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Abstract

The principal purpose of this paper is to describe the performance of generalized
empirical likelihood (GEL) methods for time series instrumental variable models
specified by nonlinear moment restrictions when identification may be weak. The
paper makes two main contributions. Firstly, we show that all GEL estimators are
first-order equivalent under weak identification. The GEL estimator under weak
identification is inconsistent and has a nonstandard asymptotic distribution. Sec-
ondly, the paper proposes new GEL test statistics, which have chi-square asymp-
totic null distributions independent of the strength or weakness of identification.
Consequently, unlike those for Wald and likelihood ratio statistics, the size of tests
formed from these statistics is not distorted by the strength or weakness of iden-
tification. Modified versions of the statistics are presented for tests of hypotheses
on parameter subvectors when the parameters not under test are strongly iden-
tified. Monte Carlo results for the linear instrumental variable regression model
suggest that tests based on these statistics have very good size properties even in
the presence of conditional heteroskedasticity. The tests have competitive power
properties, especially for thick tailed or asymmetric error distributions.

JEL Classification: C12, C31
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1 Introduction

It is often the case that the instruments available to empirical researchers are only weakly
correlated with the endogenous variables. That is, identification is weak. In such situa-
tions it is well known that classical normal and chi-square asymptotic approximations to
the finite-sample distributions of instrumental variables estimators and statistics can be
very poor. For example, even though likelihood ratio and Wald test statistics are asymp-
totically chi-square, use of chi-square critical values can lead to extreme size distortions
in finite samples. The main purpose then of this paper is to ascertain the performance
of generalized empirical likelihood (GEL) methods [Newey and Smith (2003), henceforth
NS] for time series instrumental variable models specified by nonlinear moment restric-
tions when identification may be weak [as in Stock and Wright (2000), henceforth SW].
In particular, the paper makes two principal contributions. Firstly, the asymptotic dis-
tribution of the GEL estimator is derived for a weakly identified set-up. Secondly, the
paper proposes new, theoretically and computationally attractive GEL test statistics.
The asymptotic null distribution of these statistics is chi-square under partial [Phillips
(1989)], weak [SW] and strong identification. Thus, the size of tests formed from these
statistics is invariant to the strength or weakness of identification. Importantly, we also
provide asymptotic power results for the various statistics suggested in this paper.

GEL estimators and test statistics are alternatives to those based on generalized
method of moments (GMM); see Hansen (1982), Newey (1985) and Newey and West
(1987). GEL has received considerable attention recently due to its competitive bias
properties. For example, NS show that for many models the asymptotic bias of empirical
likelihood (EL) does not grow with the number of moment restrictions, while that of
GMM estimators grows without bound, a finding that may imply favorable properties
for GEL-based test statistics.

Similar to the findings of Phillips (1989) and SW for two stage least squares (2SLS)
and GMM, GEL estimators of weakly identified parameters have nonstandard asymptotic
distributions and are in general inconsistent. Therefore, inference based on the classical
normal approximation is inappropriate under weak identification. As in NS for strong
identification, the first-order asymptotics of the GEL estimator under weak identifica-
tion do not depend on the choice of the GEL criterion function. This finding is rather
surprising and contrasts with 2SLS and limited information maximum likelihood (LIML)
estimators whose first-order asymptotic theory differs under weak identification.

The statistics proposed here are asymptotically pivotal in contrast to classical Wald
and likelihood ratio statistics no matter the strength of identification. The first statistic
GFELR, is based on the GEL criterion function and may be thought of as a nonparametric
likelihood ratio statistic. Two further statistics generalize Kleibergen’s (2001) GMM-
based K-statistic to the GEL context. Like the K-statistic which is a quadratic form
in the first derivative vector of the GMM objective function, the second GEL statistic

1]



S, is a score-type statistic being a quadratic form in the GEL criterion score vector.
The third statistic LM, is similar in structure to a GMM Lagrange multiplier statistic
[Newey and West (1987)] and is asymptotically equivalent to the score-type statistic
being a quadratic form in the sample moment vector. Confidence regions constructed
from the K- and GEL score-type statistics are never empty and contain the continuous
updating estimator (CUE) and GEL estimator respectively. All forms of GEL statistics
admit limiting chi-square null distributions with degrees of freedom equal to the number
of instruments or moment conditions for the first and the dimension of the parameter
vector for the second and third. In over-identified situations, therefore, tests based on the
latter statistics should be expected to have better power properties than those based on
the former. In many cases, an applied researcher is interested in inference on a parameter
subvector rather than the whole parameter vector. Modified versions of the GEL-based
statistics are therefore suggested for the subvector case when the remaining parameters
are strongly identified.

