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Abstract

This paper analyzes equilibria in hedonic economies and presents conditions for identify-

ing structural preference and technology parameters with nonadditive marginal utility and

marginal product functions. The nonadditive class is very general, allows for heterogene-

ity in the curvature of consumer utility, and can result in bunching. Such bunching has

largely been ignored in the previous literature. The paper presents methods to identify and

estimate marginal utility and marginal product functions that are nonadditive in the unob-

servable random terms, using observations from a single hedonic market. The new methods

for nonadditive models are useful when statistical tests reject additive speci�cations or when

prior information suggests that consumer or �rm heterogeneity in the curvature of utility

or production functions is likely to be important. The paper provides conditions under

which nonadditive marginal utility and marginal product functions are nonparametrically

identi�ed, and proposes nonparametric estimators for them. The estimators are consistent

and asymptotically normal. The paper also formalizes and extends existing results in the

literatures on identifying structural parameters using multimarket data.
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1 Introduction

In hedonic models, the price of a product is a function of the attributes that characterize

the product. These models are also used to estimate consumer preferences for the attributes

of goods, and to determine how much consumers value attributes and the variability in

consumer valuations. Hedonic models have been used to study prices for job safety, environ-

mental quality, school quality, and automobile fuel e¢ ciency among other applications.

In seminal papers, Tinbergen (1956) and Rosen (1974) pioneered the theoretical and

empirical study of hedonic models in perfectly competitive settings. In their models, an

economy is speci�ed by a distribution of buyers and a distribution of sellers. A buyer could

be a consumer buying a product or a �rm buying labor services. A seller could be a �rm

selling a product or a worker selling labor services.

To focus the discussion, but without any loss of generality, this paper focuses on a labor

market interpretation. In equilibrium, each buyer is matched with a seller. Each buyer

(�rm) is characterized by a pro�t function that depends on the attributes characterizing

the product, as well as on �rm characteristics (endowments; productivity and the like).

Each seller (worker) is characterized by a utility function that depends on the attributes

characterizing the product, as well as on some characteristics of the worker (preference

parameters, endowments and the like). Given a price function for the attributes, each buyer

demands the vector of attributes that maximizes pro�ts, and each seller supplies the vector of

attributes that maximizes utility. The equilibrium price function is such that the distribution

of demand equals the distribution of supply for all values of the attributes. When the

production and utility functions are quadratic and the heterogeneity variables are normal,

the model has a closed form solution, where the equilibrium marginal price function is linear

in the attributes. This speci�cation was �rst studied by Tinbergen (1956).

Rosen (1974) suggested a two stage method to estimate preferences and technologies in

hedonic models based on linear approximations to the true model. His method �rst estimates

the marginal price function. Then he uses the �rst order conditions of the buyers and sellers

to estimate the pro�t and utility functions.

In�uential papers by Brown and Rosen (1982) and Brown (1983) sharply criticized the

method of identi�cation proposed by Rosen (See also Epple, 1987 and Kahn and Lang,

1988.). Using linear approximations to buyer and seller �rst order conditions and to the

equilibrium marginal price function, Brown and Rosen argue that hedonic models are not

identi�ed using data from a single market. They claim that sorting implies that there are
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no natural exclusion restrictions within a single market.

Ekeland, Heckman, and Nesheim (2004) show that Brown and Rosen�s nonidenti�cation

result is a consequence of their arbitrary linearization. The linear case analyzed by Brown and

Rosen is nongeneric and is exactly the case suggested by Tinbergen (1956). The Tinbergen

model is not identi�ed in a single cross section.

Ekeland et al. analyze a hedonic model with additive marginal utility and additive

marginal product functions. They show that these parameters are identi�ed from single

market data. They present two methods for recovering the functions. One is based on

extensions of average derivative models (Powell, Stock, and Stoker, 1989) and transformation

models (Horowitz, 1996, 1998). The other is based on nonparametric instrumental variables

(Darolles, Florens, and Renault, 2003; Newey and Powell, 2003). The performance of those

estimators is studied in Heckman, Matzkin, and Nesheim (2005).

The additivity restrictions used to establish identi�cation in Ekeland, Heckman, and

Nesheim (2004) impose strong restrictions. No heterogeneity in the curvature of production

and preference functions is tolerated. Allowing for such heterogeneity in curvature is an

important theoretical generalization of the additive model. In this paper, we consider iden-

ti�cation of hedonic equilibrium models where the marginal utility and marginal product

functions are nonadditive in the unobserved variables.

General nonadditive production and utility functions are not identi�ed using data from

a single market without invoking further conditions. We provide conditions under which the

nonadditive marginal utility and nonadditive marginal production function are identi�ed

from the equilibrium price function, the distribution of demanded attributes conditional on

the observed characteristics of the consumers, and the distribution of supplied attributes

conditional on the observed characteristics of the �rms. Our identi�cation analysis proceeds

as follows. First, using methods in Matzkin (1999, 2003), we show that we can identify the

demand and supply functions for attributes. They are nonparametric, nonadditive functions

of the observable and unobservable characteristics of, respectively, the �rms and workers.

This �rst step requires no additional assumptions beyond what she assumes. Second, we

use the demand and supply functions, together with the equilibrium price function, and the

restrictions imposed by the �rst order conditions to recover the marginal utility and mar-

ginal product functions. This second step requires an assumption on the marginal utility

and marginal product functions, which reduces the number of free arguments in these func-

tions. We provide several alternative speci�cations, propose nonparametric estimators for

the marginal utility and marginal product functions, and show that they are consistent and
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asymptotically normal.

Identi�cation of the demand and supply functions allows one to predict partial equilibrium

impacts of changes in individual level observables on individual choices in a hedonic market.

For example, in a market for jobs with varying levels of risk of injury, one can predict the

impact of changes in education on individual choices. Conditional on education, one can

also predict di¤erences in choices for di¤erent quantiles of the distribution of unobservable

heterogeneity. Such predictions hold other variables and the hedonic equilibrium price �xed.

Identi�cation of the demand and supply functions however does not allow one to measure

the welfare impacts of changes nor to predict general equilibrium e¤ects. An upper bound on

welfare impacts can be computed using hedonic prices (see Scotchmer (1985) and Kanemoto

(1988)). However, identi�cation of the structural marginal utility and marginal product

functions allows one to do better. In addition, identi�cation of these functions allows one

to predict general equilibrium e¤ects of policy and environment changes. We develop these

points in more detail in Section 4.

We also show that more general nonadditive marginal production and utility functions

are identi�ed using data from multiple markets. The identi�cation result makes use of the

fact that, in general, di¤erences in the distributions of observable variables across markets

will result in price function variation across markets. This variation is an implication of

equilibrium in hedonic models. The price function variation and its dependence on market

level observables can be used to identify marginal utility and marginal product functions.

This result formalizes and extends discussions in Rosen (1974), Brown and Rosen (1982),

Epple (1987) and Kahn and Lang (1988) who discuss how to use multimarket data to identify

structural parameters in hedonic models.

We also analyze equilibria in hedonic economies and study conditions that generate equi-

libria with bunching, i.e., in which positive masses of consumers and �rms locate at a common

location.1 The conditions that lead to bunching are related to the conditions that generate

bunching in non-competitive nonlinear pricing models (see for example Mussa and Rosen,

1978; Guesnerie and La¤ont, 1984; Rochet and Stole, 2003) and in other competitive sorting

models (Nesheim, 2001, 2004). In all cases, a Spence-Mirlees like single-crossing condition

is su¢ cient to rule out bunching in the interior. Failure of such a condition may lead to

bunching. In a competitive hedonic model, an additional consideration plays a role. Both

buyers and sellers must bunch at the same point.

1In the cases we consider, equilibrium exists. See Gretsky, Ostroy, and Zame (1992, 1999) and Ekeland
(2005).
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The demand estimation techniques developed in this paper build on a long line of re-

search on models with unobserved heterogeneity. Estimation of demand models generated

by random utility functions have been studied in the past using parametric assumptions

(Heckman, 1974; McFadden, 1974; Heckman and Willis, 1977), semiparametric assumptions

(Manski, 1975, 1985; Cosslett, 1983; Matzkin, 1991b; Horowitz, 1992; Klein and Spady,

1993; Ichimura and Thompson, 1998, among others), and more recently, using nonparamet-

ric assumptions (Matzkin, 1992, 1993; Briesch, Chintagunta, and Matzkin, 1997; Brown and

Matzkin, 1998; Horowitz, 2001; McFadden and Train, 2000; Blomquist and Newey, 2002,

among others). McElroy (1981, 1987), Brown and Walker (1989, 1995) and Lewbel (1996)

considered inference for random utility and random production functions in perfectly com-

petitive, non-hedonic situations.

Work on nonadditive models also has a long lineage. Nonparametric estimation of mod-

els with nonadditive random terms has been previously studied in Matzkin (1991a), Olley

and Pakes (1996), Altonji and Ichimura (1999), Altonji and Matzkin (2001, 2005), Briesch,

Chintagunta, and Matzkin (1997), Brown and Matzkin (1998), Heckman and Vytlacil (1999,

2001), Matzkin (1999, 2003), Vytlacil (2002), Blundell and Powell (2004), and, more re-

cently, by Bajari and Benkard (2001), Chesher (2001), Hong and Shum (2001), and Imbens

and Newey (2002).

This paper proceeds in the following way. Section 2 describes the hedonic model for a

product with a single attribute. Section 3 discusses the properties of equilibrium in hedonic

models and provides several analytic examples of hedonic equilibria generated by nonad-

ditive functions both with and without bunching. Section 4 studies the identi�cation of

nonadditive marginal utility and nonadditive marginal product functions. Section 5 dis-

cusses identi�cation using multi-market data. Section 6 presents nonparametric estimators

and their asymptotic properties for the single market case. Section 7 presents results from

Monte Carlo analysis of the estimators of the model. Section 8 concludes.

2 The competitive hedonic equilibrium model

Consider a labor market setting in which jobs are characterized by their attributes. The

analysis applies equally well to any spot market in which products are di¤erentiated by their

attributes, prices are set competitively and participating buyers and sellers each trade a

single type of product chosen from a set of feasible products. We �rst present an analysis

that assumes that almost all participating agents optimally choose a point (or a location) in
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the interior of the set of feasible job attributes. This is the framework that is most frequently

assumed in empirical studies of hedonic markets. In this section, we focus on equilibria with

no bunching. We focus on equilibria in which no positive measure of agents choose the same

job.2 This is the conventional starting point for a competitive hedonic model. We defer our

discussion of bunching until section 3.2.

Workers (sellers) match to single worker �rms (buyers). Let z denote a scalar attribute

characterizing jobs, assumed to be a disamenity for the workers and an input for the �rms.3

For example, z could measure the risk of injury on the job as in Kniesner and Leeth (1995).

We assume that z 2 eZ = [zL; zH ] � R where eZ could be the entire real line. The spaceeZ is the space of technologically feasible job attributes.4 Let P (z) be a twice continuously
di¤erentiable price function. The value of P (z) is the wage paid at a job with attribute

z: Each worker has quasilinear utility function P (z) � U(z; x; ") where x is a vector of
observable characteristics of the consumer of dimension nx and " is a scalar unobservable

heterogeneity term.5 We assume that " is statistically independent of x: The population of

workers is described by the pair of density functions fx and f" strictly positive on eX � Rnx

and eE � R respectively. Additionally, each worker may opt out of the market (or choose

not to trade) in which case they obtain reservation utility V0:

Each �rm has a production function �(z; y; �) where y is a vector of observable charac-

teristics of the �rm of dimension ny and � is a scalar unobservable heterogeneity term. We

assume that � is statistically independent of y and that (y; �) are independent of (x; ") : The

population of �rms is described by the pair of density functions fy and f� strictly positive

on eY � Rny and eH � R respectively. If a �rm opts out of the market, it earns reservation

pro�ts �0: Both U and � are assumed to be twice continuously di¤erentiable with respect

to all arguments.

