buying a product or a firm buying labor services. A seller could be a firm
selling a product or a worker selling labor services.

To focus the discussion, but without any loss of generality, this paper focuses on a labor
market interpretation. In equilibrium, each buyer is matched with a seller. Each buyer
(firm) is characterized by a profit function that depends on the attributes characterizing
the product, as well as on firm characteristics (endowments; productivity and the like).
Each seller (worker) is characterized by a utility function that depends on the attributes
characterizing the product, as well as on some characteristics of the worker (preference
parameters, endowments and the like). Given a price function for the attributes, each buyer
demands the vector of attributes that maximizes profits, and each seller supplies the vector of
attributes that maximizes utility. The equilibrium price function is such that the distribution
of demand equals the distribution of supply for all values of the attributes. When the
production and utility functions are quadratic and the heterogeneity variables are normal,
the model has a closed form solution, where the equilibrium marginal price function is linear
in the attributes. This specification was first studied by Tinbergen (1956).

Rosen (1974) suggested a two stage method to estimate preferences and technologies in
hedonic models based on linear approximations to the true model. His method first estimates
the marginal price function. Then he uses the first order conditions of the buyers and sellers
to estimate the profit and utility functions.

Influential papers by Brown and Rosen (1982) and Brown (1983) sharply criticized the
method of identification proposed by Rosen (See also Epple, 1987 and Kahn and Lang,
1988.). Using linear approximations to buyer and seller first order conditions and to the
equilibrium marginal price function, Brown and Rosen argue that hedonic models are not

identified using data from a single market. They claim that sorting implies that there are



no natural exclusion restrictions within a single market.

Ekeland, Heckman, and Nesheim (2004) show that Brown and Rosen’s nonidentification
result is a consequence of their arbitrary linearization. The linear case analyzed by Brown and
Rosen is nongeneric and is exactly the case suggested by Tinbergen (1956). The Tinbergen
model is not identified in a single cross section.

Ekeland et al. analyze a hedonic model with additive marginal utility and additive
marginal product functions. They show that these parameters are identified from single
market data. They present two methods for recovering the functions. One is based on
extensions of average derivative models (Powell, Stock, and Stoker, 1989) and transformation
models (Horowitz, 1996, 1998). The other is based on nonparametric instrumental variables
(Darolles, Florens, and Renault, 2003; Newey and Powell, 2003). The performance of those
estimators is studied in Heckman, Matzkin, and Nesheim (2005).

The additivity restrictions used to establish identification in Ekeland, Heckman, and
Nesheim (2004) impose strong restrictions. No heterogeneity in the curvature of production
and preference functions is tolerated. Allowing for such heterogeneity in curvature is an
important theoretical generalization of the additive model. In this paper, we consider iden-
tification of hedonic equilibrium models where the marginal utility and marginal product
functions are nonadditive in the unobserved variables.

General nonadditive production and utility functions are not identified using data from
a single market without invoking further conditions. We provide conditions under which the
nonadditive marginal utility and nonadditive marginal production function are identified
from the equilibrium price function, the distribution of demanded attributes conditional on
the observed characteristics of the consumers, and the distribution of supplied attributes
conditional on the observed characteristics of the firms. Our identification analysis proceeds
as follows. First, using methods in Matzkin (1999, 2003), we show that we can identify the
demand and supply functions for attributes. They are nonparametric, nonadditive functions
of the observable and unobservable characteristics of, respectively, the firms and workers.
This first step requires no additional assumptions beyond what she assumes. Second, we
use the demand and supply functions, together with the equilibrium price function, and the
restrictions imposed by the first order conditions to recover the marginal utility and mar-
ginal product functions. This second step requires an assumption on the marginal utility
and marginal product functions, which reduces the number of free arguments in these func-
tions. We provide several alternative specifications, propose nonparametric estimators for

the marginal utility and marginal product functions, and show that they are consistent and



asymptotically normal.

Identification of the demand and supply functions allows one to predict partial equilibrium
impacts of changes in individual level observables on individual choices in a hedonic market.
For example, in a market for jobs with varying levels of risk of injury, one can predict the
impact of changes in education on individual choices. Conditional on education, one can
also predict differences in choices for different quantiles of the distribution of unobservable
heterogeneity. Such predictions hold other variables and the hedonic equilibrium price fixed.

Identification of the demand and supply functions however does not allow one to measure
the welfare impacts of changes nor to predict general equilibrium effects. An upper bound on
welfare impacts can be computed using hedonic prices (see Scotchmer (1985) and Kanemoto
(1988)). However, identification of the structural marginal utility and marginal product
functions allows one to do better. In addition, identification of these functions allows one
to predict general equilibrium effects of policy and environment changes. We develop these
points in more detail in Section 4.

We also show that more general nonadditive marginal production and utility functions
are identified using data from multiple markets. The identification result makes use of the
fact that, in general, differences in the distributions of observable variables across markets
will result in price function variation across markets. This variation is an implication of
equilibrium in hedonic models. The price function variation and its dependence on market
level observables can be used to identify marginal utility and marginal product functions.
This result formalizes and extends discussions in Rosen (1974), Brown and Rosen (1982),
Epple (1987) and Kahn and Lang (1988) who discuss how to use multimarket data to identify
structural parameters in hedonic models.

We also analyze equilibria in hedonic economies and study conditions that generate equi-
libria with bunching, i.e., in which positive masses of consumers and firms locate at a common
location.! The conditions that lead to bunching are related to the conditions that generate
bunching in non-competitive nonlinear pricing models (see for example Mussa and Rosen,
1978; Guesnerie and Laffont, 1984; Rochet and Stole, 2003) and in other competitive sorting
models (Nesheim, 2001, 2004). In all cases, a Spence-Mirlees like single-crossing condition
is sufficient to rule out bunching in the interior. Failure of such a condition may lead to
bunching. In a competitive hedonic model, an additional consideration plays a role. Both

buyers and sellers must bunch at the same point.

'In the cases we consider, equilibrium exists. See Gretsky, Ostroy, and Zame (1992, 1999) and Ekeland
(2005).



The demand estimation techniques developed in this paper build on a long line of re-
search on models with unobserved heterogeneity. Estimation of demand models generated
by random utility functions have been studied in the past using parametric assumptions
(Heckman, 1974; McFadden, 1974; Heckman and Willis, 1977), semiparametric assumptions
(Manski, 1975, 1985; Cosslett, 1983; Matzkin, 1991b; Horowitz, 1992; Klein and Spady,
1993; Ichimura and Thompson, 1998, among others), and more recently, using nonparamet-
ric assumptions (Matzkin, 1992, 1993; Briesch, Chintagunta, and Matzkin, 1997; Brown and
Matzkin, 1998; Horowitz, 2001; McFadden and Train, 2000; Blomquist and Newey, 2002,
among others). McElroy (1981, 1987), Brown and Walker (1989, 1995) and Lewbel (1996)
considered inference for random utility and random production functions in perfectly com-
petitive, non-hedonic situations.

Work on nonadditive models also has a long lineage. Nonparametric estimation of mod-
els with nonadditive random terms has been previously studied in Matzkin (1991a), Olley
and Pakes (1996), Altonji and Ichimura (1999), Altonji and Matzkin (2001, 2005), Briesch,
Chintagunta, and Matzkin (1997), Brown and Matzkin (1998), Heckman and Vytlacil (1999,
2001), Matzkin (1999, 2003), Vytlacil (2002), Blundell and Powell (2004), and, more re-
cently, by Bajari and Benkard (2001), Chesher (2001), Hong and Shum (2001), and Imbens
and Newey (2002).

This paper proceeds in the following way. Section 2 describes the hedonic model for a
product with a single attribute. Section 3 discusses the properties of equilibrium in hedonic
models and provides several analytic examples of hedonic equilibria generated by nonad-
ditive functions both with and without bunching. Section 4 studies the identification of
nonadditive marginal utility and nonadditive marginal product functions. Section 5 dis-
cusses identification using multi-market data. Section 6 presents nonparametric estimators
and their asymptotic properties for the single market case. Section 7 presents results from

Monte Carlo analysis of the estimators of the model. Section 8 concludes.

2 The competitive hedonic equilibrium model

Consider a labor market setting in which jobs are characterized by their attributes. The
analysis applies equally well to any spot market in which products are differentiated by their
attributes, prices are set competitively and participating buyers and sellers each trade a
single type of product chosen from a set of feasible products. We first present an analysis

that assumes that almost all participating agents optimally choose a point (or a location) in



the interior of the set of feasible job attributes. This is the framework that is most frequently
assumed in empirical studies of hedonic markets. In this section, we focus on equilibria with
no bunching. We focus on equilibria in which no positive measure of agents choose the same
job.? This is the conventional starting point for a competitive hedonic model. We defer our
discussion of bunching until section 3.2.

Workers (sellers) match to single worker firms (buyers). Let z denote a scalar attribute
characterizing jobs, assumed to be a disamenity for the workers and an input for the firms.?
For example, z could measure the risk of injury on the job as in Kniesner and Leeth (1995).
We assume that z € Z = (20, zg] € R where Z could be the entire real line. The space
7 is the space of technologically feasible job attributes. Let P (z) be a twice continuously
differentiable price function. The value of P (z) is the wage paid at a job with attribute
z. Each worker has quasilinear utility function P (z) — U(z,z,e) where x is a vector of
observable characteristics of the consumer of dimension n, and ¢ is a scalar unobservable
heterogeneity term.® We assume that ¢ is statistically independent of z. The population of
workers is described by the pair of density functions f, and f. strictly positive on X C Rn=
and E C R respectively. Additionally, each worker may opt out of the market (or choose
not to trade) in which case they obtain reservation utility V5.

Each firm has a production function I'(z,y,n) where y is a vector of observable charac-
teristics of the firm of dimension n, and 7 is a scalar unobservable heterogeneity term. We
assume that 7 is statistically independent of y and that (y,n) are independent of (z,¢) . The
population of firms is described by the pair of density functions f, and f, strictly positive
onY C R™ and H C R respectively. If a firm opts out of the market, it earns reservation
profits IIy. Both U and I' are assumed to be twice continuously differentiable with respect
to all arguments.

Each consumer chooses z € Z , a job type or a location in the space of job attributes, to

maximize

P(z) = U (z,x,¢).

2However, a positive measure may choose not to participate in the market, for example, when there are
more workers than firms.

3This does not rule out that jobs may be characterized by multiple attributes. The one dimensional
attribute z could be an index of job “quality” that is produced by a higher dimensional vector of attributes.

In the Kniesner and Leeth analysis, Z = [0,1] .

This is an economy with transferable utility. The econometric analysis in this paper can easily be adapted
to the case where utility takes the form U* (P (2) + R, z,z,¢) where R is nonlabor income.



The first and second order conditions for an interior optimizer are

FOC P.(2)—U,(z,z,6) =0
SOC P, (z) = U, (z,2,6) <0

where P, and P,. denote the first and second derivatives of P with respect to z and U, and
U.. denote the first and second order partial derivatives of U with respect to z.
Assume a unique interior optimizer exists for almost all workers in equilibrium.® By the

Implicit Function Theorem and SOC, there exists a function z = s(x,¢) such that
P.(s(x,e)) — U,(s(x,¢e),x,e) = 0. (2.1)
Moreover,

0s(z, ) _ U.-(s(z,e),z,¢)
Oe P..(s(x,e)) — U,.(s(x,€),x,¢€)

so that % > 0if U,. <0.

It is clarifying to substitute out for € in terms of observables in these expressions. Let
$(z, ) denote the inverse of s with respect to €. This can be obtained directly from FOC
assuming U,. # 0. Substituting back into FOC we obtain

P.(z) = U,(z,z,5(z,2)) = 0.

Since U.. # 0, 5(z, z) is a differentiable function (since we have assumed that P, is continu-

ously differentiable) and

J5(z,x)  P..(2) = U.(z,2,5(2,))

dz U.(z,2,5(z,x)) (2:2)

so that % > 0 if U.. < 0. In this section, we assume that U, (z,z,e) < 0 for all (z,z,¢).
A parallel analysis can be performed for the other side of the market. Each firm chooses

2 € Z to maximize the profit function

[(z,y,m) — P(2).