Monte Carlo simulations for the i.i.d. linear instrumental variable model with a wide
range of error distributions compare our test statistics to several others, including the K-
statistic of Kleibergen (2002a) and the similar conditional likelihood ratio statistic LR,
of Moreira (2003) which has been shown to have particularly good power properties in
this context. We find that our tests have very good size properties even in the presence of
conditional heteroskedasticity. In contrast, the K-statistic of Kleibergen (2002a) and the
LR-statistic of Moreira (2003) are size-distorted under conditional heteroskedasticity.
Our tests have competitive power properties, especially for certain features of the error
distribution such as thick tails or asymmetry. Given the nonparametric construction of
the GEL estimator, robustness of GEL-based test statistics to different error distributions
should be expected.

The proof method and content in this paper are virtually identical to those in Guggen-
berger (2003) for the i.i.d. linear model. The proofs generalize Guggenberger (2003) to
the time series setting and the nonlinear moment restrictions. The proofs for consistency
and for the asymptotic distribution of the GEL estimator in Guggenberger (2003) adapt
those given in NS for the i.i.d. strongly identified context.

Subsequent to the i.i.d. linear version of this paper, two related papers have appeared.
Firstly, Caner (2003) derives the asymptotic distribution of the exponential tilting (ET)
estimator [see Imbens, Spady and Johnson (1998) and Kitamura and Stutzer (1997)]
under weak identification with nonlinear moment restrictions for independent observa-
tions. Caner (2003) also obtains an ET version of the K-statistic for nonlinear moment
restrictions. Secondly, Otsu (2003) considers GEL based tests under weak identification
for a time series setting and examines the GEL criterion function statistic GELR, and
a modified version of the K-statistic based on Smith’s (2001) GEL estimator that is
efficient under strong identification.



The remainder of the paper is organized as follows. In Section 2, the model and the
assumptions are discussed, the GEL estimator is briefly reviewed and the asymptotic dis-
tribution of the GEL estimator under weak identification is derived. Section 3 introduces
the GEL-based test statistics. We derive their asymptotic limiting distribution and show
that it is unaffected by the degree of identification. Section 4 generalizes these results to
hypotheses involving subvectors of the unknown parameter vector. Section 5 describes
the simulation results. All proofs are relegated to the Appendix.

¢

The following notation is used in the paper. The symbols “ —4 ", “—,” and “="
denote convergence in distribution, convergence in probability and weak convergence of
empirical processes, respectively. For the latter, see Andrews (1994) for a definition. For
convergence “almost surely” we write “a.s.” and “with probability approaching 17 is
replaced by “w.p.a.1”.

The space C(M) contains all functions that are i times continuously differentiable on
M. For a symmetric matrix A, “A > 0” means that A is positive definite and Api,(A) and
Amax(A) denote the smallest and largest eigenvalue of A in absolute value, respectively.
For a full column rank matrix A € R¥*? and positive definite matrix K € R*** we denote
by PA(K) the oblique projection matrix A(A’K~1A)"*A’K~1 on the column space of A
in the metric K and define M4(K) := I, — P4(K), where I, is the k-dimensional identity
matrix; we abbreviate this notation to P4, and M4 if K = I,. The symbol “®” denotes
the Kronecker product. Furthermore, vec(M) stands for the column vectorization of the
k x p matrix M, i.e. if M = (my,...,m,) then vec(M) = (mj,...,m;)". By ||-[| we denote
the Euclidean norm.

2 Estimation

This section is concerned with the asymptotic distribution of the GEL estimator when
some elements of the parameter vector of interest may be only weakly identified. In-
tuitively, then, the moment conditions which define the model may not be particularly
informative about these parameters.