Each consumer chooses z 2 eZ; a job type or a location in the space of job attributes, to
maximize

P (z)� U (z; x; ") :
2However, a positive measure may choose not to participate in the market, for example, when there are

more workers than �rms.
3This does not rule out that jobs may be characterized by multiple attributes. The one dimensional

attribute z could be an index of job �quality�that is produced by a higher dimensional vector of attributes.
4In the Kniesner and Leeth analysis, eZ = [0; 1] :
5This is an economy with transferable utility. The econometric analysis in this paper can easily be adapted

to the case where utility takes the form U� (P (z) +R; z; x; ") where R is nonlabor income.
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The �rst and second order conditions for an interior optimizer are

FOC Pz (z)� Uz (z; x; ") = 0
SOC Pzz (z)� Uzz (z; x; ") < 0

where Pz and Pzz denote the �rst and second derivatives of P with respect to z and Uz and

Uzz denote the �rst and second order partial derivatives of U with respect to z:

Assume a unique interior optimizer exists for almost all workers in equilibrium.6 By the

Implicit Function Theorem and SOC, there exists a function z = s(x; ") such that

Pz(s(x; "))� Uz(s(x; "); x; ") = 0: (2.1)

Moreover,
@s(x; ")

@"
=

Uz"(s(x; "); x; ")

Pzz(s(x; "))� Uzz(s(x; "); x; ")

so that @s(x;")
@"

> 0 if Uz" < 0:

It is clarifying to substitute out for " in terms of observables in these expressions. Letes(z; x) denote the inverse of s with respect to ". This can be obtained directly from FOC

assuming Uz" 6= 0. Substituting back into FOC we obtain

Pz(z)� Uz(z; x; es(z; x)) = 0:
Since Uz" 6= 0, es(z; x) is a di¤erentiable function (since we have assumed that Pz is continu-
ously di¤erentiable) and

@es(z; x)
@z

=
Pzz(z)� Uzz(z; x; es(z; x))

Uz"(z; x; es(z; x)) (2.2)

so that @es(z;x)
@z

> 0 if Uz" < 0: In this section, we assume that Uz" (z; x; ") < 0 for all (z; x; ") :

A parallel analysis can be performed for the other side of the market. Each �rm chooses

z 2 eZ to maximize the pro�t function
�(z; y; �)� P (z):

6Ekeland (2005) provides su¢ cient conditions for this condition to be satis�ed. For example, if the
distributions of buyer and seller types are absolutely continuous with respect to Lesbesgue measure, Uz" < 0;
and �z� > 0; then the conditions are met and each agent has at most one interior optimizer. We study some
examples that relax these assumptions in the next section of this paper.
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The �rst and second order conditions for an interior optimizer are

FOC �z (z; y; �)� Pz (z) = 0
SOC �zz (z; y; �)� Pzz (z) < 0

:

Assuming a unique interior optimizer exists for almost all �rms, there exists a function

z = d(y; �) such that

�z(d(y; �); y; �)� Pz(d(y; �)) = 0:

Moreover,
@d(y; �)

@�
=

�z�(d(y; �); y; �)

Pzz(d(y; �))� �zz(d(y; �); y; �)

so that @d(y;�)
@�

> 0 if �z� > 0: We substitute out for � in terms of observables using ed(z; y)
for the inverse of d with respect to �: Substituting back into the �rm�s �rst order conditions

we obtain

�z(z; y; ed(z; y))� Pz(z) = 0:
If �z� (d (y; �) ; y; �) 6= 0; then ed(z; y) is a di¤erentiable function and

@ ed(z; y)
@z

=
Pzz(z)� �zz(z; y; ed(z; y))

�z�(z; y; ed(z; y)) ; (2.3)

so that @
ed(z;y)
@z

> 0 if �z� > 0: In this section, we assume that �z� > 0 for all (z; y; �) :

In equilibrium, the density of the supplied z must equal the density of the demanded z

for all values of z 2 eZ: To express this condition in terms of the primitive functions, consider
the transformation

z = s(x; ") & x = x

for all (x; ") 2 eX � eE: Let
Zs =

n
z 2 eZ ���z = s (x; ") for some (x; ") 2 eX � eEo

be the range of the mapping s (x; ") : For all z 2 Zs and all x 2 eX; the inverse of this
transformation is

" = es (z; x) & x = x
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and the Jacobian determinant is����� @es(z;x)
@z

@es(z;x)
@x

0 1

����� = @es (z; x)
@z

:

Since Uz" < 0; equation (2.2) implies
@es(z;x)
@z

> 0: Using the densities of x and "; this mapping

de�nes the density of the supplied z: This density isZ
eX f" (es (z; x)) fx(x)@es (z; x)@z

dx (2.4)

for z 2 Zs: For z 2 eZ n Zs; the density of supply is zero.
The density of the demanded z is obtained by a parallel argument. Consider the trans-

formation

z = d(y; �) & y = y

for all (y; �) 2 eY � eH: Let
Zd =

n
z 2 Z

���z = d (y; �) for some (y; �) 2 eY � eHo
be the range of the mapping d (y; �) : For all z 2 Zd and all y 2 eY ; the inverse of this
transformation is

� = ed (z; y) & y = y

and the Jacobian determinant is����� @ ed(z;y)
@z

@ ed(z;y)
@y

0 1

����� = @ ed (z; y)
@z

:

Since �z� > 0; equation (2.3) implies
@ ed(z;y)
@z

> 0: The density of the demanded z is

Z
eY f�

�ed (z; y)� fy(y)@ ed (z; y)
@z

dy (2.5)

for z 2 Zd: For z 2 eZ n Zd; the density of demand is zero.
Expressions (2:4) and (2:5) give the densities of supply and demand respectively for an

arbitrary smooth price function that yields unique interior optimizers for almost all workers

and �rms. Among the set of smooth price functions that yield unique interior optimizers, an
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equilibrium price function must satisfy the equilibrium condition that the density of supply

equals the density of demand, for all values of z 2 eZ: This condition requires that Zs = Zd
and that Z

eX f" (es (z; x)) fx(x)@es (z; x)@z
dx =

Z
eY f�

�ed (z; y)� fy(y)@ ed (z; y)
@z

dy (2.6)

for all z 2 Z = Zs = Zd: Equation (2.6) is a second order di¤erential equation in P: A smooth
price function de�ned on eZ that yields well de�ned inverse supply and demand functions,

that satis�es Zs = Zd; and (2.6) is an equilibrium price function. In this paper, we assume

such an equilibrium price function exists and study its theoretical and empirical properties.

If some agents are indi¤erent between multiple locations, the equilibrium condition (2.6)

must be modi�ed. Indi¤erent consumers or �rms must be assigned to locations in proportions

su¢ cient to maintain equality between demand and supply distributions at all locations. For

example, if all �rms are identical, � (z; y; �) = � (z) for all (z; y; �) ; the equilibrium price is

P (z) = � (z) for z 2 ~Z: In this case, equilibrium supply is as above, but equilibrium demand

is a correspondence: The assignment of �rms to locations is not unique. Equilibrium requires

�rms to be assigned to locations so that the distribution of demand equals the distribution

of supply. For example, the di¤erentiable function ed (z; y) satisfying (2.6) with @ ed(z;y)
@z

> 0; is

an equilibrium assignment. For an analysis of existence and uniqueness of equilibria under

very general conditions, see Ekeland (2005). The next section analyzes some properties of

this equilibrium. It also considers when bunching will arise.

3 Properties of equilibrium

This section discusses the curvature of the equilibrium price, bunching on the boundary

and on the interior of the space of feasible job types, and demand predictions and welfare

calculations

3.1 Curvature of the equilibrium price

Let Pz be the derivative of an equilibrium price function and assume that almost all con-

sumers are interior optimizers. Let ed and es be the inverse functions associated with the
demand and supply functions derived under the assumption that Uz" < 0 and �z� > 0.

Assume scalar heterogeneity. Under these conditions, when we substitute equations ~d and ~s

9



and use equations (2.2) and (2.3) in equilibrium equation (2.6) and solve for Pzz, we obtain

(after simpli�cation)7

Pzz =

R eX ReY h f"
�Uz" Uzz +

f�
�z�
�zz

i
fxfydxdyReY h f"

�Uz" +
f�
�z�

i
fxfydxdy

: (3.1)

We have suppressed the arguments of the functions to simplify the notation. The expres-

sion shows that the curvature of the equilibrium price function is a weighted average of

�zz

�
z; y; ed (y; z)� ; the curvatures of �rms� technologies and Uzz (z; x; es (z; x)) ; the curva-

tures of workers�utilities. The relevant curvatures to include in the weighted sum are the

values at equilibrium. The relevant weights are positive and are determined by the distribu-

tions of worker and �rm heterogeneity and by the second derivative terms �z�
�
z; y; ed (z; y)�

and Uz" (z; x; es (z; x)) :
Consider, as a special case, the additive marginal return speci�cation studied in Ekeland,

Heckman, and Nesheim (2004) where, for some functions mw; �w; mf ; and �f ;

Uz(z; x; ") = mw(z) + �w(x)� "

�z(z; y; �) = mf (z) + �f (y) + �:

Worker and �rm heterogeneity shift the levels of the marginal utilities and marginal products

but do not a¤ect the curvatures. In this case, equation (3.1) simpli�es to

Pzz =
m0
w(z)

R eX f" (es (z; x)) fx(x)dx+m0
f (z)

ReY f� �ed (z; y)� fy(y)dyR eX f" (es (z; x)) fx(x)dx+ ReY f� �ed (z; y)� fy(y)dy (3.2)

since Uzz = m0
w (z) ; �zz = m

0
f (z) and �Uz" = �z� = 1: The curvature of the hedonic price

function is the weighted average of m0
w (z) and m

0
f (z) ; the Hessians of worker preferences

and �rm technologies respectively. The weights depend on the relative magnitudes of the

densities. In limiting cases, Pzz = m0
f (z) if �rms are homogenous or Pzz = m

0
w (z) if workers

are homogenous.8

7This expression was also derived in Ekeland, Heckman, and Nesheim (2004).
8The required limit operations are not developed in this paper. They require that we collapse the dis-

tributions of (x; ") of (y; �) to point masses. To establish the claimed result it is easier to make a direct
argument as in Rosen (1974). He uses a zero pro�t condition for the �rm with all �rms being alike to trace
out an isopro�t contour for di¤erent z: The gradient of the contour is the hedonic function.
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In the general additive case, we have the following theorem that guarantees that all

potential �rms and workers participate and that (3:2) characterizes the curvature of the

price function.

Theorem 3.1 Suppose that there exists some pair (z0; z1) with zL � z0 < z1 � zH such that
(i)

mw(z0) + max
(x;")

f�w(x)� "g = mf (z0) + min
(y;�)

�
�f (y) + �

	
;

mw(z1) + min
(x;")

f�w(x)� "g = mf (z1) + max
(y;�)

�
�f (y) + �

	
;

and

(ii)

m0
f (z) < m

0
w(z) for all z 2 eZ:

Then, the right side of (3.2) is well de�ned, (3.2) has a unique solution with initial condition

Pz (z0) = mw(z0) + max(x;") f�w(x)� "g ; and the solution is an equilibrium price function

under which almost all agents have a unique interior optimum.

Proof. The �rst condition (i) guarantees that �z (z; y; �) = Uz (z; x; �) has a solution for all
z 2 [z0; z1] � eZ and for all (y; �; x; "). The second guarantees that all agents have a unique
interior optimum.

The �rst condition guarantees that each pair of buyers and sellers can �nd some point z

such that their indi¤erence curves �kiss�as in Rosen (1974). The second condition guarantees

that at such a point of tangency, the second order conditions for both agents are satis�ed.

In contrast, if m0
f (z) > m

0
w(z) for all z 2 eZ; then (3.2) is not well de�ned because for any

price function the SOC is violated for workers, for �rms, or both.9 In this case, given a price

satisfying

m0
w (z) � Pzz (z) � m0

w (z) ;

the equilibrium condition requires that demand equals supply at zL and zH :

More generally, if we have an equilibrium in which all agents choose an interior optimum,

then using the worker and �rm SOC we have

�zz(z; y; ed(z; y)) < Uzz(z; x; es(z; x)): (3.3)

In words, at every location z in the job attribute space; the curvature of the pro�t function

9If m0
f (z) > m

0
w (z) for all z 2 eZ and eZ = R; then no equilibrium exists.
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of every �rm choosing location z in equilibrium must be less than the curvature of the

utility function of every worker choosing location z: The conditions ensure that every worker

and �rm who match at a point z because their indi¤erence curves are mutually tangent

are actually maximizing and not minimizing. Strong su¢ cient conditions to guarantee an

interior maximum are

�z (zL; y; �) > Uz (zL; x; ") for almost all (y; �; x; ")

�z (zH ; y; �) < Uz (zH ; x; ") for almost all (y; �; x; ")

and

�zz (z; y; �) < Uzz (z; x; ")

for almost all (z; y; �; z; "). These conditions guarantee that for almost all pairs f(y; �) ; (x; ")g,
a point z exists such that �z (z; y; �) = Uz (z; x; ") and z is an optimum for both (y; �) and

(x; ") for some price function. An example illustrates our analysis.

3.1.1 A nonadditive example

To provide a tractable example of a nonadditive economy, suppose that all heterogeneity

across �rms is represented by a scalar variable � and all heterogeneity across consumers

is represented by a scalar variable ": Workers and �rms choose z 2 [0;1) to maximize
P (z) � "�1z� and z�� � P (z) respectively. Assume 0 < � < � and that F" (") = "�"L

"H�"L
and F� (�) =

���L
�H��L

so that " and � are distributed uniformly on the respective intervals.

Further assume that "L = �L and "H = �H : In this economy, workers with low disutility of

work (high ") sort into high productivity (high �) �rms. Exploiting the positive assortative

matching, the integrated form of equilibrium condition (2.6) for this model is

F"

�
� z��1

Pz(z)

�
= F�

�
Pz(z)

�z��1

�

for all z such that "L � � z��1

Pz(z)
� "H : Thus, the slope of any equilibrium price function must

satisfy

Pz(z) = (��)
1
2 z

�+�
2
�1

for all z such that "
2

���
L

�
�
�

� 1
���

= z0 � z � z1 = "
2

���
H

�
�
�

� 1
���

: The subset of eZ with positive
density of demand is Z = [z0; z1] where z0 = "

2
���
L

�
�
�

� 1
���

and z1 = "
2

���
H

�
�
�

� 1
���

:
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These conditions pin down the slope of an equilibrium price function on the interior of

the interval [z0; z1] : They imply that, on this interval, any equilibrium price function must

satisfy

P (z) = P0 + 2
(��)

1
2

(�+ �)
z
�+�
2 (3.4)

where P0 is a constant. Assuming all agents trade, the value of the constant must satisfy

P0 + 2
(��)

1
2

(�+ �)
z
�+�
2

0 � "�1L z
�
0 � V0

�z�0 � P0 � 2
(��)

1
2

(�+ �)
z
�+�
2

0 � �0:

We assume the reservation values are low enough to ensure that all agents trade. In general,

the constant P0 is not uniquely determined. With an equilibrium price function satisfying

these conditions, the supply and demand functions are

s (") =

�
�

�

� 1
���

"
2

���

d (�) =

�
�

�

� 1
���

�
2

��� :

These supply and demand functions are uniquely determined.