®Ekeland (2005) provides sufficient conditions for this condition to be satisfied. For example, if the
distributions of buyer and seller types are absolutely continuous with respect to Lesbesgue measure, U,. < 0,
and I';,, > 0, then the conditions are met and each agent has at most one interior optimizer. We study some
examples that relax these assumptions in the next section of this paper.




The first and second order conditions for an interior optimizer are

Assuming a unique interior optimizer exists for almost all firms, there exists a function
= d(y, n) such that

I.(d(y,n),y,n) — P.(d(y,n)) = 0.

Moreover,

od(y,n) _ I, (d(y,n),y,n)
on P_.(d(y, 77)) I, (d(y 1n),9,1)

so that 24 y” > 0if I';, > 0. We substitute out for 7 in terms of observables using d(z )

for the inverse of d with respect to 7. Substituting back into the firm’s first order conditions

we obtain

Fz(Z,y,J(Z,y>> - Pz(Z> = 0.

IfT,, (d(y,n),y,n) # 0, then d(z,y) is a differentiable function and

0z L. (z,y,d(z,y)) 7

so that % > 01if I',,, > 0. In this section, we assume that I",,, > 0 for all (2,y,7).

In equilibrium, the density of the supplied z must equal the density of the demanded z
for all values of z € Z. To express this condition in terms of the primitive functions, consider
the transformation

z=s(z,e) & v=1

for all (z,¢) € X x E. Let
Zy = {ze Z‘z:s(x,s) for some (z,¢) € X X E}

be the range of the mapping s(x,e). For all z € Z; and all x € X , the inverse of this
transformation is

e=5(z,z) & x==x



and the Jacobian determinant is

05(z,x I5(z,x ~
T | L%k
0 1 0z

Since U,. < 0, equation (2.2) implies % > 0. Using the densities of z and &, this mapping
defines the density of the supplied z. This density is

[5G a0 2.4

for 2 € Z,. For z € Z \ Zs, the density of supply is zero.
The density of the demanded z is obtained by a parallel argument. Consider the trans-

formation
=d(y,n) & y=y

for all (y,n) € Y x H. Let

Zg= {zEZ‘z:d(y,n) for some (y,n) E?xﬁ}

be the range of the mapping d(y,n). For all z € Z; and all y € }7, the inverse of this

transformation is

n=d(zy) & y=y

and the Jacobian determinant is

ad(z, ad(z, 7
ézy) éyy) _ od (z,y)
0 1 0z

3d(z y)

Since I';,, > 0, equation (2.3) implies > (. The density of the demanded z is

[ 4(@Cw) st \2C0),, 25)

z

for z € Z,. For z € Z \ Zy, the density of demand is zero.
Expressions (2.4) and (2.5) give the densities of supply and demand respectively for an
arbitrary smooth price function that yields unique interior optimizers for almost all workers

and firms. Among the set of smooth price functions that yield unique interior optimizers, an



equilibrium price function must satisfy the equilibrium condition that the density of supply
equals the density of demand, for all values of z € Z. This condition requires that 7, = Z,
and that

[ 16Cm 0" 0 [ g (i) 40?0 e

forall z € Z = Z, = Z,. Equation (2.6) is a second order differential equation in P. A smooth
price function defined on 7 that yields well defined inverse supply and demand functions,
that satisfies Z; = Z;, and (2.6) is an equilibrium price function. In this paper, we assume
such an equilibrium price function exists and study its theoretical and empirical properties.

If some agents are indifferent between multiple locations, the equilibrium condition (2.6)
must be modified. Indifferent consumers or firms must be assigned to locations in proportions
sufficient to maintain equality between demand and supply distributions at all locations. For
example, if all firms are identical, T' (z,y,n) = I' (z) for all (z,y,7n), the equilibrium price is
P(z)=T(z) forz € Z. In this case, equilibrium supply is as above, but equilibrium demand
is a correspondence. The assignment of firms to locations is not unique. Equilibrium requires
firms to be assigned to locations so that the distribution of demand equals the distribution
of supply. For example, the differentiable function d (z,y) satisfying (2.6) with @ > 0, is
an equilibrium assignment. For an analysis of existence and uniqueness of equilibria under
very general conditions, see Ekeland (2005). The next section analyzes some properties of

this equilibrium. It also considers when bunching will arise.

3 Properties of equilibrium

This section discusses the curvature of the equilibrium price, bunching on the boundary
and on the interior of the space of feasible job types, and demand predictions and welfare

calculations

3.1 Curvature of the equilibrium price

Let P, be the derivative of an equilibrium price function and assume that almost all con-
sumers are interior optimizers. Let d and 5 be the inverse functions associated with the
demand and supply functions derived under the assumption that U,. < 0 and I',,, > 0.

Assume scalar heterogeneity. Under these conditions, when we substitute equations d and §



and use equations (2.2) and (2.3) in equilibrium equation (2.6) and solve for P,,, we obtain

(after simplification)’

JeJy [V £ fogdody

Sy |+ 2] fefydudy .

zz

We have suppressed the arguments of the functions to simplify the notation. The expres-
sion shows that the curvature of the equilibrium price function is a weighted average of
I.. (z,y,g(y, z)) , the curvatures of firms’ technologies and U, (z,x,5 (z,x)), the curva-
tures of workers’ utilities. The relevant curvatures to include in the weighted sum are the
values at equilibrium. The relevant weights are positive and are determined by the distribu-
tions of worker and firm heterogeneity and by the second derivative terms I, (z, y,d (z, y))
and U, (z,2,5 (%, )) .

Consider, as a special case, the additive marginal return specification studied in Ekeland,

Heckman, and Nesheim (2004) where, for some functions m,,, ¢,,, my, and ¢y,
U.(z,2,¢) = muw(2) + ¢, (x) — €

[.(2,9,m) = mg(2) + ¢4 (y) + 1.

Worker and firm heterogeneity shift the levels of the marginal utilities and marginal products

but do not affect the curvatures. In this case, equation (3.1) simplifies to

() [ £ B (z0) fal@)de +mi(2) i £y (d(0w) Fly)dy )

J5 £ G (z) fo(@)da+ [y £ (4(209) ) fy(w)dy

zZz

since U,, =m), (), T',, = m's (2) and —U,. =TI';, = 1. The curvature of the hedonic price

function is the weighted average of m;, (2) and m/; (z), the Hessians of worker preferences

and firm technologies respectively. The weights depend on the relative magnitudes of the

!/

' (z) if workers

densities. In limiting cases, P,, = m’f (z) if firms are homogenous or P,, = m

are homogenous.®

"This expression was also derived in Ekeland, Heckman, and Nesheim (2004).

8The required limit operations are not developed in this paper. They require that we collapse the dis-
tributions of (z,¢) of (y,7n) to point masses. To establish the claimed result it is easier to make a direct
argument as in Rosen (1974). He uses a zero profit condition for the firm with all firms being alike to trace
out an isoprofit contour for different z. The gradient of the contour is the hedonic function.

10



In the general additive case, we have the following theorem that guarantees that all
potential firms and workers participate and that (3.2) characterizes the curvature of the

price function.

Theorem 3.1 Suppose that there exists some pair (zo, z1) with z;, < zg < z1 < zg such that
(i)
s (20) + max {y, (¢) — e} = my (z0) + min {6y (y) + 1},
(1) + min {,, () — e} = my (21) +max {¢; (v) + 1},
and
(i)
m'y(z) < m,(z) for all z € Z.
Then, the right side of (3.2) is well defined, (3.2) has a unique solution with initial condition
P, (20) = mu(20) + max ) {¢,,(x) — e}, and the solution is an equilibrium price function

under which almost all agents have a unique interior optimum.

Proof. The first condition (i) guarantees that I', (z,y,n) = U, (2, x,n) has a solution for all
z € [20,21) C Z and for all (y,m,x,e). The second guarantees that all agents have a unique
interior optimum. =

The first condition guarantees that each pair of buyers and sellers can find some point z
such that their indifference curves “kiss” as in Rosen (1974). The second condition guarantees
that at such a point of tangency, the second order conditions for both agents are satisfied.
In contrast, if m’(z) > m,(z) for all z € Z, then (3.2) is not well defined because for any
price function the SOC is violated for workers, for firms, or both.? In this case, given a price
satisfying

my, (2) < Pex (2) <my, (2),

the equilibrium condition requires that demand equals supply at z; and zg.
More generally, if we have an equilibrium in which all agents choose an interior optimum,

then using the worker and firm SOC we have

Fzz(zayad(zvy)) < Uzz(zuxvg(zax)) (33)

In words, at every location z in the job attribute space, the curvature of the profit function

It m/y (2) > my, (2) for all z € Z and Z = R, then no equilibrium exists.

11



of every firm choosing location z in equilibrium must be less than the curvature of the
utility function of every worker choosing location z. The conditions ensure that every worker
and firm who match at a point z because their indifference curves are mutually tangent
are actually maximizing and not minimizing. Strong sufficient conditions to guarantee an

interior maximum are
T, (z,y,m) > U, (21, z,¢) for almost all (y,n,z,¢)

L. (zg,y,m) < U, (z2m,x,¢) for almost all (y,n,x,¢)

and
I..(z,y,m) < U, (z,2,¢)

for almost all (z,y,n, z,€). These conditions guarantee that for almost all pairs {(y,n), (z,¢)},
a point z exists such that I', (z,y,n) = U, (2, z,¢) and z is an optimum for both (y,7) and

(x,¢) for some price function. An example illustrates our analysis.

3.1.1 A nonadditive example

To provide a tractable example of a nonadditive economy, suppose that all heterogeneity
across firms is represented by a scalar variable n and all heterogeneity across consumers
is represented by a scalar variable e. Workers and firms choose z € [0,00) to maximize
P(2) —e7'2% and z*n — P(z) respectively. Assume 0 < o < 3 and that F.(¢) = P —
and F, (n) = ﬁ so that ¢ and 7 are distributed uniformly on the respective intervals.
Further assume that ¢, = 7, and €5 = ny. In this economy, workers with low disutility of
work (high ¢) sort into high productivity (high 7) firms. Exploiting the positive assortative

matching, the integrated form of equilibrium condition (2.6) for this model is

(7))

for all z such that e, < % < eg. Thus, the slope of any equilibrium price function must

satisfy

2 1 2 1

for all z such that 5? (%) Fre 20<z2<z = 81? (% 7=*  The subset of Z with positive
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density of demand is Z = [z, 2] where zy = €] ° (%)



These conditions pin down the slope of an equilibrium price function on the interior of

the interval [zg, 21| . They imply that, on this interval, any equilibrium price function must

satisfy
1
aff)? ais
P(z) = PR +2 (EX +>5)z 2 (3.4)
where P, is a constant. Assuming all agents trade, the value of the constant must satisfy
(aB)2 =g
o atB
P°+2(a+ﬁ)202 — el >V,
1
2 otp
UZS—PQ—Q(QB) 202 ZHO

(a+ )
We assume the reservation values are low enough to ensure that all agents trade. In general,
the constant F, is not uniquely determined. With an equilibrium price function satisfying

these conditions, the supply and demand functions are

d(n) = (%)B_nﬂf

These supply and demand functions are uniquely determined.

Outside the interval [z, 21|, prices are not uniquely determined. However, we can define
a set of admissible price functions any element of which supports the equilibrium in which
no agents choose to trade outside the interval [zp, z1]. Let P (2) be a function satisfying

equation (3.4) for all z € [2g, z1]. Then P (z) is an equilibrium price function if

sup {nz2" =T ()} < P(2) <inf {V (e) + 772"} (3.5)

for all z ¢ |29, 21| where

The functions II (n) and V (¢) describe the equilibrium levels of profits and utility obtained

by agents with different values of 77 and e respectively. Any price function that satisfies the
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inequalities in (3.5) will support the equilibrium because almost all agents weakly prefer
some z € [z, 21] to all z ¢ [2g, z1] . Outside the interval [zy, 21|, a price P (z) can be thought
of as a shadow price. It is never observed because no agents choose to trade there. However,
it is necessary to support equilibrium.