2.1 Model

We consider models specified by a finite number of moment restrictions. Let {z; : i =
1,...,n} be Rl-valued data and, for eachn € N, g, : G x © — R* a given function, where
G C R' and © C RP denotes the parameter space. The model has a true parameter 6,
for which the moment condition

is satisfied. For g,(z;,6) we will usually write g;(0).
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Example 1: (I.i.d. Linear Instrumental Variable (IV) Regression.) Guggenberger
(2003, first chapter) discusses in detail GEL estimation and testing for this model under
weak identification. The structural form (SF) equation is given by

y=Y0b+u, (2.2)
and the reduced form (RF) for Y by
Y =ZI1+V, (2.3)

where y,u € R", Y,V € R, Z € R™* and II € R**?. The matrix Y may contain
both exogenous and endogenous variables, Y = (X, W) say, where X € R"™PX and
W e R™Pw denote the respective observation matrices of exogenous and endogenous
variables. The variables Z = (X, Zy ) constitute a set of instruments for the endogenous
variables W. The first px columns of II equal the first px columns of [ and the first
px columns of V are 0. Denote by Y;, Vi, Z;, ... (i = 1,...,n) the i'" row of the matrix
Y, V., Z, ... written as a column vector. Assuming the instruments and the structural
error are uncorrelated, Eu;Z; = 0, it follows that Eg¢;(0y) = 0, where for each i = 1, ..., n,
9:(0) == (y; = Y/0)Z;.

Example 2: (Conditional Moment Restrictions.) As in SW the moment conditions
may result from conditional moment restrictions. Assume E[h(Y;,0y)|F;] = 0, where
h:Hx®© — RM H C R and F} is the information set at time i. Let Z; be a
ks-dimensional vector of instruments contained in F;. If ¢;(0) := h(Y;,0) ® Z;, then
Egi(6y) = 0 follows by taking iterated expectations. In (2.1), k = k1ks and [ = koks.

2.2 Assumptions

This section is concerned with the asymptotic distribution of the GEL estimator for 6
when some components of 8y = (af, 3,), ap say, ag € A, A C RPA, are only weakly
identified. Intuitively, this means that the moment condition (2.1) is not very informa-
tive about ag. For parameter vectors 6 = (o, 3y)’, Egn(2i,6) may be very close to zero,
not only for a close to oy but also when « is far from «g. In that case, the restriction
Eg,(z,6p) = 0 is not very helpful for making inference on ay. Assumption ID below
provides a theoretical asymptotic framework for this phenomenon, which is taken from
Assumption C in SW (p.1061). We refer the reader to SW which provides substantial
detailed motivation for this assumption and an explanation of why it models oy as weakly
and 3, as strongly identified.

To describe the moment and distributional assumptions, we require some additional
notation.



3(0): = n! égi(e), G(6) == n! éai(e),
U,(0) : = n'2(g(0) — EG(0)),
Q) :=n"" i;gz((g)gi(@)'a

where, if defined, G;(0) := (9g;/00)(8) € R**P. For notational convenience, a subscript

n has been omitted in certain expressions. Define the k£ x k& matrices®

Q) : = lim En™*

_19i(9)9i(9)/,
A(@l,GQ) := lim E\Dn(Ql)\Pn(@g)’ and A(Q) = A(979)

Let 0 = (o/,3"), where « € A, A C RPA, 3 € B, B C RPE and p4 + pg = p. Also let
N C B denote an open neighborhood (3.

Assumption ©: The true parameter 6y = (), 3;)’ is in the interior of the compact
space © = A x B.

Assumption ID: (i) EG(0) = n~Y?my,(0) + ma(B), where my,,m; : © — R*
and my : B — R* are continuous functions such that my,(6) — m;(#) uniformly on
0, mi(fy) = 0 and m(B) = 0 if and only if 3 = By; (ii) me € C'(N); (iii) Let
My (B) := (0my/0B)(5) € R¥™PE. My(f3,) has full column rank pg.