Outside the interval [z0; z1] ; prices are not uniquely determined. However, we can de�ne

a set of admissible price functions any element of which supports the equilibrium in which

no agents choose to trade outside the interval [z0; z1] : Let P (z) be a function satisfying

equation (3:4) for all z 2 [z0; z1] : Then P (z) is an equilibrium price function if

sup
�
f�z� � �(�)g � P (z) � inf

"

�
V (") + "�1z�

	
(3.5)

for all z =2 [z0; z1] where
�(�) = � (d (�))� � P (d (�))

V (") = P (s ("))� "�1 (s ("))� :

The functions �(�) and V (") describe the equilibrium levels of pro�ts and utility obtained

by agents with di¤erent values of � and " respectively. Any price function that satis�es the
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inequalities in (3:5) will support the equilibrium because almost all agents weakly prefer

some z 2 [z0; z1] to all z =2 [z0; z1] : Outside the interval [z0; z1] ; a price P (z) can be thought
of as a shadow price. It is never observed because no agents choose to trade there. However,

it is necessary to support equilibrium.

Because of the positive assortative matching and the identical distributions of �rms and

workers, the equilibrium matching condition in this economy is � = ": In the equilibrium,

almost all agents choose a point in the interior of the space of attributes. We now consider

a case with bunching on the boundary.

3.2 Bunching on the boundary

Let eZ = [0; 1] and let �0 = V0 = 0 so that reservation pro�ts and utilities are zero. Suppose
that each �rm chooses z to maximize z�� � P (z) where � = :5 and F� (�) = � for � 2 [0; 1]
and suppose that each worker maximizes P (z)� z" where F" (") = "�0:5�

1:5��0:5� for " 2
�
�
2
; 3�
2

�
:

The �rst and second order conditions for the �rm are

FOC � z��1� � Pz(z) = 0 (3.6a)

SOC �(�� 1)z��2� � Pzz(z) < 0 (3.6b)

which implies that for those �rms at an interior optimum

�(z) =
Pz(z)z

1��

�
: (3.7)

The �rst and second order conditions for the workers are

FOC Pz(z)� " z"�1 = 0 (3.8a)

SOC Pzz(z)� " ("� 1) z"�2 < 0: (3.8b)

For any interior equilibrium we cannot have " < �: To see this, from the second order

condition for the �rm we obtain after substituting (3:6a) into (3.6b) and collecting terms,

(�� 1) < zPzz (z)

Pz (z)
:
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From the second order conditions for the workers we obtain

Pzz < " ("� 1) z"�2

which is the same as

zPzz < " ("� 1) z"�1:

Using the rewritten �rst order condition (3.7), we can substitute Pz (z) for ("� 1) z"�1 to
obtain

zPzz
Pz (z)

< "� 1:

Thus " > � is required to produce an interior solution.

We conjecture the following solution for this example and show that it satis�es the equi-

librium conditions. Suppose that exactly half of all workers and �rms choose the corner

solution z = 0: The rest sort positively on the heterogeneity parameters (�; ") ; and lo-

cate at an interior optima. Each of the most productive �rms is at an interior optimum�
i.e. each of those �rms with � > � = 1

2

�
and each of the high elasticity workers (the ones

with low disutility of e¤ort) participates at an interior
�
" > � = 1

2

�
. Since we assume that

z � 1; the high elasticity persons are the ones who have the least disutility of work.
If there is positive assortative matching

� (") = F�1� (F" (")) ; " 2
�
�;
3�

2

�
:

Using our speci�c functional forms for the distributions, we obtain

� (") =
"� �

2

�
=
"

�
� 1
2
; " 2

�
�;
3�

2

�
: (3.9)

Then using �rst order conditions (3.6a) and (3.8a) we obtain

"z"�1 = ��z��1:

Substituting � (") in this expression, we obtain

z =
�
1� �

2"

� 1
"��
; " 2

�
�;
3�

2

�
: (3.10)

This is the equilibrium demand function. The matching supply function can be calculated
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by using (3:9) to substitute out for " in (3:10) : As a consequence, the interval with positive

density of demand and supply is Z =
h
0;
�
2
3

�4i
: No closed form solution for the price

function exists but we can characterize the marginal price function using (3.8a) and (3.10).

In particular as " ! �; z ! 0 and Pz (z) becomes arbitrarily large. This is an equilibrium

because the supply density equals the demand density at each interior z: Consumers and

�rms not at the boundary are at a interior optima in this interval.

3.3 Bunching on the interior

The previous section gives conditions that produce bunching on the boundary of the space

of feasible attributes. In equilibrium, a positive fraction of agents do not have an interior

optimum. Bunching on the interior occurs when a positive fraction of both workers and �rms

have an optimum at a single point in the interior of eZ: To produce bunching at z�; the set
of workers who satisfy

Pz (z
�)� Uz (z�; x; ") = 0

and the set of �rms that satisfy

�z (z
�; y; �)� Pz (z�) = 0

must both have positive measure. If Uz and �z are di¤erentiable and the distributions of

(x; ") and (y; �) are absolutely continuous with respect to Lebesgue measure, this can only

happen at z� if the set

A (z�) = f(y; �; x; ") j�z (z�; y; �) = Uz (z�; x; ")g

has dimension nx + ny + 2: The set of agents who choose z� in equilibrium is a subset of

A (z�) : If A (z�) has dimension less than nx + ny + 2; then it has measure zero and the set

of agents who choose z� has measure zero.

An alternative way to see this is to note that if there is bunching at z� in equilibrium,

then

z� = d (y; �) = s (x; ")

for sets of (y; �) and (x; ") of equal and positive measure. This means that

@d (y; �)

@y
=
@d (y; �)

@�
= 0
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@s (x; ")

@x
=
@s (x; ")

@"
= 0

for f(y; �; x; ") jz� = d (y; �) = s (x; ")g :
To see how interior bunching might arise, consider the following example. Let y measure

managerial skill or quality and let the distribution of manager skill be given by the distrib-

ution function Fy such that y is a continuous random variable. Let z measure hours of work

on a job. A manager of type y has a production function that is quadratic in z :

� =

8><>:
�0 + �1 (y) z + �4 (y) z

2 y 2 [y0; y1]
�0 + �2 (y) z + �4 (y) z

2 y 2 [y1; y2]
�0 + �3 (y) z + �4 (y) z

2 y 2 [y2; y3]

9>=>;
where �4 (y) < 1 for all y;

�1 (y) =
�
�25Fy (y)2 + 10Fy (y) + 1

�
(1� �4 (y)) (3.11)

�2 (y) = 2 (1� �4 (y))
�3 (y) =

�
25Fy (y)

2 � 40Fy (y) + 18
�
(1� �4 (y)) ;

and y0 = F�1y (0), y1 = F�1y (0:2) ; y2 = F
�1
y (0:8) ; and y3 = F�1y (1) : Assuming that Fy is

twice continuously di¤erentiable, this production function is twice continuously di¤erentiable

in all arguments and is quadratic in z:Over the relevant range of z, managers of higher quality

have higher marginal productivity.

On the worker side, let x measure disutility from work and let the distribution of worker

types have distribution function Fx such that x is a continuous random variable. Suppose

utility for a worker with characteristic x is

U =

8><>:
U0 + U1 (x) z + U4 (x) z

2 x 2 [x0; x1]
U0 + U2 (x) z + U4 (x) z

2 x 2 [x1; x2]
U0 + U3 (x) z + U4 (x) z

2 x 2 [x2; x3]

9>=>;
where 1 < U4 (x) for all x;

U1 (x) =
�
�25Fx (x)2 + 10Fx (x) + 1

�
(1� U4 (x)) (3.12)

U2 (x) = 2 (1� U4 (x))
U3 (x) =

�
25Fx (x)

2 � 40Fx (x) + 18
�
(1� U4 (x)) ;
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and x0 = F�1x (0), x1 = F�1x (0:2) ; x2 = F�1x (0:8) ; and x3 = F�1x (1) : As with �rms, this

utility function is quadratic in z and twice continuously di¤erentiable. Over the relevant

range of z; workers with higher values of x have lower marginal disutility of work.

This example generalizes the seminal Tinbergen (1956) normal-quadratic hedonic model.

The equilibrium price function in this economy can be shown to be

P (z) = p0 + z
2:

When y is uniformly distributed so Fy (y) = y for y 2 [0; 1] ; the demand function is shown
in Figure 1: For y in the interval [:2; :8], the �rst order condition for the �rm is

2 (1� �4 (y)) + 2�4 (y) z = 2z

or

1� �4 (y) = (1� �4 (y)) z:

So, z = 1 is optimal for all y in this interval
�
@d(y)
@y

= 0 in this interval
�
: Similarly, for x in

the interval [:2; :8] ; the �rst order condition for the worker is

2 (1� U4 (x)) + 2U4 (x) z = 2z

and again z = 1 is optimal for all x in the interval.

Figure 1: Demand for hours of work
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In this example, 60% of the managers and 60% of the workers choose to bunch at z = 1:
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Tangency conditions for two managers with particular values of y in the interval [:2; :8] are

shown in Figure 2. Both indi¤erence curves shown in the �gure are tangent to the hedonic

price at z = 1: The two indi¤erence curves have di¤erent curvatures at this point. In fact

there is a full cluster of indi¤erence curves with positive probability mass that are tangent

to the price function at z = 1:

Figure 2: Equilibrium bunching: tangency to hedonic price
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Price

Over all intervals of y; the demand for z by �rms of type y is

z (y) =

8><>:
�25

2
Fy (y)

2 + 5Fy (y) +
1
2

y 2 (y0; y1]
1 y 2 [y1; y2]

25
2
Fy (y)

2 � 20Fy (y) + 9 y 2 [y2; y3)

9>=>; :
The supply function is similar. All managers with skill less than y1 (20% of the population)

employ part-time workers (z < 1). All managers with skill greater than y1 and less than

y2 (60% of the population) employ full time workers (z = 1), and all managers with skills

larger than y2 employ workers who work overtime (z > 1). Similarly, sixty percent of the

workforce bunch at z = 1 or at full time work. In this model, those choosing z = 1 are the

mediocre managers and the mediocre workers.10

Such bunching is a knife-edge phenomenon. Any perturbation of the price function (so

that the term in z is not quadratic or does not have a unitary coe¢ cient) will break the

10In this example, the bunching point, z = 1 is determined for exogenous technological reasons. Such a
bunching point could also emerge endogenously due to social coordination. For example, suppose that the
production function were as above but utility depended on E (z) ; the average level of z in the market. In
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bunching. So will choice of a more general coe¢ cient on the linear term of the quadratic

technologies.

3.4 Demand predictions and welfare calculations

The previous sections discuss the shape of the hedonic price function and the distribution

of agents across locations. The strength of the hedonic approach however lies in its ability

to model the heterogeneity in individual choices and individual outcomes. The supply and

demand functions, s (x; ") and d (y; �) can be used to describe individual level choices as

functions of observable (x; y) and unobservable characteristics ("; �) : The shapes of these

functions depend on the the structural utility and production functions and on the shape of

the equilibrium price function. From an empirical perspective, one of the goals of empirical

hedonic analysis is to estimate these supply and demand functions using data on observed

hedonic choices z; observed characteristics (x; y) ; and the observed hedonic prices. We

consider identi�cation of these supply and demand functions in the next section.

Identi�cation of the supply function for example allows one to predict partial equilibrium

impacts of changes in individual level observables on individual choices of z: Such predictions

hold the individual�s level of " and the equilibrium prices �xed. Note that they do not

allow one to measure the welfare impacts of such a change nor do they allow us to make

predict general equilibrium impacts. These latter calculations require information about the

structural utility and production functions.

Consider the partial equilibrium welfare impact on an individual of a change from x0 to

x1: Holding everything else constant, such a change will lead the individual to move from

z0 = s (x0; ") to z1 = s (x1; ") : Assuming that z1 > z0 and holding " �xed, the welfare impact

particular, in the previous example replace (3.12) with

U1 (x) =
�
25 [1� 2E (z)]Fx (x)2 � 10 [1� 2E (z)]Fx (x) + 1

�
(1� U4 (x))

U2 (x) = 2E (z) (1� U4 (x))

U3 (x) =
�
25 [3� 2E (z)]Fx (x)2 � 40 [3� 2E (z)]Fx (x) + 6 [8� 5E (z)]

�
(1� U4 (x)) :

In this case, equilibrium bunching again emerges with 60% of the population choosing z = E (z) = 1: In this
example E (z) = 1; so in a single cross-section the model in the text and this model are indistinguishable.
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of this change is

P (z1)� U (z1; x1; ")� [P (z0)� U (z0; x0; ")] (3.13)

= P (z1)� P (z0)� [U (z1; x1; ")� U (z0; x0; ")]

= P (z1)� P (z0)�
z1Z
z0

Uz (z; x1; ") dz �
x1Z
x0

Ux (z0; x; ") dx:

The welfare changes equals the price di¤erence between the two locations z1 and z0 minus

the change in utility. For large changes in x that result in large changes in z; the change in

hedonic prices P (z1)�P (z0) overestimates the change in welfare if Ux > 0 (we have already
assumed that Uz > 0): This is the well-known result from Scotchmer (1985) and Kanemoto

(1988).