Because of the positive assortative matching and the identical distributions of firms and
workers, the equilibrium matching condition in this economy is n = ¢. In the equilibrium,
almost all agents choose a point in the interior of the space of attributes. We now consider

a case with bunching on the boundary.

3.2 Bunching on the boundary

Let Z = [0,1] and let TIy = Vi = 0 so that reservation profits and utilities are zero. Suppose

that each firm chooses z to maximize 27 — P (2) where a = .5 and F,, (n) = n for n € [0, 1]

and suppose that each worker maximizes P (z) — 2° where F. (¢) = 75-22% for e € [$,%2].
The first and second order conditions for the firm are
FOC az*'n—P,(2)=0 (3.6a)
SOC ala—1)2?2n—P,.(2) <0 (3.6b)
which implies that for those firms at an interior optimum
P,(2)z'=@
o) = 2T (3.7
a
The first and second order conditions for the workers are
FOC P,(z)—ez1=0 (3.8a)
SOC P,.(z)—e(e—1)22<0. (3.8b)

For any interior equilibrium we cannot have ¢ < «. To see this, from the second order

condition for the firm we obtain after substituting (3.6a) into (3.6b) and collecting terms,

(a—1) <
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From the second order conditions for the workers we obtain
P,<e(e—1)z72

which is the same as

2P, <e(e—1)z"

Using the rewritten first order condition (3.7), we can substitute P, (z) for (¢ — 1) 257! to

obtain
2P,

P, (z)

Thus € > « is required to produce an interior solution.

<e—1.

We conjecture the following solution for this example and show that it satisfies the equi-
librium conditions. Suppose that exactly half of all workers and firms choose the corner
solution z = 0. The rest sort positively on the heterogeneity parameters (n,¢), and lo-
cate at an interior optima. Each of the most productive firms is at an interior optimum
(i.e. each of those firms with n > a = %) and each of the high elasticity workers (the ones
with low disutility of effort) participates at an interior (¢ > a = 3). Since we assume that
z < 1, the high elasticity persons are the ones who have the least disutility of work.

If there is positive assortative matching

3a

1€ = F @), < o

Using our specific functional forms for the distributions, we obtain

0 () = :2—%, ce {@370‘} (3.9)

Then using first order conditions (3.6a) and (3.8a) we obtain
e—1 1

ez" = anz* .

Substituting 7 (¢) in this expression, we obtain

@\ == B1e}
=(1= _> . 1
z < 92 , €€ {Oz, 5 ] (3.10)

This is the equilibrium demand function. The matching supply function can be calculated
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by using (3.9) to substitute out for  in (3.10). As a consequence, the interval with positive
density of demand and supply is Z = [O, (%)4] . No closed form solution for the price
function exists but we can characterize the marginal price function using (3.8a) and (3.10).
In particular as € — «, z — 0 and P, (z) becomes arbitrarily large. This is an equilibrium
because the supply density equals the demand density at each interior z. Consumers and

firms not at the boundary are at a interior optima in this interval.

3.3 Bunching on the interior

The previous section gives conditions that produce bunching on the boundary of the space
of feasible attributes. In equilibrium, a positive fraction of agents do not have an interior
optimum. Bunching on the interior occurs when a positive fraction of both workers and firms
have an optimum at a single point in the interior of Z. To produce bunching at z*, the set
of workers who satisfy

P.(2*)—=U, (2", 2,6) =0

and the set of firms that satisfy
L, (z%y,n —P.(2)=0

must both have positive measure. If U, and I', are differentiable and the distributions of
(x,¢) and (y,n) are absolutely continuous with respect to Lebesgue measure, this can only

happen at z* if the set

A(Z") ={(y,m,z,e) T (2", y,m) = U. (", w,¢) }

has dimension n, 4+ n, + 2. The set of agents who choose z* in equilibrium is a subset of
A(z*). If A(2*) has dimension less than n, + n, + 2, then it has measure zero and the set
of agents who choose z* has measure zero.

An alternative way to see this is to note that if there is bunching at z* in equilibrium,
then

Z=d(y,n) = s(x,e)

for sets of (y,n) and (z,¢) of equal and positive measure. This means that

0d (y,m) _ 0d(y,n)

dy on =0
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0s(v,e)  0Os(x,¢)
or  Oe
for {(y,n,x,e)|z* =d(y,n) = s(x,e)}.
To see how interior bunching might arise, consider the following example. Let y measure

=0

managerial skill or quality and let the distribution of manager skill be given by the distrib-
ution function F, such that y is a continuous random variable. Let z measure hours of work

on a job. A manager of type y has a production function that is quadratic in z :

To+T1(y)z+T4(y) 2> v € [yo,y1]
=9 Do+T2(w)z+Ts(y)z* v € v,y
Lo+ Ts(y) 2z + Ty (y) 22 Y € Y2, 3]

where I'y (y) < 1 for all y,

Li(y) = (=25F,(y)" +10F, (y) +1) (1 - T4 (y)) (3.11)
Fa(y) = 2(1-Tu(y))
Ty (y) = (25F, (y)° —40F, (y) +18) (1 — T4 (y)),
and yo = F,; ' (0), y1 = F,;7(0.2), yo = F,/'(0.8), and ys = F, " (1). Assuming that F, is
twice continuously differentiable, this production function is twice continuously differentiable
in all arguments and is quadratic in z. Over the relevant range of z, managers of higher quality
have higher marginal productivity.
On the worker side, let x measure disutility from work and let the distribution of worker
types have distribution function F) such that x is a continuous random variable. Suppose

utility for a worker with characteristic x is

U+ Ui (2) 2+ Uy (2) 22w € [wg, 4]
U= UO+U2($)Z+U4(.I')Z2 T € [ZEhl'Q]
Us+Us(z) 24Uy (2) 22 € |19, 73]

where 1 < Uy (x) for all z,

Up(z) = (=25F, (2)> + 10F, () + 1) (1 — Uy (2)) (3.12)
Uz (z) = 2(1—Us(x))
Us(x) = (25F, (z)° —40F, (v) + 18) (1 — Uy (2)),
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“10), z1 = E;1(0.2), 2y = F;71(0.8), and 23 = F ' (1). As with firms, this

and zy = F, -

T

utility function is quadratic in z and twice continuously differentiable. Over the relevant
range of z, workers with higher values of & have lower marginal disutility of work.
This example generalizes the seminal Tinbergen (1956) normal-quadratic hedonic model.

The equilibrium price function in this economy can be shown to be
P (2) = po + 2°.

When y is uniformly distributed so F}, (y) = y for y € [0,1], the demand function is shown

in Figure 1. For y in the interval [.2,.8], the first order condition for the firm is
2(1 =Ty (y))+ 2l (y)z =22

1-T4(y)=(1-T4(y)) =

So, z = 1 is optimal for all y in this interval (82—(;/) = ( in this interval) . Similarly, for x in

the interval [.2,.8], the first order condition for the worker is
2(1=Uy(z)) +2U4(x) 2 =22
and again z = 1 is optimal for all z in the interval.

Figure 1: Demand for hours of work

1571
10T
0.5 1
0.0 +—+—+—+—+—+—+F+—+—"F+—+—"F—+—F—+t—F——F—
00 01 02 03 04 05 06 07 08 09 ;.0

In this example, 60% of the managers and 60% of the workers choose to bunch at z = 1.
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Tangency conditions for two managers with particular values of y in the interval [.2,.8] are
shown in Figure 2. Both indifference curves shown in the figure are tangent to the hedonic
price at z = 1. The two indifference curves have different curvatures at this point. In fact
there is a full cluster of indifference curves with positive probability mass that are tangent

to the price function at z = 1.

Figure 2: Equilibrium bunching: tangency to hedonic price

Price |

0.0 +——F—— =]
05 06 07 08 09 10 11 12 13 14 %5

Over all intervals of y, the demand for z by firms of type y is

—BF,(y)*+5F, (y)+3 v € o, u)
z(y) = 1 Yy € [y1, 2]
%Fy (9)2 —20F, (y) +9 Y € [y2,93)

The supply function is similar. All managers with skill less than 3; (20% of the population)
employ part-time workers (z < 1). All managers with skill greater than y; and less than
y2 (60% of the population) employ full time workers (z = 1), and all managers with skills
larger than y, employ workers who work overtime (z > 1). Similarly, sixty percent of the
workforce bunch at z = 1 or at full time work. In this model, those choosing z = 1 are the
mediocre managers and the mediocre workers. !’

Such bunching is a knife-edge phenomenon. Any perturbation of the price function (so

that the term in z is not quadratic or does not have a unitary coefficient) will break the

10Tn this example, the bunching point, z = 1 is determined for exogenous technological reasons. Such a
bunching point could also emerge endogenously due to social coordination. For example, suppose that the
production function were as above but utility depended on F (z), the average level of z in the market. In
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bunching. So will choice of a more general coefficient on the linear term of the quadratic

technologies.

3.4 Demand predictions and welfare calculations

The previous sections discuss the shape of the hedonic price function and the distribution
of agents across locations. The strength of the hedonic approach however lies in its ability
to model the heterogeneity in individual choices and individual outcomes. The supply and
demand functions, s(x,¢) and d(y,n) can be used to describe individual level choices as
functions of observable (z,y) and unobservable characteristics (g,7). The shapes of these
functions depend on the the structural utility and production functions and on the shape of
the equilibrium price function. From an empirical perspective, one of the goals of empirical
hedonic analysis is to estimate these supply and demand functions using data on observed
hedonic choices z, observed characteristics (x,y), and the observed hedonic prices. We
consider identification of these supply and demand functions in the next section.

Identification of the supply function for example allows one to predict partial equilibrium
impacts of changes in individual level observables on individual choices of z. Such predictions
hold the individual’s level of ¢ and the equilibrium prices fixed. Note that they do not
allow one to measure the welfare impacts of such a change nor do they allow us to make
predict general equilibrium impacts. These latter calculations require information about the
structural utility and production functions.

Consider the partial equilibrium welfare impact on an individual of a change from xy to
x1. Holding everything else constant, such a change will lead the individual to move from

20 = S (xo,€) to 21 = s (1,€) . Assuming that z; > zg and holding ¢ fixed, the welfare impact

particular, in the previous example replace (3.12) with

Uy (z) = (25 [1—2E (2)] F, (2)? — 10[1 — 2B (2)] F, (z) + 1) (1- Uy (z))
Uz(a) = 2E(2)(1-Us())
Us(z) = (25 3= 2E (2)] F, (2)? —40[3 — 2B (2)] F, (z) + 68 — 5E (z)]) (1-Us(2)).

In this case, equilibrium bunching again emerges with 60% of the population choosing z = F (z) = 1. In this
example E (z) = 1, so in a single cross-section the model in the text and this model are indistinguishable.
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of this change is

P(Zl) -U (Zl,iL'l,é‘) — [P (20> -U (Zo,fL'Q,S)] (313)
= P(z1)— P(20) — U (21,21,¢) — U (20, 0, €)]
= P(zn)— P(2)— /Uz (z,m1,€) dz — /Ux (20,2, ) dz.

The welfare changes equals the price difference between the two locations z; and 2z, minus
the change in utility. For large changes in x that result in large changes in 2, the change in
hedonic prices P (z1) — P (zp) overestimates the change in welfare if U, > 0 (we have already
assumed that U, > 0). This is the well-known result from Scotchmer (1985) and Kanemoto
(1988).

When U, and U, are unknown, neither of the integrals on the third line of (3.13) is known.
However if U, can be identified and estimated, then the first integral can be calculated.
The hedonic model provides no information about the second integral because this integral
calculates the direct impact of x on welfare holding z fixed. To estimate this last integral,
either additional assumptions must be imposed (e.g. the value of U (z,z,¢) is known for
some value of z and for all (z,¢)) or additional information must be obtained (e.g. about
how much households are willing to pay for z.)