Next we detail the necessary moment assumptions.*

Assumption M: (i) max;<i<, supyee ||:(0)|| = 0,(n*/?); (ii) Q(-) is in CO(Ax {B,})
and bounded on ©, 2(f) is nonsingular for all § € A x {,}, supyee 12(6) — Q0)|| =
op(1), $uDpeper 1 S0 9:8)0i (0] = Op(1); (i) W, = W, where ¥(0) is a Gaus-
sian stochastic process on © with mean zero and covariance function EV(0;)¥(0y)" =
A(61,02). For each € > 0 there exists a M. < oo such that Pr(supge s, ||V (0)|| < M:) >
1—e.

M(i) adapts Assumption 1(d) of NS, Esupgep ||g:(8)|[¢ < oo for some & > 2, from
the i.i.d. setting with strong identification (p4 = 0 and thus = 8 and © = B) to the
weakly identified set-up considered here. A sufficient condition for M(i) in the time series
context and under ID is given by

sup E'sup ||g:(0)||* < oo for some & > 2. (2.4)
i>1 9o

[5]



Indeed, a simple application of the Markov inequality shows that (2.4) implies max;<;<p
supgeo |19:(0)]] = O,(n'/¢) = 0,(n'/?). See the Appendix for a proof. M(ii), which adapts
Assumption 1(e) of NS to the weakly identified set-up, ensures that Q(Q) is nonsingular for
0 € AxN. M(iii) is essentially the “high level” Assumption B of SW (p.1059) that states
that ¥,, obeys a functional central limit theorem. In Assumption B’, SW provide primi-
tive sufficient conditions for their Assumption B that can also be found in Andrews (1994).
Note that the definition of weak convergence [Andrews (1994, p.2250)] and M(iii) imply
that supgee ||Un(8)|] —a supgeo ||V (0)|] and, thus, also that sup,cg ||9(0) — Eq(0)|| —, 0.
In the proof of Theorem 2 below, we require supye 457 ||¥(6)|| bounded in probability.

It is interesting to note that for i.i.d. data, an application of the Borel-Cantelli Lemma
shows that M(i) is implied by Assumption 1(d) of NS even if £ = 2; see Owen (1990,
Lemma 3) for a proof. Hence, using Lemmas 7-9 given below, their Assumption 1(d) can
be weakened to £ > 2 for the consistency and asymptotic normality of the GEL estimator
under strong identification with i.i.d. data (see their Theorems 3.1 and 3.2). Therefore,
for i.i.d. data, identical assumptions guarantee consistency and asymptotic normality for
both GEL and two step efficient GMM estimators [Hansen (1982)].

Example 1 (cont.): See Guggenberger (2003). For the linear IV model (2.2) As-
sumption ID can be expressed as

Assumption ID’: II = II,, = (Il4,,3) € R**Pa+rs) where py + pp = p. For a
fixed matrix C4 € R**P4 14, = n~/2C, and I has full column rank.

Under Assumption ID’; i.i.d. data and instrument exogeneity it follows that
E§(0) = Egi(0) = BE(Z:Z])(n""*Ca, 1) (6 — 6),

which implies that in the notation of ID(i), my,(0) = mi(0) = E(Z;Z])Ca(ay —a) and
mo(B) = E(Z;Z)1g(B, — ). Also, note that Assumption ID’ includes the partially
identified model of Phillips (1989). In particular, choosing p4 and setting C'y = 0, one
obtains a model in which IT may have any desired (less than full) rank.

We now give simple sufficient conditions that imply Assumption M. Let U := (u, V).

Assumption M’: (i) {(U;, Z;) : i > 1} are i.i.d.; (ii) EZU] = 0; (iii) E||Z;||* < oo,
Qzz = E(Z,Z]) > 0, Eu?Z;Z!, Eu;Vi; Z; Z! and EV;;V;, Z; Z! exist and are finite for j, k =
1,...,p, where V;; denotes the j component of the vector V;; (iv) Q(6) is nonsingular

for all 0 € A x {5}

Assumptions M’(i) and (ii) state that errors and exogenous variables are jointly i.i.d.
and the standard instrument exogeneity assumption is satisfied whereas M’(iii) and (iv)
are technical conditions.