When Uz and Ux are unknown, neither of the integrals on the third line of (3:13) is known.

However if Uz can be identi�ed and estimated, then the �rst integral can be calculated.

The hedonic model provides no information about the second integral because this integral

calculates the direct impact of x on welfare holding z �xed. To estimate this last integral,

either additional assumptions must be imposed (e.g. the value of U (z; x; ") is known for

some value of z and for all (x; ")) or additional information must be obtained (e.g. about

how much households are willing to pay for x:)

Nevertheless, knowledge of Uz improves our knowledge about the welfare impacts of

changes in x: In addition, knowledge of Uz combined with information about �rms technolo-

gies allows us to compute general equilibrium impacts of changes in the hedonic market envi-

ronment and improves measures of the general equilibrium welfare impacts of such changes.

If the structural functions and the distributions of agents are known, then we can compute

how hedonic equilibrium will change in response to changes in preferences, changes in tech-

nologies, or changes in the distribution of workers or �rms. Such general equilibrium impacts

and welfare measures cannot be computed without knowledge of the structural functions.

We now turn to an analysis of identi�cation of the nonaddictive hedonic model. This

analysis enables us to estimate directly Uz and Ux (and the corresponding technology para-

meters of �rms) so that we can execute the welfare calculations in (3:13) exactly. We �rst

consider the single market case. We develop the multimarket case in section 6.
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4 Identi�cation in a single market

This section analyzes identi�cation of the supply function s (x; ") ; the marginal utility func-

tion Uz (z; x; ") and the distribution of " in a single market. We omit discussion of the demand

side of the market because the analysis is completely analagous. Our analysis assumes that

the equilibrium price function P (z) and the distribution of (z; x) are known where z denotes

the observed hedonic location choice of an individual and x denotes the vector of observed

consumer characteristics. Most of the analysis assumes that there is no bunching in hedonic

equilibrium and that all agents choose to enter the market. At the end of this section we

show that consideration of bunching does not substantially change our analysis.

In nonadditive hedonic models, the supply function s (x; ") is a nonseparable function of

a vector of observables x and a scalar unobservable ". By assumption " is independent of

x. Furthermore, as we show below, our theoretical structure from Section 2 implies that s is

an increasing function of ": Therefore, s (x; ") is identi�ed using results from Matzkin (1999)

and Matzkin (2003). As discussed in Matzkin (2003), identi�cation of this function requires

either a normalization of s (x; ") (�xing its value at a point) or of the distribution of the

unobservable " (assuming that the distribution is known). However, certain features of this

function, such as the e¤ect on z of changing x from x0 to x1 leaving the value of " �xed,

i.e. z1 � z0 = s (x1; ") � s (x0; ") ; are invariant to the choice of a normalization. We next
consider conditions that identify Uz:We start with a nonidenti�cation result that illustrates

the key ideas.

4.1 A nonidenti�cation result

Given that the supply function s (x; ") is identi�ed and the price function P (z) is known, we

seek to identify the marginal utility function Uz: This function must satisfy the �rst order

condition

Uz (s(x; "); x; ") = Pz (s(x; ")) : (4.1)

The key to understanding whether Uz is identi�ed is this �rst order condition. Note that

the marginal utility function is identi�ed for those values of (z; x; ") that lie on the surface

f(z; x; ") : z = s (x; ")g : On this surface, the value of the marginal utility Uz is known, since
it must equal the value of the marginal price function.

However, as is clear from this expression, without further restrictions it is not possible

to identify the function Uz for all values of (z; x; ") using data from a single market: For any
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arbitrary values of x and "; the value s (x; ") ; the �rst argument of the function, is uniquely

determined. Thus, even if we could observe "; we could not independently vary (z; x; ") and

trace out the function on its entire nx + 2 dimensional domain.

There are three responses to this fundamental nonidenti�cation problem: 1) Focus at-

tention on features of Uz that are identi�ed. 2) Impose functional restrictions on Uz that

enable analysts to overcome the exact functional dependence between z; x; and " implied

by economic theory. 3) Obtain data from equilibria in di¤erent markets and make use of

independent variation in hedonic equilibrium prices across markets. We consider the �rst

two approaches in the remainder of this section and consider the third approach in section

5.

4.2 What is identi�ed without further structure

Even though Uz is not identi�ed using data from a single market without further structure,

some features of the function Uz can be identi�ed. For example, if x contains two variables,

x1 and x2, then the ratio of the partial derivatives of Uz with respect to x1 and x2 is identi�ed.

To see this, note that we can totally di¤erentiate equation (4:1) with respect to x1 and x2
to obtain

Uzz(z; x1; x2; ")
@s(x1; x2; ")

@x1
+ Uzx1(z; x1; x2; ") = Pzz(s(x1; x2; "))

@s(x1; x2; ")

@x1

and

Uzz
@s(x1; x2; ")

@x2
+ Uzx2 = Pzz (s(x1; x2; "))

@s(x1; x2; ")

@x2
:

Hence,
Uzx1(z; x1; x2; ")

Uzx2(z; x1; x2; ")
=

@s(x1;x2;")
@x1

@s(x1;x2;")
@x2

js(x1;x2;")=z : (4.2)

Since s (x; ") is identi�ed, the ratios of partial derivatives in (4:2) are identi�ed without any

further restrictions. The ratio on the left side of (4:2) measures the e¤ect on Uz of changing

x1 relative to changing x2: This equals the ratio of the corresponding partial derivatives

of s: This identi�cation result requires no further restrictions on the set of admissible Uz
functions. Nor does it require any normalizations.

Alternatively, if x is a scalar and we assume that the distribution of " is known, the same
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arguments can be used to show that the ratio of partial derivatives

Uzx(z; x; ")

Uz"(z; x; ")
=

@s(x;")
@x

@s(x;")
@"

js(x;")=z (4.3)

is identi�ed. For example if it is known (equivalently, if we make the normalization) that

" is distributed uniformly on [0; 1] ; then the ratio in (4:3) is identi�ed. In this case, (4:3)

could be used to evaluate the relative impacts on Uz of observable x and unobservable " for

di¤erent values of x and at di¤erent quantiles of the distribution of ": This result requires

a normalization on the distribution of " but does not require any restrictions on the set of

admissible Uz:

4.3 Imposing further structure

A second way to deal with the fundamental nonidenti�cation problem is to impose additional

restrictions on the set of admissible Uz functions. Proceeding down this route, we develop

three theorems that show how introducing an assumption that has the e¤ect of reducing

the number of arguments of Uz by one enables the analyst to recover Uz for values of its

arguments outside the two dimensional subdomain de�ned by the surface (s (x; ") ; x; ") :

The �rst two theorems, assume that Uz depends on two of its arguments through a known

function, q : R2 ! R. This separability restriction or shape restriction reduces the dimension

of the domain of Uz and allows us to identify Uz: In addition to the shape restriction, these

theorems require a normalization either of the distribution of " (assuming the distribution is

known as in Theorem 4.1) or of the function Uz (assuming that its value is known at a point

as in Theorem 4.2). Either normalization is su¢ cient for identi�cation. The third theorem

presents a third alternative shape restriction on Uz that can be used when x is a vector.

In this last case, assuming that Uz depends on its arguments through two known functions,

q1 : R
2 ! R and q2 : R2 ! R reduces the dimension of the domain of Uz and allows us to

identify Uz::

The �rst theorem shows that Uz is identi�ed when we assume that Uz is a weakly separable

function of the pair (z; x) and " and use a normalization on either the supply function or

the distribution of ": For example, suppose that we specify the distribution of ": Then, we

can prove the following theorem:

Theorem 4.1 Suppose that for some unknown di¤erentiable function m : R2 ! R; which is

strictly increasing in its second argument, and some known di¤erentiable function q : R2 !
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R; the marginal utility function can be written

Uz(z ; x ; ") = m (q(z; x); ") : (4.4)

Further, assume that F" is known and let (ql("); qu(")) denote the support of q(s(x; "); x) for

any " 2 eE: Then, for all " and all x such that q(s(x; "); x) 2 (ql("); qu(")); Uz(z; x; ") is
identi�ed:

Proof. See Appendix.
For a given "; identi�cation of s (x; ") allows us to �nd all pairs of (z; x) that are consistent

with �xed ": Then the shape restriction on Uz allows us to select from among these pairs the

pair that produces a �xed value of q (z; x) : Combining these two points, allows us to identify

Uz at an arbitrary point. A similar result can be obtained if instead of requiring that Uz be a

function of q(z; x); we require that Uz be a function of q(z; "): Speci�cally, suppose that that

for some unknown function m : R2 ! R; which is strictly increasing in its �rst argument,

and some known function q : R2 ! R; which is strictly increasing in its second argument

Uz(z; x; ") = m (q(z; "); x)

Assume that F" is known. For any x; let (ql(x); qu(x)) denote the support of q(s(x; "); "): Then,

for all x and all " such that q(s(x; "); ") 2 (ql(x); qu(x)); Uz(z; x; ") is identi�ed: The argument
follows the same lines as is used in the proof of Theorem 4.1.

These results make use of a separability restriction on Uz and a normalization of the

distribution of ": Another alternative is to impose a separability restriction and normalize

the function Uz by assuming that its value is known at a point. This alternative implies a

normalization on the function s instead of on the distribution of ": Along these lines, we can

obtain the following theorem:

Theorem 4.2 Let x 2 R: Suppose that for some unknown, di¤erentiable function m : R2 !
R; which is strictly increasing in its last argument, and some known, di¤erentiable function

q : R2 ! R;

Uz(z ; x ; ") = m (q(z; x); ") :

Use the function Pz to �x the value of the unknown function Uz at one value x of x; and on

the 45 degree line on the (z; ") space, by requiring that for all t;

Uz(t; x; t) = Pz(t) (4.5)
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Let " be given. Let q 2 (ql("); qu(")); the support of q(s(x; "); x): Then, for x such that

q(s(x; "); x) 2 (ql("); qu(")), Uz(z ;x;") is identi�ed:

Proof. See Appendix.
The result can be easily modi�ed to apply to the case where Uz(z; x; ") = m (q(z; "); x) :

Speci�cally, suppose that for some unknown functionm : R2 ! R; which is strictly increasing

in its �rst coordinate and some known function q : R2 ! R; which is strictly increasing in

its second coordinate

Uz(z; x; ") = m (q(z; "); x)

Suppose that (4.5) is satis�ed. Then, Uz(z; x; ") is identi�ed on an appropriate set. Suppose,

for example, that

Uz (z; x; ") = m (z � "; x)

for an unknown function m: Then the normalization (4.5) is imposed by �xing the values

of m when x = x; by

m
�
t2; x

�
= Pz(t):

When x is a vector, many alternative restrictions can be used. As a prototype, we consider

one alternative restriction that is su¢ cient for identi�cation when x is a two dimensional

vector (x1; x2). This restriction imposes that Uz is a weakly separable function of two known

functions q1 (z:x1) and q2 (z; x2) : The next theorem shows that this restriction, along with a

normalization on Uz allows us to identify Uz:

Theorem 4.3 Let x = (x1; x2) 2 R2: Suppose that for some unknown di¤erentiable func-
tion m : R2 ! R; which is strictly increasing in its second argument, and some known

di¤erentiable functions q1 : R2 ! R and q2 : R2 ! R

Uz(z; x1; x2; ") = m (q1(z; x1); q2(x2; ")) (4.6)

where q2 is strictly increasing in its arguments. Let
�
tl2; t

u
2

�
denote the support of q2(x2; "):

Assume the function m is known at one point so that for some values z of z; x1 of x1; and

� 2
�
tl2; t

u
2

�
;

m (q1(z; x1); �)= P z (z) : (4.7)

For any t2 2
�
tl2; t

u
2

�
; let [tl1(t2); t

u
1(t2)] denote the support of q1 (s(x1; x2; "); x1) conditional

on q2(x2; ") = t2: Then, for any (z; x1; x2; ") such that q2(x2; ") 2
�
tl2; t

u
2

�
and q1(z; x1) 2

[tl1(t2); t
u
1(t2)], Uz(z; x1; x2; ") is identi�ed.
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Proof. See Appendix.
Identi�cation of Uz is obtained in several steps. First, equation (4.6) implies that the

supply function s(x1; x2; ") is a weakly separable function of x1 and q2(x2; "): Equation (4.7)

then implies that the supply function is known at one point. Further, the strict monotonicity

of m and q2 in their second arguments implies that the supply function is strictly increasing

in ": These implications guarantee that the supply function s and the distribution of " are

identi�ed. Next, to identify the value of m(t1; t2) at an arbitrary point (t1; t2) on the relevant

domain; we �rst �nd values x�1; x
�
2; and "

� such that when z = s(x�1; x
�
2; "

�); q1(z; x
�
1) = t1 and

q(x�2; "
�) = t2: Finally, since such a z satis�es the FOC, it follows that m(t1; t2) = Pz(z) =

Pz (s(x
�
1; x

�
2; "

�)) : In short, independent variation in x1 and x2; the assumed dependence of

Uz on only two arguments, and knowledge of the functions q1 and q2; allow us to trace out

Uz as a function of its two arguments.