Nevertheless, knowledge of U, improves our knowledge about the welfare impacts of
changes in x. In addition, knowledge of U, combined with information about firms technolo-
gies allows us to compute general equilibrium impacts of changes in the hedonic market envi-
ronment and improves measures of the general equilibrium welfare impacts of such changes.
If the structural functions and the distributions of agents are known, then we can compute
how hedonic equilibrium will change in response to changes in preferences, changes in tech-
nologies, or changes in the distribution of workers or firms. Such general equilibrium impacts
and welfare measures cannot be computed without knowledge of the structural functions.

We now turn to an analysis of identification of the nonaddictive hedonic model. This
analysis enables us to estimate directly U, and U, (and the corresponding technology para-
meters of firms) so that we can execute the welfare calculations in (3.13) exactly. We first

consider the single market case. We develop the multimarket case in section 6.
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4 Identification in a single market

This section analyzes identification of the supply function s (x,¢), the marginal utility func-
tion U, (z, x,€) and the distribution of € in a single market. We omit discussion of the demand
side of the market because the analysis is completely analagous. Our analysis assumes that
the equilibrium price function P (z) and the distribution of (z, z) are known where z denotes
the observed hedonic location choice of an individual and = denotes the vector of observed
consumer characteristics. Most of the analysis assumes that there is no bunching in hedonic
equilibrium and that all agents choose to enter the market. At the end of this section we
show that consideration of bunching does not substantially change our analysis.

In nonadditive hedonic models, the supply function s (x, ) is a nonseparable function of
a vector of observables x and a scalar unobservable €. By assumption ¢ is independent of
x. Furthermore, as we show below, our theoretical structure from Section 2 implies that s is
an increasing function of €. Therefore, s (z, ) is identified using results from Matzkin (1999)
and Matzkin (2003). As discussed in Matzkin (2003), identification of this function requires
either a normalization of s(x,¢) (fixing its value at a point) or of the distribution of the
unobservable ¢ (assuming that the distribution is known). However, certain features of this
function, such as the effect on z of changing = from x(y to x; leaving the value of ¢ fixed,
ie. 21 —zp = s(x1,€) — s(xp,€), are invariant to the choice of a normalization. We next
consider conditions that identify U,. We start with a nonidentification result that illustrates

the key ideas.

4.1 A nonidentification result

Given that the supply function s (z, ¢) is identified and the price function P (z) is known, we
seek to identify the marginal utility function U,. This function must satisfy the first order

condition

U, (s(z,e),x,€) = P, (s(z,¢)) . (4.1)

The key to understanding whether U, is identified is this first order condition. Note that
the marginal utility function is identified for those values of (z,z,¢) that lie on the surface
{(z,z,¢€) : z = s(x,e)}. On this surface, the value of the marginal utility U, is known, since
it must equal the value of the marginal price function.

However, as is clear from this expression, without further restrictions it is not possible

to identify the function U, for all values of (z, x, ) using data from a single market. For any
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arbitrary values of = and ¢, the value s (x,¢), the first argument of the function, is uniquely
determined. Thus, even if we could observe ¢, we could not independently vary (z,z, ) and
trace out the function on its entire n, + 2 dimensional domain.

There are three responses to this fundamental nonidentification problem: 1) Focus at-
tention on features of U, that are identified. 2) Impose functional restrictions on U, that
enable analysts to overcome the exact functional dependence between z, x, and ¢ implied
by economic theory. 3) Obtain data from equilibria in different markets and make use of
independent variation in hedonic equilibrium prices across markets. We consider the first

two approaches in the remainder of this section and consider the third approach in section
5.

4.2 What is identified without further structure

Even though U, is not identified using data from a single market without further structure,
some features of the function U, can be identified. For example, if z contains two variables,
x1 and x5, then the ratio of the partial derivatives of U, with respect to x; and x4 is identified.

To see this, note that we can totally differentiate equation (4.1) with respect to x; and x5

to obtain
0s(x1, 9, ) 0s(x1, 9, €)
U..(z,x1,2x0,6) ———— + U, (2,21, 29,6) = P, (s(x1,29,6)) ——
O e T (1,0,) = Peo(sln,02,) =22
and Os(r1,15,) 0s(r0,72,)
s(x1, 9, € s(x1, x9,€
Uzz 81$22 +Uzw2 - Pzz (8(1’1,1}2,6)) Tj
Hence,
UZ:Bl (Zax17x278) _ asch’f%zs) ’ (4 2)
szQ (Zax17$27€) _88(5581%;5275) s(a1,22.6)=2 - ’

Since s (x,¢€) is identified, the ratios of partial derivatives in (4.2) are identified without any
further restrictions. The ratio on the left side of (4.2) measures the effect on U, of changing
xp relative to changing xs. This equals the ratio of the corresponding partial derivatives
of s. This identification result requires no further restrictions on the set of admissible U,
functions. Nor does it require any normalizations.

Alternatively, if x is a scalar and we assume that the distribution of € is known, the same
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arguments can be used to show that the ratio of partial derivatives

Un(2,2:2) _ =52 (4.3)
U(z,2,8) % s(e)=z |

is identified. For example if it is known (equivalently, if we make the normalization) that
¢ is distributed uniformly on [0, 1], then the ratio in (4.3) is identified. In this case, (4.3)
could be used to evaluate the relative impacts on U, of observable x and unobservable ¢ for
different values of x and at different quantiles of the distribution of . This result requires

a normalization on the distribution of ¢ but does not require any restrictions on the set of

admissible U,.

4.3 Imposing further structure

A second way to deal with the fundamental nonidentification problem is to impose additional
restrictions on the set of admissible U, functions. Proceeding down this route, we develop
three theorems that show how introducing an assumption that has the effect of reducing
the number of arguments of U, by one enables the analyst to recover U, for values of its
arguments outside the two dimensional subdomain defined by the surface (s (z,¢),z,¢).
The first two theorems, assume that U, depends on two of its arguments through a known
function, ¢ : R? — R. This separability restriction or shape restriction reduces the dimension
of the domain of U, and allows us to identify U,. In addition to the shape restriction, these
theorems require a normalization either of the distribution of ¢ (assuming the distribution is
known as in Theorem 4.1) or of the function U, (assuming that its value is known at a point
as in Theorem 4.2). Either normalization is sufficient for identification. The third theorem
presents a third alternative shape restriction on U, that can be used when x is a vector.
In this last case, assuming that U, depends on its arguments through two known functions,
q1 : R? — R and ¢, : R? — R reduces the dimension of the domain of U, and allows us to
identify U, ..

The first theorem shows that U, is identified when we assume that U, is a weakly separable
function of the pair (z,z) and ¢ and use a normalization on either the supply function or
the distribution of €. For example, suppose that we specify the distribution of €. Then, we

can prove the following theorem:

Theorem 4.1 Suppose that for some unknown differentiable function m : R?> — R, which is

strictly increasing in its second argument, and some known differentiable function q : R* —
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R, the marginal utility function can be written
U.(z,z,6) = m(q(z,2),¢). (4.4)

Further, assume that F. is known and let (q(¢), qu(¢)) denote the support of q(s(x,¢),x) for
any € € E. Then, for all ¢ and all z such that q(s(z,e),x) € (qle),qu(e)), U.(z,x,¢) is
1dentified.

Proof. See Appendix. =

For a given ¢, identification of s (x, €) allows us to find all pairs of (z, z) that are consistent
with fixed . Then the shape restriction on U, allows us to select from among these pairs the
pair that produces a fixed value of ¢ (z, ) . Combining these two points, allows us to identify
U, at an arbitrary point. A similar result can be obtained if instead of requiring that U, be a
function of ¢(z, z), we require that U, be a function of ¢(z, €). Specifically, suppose that that
for some unknown function m : R?* — R, which is strictly increasing in its first argument,

and some known function ¢ : R? — R, which is strictly increasing in its second argument
U.(z,2,¢) = m(q(2,€), 7)

Assume that F. is known. For any x, let (¢;(z), ¢.(z)) denote the support of ¢(s(z, €), ). Then,
for all x and all € such that ¢(s(z,¢),¢) € (¢(2), qu(x)), U.(z, x, ¢) is identified. The argument
follows the same lines as is used in the proof of Theorem 4.1.

These results make use of a separability restriction on U, and a normalization of the
distribution of €. Another alternative is to impose a separability restriction and normalize
the function U, by assuming that its value is known at a point. This alternative implies a
normalization on the function s instead of on the distribution of €. Along these lines, we can

obtain the following theorem:

Theorem 4.2 Let x € R. Suppose that for some unknown, differentiable function m : R?> —

R, which s strictly increasing in its last argument, and some known, differentiable function
q: R?> = R,
U.(z,z,e) = m(q(z,x),¢).

Use the function P, to fix the value of the unknown function U, at one value T of x, and on

the 45 degree line on the (z,€) space, by requiring that for all t,

U.(t,7,1) = P,(t) (4.5)



Let € be given. Let q € (qi(¢),qu(€)), the support of q(s(x,e),x). Then, for x such that
q(s(z,e), ) € (@(e), qu(€)), Us(z,2,6) is identified.

Proof. See Appendix. m

The result can be easily modified to apply to the case where U,(z,x,¢) = m (q(z,¢),x).
Specifically, suppose that for some unknown function m : R?> — R, which is strictly increasing
in its first coordinate and some known function ¢ : R?> — R, which is strictly increasing in
its second coordinate

U.(z,x,6) = m(q(z,¢),x)

Suppose that (4.5) is satisfied. Then, U,(z,x,¢) is identified on an appropriate set. Suppose,
for example, that

U, (z,x,e) =m(z-¢€,x)

for an unknown function m. Then the normalization (4.5) is imposed by fixing the values
of m when x ==, by
m (£,%) = P.(t).

When z is a vector, many alternative restrictions can be used. As a prototype, we consider
one alternative restriction that is sufficient for identification when z is a two dimensional
vector (z1,x2). This restriction imposes that U, is a weakly separable function of two known
functions ¢; (z.21) and ¢ (2, z2) . The next theorem shows that this restriction, along with a

normalization on U, allows us to identify U..

Theorem 4.3 Let v = (z1,72) € R% Suppose that for some unknown differentiable func-
tion m : R* — R, which is strictly increasing in its second argument, and some known
differentiable functions q; : R*> — R and q; : R> — R

U.(z,21,22,¢) = m(q1(2z, 1), g2(22, €)) (4.6)

where qy 1s strictly increasing in its arguments. Let [té,tg] denote the support of ga(xs,¢).
Assume the function m is known at one point so that for some values Z of z, T of x1, and
o€ [thty],

m(qi(z,71), ) = P, (2). (4.7)

For any t5 € [th, 4], let [t} (t2), t4(t2)] denote the support of qi (s(x1,xa,€),21) conditional
on qo(xa,€) = to. Then, for any (z,x1,%2,€) such that gs(xa,€) € [th,ty] and qi(z,21) €
[th (L), t%(t2)], U.(z, 21,22, €) is identified.
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Proof. See Appendix. =

Identification of U, is obtained in several steps. First, equation (4.6) implies that the
supply function s(xy, zo,€) is a weakly separable function of 1 and ¢a(x9, €). Equation (4.7)
then implies that the supply function is known at one point. Further, the strict monotonicity
of m and ¢s in their second arguments implies that the supply function is strictly increasing
in €. These implications guarantee that the supply function s and the distribution of ¢ are
identified. Next, to identify the value of m(t;,t5) at an arbitrary point (1, t2) on the relevant
domain, we first find values x7, z3, and * such that when z = s(z73, 23, ¢%), ¢1(z, 27) = t; and
q(x3,e*) = ty. Finally, since such a z satisfies the FOC, it follows that m(t;,t;) = P.(2) =
P, (s(x},x5,¢*)). In short, independent variation in z; and xs, the assumed dependence of
U, on only two arguments, and knowledge of the functions ¢; and ¢s, allow us to trace out
U, as a function of its two arguments.