The following lemma shows that Assumption M’ in the linear model implies Assump-
tion M.

[6]



Lemma 1 Suppose that Assumptions ID’, M’ and © hold in the linear IV model (2.2).
Then Assumption ID and M hold.

Therefore the various technical conditions of Assumption M reduce to very simple
moment conditions in the linear model. Note that M’ implies E[supgce ||g:(6)]]¢] < oo

1/2

for £ = 2. However, we do not need this assumption for £ > 2 to prove n'/“-consistency

of the GEL estimator of the strongly identified parameters.

Assumption HOM: (Conditional Homoskedasticity) F(U;U!|Z;) = ¥y > 0.

HOM, which is used in Staiger and Stock (1997), is sufficient for Assumption M’(iv).
That is, Assumptions M’(i)-(iii) and HOM imply M’(iv) under ID’. This follows from
Q) = Qzzv.Xuy,v, for 0 € A x {3,}, where v}, := (1,(ap — )') and X,y, is the
(14+pa) X (14 pa) upper left submatrix of 3. However, M’ is more general than HOM
because it allows for conditional heteroskedasticity. For example, u; = ||Z;||¢;, where
¢; ~ N(0,1) is independent of Z; ~ N(0, I;), is compatible with M’.

2.3 The GEL Estimator

This subsection provides a formal definition of the GEL estimator of 6.

Let p be a real-valued function ) — R, where () is an open interval of the real line
that contains 0 and A,(6) == {A € R* : Ng;(d) € Q for i = 1,...,n}. If defined, let
p;(v) = (" p/dv?)(v) and p; := p;(0) for nonnegative integers j.

The GEL estimator is the solution to a saddle point problem?®

~ A~

6, :=argmin sup P,(0,\), (2.5)
€0 \eh(0)
where .
Pp(0, ) = (2 ; p(Ngi(6))/n) — 2py. (2.6)

Assumption p: (i) p is concave on Q; (ii) p is C? in a neighborhood of 0 and
py=py = —1L

The definition of the GEL estimator /H\p is adopted from NS. We slightly modify their
definition of ]3,,(9, A) by recentering and rescaling which simplifies the presentation. We
usually write ﬁ(@, A) for ﬁp(ﬁ, A) and 9 for 5,,.

The most popular GEL estimators are the continuous updating estimator (CUE),
empirical likelihood (EL) and exponential tilting (ET) which correspond to p(v) = —(1+
v)?/2, p(v) = In(1—v) and p(v) = — exp v, respectively. The EL estimator was introduced
by Imbens (1997), Owen (1988, 1990) and Qin and Lawless (1994) and the ET estimator
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by Imbens, Spady and Johnson (1998) and Kitamura and Stutzer (1997). For a recent
survey of GEL methods see Imbens (2002).°

Baggerly (1998) introduces a class of estimators based on the Cressie-Read discrep-
ancy measure, which are also members of the GEL class. Its leading members are also
CUE, EL and ET which are thus also minimum discrepancy (MD) estimators. For ex-
ample, NS show that under certain conditions including {z; : ¢ > 1} i.i.d.

OpL = arg rgqeaécln R(0), (2.7)
where .
R(0) = sup {1—[1 i/ >] szgl( ) =0,w; >0, ;wi =1} (2.8)

The criterion function R(€) can be interpreted as a nonparametric likelihood ratio. For
fixed § € © and given g;(0), (i = 1,...,n), the numerator of R(#) is the maximal proba-
bility of observing the given sample g;(6), (i = 1,...,n), over all discrete probability dis-
tributions (wy, ..., w,) on the sample such that the sample analogue Y, w;g;(f) = 0 of
the moment condition (2.1) is satisfied. The denominator (1/n)" equals the unrestricted
maximal probability. While the MD formulation is more intuitive, it is impractical for
computational purposes.