The statement and the proof of Theorem 4.3 can easily be modi�ed to show that the

function Uz is also identi�ed when it can be expressed as a function m(t1; x1); where t1 =

q1(z; t2) and t2 = q2(x2; "): To see this, suppose that for some unknown function m : R2 ! R

and some known functions q1 : R2 ! R and q2 : R2 ! R; such thatm is strictly increasing in

its �rst argument, q1 is strictly increasing in its second argument, and q2 is strictly increasing

in its arguments

Uz(z; x1; x2; ") = m (q1(z; q2(x2; ")); x1) : (4.8)

Assuming the function m is known at one point, so that for some values z of z; x1 of x1; and

� 2 R;
m (q1(z; �); x1) = Pz (z) : (4.9)

Then, as in the proof of Theorem 4.3, it can be shown that, by (4.8), the supply function,

s(x1; x2; ") is weakly separable into q2(x2; "); by (4.9), the value of s is �xed at one point, and

by the monotonicity of m and q1; s is strictly increasing in q2: These properties guarantee

identi�cation of s and of the distribution of " using the analysis of Matzkin (1999): To

identify the value of m(t1; t2) at an arbitrary vector (t1; t2); let x�1 = t2; and �nd x
�
2; and "

�

such that when z = s(x�1; x
�
2; "

�); q1(z; q2(x
�
2; "

�)) = t1: Then, as in the previous argument,

m(t1; t2) = Pz(z) = Pz (s(x
�
1; x

�
2; "

�)) :

It is interesting to consider the economic implications of some of these alternative restric-

tions. Focus on the types of restrictions described in Theorems 4.1 and 4.2. Consider the

models

Uz (z; x; ") = m1 (q1 (z; x) ; ")
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Uz (z; x; ") = m2 (q2 (z; x) ; ")

and

Uz (z; x; ") = m3 (q3 (z; ") ; x)

where (m1; q1) ; (m2; q2) and (m3; q3) are three pairs of functions satisfying the assumptions

in Theorem 4.1 or its modi�cation suggested above. Assume q1; q2 and q3 are three distinct

functions so the three models are distinct. In each model, the functions m1; m2; and m3 are

identi�ed. Choice between the models must be based on prior information or on theory. The

models do have slightly di¤erent economic interpretations. The models (m1; q1) and (m2; q2)

both assume that the trade-o¤
@Uz /@z

@Uz /@x

is known and depends only on observables. These two models are distinct because they make

di¤erent assumptions about this trade-o¤. In contrast, model (m3; q3) assumes that

@Uz /@z

@Uz /@"

is known and only depends on unobservables.

In addition, if we consider using the results from estimation of these models to calculate

welfare criteria as in equation (3:13) ; we will get di¤erent results depending on which model

we use. For example, if we use model (m1; q1) to compute equation (3:13) we obtain

P (z1)� P (z0)�
z1Z
z0

m1 (q1 (s; x) ; ") ds�

0@ z0Z
zL

x1Z
x0

mq (q1 (s; x) ; ") qx (s; x) dxds

1A : (4.10)

The result will be di¤erent if we use model (m2; q2) or model (m3; q3) :

4.4 Identi�cation when there is bunching

In Theorem 4.3 we make the assumption that m is strictly increasing in its second argument

and that q2 is strictly increasing in both arguments. Similarly, in Theorems 4.1 and 4.2

we assume that m is strictly increasing in its second argument. These assumptions rule

out bunching because they guarantee that either @s(x;")
@x

6= 0 or @s(x;")
@"

6= 0: However, the

assumption of strict monotonicity while convenient for the proofs is stronger than is required

to identify these functions. The theorems can be modi�ed to relax the assumptions and allow
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q2 to be weakly increasing in its arguments in Theorem 4.3 and m to be weakly increasing

in its second argument in each case. Moreover, weak monotonicity allows for bunching. We

outline the proof for the case of Theorem 4.1:

When there is bunching, the analysis is essentially unchanged. Assume we have data

from a market in which a fraction of agents bunch at a single point z� while the rest spread

themselves continuously over the domain Z � R: Assume that

Uz (z; x; ") = m (q (z; x) ; ")

wherem is weakly increasing in its second argument, q is a known function, and F" is known.

Under these assumptions, the supply function s (x; ") need not be everywhere di¤eren-

tiable and its inverse es (z; x) need not be single valued. However the second order conditions
and the monotonicity of m with respect to " guarantee that s (x; ") is nondecreasing in ":

Hence, as in the proof of Theorem 4.1

s (x; ") = F�1Zjx=x (F" (")) :

Despite the possibility that FZjx might only be right continuous and not continuous, the

inverse is still well de�ned. Thus, even when there is bunching, the supply function is

identi�ed.

Moreover, m is identi�ed on the support of q(s(x; "); x) and ": The proof is identical to

the last part of the proof of Theorem 4.1. So,

m (t1; t2) = Pz (s (x
�; t2))

where x� satis�es

t1 = q (s (x
�; t2) ; x

�) :

When there is bunching, there may be multiple values of x� that satisfy this last equation.

However, for every value of (t1; t2) satisfying the support condition, by construction, there

is at least one x�:

Bunching does not change the analysis of the identi�cation of the functionsm and s using

theorem 4.1 in any essential way. The only loss of information is with respect to the values of

individual level unobserved heterogeneity. For those agents who bunch at z�; the individual

values of " are not identi�ed. For this group, all that is known is that " 2 es (z�; x) :
We now consider how access to multiple market choice data produces identi�cation.
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5 Identi�cation in multiple markets

Identi�cation of Uz (z; x; ") in a single market is limited because all consumers face the

same price schedule. With multiple markets however, the marginal price function Pz (z) will

typically vary with underlying market conditions. For example, assuming that the marginal

utility function, Uz (z; x; ") ; does not vary across markets11, the marginal price function (and

the supply function s (x; ")) will, in general, vary across markets when the distribution of

worker types or �rm types varies across markets.12 When data are available from multiple

markets and cross market variation in the distributions of observables causes cross market

variation in Pz (z) and s (x; ") ; this cross market variation can be used to identify the function

Uz (z; x; ") without imposing additional restrictions.

Suppose that the distributions of " and � are the same in all markets. Further assume

that the distributions of x and y with densities denoted by (fx; fy) 2 F (X) � F (Y ) �
L2 (X;�x) � L2

�
Y; �y

�
vary across markets. Here, �x and �y are Lebesgue measure on X

and Y respectively and L2 represents the space of square integrable functions. Suppose

a multimarket sample exists from M markets with Nj observations on (z; y; x) from each

market j: The marginal price and supply functions in each market will depend on
�
f jx; f

j
y

�
;

the densities of observable x and y in each market. Dropping subscripts, write these functions

as Pz (z; fx; fy) and s (x; "; fx; fy) :

From such a multimarket sample, the functions (fx; fy) and the functional Pz (z; fx; fy)

are identi�ed. Using Matzkin (1999, 2003), the functional s (x; "; fx; fy) is nonparametri-

cally identi�ed. Hence, the multimarket data-set allows us to identify the distributions of

observables and the dependence of the marginal price and the supply function on these dis-

tributions. We can use this information to identify the marginal utility function Uz (z; x; ") :

Recall the workers��rst order condition:

Uz (s(x; "; fx; fy); x; ") = Pz (s(x; "; fx; fy); fx; fy)

where we have made explicit the dependence of Pz and s on fx and fy: In a single cross

section, the price function and the supply function are �xed and we cannot independently

vary the three arguments of Uz: With multimarket data, both Pz and s vary for each (x; ")

provided that fx or fy or both vary across markets.

11We can always adopt a speci�cation rich enough to ensure this is true.
12The support of (x; z; ") may be di¤erent in di¤erent markets. Thus, even under the conditions discussed

in this section, we can identify Uz (z; x; ") only over the union of the supports across markets.
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Our analysis provides a general approach to identi�cation of Uz under weaker conditions

than were required in using single cross section data. Use of multimarket data to identify

hedonic models was proposed in Brown and Rosen (1982), Brown (1983) and Epple (1987).

Our analysis is more general than theirs because we consider the nonseparable case where

their analyses assume linearity of supply and price equations. Also, our approach brings out

the point that the equilibrium price and the supply function depend on the distributions of

observable characteristics of �rms and workers. We now state and prove the theorem.

Theorem 5.1 Pick an arbitrary point (z; x; ") : If the distribution of " is constant across
markets and there exists a pair

�
f �x ; f

�
y

�
such that z = s

�
x; "; f �x ; f

�
y

�
; then Uz (z; x; ") is

identi�ed at the point (z; x; ") :

Proof. Let
�
f �x ; f

�
y

�
satisfy z = s

�
x; "; f �x ; f

�
y

�
: Then Uz (z; x; ") = Pz

�
s
�
x; "; f �x ; f

�
y

�
; f�x ; f

�
y

�
:

Thus, Uz is identi�ed at all points (z; x; ") such that z is an equilibrium choice for (x; ") in

some feasible equilibrium.

Under our conditions, we can independently vary the arguments of Uz (z; x; ") by varying

(fx; fy; x; ") : This is true for all (z; x; ") such that an equilibrium with z = s (x; ") is feasible.

The theorem exploits the variation in price and supply functions induced by cross-market

variation in the distributions of observables. The source of the variation is apparent from

equilibrium equation (2.6):

Z
eX f" (es (z; x)) fx(x)@es (z; x)@z

dx =

Z
eY f�

�ed (z; y)� fy(y)@ ed (z; y)
@z

dy: (5.1)

Consider two di¤erent markets with di¤erent distributions of observables
�
f 1x ; f

1
y

�
and

�
f 2x ; f

2
y

�
:

Because the distributions are di¤erent in the two markets, the inverse supply functions that

satisfy equation (5.1) will generically be di¤erent across di¤erent markets. If P
�
z; f 1x ; f

1
y

�
is

the equilibrium price in market 1, then generically, P
�
z; f 2x ; f

2
y

�
6= k0+k1P

�
z; f 1x ; f

1
y

�
where

P
�
z; f 2x ; f

2
y

�
is the equilibrium price in market 2. This is an application of Theorem 1 in

Ekeland, Heckman, and Nesheim (2004). Equivalently s
�
x; "; f 1x ; f

1
y

�
is not a linear function

of s
�
x; "; f 2x ; f

2
y

�
:

6 Estimation

We now consider how to convert the identi�cation theorems of section 4 into estimation algo-

rithms. We focus the discussion on a model satisfying the conditions of Theorem 4.3 because
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this is the most general of the three theorems. We then show how to alter the argument

to de�ne an estimator for a model satisfying the conditions of Theorem 4.1. Estimators for

models satisfying conditions in Theorem 4.2 can be de�ned analogously.

The proofs of Theorems 4.1-4.3 suggest ways to nonparametrically estimate the supply

function s; the marginal utility function Uz; and the distribution of ": For example, under

the conditions of Theorem 4.3, the supply function has the form v(x1; q2(x; ")): To obtain

an estimator for Uz; �rst estimate the distribution of " and the supply function v using the

conditional distribution function of z given (x1; x2) using the procedure described in Matzkin

(2003). Then, use the estimated function bv and the known function q1 to calculate the value
x�1 that satis�es

q1(bv(x�1; t2); x�1) = t1:
The estimator bm(t1; t2) of m(t1; t2); is then given by the equation

bm(t1; t2) = Pz (bv(x�1(t1; t2); t2)) :
A similar procedure can be described using the steps in the proofs of Theorems 4.1 and

4.2. The statistical properties of the resulting estimator of m then arise from the statistical

properties of bv �ltered through this nonlinear equation.
To describe the estimators suppose that the equilibrium price function is known, and that

the available data is fZi; X ig for each of N1 workers. Let f(z; x1; x2) and F (z; x1; x2)denote,
respectively, the joint pdf and cdf of (Z;X): Let f̂(z; x1; x2) and F̂ (z; x1; x2) denote the

corresponding kernel estimators. Let f̂ZjX=(x1;x2)(z) and F̂ZjX=(x1;x2)(z) denote the kernel

estimators of, respectively, the conditional pdf and conditional cdf of Z given X = (x1; x2):

In this notation,

f̂(z; x1; x2) =
1

N�3N

NX
i=1

K(
z � Zi
�N

;
x1 �X i

1

�N
;
x2 �X i

2

�N
);

F̂ (z; x1; x2) =

Z z

�1

Z x1

�1

Z x2

�1
f̂N(s; t2; t2)dsdt1dt2;

f̂ZjX=(x1;x2)(z) =
f̂N(z; x1; x2)R1

�1 f̂N(s; x1; x2)ds
;
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and

F̂ZjX=(x1;x2)(z) =

R z
�1 f̂N(s; x1; x2)dsR1
�1 f̂N(s; x1; x2)ds

where K : R3 ! R is a kernel function and �N is the bandwidth.13 The above estimator for

F (z; x1; x2) was proposed in Nadaraya (1964). When K(s; x1; x2) = k1(s)k2(x1; x2) for some

kernel functions k1 : R! R and k2 : R2 ! R;

F̂ZjX=(x1;x2)(z) =

R z
�1 f̂N(s; x1; x2) dsR1
�1 f̂N(s; x1; x2) ds

=

PN
i=1
ek1( z�zi�N

) k2(
x1�Xi

1

�N
;
x2�Xi

2

�N
)PN

i=1 k2(
x1�Xi

1

�N
;
x2�Xi

2

�N
)

where ek1(u) = R u�1 k1(s) ds: Note that the estimator for the conditional cdf of Z given X is

di¤erent from the Nadaraya-Watson estimator for FZjX=x(z) where x = (x1; x2) : The latter

is the kernel estimator for the conditional expectation of W � 1[Z � z] given X = x: For

any t and x, F̂�1ZjX=x(t) will denote the set of values of X for which F̂ZjX=x(z) = t:When the

kernel function k1 is everywhere positive, this set of values will contain a unique point.