The statement and the proof of Theorem 4.3 can easily be modified to show that the
function U, is also identified when it can be expressed as a function m(tq,x1), where t; =
q1(2,t2) and t5 = ga(, €). To see this, suppose that for some unknown function m : R* — R
and some known functions ¢; : R — R and ¢y : R? — R, such that m is strictly increasing in
its first argument, ¢; is strictly increasing in its second argument, and ¢, is strictly increasing
in its arguments

U,(z,21,22,) = m(q1(2, q2(x2,€)), x1) . (4.8)

Assuming the function m is known at one point, so that for some values Z of z, 7; of x1, and
a € R,
m <Q1<27 a)vjl> = Pz (2) . (49)

Then, as in the proof of Theorem 4.3, it can be shown that, by (4.8), the supply function,
s(x1, x9, €) is weakly separable into g (22, €), by (4.9), the value of s is fixed at one point, and
by the monotonicity of m and ¢y, s is strictly increasing in ¢o. These properties guarantee
identification of s and of the distribution of ¢ using the analysis of Matzkin (1999). To
identify the value of m(t1,t3) at an arbitrary vector (t1,ts), let 27 = t9, and find =3, and &*
such that when z = s(z7,23,¢%), ¢1(z, g2(x3,€*)) = t1. Then, as in the previous argument,
m(ty,te) = P,(2) = P, (s(z7, 25, ¢%)).

It is interesting to consider the economic implications of some of these alternative restric-
tions. Focus on the types of restrictions described in Theorems 4.1 and 4.2. Consider the
models

U.(z,z,e) =mq (1 (2,2),¢)
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U,(z,z,8) =ma(q2(2,2),¢)

and

U, (z,x,6) =ms (g3 (z,€),x)

where (mq,q1), (m2, q2) and (ms, g3) are three pairs of functions satisfying the assumptions
in Theorem 4.1 or its modification suggested above. Assume ¢;, g2 and g3 are three distinct
functions so the three models are distinct. In each model, the functions m, ms, and ms are
identified. Choice between the models must be based on prior information or on theory. The
models do have slightly different economic interpretations. The models (mq, ¢;) and (ma, ¢2)

both assume that the trade-off
oU, |0z

oU, /0x
is known and depends only on observables. These two models are distinct because they make

different assumptions about this trade-off. In contrast, model (ms, g3) assumes that

oU, |0z
oU, [0e

is known and only depends on unobservables.
In addition, if we consider using the results from estimation of these models to calculate
welfare criteria as in equation (3.13) , we will get different results depending on which model

we use. For example, if we use model (my, ¢;) to compute equation (3.13) we obtain

P(z)— P(z) — /m1 (q1 (s,x),e)ds — //mq (q1(s,2),€) qe (s,x)dxds | . (4.10)

The result will be different if we use model (ms, g2) or model (ms, g3) .

4.4 Identification when there is bunching

In Theorem 4.3 we make the assumption that m is strictly increasing in its second argument
and that go is strictly increasing in both arguments. Similarly, in Theorems 4.1 and 4.2
we assume that m is strictly increasing in its second argument. These assumptions rule
out bunching because they guarantee that either % # 0 or % # 0. However, the
assumption of strict monotonicity while convenient for the proofs is stronger than is required

to identify these functions. The theorems can be modified to relax the assumptions and allow
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@2 to be weakly increasing in its arguments in Theorem 4.3 and m to be weakly increasing
in its second argument in each case. Moreover, weak monotonicity allows for bunching. We
outline the proof for the case of Theorem 4.1.

When there is bunching, the analysis is essentially unchanged. Assume we have data
from a market in which a fraction of agents bunch at a single point z* while the rest spread

themselves continuously over the domain Z C R. Assume that
U, (z,x,e) =m(q(z,x),¢)

where m is weakly increasing in its second argument, ¢ is a known function, and F. is known.

Under these assumptions, the supply function s (z,e) need not be everywhere differen-
tiable and its inverse s (z, z) need not be single valued. However the second order conditions
and the monotonicity of m with respect to € guarantee that s (x,e) is nondecreasing in €.
Hence, as in the proof of Theorem 4.1

s(x,e) = szi:m (F.(e)).

Despite the possibility that Fz, might only be right continuous and not continuous, the
inverse is still well defined. Thus, even when there is bunching, the supply function is
identified.

Moreover, m is identified on the support of ¢(s(x,¢),z) and e. The proof is identical to

the last part of the proof of Theorem 4.1. So,

m (tl,tg) = Pz (S (ZE*,tg))

where z* satisfies
t1 =q(s(x* ta),2").

When there is bunching, there may be multiple values of z* that satisfy this last equation.
However, for every value of (1, t2) satisfying the support condition, by construction, there
is at least one z*.

Bunching does not change the analysis of the identification of the functions m and s using
theorem 4.1 in any essential way. The only loss of information is with respect to the values of
individual level unobserved heterogeneity. For those agents who bunch at z*, the individual
values of € are not identified. For this group, all that is known is that ¢ € 5(z*, ).

We now consider how access to multiple market choice data produces identification.
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5 Identification in multiple markets

Identification of U, (z,z,e) in a single market is limited because all consumers face the
same price schedule. With multiple markets however, the marginal price function P, (z) will
typically vary with underlying market conditions. For example, assuming that the marginal
utility function, U, (z, z, ), does not vary across markets'!, the marginal price function (and
the supply function s (z,¢)) will, in general, vary across markets when the distribution of
worker types or firm types varies across markets.!? When data are available from multiple
markets and cross market variation in the distributions of observables causes cross market
variation in P, (z) and s (x, ) , this cross market variation can be used to identify the function
U, (z,z,¢e) without imposing additional restrictions.

Suppose that the distributions of ¢ and 7 are the same in all markets. Further assume
that the distributions of x and y with densities denoted by (f;, f,) € F(X) x F(Y) C
Ly (X, ) X Lo (Y, uy) vary across markets. Here, u, and p, are Lebesgue measure on X
and Y respectively and L. represents the space of square integrable functions. Suppose
a multimarket sample exists from M markets with N; observations on (z,y,x) from each
market j. The marginal price and supply functions in each market will depend on (f, f7),
the densities of observable z and y in each market. Dropping subscripts, write these functions
as P, (z, fs, fy) and s (z,¢, fo, fy) -

From such a multimarket sample, the functions (f,, f,) and the functional P, (z, f,, f,)
are identified. Using Matzkin (1999, 2003), the functional s (z,e, f;, f,) is nonparametri-
cally identified. Hence, the multimarket data-set allows us to identify the distributions of
observables and the dependence of the marginal price and the supply function on these dis-
tributions. We can use this information to identify the marginal utility function U, (z, x,¢).

Recall the workers’ first order condition:

U. (s(z,¢, fa, fy),x,e) = P, (s(v,¢, fa, fy)7fl“v fy)

where we have made explicit the dependence of P, and s on f, and f,. In a single cross
section, the price function and the supply function are fixed and we cannot independently
vary the three arguments of U,. With multimarket data, both P, and s vary for each (z,¢)

provided that f, or f, or both vary across markets.

1'We can always adopt a specification rich enough to ensure this is true.
12The support of (z, z, ) may be different in different markets. Thus, even under the conditions discussed
in this section, we can identify U, (z,x,¢) only over the union of the supports across markets.
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Our analysis provides a general approach to identification of U, under weaker conditions
than were required in using single cross section data. Use of multimarket data to identify
hedonic models was proposed in Brown and Rosen (1982), Brown (1983) and Epple (1987).
Our analysis is more general than theirs because we consider the nonseparable case where
their analyses assume linearity of supply and price equations. Also, our approach brings out
the point that the equilibrium price and the supply function depend on the distributions of

observable characteristics of firms and workers. We now state and prove the theorem.

Theorem 5.1 Pick an arbitrary point (z,z,¢€). If the distribution of € is constant across
markets and there exists a pair (f;,fy*) such that z = s (x,e, f;,f;‘), then U, (z,x,€) is
identified at the point (z,x,¢€).

Proof. Let (f;, f;) satisfy z = s (z,, f7, f;) - Then U. (z,x,e) = P, (s (z,e, 3, f3) . [ [ -
Thus, U, is identified at all points (z,z,¢) such that z is an equilibrium choice for (z,¢) in
some feasible equilibrium. m
Under our conditions, we can independently vary the arguments of U, (z, z, ) by varying
(fz, fy, @, €) . This is true for all (2, z, ) such that an equilibrium with z = s (z, €) is feasible.
The theorem exploits the variation in price and supply functions induced by cross-market
variation in the distributions of observables. The source of the variation is apparent from

equilibrium equation (2.6):

[ 16C 0" [ g (i) 0™ e

Consider two different markets with different distributions of observables (f}, f}) and (f2, f2) .
Because the distributions are different in the two markets, the inverse supply functions that
satisfy equation (5.1) will generically be different across different markets. If P (z, L fyl) is
the equilibrium price in market 1, then generically, P (z, 12, f;) #+ ko+ k1P (z, L fyl) where
P(z f2, f2) is the equilibrium price in market 2. This is an application of Theorem 1 in

Ekeland, Heckman, and Nesheim (2004). Equivalently s (w, e, fL, fyl) is not a linear function
of 5 (2.2, 2, 2).
6 Estimation

We now consider how to convert the identification theorems of section 4 into estimation algo-

rithms. We focus the discussion on a model satisfying the conditions of Theorem 4.3 because
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this is the most general of the three theorems. We then show how to alter the argument
to define an estimator for a model satisfying the conditions of Theorem 4.1. Estimators for
models satisfying conditions in Theorem 4.2 can be defined analogously.

The proofs of Theorems 4.1-4.3 suggest ways to nonparametrically estimate the supply
function s, the marginal utility function U,, and the distribution of €. For example, under
the conditions of Theorem 4.3, the supply function has the form v(z1, ¢2(x,€)). To obtain
an estimator for U, first estimate the distribution of ¢ and the supply function v using the
conditional distribution function of z given (z1, x5) using the procedure described in Matzkin
(2003). Then, use the estimated function v and the known function ¢; to calculate the value

x7 that satisfies

a1 (@\(IT, t2>7 .CCT) = tl.

The estimator m(ty,t3) of m(t1,1s), is then given by the equation

m(ty,te) = P, (v(z](t1,t2),12)) .

A similar procedure can be described using the steps in the proofs of Theorems 4.1 and
4.2. The statistical properties of the resulting estimator of m then arise from the statistical
properties of v filtered through this nonlinear equation.

To describe the estimators suppose that the equilibrium price function is known, and that
the available data is {Z¢, X'} for each of N; workers. Let f(z, 1, z2) and F(z, 1, z2) denote,
respectively, the joint pdf and cdf of (Z, X). Let f(z,xl,asg) and F(z,xl,xg) denote the
corresponding kernel estimators. Let fZ‘ X=(z1,2)(2) and FZ‘ X=(z1,22)(2) denote the kernel
estimators of, respectively, the conditional pdf and conditional cdf of Z given X = (z1, x3).

In this notation,

~ 1 _Z’L _XZ _X’L
S (S DA R,

f(Z,ZL'l,CCQ) = NO'?V

I

- ON ON ON
=1

F(Z,l‘l, 5172) = / / / fN(S,tQ, tg)detldtQ,

r fN(Z73717'T2)
J21X=(21,00) (%) = =5 ;
f—oo fN(S7 Ty, .’IZ'Q)CZS
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and L s
B I fn(s, @y, ) ds

B ffooo fN(s,xl,xg)ds

where K : R> — R is a kernel function and oy is the bandwidth.'? The above estimator for

FZ‘X:(LU1,$2) (Z>

F(z,x1,25) was proposed in Nadaraya (1964). When K (s, x1,x2) = k1(s)ko(z1, o) for some
kernel functions k; : R — R and ky : R?> — R,

. I Pn(s o ae) ds N k(52 ky(PL, 2220
Fyix=(21,22)(2) = =

= Fr(s, 21, 2) ds SN k(B 2

where ki (u) = J*  k1(s) ds. Note that the estimator for the conditional cdf of Z given X is
different from the Nadaraya-Watson estimator for Fx—,(2) where & = (21, x2) . The latter
is the kernel estimator for the conditional expectation of W = 1[Z < z| given X = x. For
any t and z, Fg‘}:x(t) will denote the set of values of X for which FZ|X:I(2) = t. When the
kernel function k; is everywhere positive, this set of values will contain a unique point.