2.4 First-Order Equivalence

This subsection obtains the asymptotic distribution of the GEL estimator Ep under As-
sumption ID. Theorem 2 shows that the weakly identified parameters of 6, are estimated
inconsistently and their GEL estimator has a nonstandard limiting distribution while

the GEL estimator of the strongly identified parameters is n'/2

-consistent but no longer
asymptotically normal. Analogous results are available for GMM; see SW, Theorem 1.
The rather surprising finding is that the first-order asymptotic theory under ID is iden-
tical for all GEL estimators /H\p, as long as p satisfies Assumption p.” This is in contrast
to the asymptotic theory for k-class estimators under weak identification. As shown in
Staiger and Stock (1997, Theorem 1), the nonstandard asymptotic distribution of the
k-class estimator depends on x defined by n(k — 1) —4 k. Therefore, LIML and 2SLS
are not first-order equivalent under weak identification.

If defined, let A(A) be such that P(6, M\(6)) = max, 3 P(8,)\). For 6 = (o, 3) € ©
and b € RPB let

P(6,b) := [¥(0) + my(0) + Mo(3)b]'Q0) ' [¥(0) + ma(0) + Ma(5)).

~ ~/
The next theorem establishes the asymptotic behavior of = (@, 3 )" under Assumption
1D.



Theorem 2 Suppose Assumptions ©, ID, M and p are satisfied.
(i) @ is in general inconsistent and

n'2(B8 = B3,) = O,(1).

(ii) The following more precise result holds. For any fited M > 0 let By := {b €
RPe o ||b|| < M} and define 0o = (o, 8y + n~Y20')". Then, for (a,b) € A x By,
NP0 ap, A(Oap)) = Py := P((o, 3,),b). Assume there exists a random element (a*,b*) €
A X RPE such that a.s. Pysp < inf(qpe(axrrnna Py for every open set G that contains
(a*, 3%). Then

(a7 nl/z(B - BO)) —d (Oé*, b*)

Remark 1: The proof of Theorem 2 also provides a formula (A.7) for v*(a) :=
argminyeprs Py for given a € A. In particular, if py = 0, where all parameters are
strongly identified, (A.7) shows that

n'?(3 = By) —a N(0,V(8y)),

where

V(ﬁo) = (MéQilMg)ilMéﬂilAﬂilMg(MéQilMQ)il,

My = My(83,), Q= Q(8,) and A = A(B,). The matrix V(3,) simplifies to (MiQ~1 M) ™!
in the i.i.d. case and thus the above formula coincides with Theorem 3.2 of NS. However,
the asymptotic variance matrix of n'/2(3 — 3,) in the time series context is in general
different from that in NS and the estimator B as defined above would thus be inefficient.
Block methods as in Kitamura (1997) or kernel-smoothing methods as in Smith (2001)
can be used for efficient GEL estimation in a time series context with strong identification.
In the case p4 > 0, the fact that the asymptotic distribution of the strongly identified pa-
rameter estimates is in general nonnormal is a consequence of the inconsistent estimation
of ay.

Remark 2: Given the nonnormal asymptotic distribution of the GMM and GEL
parameter estimates under weak identification (established in Theorem 1 in SW and
Theorem 2 above, respectively) the asymptotic distribution of test statistics based on
these estimators, such as t- or Wald statistics, will also be nonstandard and non-pivotal.
Furthermore, these limiting distributions depend on quantities that cannot be consis-
tently estimated [see Staiger and Stock (1997, p.564)] which militates against their use
for the construction of test statistics or confidence regions for 6. The next section intro-
duces alternative approaches that overcome these difficulties.

Example 1 (cont.): The specialization of Theorem 2 to the i.i.d. linear IV model
of Example 1 was derived in Guggenberger (2003).

[9]



3 Test Statistics

This section proposes several statistics to test the simple hypothesis Hy : 0 = 6 versus
Hiy : 0 # 6. We establish that they are asymptotically pivotal quantities and have limit-
ing chi-square null distributions under Assumption ID. Therefore these statistics lead to
tests whose size properties are unaffected by the strength or weakness of identification.
For the general time series set-up considered here there are at least two other statistics
that share this property, namely Anderson and Rubin’s (1949) AR- and Kleibergen’s
(2001, 2002a) K-statistic. The first statistic GELR,(0) that we describe may be inter-
preted as a likelihood ratio statistic. It has an asymptotic x?(k) null distribution and
is first-order equivalent to the AR-statistic. The second set of statistics in this section,
S,(0) and LM,(0), are based on the FOC of ﬁp(e, A) with respect to 6. Each has a lim-
iting x*(p) null distribution and is first-order equivalent to the K-statistic. For a recent
survey on robust inference methods with weak identification, see Stock, Wright and Yogo
(2002).