6.1 Case 1

Theorem 4.3 assumes that the marginal utility function is weakly separable into two func-

tions, each possessing one of the observable characteristics as one of its arguments. In other

words, for some unknown function m we may represent the marginal utility function as

Uz(z; x1; x2; ") = m (q1(z; x1); q2(x2; "))

where q1 : R2 ! R and q2 : R2 ! R are some known functions. Theorem 4.3 establishes

the identi�ability of the function m and the distribution of " for this case. Following the

statement of that theorem, normalize the value of the function m at one point by requiring

that at some values z of z; x1 of x1; and � 2 R;

m (q1(z; x1); �) = Pz (z) :

De�ne s(x1; x2; ") to be the function that satis�es, for each (x1; x2; "); the FOC of the worker.

As argued in the proof of Theorem 4.3, from the assumed structure of separability, we may

13For ease of exposition, we focus on the case where x 2 R2: The results extend readily to cases in which
x 2 Rnx where nx > 2:
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write:

s(x1; x2; ") = v(x1; q2(x2; "))

for some unknown function v, which is strictly increasing in its second argument and satis�es

the property that

v(x1; �) = z

where q2 is a known function and � 2 R. Following Matzkin (2003), it follows that for any e

bF"(e) = bFZjX=(x1;w(�;e))(z)
where w(�; e) = w� is such that q2(w�; e) = �; and for any ex1; ex2; ee

bv(ex1; q2(ex2; ee)) = bF�1ZjX=(ex1;ex2) � bF"(ee)� :
Using the procedure described in the introduction to this section, to obtain an estimator for

m(t1; t2); we �rst calculate bx�1 such that
q1(bv(bx�1; t2); bx�1) = t1

and then let bm(t1; t2) = Pz (bv(bx�1; t2)) :
The following theorem establishes the asymptotic properties of this estimator for the case

where the function q1(z; x1) = z �x1 and the function q2(x2; ") = x2+":We o¤er this analysis
as a prototype: Similar results can be obtained for other speci�cations of the functions q1
and q2. Let B(t; �) denote the neighborhood centered at t and with radius � > 0: Given t2;

let x2 and e be such that x2+e = t2: Let ex2= �+e:We will make the following assumptions:
Assumption A.1: The sequence fZi; X ig is i.i.d.
Assumption A.2: f(Z;X1; X2) has compact support eZ � eX � R3 and is continuously

di¤erentiable of order s0.

Assumption A.3: The kernel function K(�; �; �) is di¤erentiable of order es; the derivatives
of K of order es are Lipschitz, K vanishes outside a compact set, integrates to 1, and is of

order s00 where es+ s00 + 1 � s0:
Assumption A.4: As N !1; �N ! 0; ln(N)=N�3N ! 0,

p
N�2N !1;

q
N�2+2s

00
N ! 0;

and
p
N�2N

�p
(ln(N)=(N�3N) + �

s00
N

�2
! 0:
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Assumption A.5: x� 6= 0; 0 < f(x�1; x2); f(x1; ex2) < 1; there exist �; � > 0 such that

8(x1; x02) 2 B ((x�1; x2) ; �) ; 8ev 2 B(v(x1; x02); �); f (x1; x02) � � and f(ev; x1; x02) � �; there

exist �0; �0 > 0 such that 8(x1; x02) 2 B ((x1; ex2) ; �0) ; 8ev 2 B(v(x1; x02); �0); f (x1; x02) � �0

and f(ev; x1; x02) � �0; and dFZjX=x�(t1=x�)=dx 6= 0 :
Assumption A.6: t1 belongs to the interior of the support of q1 (v(x1; t2); x1) :
Let

R
K(z)2 =

R �R
K(s; x) ds

�2
dx; where s 2 R:When Assumptions A.1-A.5 are satis-

�ed, Theorems 1 and 2 in Matzkin (2003) imply that for x1 6= x1;

sup
e2R

��� bF"(e)� F"(e)���! 0 & bv(x1; t2)! v(x1; t2) in probability

p
N�N

� bF"(e)� F"(e)�! N (0; VF )

and p
N�N (bv(x1; t2)� v(x1; t2)! N (0; Vv)

where

VF =

�Z
K(z)2

�
[F"(e) (1� F"(e)]

�
1

f(x1; ex2)
�

and

Vn =

�Z
K(z)2

��
F"(e)(1� F"(e))
fZjX=x(v(x1; t2))2

� �
1

f(x1; ex2) + 1

f(x1; t2 + e)

�
:

Theorem 6.1 uses Assumptions A.1-A.6 to establish the asymptotic properties of bm(t1; t2): Let
x = (x�1; x2) and v

� = v(x�1; t2): Let ex = (x1; ex2): De�ne the constant C by
C =

�
Pzz

�
t1
x�1

��2�
t1
(x�1)

2

�2 24dFZjX=(x�1;x2)
�
t1
x�1

�
dx1
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Theorem 6.1 Suppose that Assumptions A.1-A.6 are satis�ed. Then, bm(t1; t2) converges
in probability to m(t1; t2) andq

N�2N (bm(t1; t2)�m(t1; t2))! N(0; Vm) in distribution;

where

Vm=

�Z
K(z)2

�
[C]

�
1

f(ex) + 1

f(x)

��
FZjX=ex(z)(1� FZjX=ex(z))� :

Proof. See Appendix.
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6.2 Case 2

We next consider the situation where the assumptions of Theorem 4.1 are satis�ed. In this

case, x 2 R and we assume that for some unknown function m

Uz(z; x; ") = m (q(z; x); ")

where q : R2 ! R is a known function. We assume that F"; the distribution of "; is known:

Then, as argued in the proof of Theorem 4.1, the derived supply function satis�es

s (x; e) = F�1ZjX=x (F"(e)) :

This can be estimated by bs (x; e) = bF�1ZjX=x (F"(e))
where bFZjX=x is calculated as in the above subsection. Next, to estimatem (t1; t2) at speci�ed
values t1; t2; let bx be such that

q(bs (bx; t2) ; bx) = t1
Then, bm (t1; t2) = Pz (bs (bx; t2)) :
Theorem 6.2 establishes the asymptotic properties of this estimator for the case where

the function q(z; x) = z � x: This analysis serves as a prototype for more general cases. The
assumptions of the theorem are very similar to those of Theorem 6.1.

Let x� be the value of x satisfying q(v(x�; t2); x
�) = t1: In place of A.1-A.6, make the

assumptions:

Assumption A.10: The sequence fZi; X ig is i.i.d.
Assumption A.20: f(Z;X1) has compact support eZ � eX � R2 and is continuously di¤er-
entiable of order s0.

Assumption A.30: The kernel function K(�; �) is di¤erentiable of order es; the derivatives
of K of order es are Lipschitz, K vanishes outside a compact set, integrates to 1, and is of

order s00 where es+ s00 + 1 � s0:
Assumption A.40: As N !1; �N ! 0; ln(N)=N�2N ! 0,

p
N�N !1;

q
N�1+2s

00
N ! 0;

and
p
N�N

�p
(ln(N)=(N�2N) + �

s00
N

�2
! 0:

Assumption A.50: x� 6= 0; 0 < f(x�); there exist �; � > 0 such that 8x 2 B(x�; �)
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8ev 2 B(v(x; t2); �); f(x) � � and f(ev; x) � �; dFZjX=x�(t1=x�)=dx 6= 0 :
Assumption A.60: t1 is in the interior of the support of q (v(x; t2); x)
Let e = t2 and x = x�: Theorems 1 and 2 in Matzkin (2003) imply that, under these

assumptions, bv(x; e)! v(x; e) in probability

and p
N�N (bv(x; e)� v(x; e))! N (0; Vv0)

where

Vv0 =

�Z
K(z)2

��
F"(e)(1� F"(e))
fZjX=x(v(x; e))2

� �
1

f(x)

�
:

The next theorem uses assumptions A.10�A.60 to establish the asymptotic properties ofbm(t1; t2):
Theorem 6.2 Suppose that Assumptions A.10-A.60 are satis�ed. Then, bm(t1; t2) converges
in probability to m(t1; t2) andq

N�2N (bm(t1; t2)�m(t1; t2))! N(0; Vm0) in distribution;

where

Vm0 = [C]

�Z
K(z)2

��
1

f(x)

�
(F"(t2)(1� F"(t2))) :

Proof. See Appendix.
The analysis for an estimator based on Theorem 4.2 is similar. We next present some

Monte Carlo evidence on the performance of these estimators.

7 Simulations

We next present Monte Carlo experiments that illustrate the performance of the estimation

techniques in Section 6. To obtain these results, we specify a nonadditive hedonic model and

simulate data from this model using a range of parameter values. For each set of parameter

values tested, we simulate 100 data-sets each with 500 observations. Then we estimate the

utility function using each of the data-sets. The result of the estimation is an estimated

marginal utility function. For each set of parameter values, we discuss the results of these

simulations and present graphs which display the median (across the 100 data-sets) estimates
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of the method as well as the 5th and 95th percentile estimates. These results indicate that

the techniques developed for estimating the nonadditive hedonic model work quite well.

We now document the speci�cation of the simulation model that we studied and present

and discuss these estimation results.

7.1 Model

The model speci�cation is described in Table 1.

Table 1: Simulation Model Functional Forms
Firm Technology � (z; �) Az��

Density of � f� (�) U [�L; �H ]

Worker Utility U (z; x; ") Bz�x��1"��

Density of x fx (x) U [xL; xH ]

Density of " f" (") U ["L; "H ]

We simulated and estimated this model for baseline parameter values described in Table

2 and for several other parameter values that illustrate the sensitivity of the results to

the variance of the observable variables, the variance of the unobservable variables, and

to the curvature of the utility and technology functions. The features of the model and

the equilibrium that have the most signi�cant impact on the performance of the estimators

are the relative variance of observables and unobservables, and the equilibrium support

of (zx; ") : As one would expect, increased variance of observables relative to unobservables

reduces the sampling error of the estimator. Also, the estimator performs well on the interior

of the support of (zx; ") but less well near the boundary of the support where there are few

observations in the data.

Table 2 presents the baseline parameter values and the alternative values that were tested.

Table 2: Baseline parameter values and alternative values
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Parameter name Baseline values Feasible values Alternative values

xL 1.0 xL > 0 n.a.

xU 2.0 xU > xL 3:0

"L 1.0 "L > 0 n.a.

"U 2.0 "U > "L n.a.

�L 1.0 �L > 0 n.a.

�U 2.0 �U > �L n.a.

� 0.25 0 < � < � n.a.

� 0.50 � 6= 1 f0:75; 0:9g
� 1.0 � > 0 2:0

A 1.0 A > 0 n.a.

B 1.0 B > 0 n.a.

The baseline values were chosen to avoid numerical di¢ culties for parameter values near

zero and to demonstrate the properties of the model. The alternative parameter values were

chosen to illustrate interesting dependencies between model parameters and empirical results.

We report results that illustrate the impact of variations in (xU ; �; �) : The parameter xU
a¤ects the variance (and mean) of the observable variables and the size of the equilibrium

support of (zx; ") : The parameters (�; �) a¤ect the degree of nonlinearity in the hedonic

equilibrium, the shape of the hedonic pricing function and most importantly the shape of

the equilibrium support of (zx; ") :We report results that illustrate how these features a¤ect

the empirical results.

We do not report results illustrating how the other parameters a¤ect the empirical results.

The parameters (xL; "L; "U ; �L; �U) have impacts that are qualitatively similar to the impacts

of xU : The parameter xL a¤ects the mean and variance of x and the equilibrium support

of (zx; ") : The parameters ("L; "U) a¤ect the mean and variance of " and the equilibrium

support of (zx; ") : Increases in the variance of " reduce the precision of the estimates. The

parameters (�L; �U) a¤ect the equilibrium support of (zx; ") : We also do not report results

for alternative values of � and for values of � > 1: These parameters a¤ect the shape of the

support of (zx; ") : In particular, when � < 1 and � > 1; the support of (zx; ") is con�ned

to a very small region. These results are available from the authors upon request.

The model speci�cation is a generalization of the model presented in section 3.1.1. The

workers�marginal utility has the property that Uz (z; x; ") = m (q (z; x) ; ") where q (z; x) =

zx and m (q; ") = �Bq��1"��: We approximate equilibrium in this model computationally

and present estimation results from data generated from this model.
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7.2 Equilibrium

Computing equilibrium in this model is somewhat complicated by the fact that the supports

of (x; "; �) are compact. Because of this, the equilibrium supports of z and q (z; x) are

also compact and care must be taken to compute the supports properly. Nevertheless the

equilibrium price, the equilibrium supply of workers z = s (x; ") ; and the equilibrium demand

of �rms z = d (�) can be computed using numerical techniques. Details and computational

algorithms are available from the authors upon request. We computed equilibrium in this

model for the parameter values detailed in Table 2 and then for each set of parameter values

simulated 100 data-sets each with 500 observations.