6.1 Casel

Theorem 4.3 assumes that the marginal utility function is weakly separable into two func-
tions, each possessing one of the observable characteristics as one of its arguments. In other

words, for some unknown function m we may represent the marginal utility function as

Uz(za T1, T2, 5) =m ((11(2’, 1’1), q2($2a 5))

where ¢; : R?> — R and ¢, : R?> — R are some known functions. Theorem 4.3 establishes
the identifiability of the function m and the distribution of ¢ for this case. Following the
statement of that theorem, normalize the value of the function m at one point by requiring

that at some values Z of z, 7; of 1, and a € R,
m(q(Z,71),a) = P, (Z) .

Define s(z1, z2, €) to be the function that satisfies, for each (z1, z2, ), the FOC of the worker.

As argued in the proof of Theorem 4.3, from the assumed structure of separability, we may

I3For ease of exposition, we focus on the case where € R?. The results extend readily to cases in which
x € R™ where n, > 2.
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write:
$(1, T2, €) = v(21, ¢2(22, €))
for some unknown function v, which is strictly increasing in its second argument and satisfies

the property that

(T, a) =%
where ¢ is a known function and « € R. Following Matzkin (2003), it follows that for any e

~

FL(e) = Fzx=@ w(ae) (Z)

where w(q, e) = w* is such that go(w*, €) = a, and for any 71,72, €

V(T1, ga(Tg, €)) = in|§<:(51,§2) (Fs(“e)> :

Using the procedure described in the introduction to this section, to obtain an estimator for

m(tq,ts2), we first calculate z3 such that

@ (V(T7, 12), 77) = 4

and then let
m(ty,te) = P, (v(77,t2)) -

The following theorem establishes the asymptotic properties of this estimator for the case
where the function ¢ (z,21) = z-x; and the function ¢o(xs,€) = x5 +¢. We offer this analysis
as a prototype. Similar results can be obtained for other specifications of the functions ¢
and ¢2. Let B(t, ) denote the neighborhood centered at ¢ and with radius £ > 0. Given t,,
let x5 and e be such that xo+e = t5. Let 2= a+e. We will make the following assumptions:
Assumption A.1: The sequence {Z', X'} is i.i.d.

Assumption A.2: f(Z, X1, Xs) has compact support Z x X C R® and is continuously
differentiable of order s'.

Assumption A.3: The kernel function K(-,-,-) is differentiable of order s, the derivatives
of K of order s are Lipschitz, K vanishes outside a compact set, integrates to 1, and is of

order s” where s+s"+1<4¢g.
Assumption A.4: As N — oo, ox — 0, In(N)/No3 — 0, No2, — oo, /NU?VJ,-zs” 0.

and /N, (/W) (No%) + @’)2 0.
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Assumption A.5: z* # 0; 0 < f(z7,22), f(T1,T2) < o0; there exist 6,§ > 0 such that
Y(en4) € B((a]a2),€), V5 € Blo(a, 15),6), [ (w0,a5) > 6 and f(5,21,23) > 6 there
exist §',& > 0 such that V(zy,2h) € B((T1,72),&), Vo € B(v(zy,7h),&), f(x1,25) > &
and f(U,z1,2h) > ¢'; and dFy x—p(t1/2*)/dz #0 .
Assumption A.6: t; belongs to the interior of the support of ¢; (v(x1,t2),21) .

Let [ K(2)?= [ ([ K(s,z) ds)2 dx, where s € R. When Assumptions A.1-A.5 are satis-
fied, Theorems 1 and 2 in Matzkin (2003) imply that for z; # Ty,

sup
eER

I*A}(e) - Fa(e)‘ — 0 & v(z1,t3) — v(xq,t2) in probability

VNow (Fi(e) = Fe(e)) = N (0, Vi)

and VNox (3(x1, t2) — v(z1, ts) — N (0,V))
where V- { / K(Z)2} [F.(e) (1 — F.(e)] {m]
and

Vn = {/K(Z)z} {éeie:)ﬁv?xiat(j)))q [f(fll, To) - f(f'flai2 + 6)] '

Theorem 6.1 uses Assumptions A.1-A.6 to establish the asymptotic properties of m(ty, t5). Let

x = (23, 9) and v* = v(z7,t2). Let T = (T, T2). Define the constant C' by

' -2
c—(p. (1 Yt )| =) (E)
T\ (27)? dy

Theorem 6.1 Suppose that Assumptions A.1-A.6 are satisfied. Then, m(t1,ts) converges

in probability to m(ty,ts) and

\/ Nok (Mt t2) — m(t, t2)) — N(0, V) in distribution,

e {[rer e (5 + 7)) (Panss0 - Faxs).

Proof. See Appendix. =
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6.2 Case 2

We next consider the situation where the assumptions of Theorem 4.1 are satisfied. In this

case, ¢ € R and we assume that for some unknown function m
U.(z,2,6) =m(q(z,x),¢)

where ¢ : R? — R is a known function. We assume that F., the distribution of ¢, is known.

Then, as argued in the proof of Theorem 4.1, the derived supply function satisfies

s(1.¢) = Fyl_, (Fo(e).

This can be estimated by

-~ -1
s(x,e) = Fyy_, (Fe(e))
where F\Z| x—¢ 18 calculated as in the above subsection. Next, to estimate m (¢1, t2) at specified

values t1, to, let T be such that
q(5(2,12),2) =t

Then,
m (t1,t2) = P, (5(Z,t3)) .

Theorem 6.2 establishes the asymptotic properties of this estimator for the case where
the function ¢(z,z) = z - z. This analysis serves as a prototype for more general cases. The
assumptions of the theorem are very similar to those of Theorem 6.1.

Let z* be the value of x satisfying ¢(v(z*,t2),2*) = ;. In place of A.1-A.6, make the
assumptions:

Assumption A.1": The sequence {Z°, X'} is i.i.d.

Assumption A.2": f(Z, X1) has compact support Z x X C R? and is continuously differ-
entiable of order s'.

Assumption A.3": The kernel function K(-,-) is differentiable of order s, the derivatives
of K of order s are Lipschitz, K vanishes outside a compact set, integrates to 1, and is of
order s” where s+s"+1<s.

Assumption A.4’: As N — oo, oy — 0, In(N)/No% — 0, VNoy — 00, NU}VHSH =0,

2
and /Noy <\/(ln(N) T(No2) + JN> 0.
Assumption A.5": z* # 0; 0 < f(2*); there exist §,6 > 0 such that Vx € B(x*¢)
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Vo € B(v(z,t2),€), f(x) >0 and f(v,2) > &; dFyx=e(t1/2*)/dx #0 .
Assumption A.6’: t; is in the interior of the support of ¢ (v(z,ts), x)

Let e = ty and © = 2*. Theorems 1 and 2 in Matzkin (2003) imply that, under these
assumptions,

v(z,e) — v(x,e) in probability

and

VNoy (v(z,e) —v(z,e)) — N (0,V,)

o~ (o) s (]

The next theorem uses assumptions A.1’—A.6’ to establish the asymptotic properties of
m(ty, ta).

where

Theorem 6.2 Suppose that Assumptions A.1'-A.6 are satisfied. Then, m(ty,ts) converges
in probability to m(ty,ts) and

\/ No¥ (m(ty, ta) — m(t1,t2)) — N(0,Vyy) in distribution,

V=101 [ K62} (55 ) (R - £,

where

Proof. See Appendix. m
The analysis for an estimator based on Theorem 4.2 is similar. We next present some

Monte Carlo evidence on the performance of these estimators.

7 Simulations

We next present Monte Carlo experiments that illustrate the performance of the estimation
techniques in Section 6. To obtain these results, we specify a nonadditive hedonic model and
simulate data from this model using a range of parameter values. For each set of parameter
values tested, we simulate 100 data-sets each with 500 observations. Then we estimate the
utility function using each of the data-sets. The result of the estimation is an estimated
marginal utility function. For each set of parameter values, we discuss the results of these

simulations and present graphs which display the median (across the 100 data-sets) estimates
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of the method as well as the 5th and 95th percentile estimates. These results indicate that
the techniques developed for estimating the nonadditive hedonic model work quite well.
We now document the specification of the simulation model that we studied and present

and discuss these estimation results.

7.1 Model

The model specification is described in Table 1.

Table 1: Simulation Model Functional Forms
Firm | Technology | TI'(z,7) Az%n

Density of 7|7, (1) | U lnponal
Worker Utility U(z,z,¢) | BzPa2P~1e™®
Density of | f, () Ulzp, zy]
Density of e | f- (&) Uler,enl

We simulated and estimated this model for baseline parameter values described in Table
2 and for several other parameter values that illustrate the sensitivity of the results to
the variance of the observable variables, the variance of the unobservable variables, and
to the curvature of the utility and technology functions. The features of the model and
the equilibrium that have the most significant impact on the performance of the estimators
are the relative variance of observables and unobservables, and the equilibrium support
of (zz,e). As one would expect, increased variance of observables relative to unobservables
reduces the sampling error of the estimator. Also, the estimator performs well on the interior
of the support of (zx,¢) but less well near the boundary of the support where there are few
observations in the data.

Table 2 presents the baseline parameter values and the alternative values that were tested.

Table 2: Baseline parameter values and alternative values
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Parameter name | Baseline values | Feasible values | Alternative values
T 1.0 x>0 n.a.
Ty 2.0 Ty > T 3.0
€l 1.0 er, >0 n.a.

U 2.0 EU > €r n.a.
nr, 1.0 ng >0 n.a.
Ny 2.0 Ny > N n.a.
Q 0.25 O<a<p n.a.
I6; 0.50 g #1 {0.75,0.9}
) 1.0 0>0 2.0
A 1.0 A>0 n.a.
B 1.0 B >0 n.a.

The baseline values were chosen to avoid numerical difficulties for parameter values near
zero and to demonstrate the properties of the model. The alternative parameter values were
chosen to illustrate interesting dependencies between model parameters and empirical results.
We report results that illustrate the impact of variations in (zy,3,0). The parameter zy
affects the variance (and mean) of the observable variables and the size of the equilibrium
support of (zz,e). The parameters (3,0) affect the degree of nonlinearity in the hedonic
equilibrium, the shape of the hedonic pricing function and most importantly the shape of
the equilibrium support of (zz, ) . We report results that illustrate how these features affect
the empirical results.

We do not report results illustrating how the other parameters affect the empirical results.
The parameters (zr, g, €y, 0, 7y ) have impacts that are qualitatively similar to the impacts
of xr;. The parameter x; affects the mean and variance of z and the equilibrium support
of (zz,e). The parameters (¢, ey) affect the mean and variance of ¢ and the equilibrium
support of (zx,¢) . Increases in the variance of ¢ reduce the precision of the estimates. The
parameters (1, 1;,) affect the equilibrium support of (zx,¢). We also do not report results
for alternative values of o and for values of 3 > 1. These parameters affect the shape of the
support of (zz,¢). In particular, when o < 1 and 8 > 1, the support of (zz,¢) is confined
to a very small region. These results are available from the authors upon request.

The model specification is a generalization of the model presented in section 3.1.1. The
workers’ marginal utility has the property that U, (z,z,¢) = m(q(z,z),¢) where ¢ (z,z) =
zz and m (q,e) = BB¢’~'e~%. We approximate equilibrium in this model computationally

and present estimation results from data generated from this model.
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7.2 Equilibrium

Computing equilibrium in this model is somewhat complicated by the fact that the supports
of (x,e,m) are compact. Because of this, the equilibrium supports of z and ¢(z,x) are
also compact and care must be taken to compute the supports properly. Nevertheless the
equilibrium price, the equilibrium supply of workers z = s (x,¢) , and the equilibrium demand
of firms z = d (1) can be computed using numerical techniques. Details and computational
algorithms are available from the authors upon request. We computed equilibrium in this
model for the parameter values detailed in Table 2 and then for each set of parameter values

simulated 100 data-sets each with 500 observations.