7.3 Estimation results

After generating data from the model described above, we used the procedure described

in section 3 to estimate the supply function z = s (x; ") : The results in that section show

that it is impossible to recover the structural function unless additional structure such as

q (z; x) = zx and " � U ["L; "U ] : We make the assumption that these two facts are known.
Under this assumption, we can compare the estimated values of m with the true value. We

estimated the marginal utility function m (q; ") for a selected set of values of q and " in

the relevant domain. The domain upon which m is identi�ed is both model dependent and

data dependent. We illustrate this in the simulation results reported below. For each set of

parameter values, we simulated 100 data-sets with 500 observations on (z; x; Pz) : For each

set of parameter values, we then estimated the model 100 times. The �gures below display

the median values of our estimation results as well as the 5th and 95th percentiles.

Figure 3 presents estimation results for the baseline model. The top two panels display

the true function m (q; ") and the median of the estimates of that function. While m is

well-de�ned for all positive values of q and "; the function is only identi�ed on the funnel

shaped region underneath the graph in the �gure. These limits of the region of identi�cation

are determined by the model; in particular they are determined by the fact that we assume

(x; "; �) are each uniformly distributed. The shape of the region is determined in equilibrium

and depends strongly on the supports of (x; "; �) and on the curvature parameters (�; �; �) :

The �gure shows that the median of the estimates of m are very accurate. The two

functions in the top two panels are nearly identical. The bottom two panels show this more

clearly. They show the estimated values of m for �xed values of " and q respectively. In

these panels, the solid lines depict the true value of m (q; ") ; the dashed lines depict the
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median of the estimated values, the circles depict the 5th percentile estimates, and the

plus signs depict the 95th percentile estimates. The solid lines and the dashed lines are

indistinguishable. The 5th and 95th percentile values are also very close to the true values

except near the boundaries of the supports. In the bottom left panel, the value of " is �xed

at 1.5. For this value of "; the value of m (q; ") is accurately estimated for all values of

q ranging from about 1 or 2 to about 24. The value of the function cannot be estimated

for larger values of q: For other values of "; the range of values of q that produce accurate

estimates are di¤erent. In the bottom right panel, the variable q is �xed at the value 4.9564.

For this value of q; m (q; ") is accurately estimated for values of " ranging from about 1.3 to

1.9.

Figure 4 illustrates similar results when xU is increased from 2.0 to 3.0. The precision

of the estimates increase and the size of the region on which the function is identi�able

increases. In Figure 3, the scale of the q axis ranges from 0 to 60. In contrast, in Figure

4, the q axis scale ranges from 0 to 150. In both Figures 3 and 4, the function m can be

accurately estimated for all values of " 2 [1:2; 1:8] when q is small. However, when q is large
the interval in the " dimension within which m can be accurately estimated is smaller.

Figure 5 illustrates the impact of increasing � to 0.75. This change has a dramatic impact

on the support of (zx; ") and hence on the region within which m is identi�ed. The scale of

the q axis in Figure 5 ranges from 0 to 2.5. Within this range, m can be estimated accurately.

But, the equilibrium provides no information for values of q outside this region.

Figure 6 illustrates the impact of increasing � to 0.9. The support of (zx; ") becomes

smaller and the precision of the estimates decay. As � approaches 1, the performance of the

estimator declines. In the limiting case where � = 1; x does not a¤ect marginal utility.

Finally, Figure 7 illustrates the impact of increasing � to 2.0. This change drastically

increases the equilibrium support of z and hence of (zx; ") : Notice that the scale of the q

axis in Figure 7 ranges from 0 to 500. The upper right panel of Figure 7 shows that the

median of the estimates of m is very similar to the true value of m (depicted in the upper

left panel). The lower panels show that when " = 1:5; the value of m is accurately estimated

for values of q ranging from 10 to 80. Similarly, the lower right show that the value of m is

accurately estimated when q = 25:07 for all values of " ranging from 1.4 to 1.7.

The �gures illustrate that the estimator performs well on the interior of the support

of (zx; ") : The estimator �rst estimates the supply function z = s (x; ") and then uses

this estimated function, the marginal price function Pz (z) ; and knowledge of the index

structure Uz (z; x; ") = m (q; ") where q = zx to estimate m: Crucial determinants of the
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performance of the estimator of m are the relative variance of observables and unobservables

and the equilibrium support of (zx; ") : In applications, since researchers must �rst estimate

z = s (x; ") ; this �rst stage estimate can be used to construct a residual for each observation

and estimate the joint density of (zx; ") : This joint density provides information as to the

region in (zx; ") where many observations are available and where it is possible to estimated

m accurately.

The results from these simulations are prototypical. The estimator performs well on the

interior of the support of (zx; ") : The performance decays in regions near the boundary

where less data is available. In the simulations, the size and shape of the support of (zx; ")

are highly sensitive to the parameter values. This sensitivity is not a general feature of

equilibria in hedonic models but is a speci�c feature of this example.

8 Summary

This paper considers hedonic equilibrium models where the marginal utility of each consumer

and the marginal product of each �rm are both nonadditive functions of the attribute and

a random vector of individual characteristics, which are di¤erent for the consumers and

�rms. We demonstrate that this type of speci�cation is capable of generating equilibria of

di¤erent types, with and without bunching and analyze some properties of equilibria in

these models. We develop conditions su¢ cient to identify the marginal utility and marginal

product functions using both single market and multimarket data. In the single market

data cases, we provide nonparametric estimators for these functions and show that they are

consistent and asymptotically normal. Finally, we provide simulations that illustrate the

performance of the estimators.

42



Appendix

Proof of Theorem 4.1. Let s(x; ") denote the supply function of a worker with charac-

teristics (x; "). By (4.4) and the �rst order conditions

m (q (s (x; ") ; x) ; ") = Pz (s(x; ")) :

By the second order conditions
@m

@q

@q

@z
� Pzz < 0:

Hence,
@m

@q

@q

@z

@s

@"
+
@m

@"
= Pzz

@s

@"
:

By the monotonicity of m in ";

@s

@"
=

� @m
@"

@m
@q

@q
@z
� Pzz

> 0:

Hence, s is a nonadditive function in " which is strictly increasing in ": Since " is independent

of X; it follows by Matzkin (1999) that

s (x; ") = F�1ZjX (F"(")) :

Since F" is given, s is identi�ed. Let (t1; t2) be such that t1 2 (ql(t2); qu(t2)). Find x� such
that

q (s(x�; t2); x
�) = t1:

Then,

m(t1; t2) = Pz (s(x
�; t2)) :

Proof of Theorem 4.2. By (4.5), in the statement of the theorem, it follows that the

value of z that satis�es the FOC when x = x and " = t is z = t: Hence, the supply function,

s(x; "); satis�es

s(x; ") = ":
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By the SOC and the monotonicity assumption on m in terms of ";

@s

@"
=

� @m
@"

@m
@q

@q
@z
� Pzz

> 0:

Then, by Matzkin (1999)

F"(e) = FZjX=x(e)

and

s(ex; e) = F�1ZjX=ex(F"(e)):
Next, to see that the function m is identi�ed, let x� denote the solution to

q (s(x�; t2); t2) = t1:

Hence,

m(t1; t2) = m (q (s(x
�; t2); t2) ; t2)

and from the FOC

m(t1; t2) = Pz (s(x
�; t2)) :

Proof of Theorem 4.3. Since Uz is weakly separable in q2(x2; "); the function z =

s(x1; x2; "); which satis�es the FOC is also weakly separable in q2(x2; "): Hence, for some

unknown function v

s(x1; x2; ") = v(x1; q2(x2; ")):

Let x2 and " be such that q2(x2; ") = �: Then, by separability and condition (4.7) in the

statement of the theorem

Uz(z; x1; q2 (x2; ")) = Pz(z)

where z satis�es the FOC when x1 = x1 and q2(x2; ") = �: It then follows that

v(x1; �) = s(x1; q2 (x2; ")) = z:

By FOC and by (4.6) in the statement of the theorem it follows that

m [ q1(v(x1; q2(x2; ")); x1) ; q2(x2; ") ] = Pz [ v(x1; q2(x2; ")) ] :
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Di¤erentiating with respect to q2, since the SOC are satis�ed, we have an interior solution

and
@m

@q1

@q1
@z

@v

@q2
+
@m

@q2
= Pzz

@v

@q2
:

Hence,
@v

@q2
=

� @m
@q2

@m
@q1

@q1
@z
� Pzz

:

From SOC the denominator is negative:

@m

@q1

@q1
@z

� Pzz < 0:

From the strict monotonicity of m in its second argument the function v is strictly

increasing in its second argument. Summarizing, the unknown function v that relates x1;

x2; and " to the value of z that satis�es the FOC is such that z = v(x1; q2(x2; ")); v is

strictly increasing in its second argument and v(x1; �) = z: It then follows from the analysis

of Matzkin (2003) that the function v and the distribution of " are identi�ed from the

conditional distribution of Z given X = (X1; X2).

To show that the function m is identi�ed, let (t1; t2) be any vector such that t2 2
�
tl2; t

u
2

�
and t1 2 [tl1(t2); tu1(t2)]: Let x�1 denote a solution to

q1(v(x
�
1; t2); x

�
1) = t1:

Since q1 is a known function and v can be recovered from the conditional cdf of z given

(x1; x2); the only unknown in the above expression is x�1: Since t2 2
�
tl2; t

u
2

�
and t1 2

[tl1(t2); t
u
1(t2)]; x

�
1 exists. Since v(x

�
1; t2) satis�es the FOC,

m(t1; t2) = m (q1 (v(x
�
1; t2); x

�
1) ; t2) (A.2)

= Pz (v(x
�
1; t2))

= Pz (s(x
�
1; x

�
2; "

�))

for any x�2 and " such that q2(x
�
2; ") = �: In (A.2), the �rst equality follows because

q(v(x�1; t2); x
�
1) = t1; the second equality follows because when z is substituted by the value

that satis�es the �rst order conditions, the value of the marginal utility function m equals

the value of the marginal price function at the particular value of z that satis�es the �rst

order conditions. The third equality follows by the restriction on the function s: Since the
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function Pz is known and the function s can be recovered without knowledge of m; (A:2)

implies that the function m is identi�ed.

Proof of Theorem 6.1. We use a version of the Delta Method developed by Aït-Sahalia

(1994) and Newey (1994). Let F (z; x) denote the distribution function (cdf) of the vector of

observable variables (Z;X); f(z; x) denote its probability density function (pdf), f(x) denote

the marginal pdf of X; and FZjX=x denote the conditional cdf of Z given X = x: Recall thateZ � eX is the compact support of (Z;X) : Let L = 3 be the dimension of eZ � eX: For any
function G : RL ! R; de�ne g(z; x) = @LG(z; x)=@z@x; g(x) =

R1
�1 g(s; x)ds; GZjX=x0(z

0)

=

 Z z0

�1
g(s; x0)ds

!
=g(x0); and fGZ(z; x) = R z

�1 g(s; x)ds =
R1
�1 1[s � z]g(s; x)ds where

1[�] = 1 if [�] is true and equals zero otherwise. Let C denote a compact set in RL that

strictly includes eZ � eX: Let Q denote the set of all functions G : RL ! R such that g(z; x)

has bounded �rst order derivatives and vanishes outside C. Let eQ denote the set of all

functionsgGZ that are derived from some G in Q. Since there is a 1-1 relationship between

functions in Q and functions in eQ;we can de�ne a functional on Q or on eQ without altering
its de�nition. Let kGk denote the maximum of the sup norms of g(z; x) and the �rst order

derivatives of g(z; x): If H 2 Q, there exists �1 > 0 such that if kHk � �1 then, for some

0 < a; b <1; all x in a neighborhood of (x�1; x2) and all ev 2 B(v(x1; t2); �); jh(x)j � a kHk ;���R es h(s; x)ds��� � a kHk ; jf(x) + h(x)j � b jf(x)j ; and f(es; x) + h(es; x) � b jf(es; x)j : Letex = (x1; ex2) and v� = v(x�1; t2):
We will �rst derive the asymptotic behavior of bx1; de�ned as the value of x1 that, givenbv; satis�es

q1 (bv (bx1; t2) ; bx1) = t1:
Recall that bv (x1; t2) = bF�1ZjX=(x1;x2) � bFZjX=ex (z)� :
Hence, bx1 satis�es bF�1ZjX=(bx1;x2) � bFZjX=ex (z)� bx1 = t1
or bFZjX=ex (z) = bFZjX=(bx1;x2)� t1bx1

�
;

and x�1 satis�es

FZjX=ex (z) = FZjX=(x�1;x2)
�
t1
x�1

�
:
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De�ne the functional � (G; x1) on Q�R by

� (G; x1) = GZjX=ex (z)�GZjX=(x1;x2)
�
t1
x1

�
:

For any x1 in a neighborhood of x�1 and for H such that kHk is small enough

� (F +H; x1)� � (F; x1)

=

R z
�1 (f (s; ex) + h (s; ex)) ds

(f (ex) + h (ex)) �
R z
�1 f (s; ex) ds

f (ex)
�
"R (t1=x1)

�1 (f (s; x1; x2) + h (s; x1; x2)) ds

(f (x1; x2) + h (x1; x2))
�
R (t1=x1)
�1 f (s; x1; x2) ds

f (x1; x2)

#

=
f (ex) R z�1 h (s; ex) ds
f (ex) (f (ex) + h (ex)) � h (ex)

R z
�1 f (s; ex) ds

f (ex) (f (ex) + h (ex))
�
"
f (x1; x2)

R (t1=x1)
�1 h (s; x1; x2) ds

f (x1; x2) (f (x1; x2) + h (x1; x2))
�
h (x1; x2)

R (t1=x1)
�1 f (s; x1; x2) ds

f (x1; x2) (f (x1; x2) + h (x1; x2))

#

=

"R z
�1 h (s; ex) ds

f (ex) �
h (ex)FZjX=ex (z)

f (ex)2
#

�
"R (t1=x1)

�1 h (s; x1; x2) ds

f (x1; x2)
�
h (x1; x2)FZjX=(x1;x2) (t1=x1)

f (x1; x2)
2

#

�

24
h
f (ex) R z�1 h (s; ex) ds� h (ex)FZjX=ex (z)ih [ex]

f (ex)2 (f (ex) + h (ex))
35

+

24
h
f (x1; x2)

R (t1=x1)
�1 h (s; x1; x2) ds� h (x1; x2)

R (t1=x1)
�1 f (s; x1; x2) ds

i
h (x1; x2)

f (x1; x2)
2 (f (x1; x2) + h (x1; x2))

35 :

47



De�ne

DF�(x1;H) =

"R z
�1 h (s; ex) ds

f (ex) �
h (ex)FZjX=ex (z)

f (ex)2
#

�
"R (t1=x1)

�1 h (s; x1; x2) ds

f (x1; x2)
�
h (x1; x2)FZjX=(x1;x2) (t1=x1)

f (x1; x2)
2

#

and

RF�(x1;H) = �

24
h
f (ex) R z�1 h (s; ex) ds� h (ex)FZjX=ex (z)ih [ex]

f (ex)2 (f (ex) + h (ex))
35

+

24
h
f (x1; x2)

R (t1=x1)
�1 h (s; x1; x2) ds� h (x1; x2)

R (t1=x1)
�1 f (s; x1; x2) ds

i
h (x1; x2)

f (x1; x2)
2 (f (x1; x2) + h (x1; x2))

35 :
Then, for some a1 <1 and all x1 in the neighborhood of x�1;

jDF�(x1;H)j � a1 kHk and jRF�(x1;H)j � a1 kHk2

and, for all such x1

� (F +H; x1)� � (F; x1) = DF�(x1;H) +RF�(x1;H):

Next, for any x1 close enough to x�1; for any small enough �x1 6= 0; and for any G such
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that kG� Fk is small enough

� (G; x1 +�x1)� � (G; x1)

= � (G)ZjX=(x1+�x1;x2)
�

t1
x1 +�x1

�
+ (G)ZjX=(x1;x2)

�
t1
x1

�

= �
R t1=(x1+�x1)
�1 g (s; x1 +�x1; x2) ds

g (x1 +�x1; x2)

+

R t1=x1
�1 g (s; x1; x2) ds

g (x1; x2)

= �
R t1=(x1+�x1)
�1 g (s; x1; x2) +

@g(s;x1;x2)
@x1

�x1 +Rf;1 ds

g (x1 +�x1; x2)

+

R t1=x1
�1 g (s; x1; x2) ds

g (x1; x2)

where for some a2 < 1; jRg;1j � a2 j�x1j2 ; and where the last equality follows by Taylor�s
Theorem. Using again Taylor�s Theorem, it follows that for some a3 <1, and for Rg;2 and
Rg;3 with jRg;2j � a3 j�x1j2 and jRg;3j � a3 j�x1j2

� (G; x1 +�x1)� � (G; x1)

= �

hR t1=(x1)
�1

�
g (s; x1; x2) +

@g(s;x1;x2)
@x1

�x1 +Rg;1

�
ds
i
g (x1; x2)

g (x1 +�x1; x2) g (x1; x2)

�

�
g
�
t1
x1
; x1; x2

�
�x1 +

@g
�
t1
x1
;x1;x2

�
@x1

(�x1)
2 +Rg;3

�
g (x1; x2)

g (x1 +�x1; x2) g (x1; x2)

+

hR t1=x1
�1 g (s; x1; x2) ds

i h
g (x1; x2) +

@g(x1;x2)
@x1

�x1 +Rg;2

i
g (x1 +�x1; x2) g (x1; x2)

:
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Hence,

� (G; x1 +�x1)� � (G; x1)

= �

h
g (x1; x2)

R t1=(x1)
�1 g (s; x1; x2) ds+ g (x1; x2)

R t1=(x1)
�1

@g(s;x1;x2)
@x1

ds �x1

i
g (x1 +�x1; x2) g (x1; x2)

�

hR t1=(x1)
�1 Rg;1 ds

i
g (x1; x2)

g (x1 +�x1; x2) g (x1; x2)

�

h
g (x1; x2) g

�
t1
x1
; x1; x2

�
�x1

i
g (x1 +�x1; x2) g (x1; x2)

�

�
@g
�
t1
x1
;x1;x2

�
@x1

(�x1)
2 +Rg;3

�
g (x1; x2)

g (x1 +�x1; x2) g (x1; x2)

+

h
g (x1; x2)

hR t1=x1
�1 g (s; x1; x2) ds

i
+ @g(x1;x2)

@x1

hR t1=x1
�1 g (s; x1; x2) ds

i
�x1

i
g (x1 +�x1; x2) g (x1; x2)

+

hR t1=x1
�1 g (s; x1; x2) ds

i
[Rg;2]

g (x1 +�x1; x2) g (x1; x2)
:

Let

Dx1� (G; �x1) =

= �
R t1=(x1)
�1

@g(s;x1;x2)
@x1

ds �x1

g (x1; x2)

�
g
�
t1
x1
; x1; x2

�
�x1

g (x1; x2)

+

@g(x1;x2)
@x1

hR t1=x1
�1 g (s; x1; x2) ds

i
�x1

g (x1; x2)
2
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and

Rx1� (G; �x1)

= �Dx1� (G; �x1)

�
g (x1 +�x1; x2)� g (x1; x2)
g (x1; x2)

2 g (x1 +�x1; x2)

�

�

hR t1=(x1)
�1 Rg;1 ds

i
g (x1; x2)

g (x1 +�x1; x2) g (x1; x2)

�

�
@g
�
t1
x1
;x1;x2

�
@x1

(�x1)
2 +Rg;3

�
g (x1; x2)

g (x1 +�x1; x2) g (x1; x2)

+

hR t1=x1
�1 g (s; x1; x2) ds

i
[Rg;2]

g (x1 +�x1; x2) g (x1; x2)
:

Then, for some a4 <1;

jDx1� (G; �x1)j � a4 j�x1j ; jRx1� (G; �x1)j � a4 j�x1j
2

and

� (G; x1 +�x1)� � (G; x1) = Dx1� (G; �x1) +Rx1� (G; �x1) :

Moreover, for some a5 <1 and for all H such that kHk is small enough

jDx1� (F +H; �x1)�Dx1� (F ; �x1)j � a5 kHk j�x1j :

By assumption, for any �x1 6= 0; Dx�1
� (F ; �x1) 6= 0. Since Q is a Banach space, it

follows from the Implicit Function Theorem of Hildebrandt and Graves (1927) (see Zeidler

(1991) p. 150), that there exists a unique functional � (G) and a small r <1 such that for

all H with kHk small enough,

j� (F +H)� � (F )j � r
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and

� (F +H; � (F +H)) = (F +H)ZjX=ex (z)� (F +H)ZjX=(�(F+H);x2)
�

t1
� (F +H)

�
= 0:

Since

� (F +H; � (F +H))� � (F; � (F ))

= (F +H)ZjX=ex (z)� FZjX=ex (z)

� (F +H)ZjX=(�(F+H);x2)
�

t1
� (F +H)

�
+ FZjX=(�(F );x2)

�
t1

� (F )

�

�(F +H)ZjX=(�(F );x2)
�

t1
� (F )

�
+ (F +H)ZjX=(�(F );x2)

�
t1

� (F )

�

= DF�(x1;H) +Dx1� (F ; �x1)

+RF�(x1;H) + (Dx1� (F +H; �x1)�Dx1� (F ; �x1)) +Rx1� (G; �x1)

= 0

it follows that

� (F +H)� � (F ) = �

24dFZjX=(x�1;x2)
�
t1
x�1

�
dx1

35�1 [DF�(x
�
1;H)] +R�

where

jR�j � a3 kHk2 :

By the Delta method in Newey (1994), it follows that

p
N�2 (bx1 � x�1)! N(0; Vbx)
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where

Vbx =
24dFZjX=(x�1;x2)

�
t1
x�1

�
dx1

35�2�Z K(z)2
��

1

f(ex) + 1

f(x)

��
FZjX=ex(ez)(1� FZjX=ex(ez))� :

Since

bm (t1; t2) = Pz (bv (bx1; t2))
= Pz

�
t1bx1
�

it follows by the standard Delta method thatq
N�2N (bm (t1; t2)�m (t1; t2))! N(0; Vm)

where

Vm = C

�Z
K(z)2

��
1

f(ex) + 1

f(x)

��
FZjX=ex(ez)(1� FZjX=ex(ez))�

and

C =

�
Pzz

�
t1
x�1

��2�
t1
(x�1)

2

�2 24dFZjX=(x�1;x2)
�
t1
x�1

�
dx1

35�2 :
Proof of Theorem 6.2. The method of proof is very similar to that of Theorem 6.1.

The only di¤erence is that bFZjX=ex(ez) and FZjX=ex(ez) in the proof of Theorem 6.1 are now

replaced by F"(t2): Following the same steps as in the proof of Theorem 6.1, it is then easy

to show that q
N�2N (bm (t1; t2)�m (t1; t2))! N(0; Vm0)

where

Vm0 = C

�Z
K(z)2

��
1

f(x)

�
(F"(t2)(1� F"(t2)))

and C is as in the proof of Theorem 6.1.
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Figure 3: Simulation results: baseline parameter values
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Note: The upper left panel plots the true values ofm (q; ") where q = zx:
The upper right panel plots the median of the estimates ofm (q; ") (Sam-
ple size 500, 100 Monte Carlo replications). The supports of the graphs
indicate the equilibrium region on which the function m is identi�ed.
The lower left panel plots the true and estimated values of m (q; ") when
" = 1:5: The lower right panel plots the true and estimated values of
m (q; ") when q = 4:9564: The solid lines plot the true function values,
the dashed lines plot the medians of the estimated values, the circles
plot the 5th percentile estimates, and the plus symbols plot the 95th
percentile estimates. True baseline parameter values are given in Table
2.
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Figure 4: Simulation results: xU = 3:0
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Note: The upper left panel plots the true values ofm (q; ") where q = zx:
The upper right panel plots the median of the estimates ofm (q; ") (Sam-
ple size 500, 100 Monte Carlo replications). The supports of the graphs
indicate the equilibrium region on which the function m is identi�ed.
The lower left panel plots the true and estimated values of m (q; ") when
" = 1:5: The lower right panel plots the true and estimated values of
m (q; ") when q = 10:4758: The solid lines plot the true function values,
the dashed lines plot the medians of the estimated values, the circles
plot the 5th percentile estimates, and the plus symbols plot the 95th
percentile estimates. All true parameter values except xU are identical
to the baseline parameter values: This case used the value xU = 3:0:
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Figure 5: Simulation results: � = 0:75
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Note: The upper left panel plots the true values ofm (q; ") where q = zx:
The upper right panel plots the median of the estimates ofm (q; ") (Sam-
ple size 500, 100 Monte Carlo replications). The supports of the graphs
indicate the equilibrium region on which the function m is identi�ed.
The lower left panel plots the true and estimated values of m (q; ") when
" = 1:5: The lower right panel plots the true and estimated values of
m (q; ") when q = 0:9888: The solid lines plot the true function values,
the dashed lines plot the medians of the estimated values, the circles
plot the 5th percentile estimates, and the plus symbols plot the 95th
percentile estimates. All true parameter values except � are identical to
the baseline parameter values: This case used the value � = 0:75:
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Figure 6: Simulation results: � = 0:9
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Note: The upper left panel plots the true values ofm (q; ") where q = zx:
The upper right panel plots the median of the estimates ofm (q; ") (Sam-
ple size 500, 100 Monte Carlo replications). The supports of the graphs
indicate the equilibrium region on which the function m is identi�ed.
The lower left panel plots the true and estimated values of m (q; ") when
" = 1:5: The lower rightpanel plots the true and estimated values of
m (q; ") when q = 0:75542: The solid lines plot the true function values,
the dashed lines plot the medians of the estimated values, the circles
plot the 5th percentile estimates, and the plus symbols plot the 95th
percentile estimates. All true parameter values except � are identical to
the baseline parameter values: This case used the value � = 0:9:
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Figure 7: Simulation results: � = 2:0
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Note: The upper left panel plots the true values ofm (q; ") where q = zx:
The upper right panel plots the median of the estimates ofm (q; ") (Sam-
ple size 500, 100 Monte Carlo replications). The supports of the graphs
indicate the equilibrium region on which the function m is identi�ed.
The lower left panel plots the true and estimated values of m (q; ") when
" = 1:5: The lower rightpanel plots the true and estimated values of
m (q; ") when q = 25:0741: The solid lines plot the true function values,
the dashed lines plot the medians of the estimated values, the circles
plot the 5th percentile estimates, and the plus symbols plot the 95th
percentile estimates. All true parameter values except � are identical to
the baseline parameter values: This case used the value � = 2:0:
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