7.3 Estimation results

After generating data from the model described above, we used the procedure described
in section 3 to estimate the supply function z = s(x,¢). The results in that section show
that it is impossible to recover the structural function unless additional structure such as
q(z,2) = zz and € ~ U [ef,ey] . We make the assumption that these two facts are known.
Under this assumption, we can compare the estimated values of m with the true value. We
estimated the marginal utility function m (g,¢) for a selected set of values of ¢ and ¢ in
the relevant domain. The domain upon which m is identified is both model dependent and
data dependent. We illustrate this in the simulation results reported below. For each set of
parameter values, we simulated 100 data-sets with 500 observations on (z,z, P,). For each
set of parameter values, we then estimated the model 100 times. The figures below display
the median values of our estimation results as well as the 5th and 95th percentiles.

Figure 3 presents estimation results for the baseline model. The top two panels display
the true function m (q,¢) and the median of the estimates of that function. While m is
well-defined for all positive values of ¢ and ¢, the function is only identified on the funnel
shaped region underneath the graph in the figure. These limits of the region of identification
are determined by the model; in particular they are determined by the fact that we assume
(x,e,n) are each uniformly distributed. The shape of the region is determined in equilibrium
and depends strongly on the supports of (z,e,7) and on the curvature parameters («, 3,0) .

The figure shows that the median of the estimates of m are very accurate. The two
functions in the top two panels are nearly identical. The bottom two panels show this more
clearly. They show the estimated values of m for fixed values of ¢ and ¢ respectively. In

these panels, the solid lines depict the true value of m (q,¢), the dashed lines depict the
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median of the estimated values, the circles depict the 5th percentile estimates, and the
plus signs depict the 95th percentile estimates. The solid lines and the dashed lines are
indistinguishable. The 5th and 95th percentile values are also very close to the true values
except near the boundaries of the supports. In the bottom left panel, the value of ¢ is fixed
at 1.5. For this value of e, the value of m(q,¢) is accurately estimated for all values of
g ranging from about 1 or 2 to about 24. The value of the function cannot be estimated
for larger values of ¢q. For other values of ¢, the range of values of ¢ that produce accurate
estimates are different. In the bottom right panel, the variable ¢ is fixed at the value 4.9564.
For this value of ¢, m (¢, ¢) is accurately estimated for values of € ranging from about 1.3 to
1.9.

Figure 4 illustrates similar results when zy is increased from 2.0 to 3.0. The precision
of the estimates increase and the size of the region on which the function is identifiable
increases. In Figure 3, the scale of the ¢ axis ranges from 0 to 60. In contrast, in Figure
4, the ¢ axis scale ranges from 0 to 150. In both Figures 3 and 4, the function m can be
accurately estimated for all values of ¢ € [1.2,1.8] when ¢ is small. However, when ¢ is large
the interval in the ¢ dimension within which m can be accurately estimated is smaller.

Figure 5 illustrates the impact of increasing (3 to 0.75. This change has a dramatic impact
on the support of (zx,¢) and hence on the region within which m is identified. The scale of
the ¢ axis in Figure 5 ranges from 0 to 2.5. Within this range, m can be estimated accurately.
But, the equilibrium provides no information for values of ¢ outside this region.

Figure 6 illustrates the impact of increasing /5 to 0.9. The support of (zz,e) becomes
smaller and the precision of the estimates decay. As (3 approaches 1, the performance of the
estimator declines. In the limiting case where 8 = 1, x does not affect marginal utility.

Finally, Figure 7 illustrates the impact of increasing ¢ to 2.0. This change drastically
increases the equilibrium support of z and hence of (zx,¢). Notice that the scale of the ¢
axis in Figure 7 ranges from 0 to 500. The upper right panel of Figure 7 shows that the
median of the estimates of m is very similar to the true value of m (depicted in the upper
left panel). The lower panels show that when € = 1.5, the value of m is accurately estimated
for values of ¢ ranging from 10 to 80. Similarly, the lower right show that the value of m is
accurately estimated when ¢ = 25.07 for all values of ¢ ranging from 1.4 to 1.7.

The figures illustrate that the estimator performs well on the interior of the support
of (zz,e). The estimator first estimates the supply function z = s(x,e) and then uses
this estimated function, the marginal price function P, (z), and knowledge of the index

structure U, (z,x,e) = m(q,€) where ¢ = zx to estimate m. Crucial determinants of the
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performance of the estimator of m are the relative variance of observables and unobservables
and the equilibrium support of (zz,¢) . In applications, since researchers must first estimate
z = s(z,¢€), this first stage estimate can be used to construct a residual for each observation
and estimate the joint density of (zz,e). This joint density provides information as to the
region in (zz,e) where many observations are available and where it is possible to estimated
m accurately.

The results from these simulations are prototypical. The estimator performs well on the
interior of the support of (zz,e). The performance decays in regions near the boundary
where less data is available. In the simulations, the size and shape of the support of (zz,¢)
are highly sensitive to the parameter values. This sensitivity is not a general feature of

equilibria in hedonic models but is a specific feature of this example.

8 Summary

This paper considers hedonic equilibrium models where the marginal utility of each consumer
and the marginal product of each firm are both nonadditive functions of the attribute and
a random vector of individual characteristics, which are different for the consumers and
firms. We demonstrate that this type of specification is capable of generating equilibria of
different types, with and without bunching and analyze some properties of equilibria in
these models. We develop conditions sufficient to identify the marginal utility and marginal
product functions using both single market and multimarket data. In the single market
data cases, we provide nonparametric estimators for these functions and show that they are
consistent and asymptotically normal. Finally, we provide simulations that illustrate the

performance of the estimators.
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Appendix

Proof of Theorem 4.1. Let s(z,¢) denote the supply function of a worker with charac-
teristics (z,¢). By (4.4) and the first order conditions

By the second order conditions

om 0q
———P,, <0.
9q 02 <

Hence,

dmdqds Im 0s

A Pzz_-
dq 0z Oe * Oe Oe
By the monotonicity of m in ¢,

om
88 o - Oe

Oe  9mdq _
Oz dq 0z PZZ

> 0.

Hence, s is a nonadditive function in € which is strictly increasing in e. Since ¢ is independent
of X, it follows by Matzkin (1999) that

s (x,6) = F) (F.(e)).

Since F. is given, s is identified. Let (¢1,%2) be such that t; € (¢ (t2), qu(t2)). Find x* such
that
q(s(x* ta),z") =t1.

Then,
m(tl,tQ) = Pz (8($*,t2)) .

]

Proof of Theorem 4.2. By (4.5), in the statement of the theorem, it follows that the
value of z that satisfies the FOC when x =7 and ¢ =t is z = ¢. Hence, the supply function,
s(x, ), satisfies

s(Z,e) = e.
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By the SOC and the monotonicity assumption on m in terms of ¢,

_ Om
85_ e

e 0mdqg _
0= dq 0z PZZ

> 0.

Then, by Matzkin (1999)
F€<€) = F2|X:5(€)

and
s(T,€) = Fyx_z(F(e)).

Next, to see that the function m is identified, let * denote the solution to

q(s(z*,ta),ta) = t1.
Hence,
m(tla t?) =m (q (S(l'*, t2)> t2) 7t2>

and from the FOC
m(ty, ta) = P, (s(x¥,t3)) .

n
Proof of Theorem 4.3.  Since U, is weakly separable in ¢s(x2,¢), the function z =
s(x1,xq,€), which satisfies the FOC is also weakly separable in ¢y(x9,¢). Hence, for some

unknown function v

s(z1, w2, €) = v(w1, g2(22, 5))

Let x5 and € be such that ga(z9, ) = . Then, by separability and condition (4.7) in the

statement of the theorem
Uz(zu fl? q> (I’g, 5)) - PZ(E)

where Z satisfies the FOC when x; = T; and g¢o(72,€) = a. It then follows that
U(Ela Oé) = S(flv q2 ($27 8)) =z
By FOC and by (4.6) in the statement of the theorem it follows that

m [ q(v(r1,q2(r2,€)),71) , @2(72,8) | = P.[v(w1,q2(72,€)) |
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Differentiating with respect to ¢s, since the SOC are satisfied, we have an interior solution

and
om 0q; Ov n om ov
Oq1 0z 0qs  Oq T Ogo’
Hence,
om
"o
T 9m dq :

From SOC the denominator is negative:

Om 9q,

- P,, <0.
oq, 0z

From the strict monotonicity of m in its second argument the function v is strictly
increasing in its second argument. Summarizing, the unknown function v that relates x1,
x9, and ¢ to the value of z that satisfies the FOC is such that z = v(z1, ga(22,¢)), v is
strictly increasing in its second argument and v(Z, ) = Z. It then follows from the analysis
of Matzkin (2003) that the function v and the distribution of ¢ are identified from the
conditional distribution of Z given X = (X1, X5).

To show that the function m is identified, let (t1,t5) be any vector such that 5 € [té, tg}
and t; € [t (t3),t%(ts)]. Let 2} denote a solution to

G (v(z],ta), x7) = t1.

Since ¢; is a known function and v can be recovered from the conditional cdf of z given
(z1,22), the only unknown in the above expression is zj. Since t» € [th,t4] and t; €
[th (L), t%(t2)], 2} exists. Since v(z},t2) satisfies the FOC,

m<tlv t2) = m (Q1 (U(f{a t2>a xi) 7t2) (A2)
= P, (v(x71,12))

= P (s(w1,23,€7))

for any z3 and e such that ga(z3,e) = a. In (A.2), the first equality follows because
q(v(z3,t2),x7) = t1; the second equality follows because when z is substituted by the value
that satisfies the first order conditions, the value of the marginal utility function m equals
the value of the marginal price function at the particular value of z that satisfies the first

order conditions. The third equality follows by the restriction on the function s. Since the
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function P, is known and the function s can be recovered without knowledge of m, (A.2)
implies that the function m is identified. m

Proof of Theorem 6.1. We use a version of the Delta Method developed by Ait-Sahalia
(1994) and Newey (1994). Let F'(z,x) denote the distribution function (cdf) of the vector of
observable variables (Z, X), f(z, ) denote its probability density function (pdf), f(x) denote
the marginal pdf of X, and F;x—, denote the conditional cdf of Z given X = z. Recall that
Z x X is the compact support of (Z,X). Let L = 3 be the dimension of 7 x X. For any
function G : R* — R, define g(z,z) = 0*G(z,2)/020x, g(x) = [7_g(s,z)ds, Gzx—w ()

’

— /Z g(s,2')ds | /g(2'), and Gy(z,z) = [ g(s,x)ds = [7 1[s < z]g(s,z)ds where

1[-] = 1if [] is true and equals zero otherwise. Let C denote a compact set in R that
strictly includes Z x X. Let Q denote the set of all functions G : RE — R such that g(z,x)
has bounded first order derivatives and vanishes outside C. Let @ denote the set of all
functions é} that are derived from some G in (). Since there is a 1-1 relationship between
functions in () and functions in @, we can define a functional on () or on @ without altering
its definition. Let ||G|| denote the maximum of the sup norms of g(z,z) and the first order
derivatives of g(z,x). If H € @, there exists p; > Osuch that if |H|| < p; then, for some
0 < a,b < o0,all x in a neighborhood of (z},x2) and all v € B(v(zy,12),£), |h(x)] < al|H|,
[ h(s,2)ds| < allH, [7(@)+ h@)] > blf(@)] and F(E2) + h(Ex) > bl ). Let
T = (T1,72) and v* = v(z7, t).

We will first derive the asymptotic behavior of 77, defined as the value of x; that, given
v, satisfies

¢ (U (71, t2) ,71) = t1.
Recall that
S0 Fc (e ).

Hence, 7 satisfies

Ey =) (FZ|X:5 (?)) =1

or "
~ _ =~ 1
P () = Fax-mon (1),
T

and z7 satisfies

_ tq
Fr1x=2 (2) = Fyix_(s1.2») (x_l) '

46



Define the functional p (G, x1) on Q X R by

t
p(G,11) = Gzix=3 (Z) — Gz|x=(01,09) (;1) .
1
For any x; in a neighborhood of x} and for H such that ||H|| is small enough

p(F+H,$1)—p(F,5L‘1)

Lo (f(s2)+h(s,3) ds [ f(s,7) d

(f (@) +h(2)) @
B f,(ilo/xl) (f (s,x1,22) + h(s,x1,22)) ds B ffgo/xl)f(s,xl,xg) ds
(f (z1,22) + h (21, 72)) f (z1,72)

(T ffooh(s, ) ds (7) f_z f(s,7) d
(1’)( @) +h@) (l’) (f@) +h( ))

[ (v, f /ml)h (s,m1,29) ds  h(wx, xg)f(t;o/ml)f(s,xl,xg) ds]
| f (@ >

(f (z1,22) + h(z1,22))  f (21, 2) (f (21, 22) + P (21, 22))

_ [ffooh(s,%) ds h(’f)me(z)]

7@ f (@)
S R (s ) ds R (@1, w0) Faix—(enm (/1)
f (@1, 22) f (1, 2)”

F@?*(f (@) +h(@))

-[f T1,T f(tl/xl h(s,z1,79) ds — h(z1,72) f(tl/xl I (s,21,79) ds] h(zy,x9)
f(I1,$2)2 (f (x17x2)+h($17$2))

(@ Fon(s8) ds—h@ Faxs (2) hm]
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Define

Dpp(ay; H) = [f o (5,7) ds B (@) Faix=s <z>]

f(z) f (@)
_ f_(l;lo/wl) h(s,z1,29) ds B h (21, z2) Fz1x=(21,22) (t1/4)
f (21, 72) f(l’1,332)2
and
[|@) [ h(5,3) ds = B (F) Pz (2)| 1 [7]
RFP(IHH) = - POND) P —
] f@)7(f @) +h(T))

[f (21, 2) ffzo/xl) h(s,z1,12) ds — h(xy1, 1) ff@o/“) f (s, 21, 29) ds] h (1, x9)
f (@1, m2)" (f (w1, 22) + D (w1, 22)) '

Then, for some a; < co and all z; in the neighborhood of x7,
|Dpp(wy; H)| < ay [|H|| and  [Rpp(ay; H)| < ay ||H]||*
and, for all such x;

p(F+H,x1) = p(F,21) = Dpp(x1; H) + Rpp(xy; H).

Next, for any 27 close enough to z7, for any small enough Az, # 0, and for any G such
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that |G — F| is small enough
p(G a1+ Azy) — p (G, 21)

131 131
= — (G)Z|X=($1+AI1,I2) (m) + (G>Z‘X=(.Z1,12) (;1)

fflo/o(xﬁAxl) g (s, + Axq,x9) ds
g (x1 + Az, x9)

fjlo/oml g (s,x1,22) ds
+
g ('rlaxZ)

ftl/(xl+Axl) g (8, Ty, .732) + —8g(s’xl’x2)AI1 + Rf’l dS

—00 oz

g (x1 + Az, x9)

ffloi)xl g (Saxla x2) ds
_|_
g(:)?l,l’g)

where for some ay < 00, |Ry1| < as |Ax1|2 , and where the last equality follows by Taylor’s
Theorem. Using again Taylor’s Theorem, it follows that for some a3 < oo, and for R, and
R, 5 with |Ry 4| < as |Azy|* and |Rys| < as |Azy |

p(G,x1 4+ Axq) — p (G, x1)

ft1/(w1) (g (s, 21, T2) + (MLB;:E?MAM + Rg,1) dS] g (w1, 29)

—00

g ($1 + Ay, $2) g (x1, $2)

t1
oy 122

g (i—ll; x1,$2) Azy + % (Azy)* + Ry,3] g (1, 22)

g (z1 4+ Az, x3) g (1, T2)

—00

[ftl/m g (s,m1, 1) ds} [g (w1, m2) + %@Aml + ngg}

+
g (z1 4+ Az, x2) g (1, T2)
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Hence,

p (G 21+ Azy) — p (G, 21)

g (1‘1, $2) ftl/(m g (57 Z1, sz) ds+g ($1, 902) ftl/(xl) Mds AZB1]

—0o0 —00 8:171

g (1 + Axq, 22) g (21, 22)

J2L) Ry ds| g )
g (x1 + Axy, xz) g ($1; Z2)

g(21,22) g <;—11, Z1, $2) A$1i|
g (@1 + Azy,12) g (21, 72)

r t
69(%@1@2

oz ) (Ax1)2 + Rg,3:| g (x1,x2)

g (1'1 + Axq, 372) g (1’1, $2)

9 (21, 22) [fffl g (s,21,72) ds] + 2oGrr) [ffflg(&a?l,@) dS] Aah]

g (x1 + Axq, 22) g (1, 2)

fjt)éml g (57 1, 332) ds] [Rgﬂ]
g (x1 4+ Az, x2) g (1, 2)

Let

Dy p (G5 Axy) =

ftl/(ffl) 9g(s,z1,x2) ds Axy

—0o0 ox1

g (xla 3:'2)

9 <;—117$1>$2> Ay
g (w1, 22)

ag(g;im) [ftl/rl g (s,x1,29) ds] Axq

—0o0

g (xla x2)2
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and

Ry, p (G5 Aiy)

— D, p(G; Aay) [9 (v1 + Azy,22) — g (1’1@2)}

g (x1, x2)2 g (x1 + Az, x9)

fi{)(m) Rya ds] g (z1,29)
g (x1 + Axq, 22) g (21, 2)

-89 ;—1,1 T
%112) (Azy)® + Rm] g (w1, 72)

g (1 + Az, 22) g (21, 72)

S g (s, m0,) ds| [Rya)
g ($1 + Ay, x9) g (21, $2)

Then, for some a4 < 00,
|Da,p (G5 Amy)| < aa |Ay |, |Reyp (G5 Amy)| < aq |Any

and
P (Ga 1+ A'xl) - p (G7x1) = Dﬂflp (G; A$1) + Rmp (G7 Axl) .

Moreover, for some a5 < oo and for all H such that ||H]| is small enough
Dasp (F + H; Amy) — Doy (F; Azy)| < a5 | |Aza].
By assumption, for any Ax; # 0, Dysp (F; Azy) # 0. Since @ is a Banach space, it

follows from the Implicit Function Theorem of Hildebrandt and Graves (1927) (see Zeidler

(1991) p. 150), that there exists a unique functional x (G) and a small r < oo such that for
all H with ||H|| small enough,

[k(F+H)—k(F)|<r
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and

p(F+H k(F+H)=(F+H)yx5(2) = (F+H)gx— (o 1)) (H (Ftit H)) =Y

Since

p(F + H.x(F + H)) - p(F.x (F))

= (F+H)yx_; (%) — Fzx== (%)

t 2!
— (F + H)Z‘X:(I{(F-i-H),(L’Q) (m) + FZ‘X:(H(F)JD) (/{ (F))

ty b
(F 4 H) e L F+ H)zx=(x(F),zs
(F + H) zx=(r(F),22) (K(F)) + (F + H) 21X =(x(F),22) (n(F))

= Dpp(z1; H) + Dy, p (F; Axy)

+Rpp(x1; H) + (Dyyp (F + H; Azy) — Dy p (F; Axy)) + Ry p (G5 Axy)

it follows that

151
dFZ|X: T x}

e (%) Diplas ) + R

K(F+H)—k(F)=—

where
|Rk| < as |H|?.

By the Delta method in Newey (1994), it follows that

VNo?(z; —z]) — N(0, V%)
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where

Voo Z|X=(ai.22) (i_i) B {/K(Z)Q} (% + ﬁ) (Fzx=z(2)(1 — Fzx=3(2))) -

m(t,t2) = P, (v (71,t2))

it follows by the standard Delta method that

VNG (7 () — m (t, £2)) — N(0, Vi)

where V., =C {/ K(Z)Q} (% + ﬁ) (Frx—s(3)(1 - Fx_(3)))

and )
C:(P”(%>>2Q;¥)zCwihizﬁ(ﬁ) -

n

Proof of Theorem 6.2. The method of proof is very similar to that of Theorem 6.1.
The only difference is that F z1x=3(%) and Fyzx—z(%Z) in the proof of Theorem 6.1 are now
replaced by F.(t3). Following the same steps as in the proof of Theorem 6.1, it is then easy
to show that

\/ No% (@ (ty, ta) —m (t1, t2)) — N (0, Vi)

V= [ K62} (55 ) (et - m)

and C is as in the proof of Theorem 6.1. m

where
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Figure 3: Simulation results: baseline parameter values
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Note: The upper left panel plots the true values of m (q, €) where ¢ = zzx.
The upper right panel plots the median of the estimates of m (¢, ) (Sam-
ple size 500, 100 Monte Carlo replications). The supports of the graphs
indicate the equilibrium region on which the function m is identified.
The lower left panel plots the true and estimated values of m (g, €) when
¢ = 1.5. The lower right panel plots the true and estimated values of
m (q,e) when g = 4.9564. The solid lines plot the true function values,
the dashed lines plot the medians of the estimated values, the circles
plot the 5th percentile estimates, and the plus symbols plot the 95th
percentile estimates. True baseline parameter values are given in Table
2.
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Figure 4: Simulation results: zy = 3.0
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Note: The upper left panel plots the true values of m (q, €) where ¢ = zzx.
The upper right panel plots the median of the estimates of m (¢, ) (Sam-
ple size 500, 100 Monte Carlo replications). The supports of the graphs
indicate the equilibrium region on which the function m is identified.
The lower left panel plots the true and estimated values of m (g, €) when
¢ = 1.5. The lower right panel plots the true and estimated values of
m (q,e) when ¢ = 10.4758. The solid lines plot the true function values,
the dashed lines plot the medians of the estimated values, the circles
plot the 5th percentile estimates, and the plus symbols plot the 95th
percentile estimates. All true parameter values except zy are identical
to the baseline parameter values. This case used the value zy = 3.0.
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Figure 5: Simulation results: g = 0.75
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Note: The upper left panel plots the true values of m (¢, €) where ¢ = zz.
The upper right panel plots the median of the estimates of m (¢, €) (Sam-
ple size 500, 100 Monte Carlo replications). The supports of the graphs
indicate the equilibrium region on which the function m is identified.
The lower left panel plots the true and estimated values of m (¢, €) when
¢ = 1.5. The lower right panel plots the true and estimated values of
m (q,e) when g = 0.9888. The solid lines plot the true function values,
the dashed lines plot the medians of the estimated values, the circles
plot the 5th percentile estimates, and the plus symbols plot the 95th
percentile estimates. All true parameter values except 3 are identical to
the baseline parameter values. This case used the value g = 0.75.
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Figure 6: Simulation results: g = 0.9
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Note: The upper left panel plots the true values of m (¢, €) where ¢ = zz.
The upper right panel plots the median of the estimates of m (¢, €) (Sam-
ple size 500, 100 Monte Carlo replications). The supports of the graphs
indicate the equilibrium region on which the function m is identified.
The lower left panel plots the true and estimated values of m (¢, €) when
¢ = 1.5. The lower rightpanel plots the true and estimated values of
m (q,e) when g = 0.75542. The solid lines plot the true function values,
the dashed lines plot the medians of the estimated values, the circles
plot the 5th percentile estimates, and the plus symbols plot the 95th
percentile estimates. All true parameter values except 3 are identical to
the baseline parameter values. This case used the value g = 0.9.
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Figure 7: Simulation results: § = 2.0
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Note: The upper left panel plots the true values of m (¢, €) where ¢ = zz.
The upper right panel plots the median of the estimates of m (¢, €) (Sam-
ple size 500, 100 Monte Carlo replications). The supports of the graphs
indicate the equilibrium region on which the function m is identified.
The lower left panel plots the true and estimated values of m (¢, €) when
¢ = 1.5. The lower rightpanel plots the true and estimated values of
m (q,e) when g = 25.0741. The solid lines plot the true function values,
the dashed lines plot the medians of the estimated values, the circles
plot the 5th percentile estimates, and the plus symbols plot the 95th
percentile estimates. All true parameter values except 0 are identical to
the baseline parameter values. This case used the value § = 2.0.
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