To motivate the first statistic, consider an i.i.d. setting. In this case, GELRg(0)
may be thought of in terms of the empirical likelihood ratio statistic R() defined in
(2.8) above. Setting up the Lagrangian for the restricted maximization problem in the
definition (2.7) of the MD estimator and solving the FOC, one can eliminate the empirical
probabilities (wy, ..., w,). It can then be shown that —21n R(6y) = nISEL(GO, A(0p)), where
A(fp) is the vector of Lagrange multipliers associated with the & moment restrictions
Yo wigi(fo) = 0. Therefore, the renormalized criterion function of the EL estimator
has an interpretation as —2 times the logarithm of the likelihood ratio statistic R(6y).

Generalizing from the i.i.d. set-up and EL to the time series set-up and arbitrary p,
the first statistic we consider is the renormalized GEL criterion function (2.6)

GELR,(0) := nP,(0, A\(9)). (3.1)

Following Kleibergen’s (2001) suggestion of constructing a statistic from the FOC
with respect to 6 but in the GMM framework, we construct a test statistic based on the
GEL FOC for . If the minimum of the objective function ﬁ(&, A(6)) is obtained in the
interior of ©, the score vector with respect to # must equal 0 at 5, ie.

2O z P (N0 g:(0)G4(0) /n = 0. (3.2)

For 6 € ©, define the k£ x p matrix

n

D,(0) := 32 pr(A(0)'9i(0))Gi(0) /. (3.3)

i=1

-~

Thus, (3.2) may be written as )\( )'D,(0) = 0'. The test statistic is therefore given as a
9)

quadratic form in the score vector A(6)'D,() evaluated at the hypothesized parameter
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vector 6 B
S,(6) = nA(0) Dy (6) (D, (0)2(6) ' D,(6)) " D,(6YA®), (3.4)

where p is any function satisfying Assumption p and Q(@) is a consistent estimator of
A(#). We also consider the following variant of S,(6)

LM, (6) := ng(6)0) *D,(0) (D,(0Y20) ' D,(0))  D,0Y2A0)'G0)  (35)

that substitutes —A(0)~'g(0) for A(#) in S,(6); see (A.5) in the Appendix, where it
is shown that n'/2\(0) = —A(0)"'n'/2G(0) + 0,(1). The statistic LM,(6) is similar to
a GMM Lagrange multiplier statistic given in Newey and West (1987). To use these
statistics for hypothesis tests or for the construction of confidence regions one needs a
consistent estimator (NZ(Q) of A(). Under assumptions given below, the sample average
Q(6) may be used for Q(6).® Note that when p(v) = —(1+v)2/2, the GEL CUE criterion,
the GEL statistics S,(0) (3.4) and LM,(6) (3.5) are then identical. As noted above the
GEL and GMM CUE estimator are numerically identical. However, in general this does
not imply that LMcyg(f) and Kleibergen’s (2001) K-statistic are identical. The reason
is that in general the first derivative of the GMM and GEL CUE objective functions are
not equal.

Some intuition for these test statistics is provided under strong identification. Under
strong identification, NS show consistency of 0. Therefore, if the FOC (3.2) hold at 5,
then, at least asymptotically, they also hold at the true value 6,. The statistic S,(f)
can then be interpreted as a quadratic form whose criterion is expected to be small at
the true value 6y. If, however, all parameters are weakly identified this argument is no
longer valid. From Theorem 2, 9 is no longer consistent for #y. Therefore, although
the FOC hold at @, this does not imply automatically that they also approximately
hold at the true value 6,. However, it can be shown that under weak identification the
FOC X(0)'D,(#) = 0" not only hold at 6§ w.p.a.1 but are satisfied uniformly over 6 € ©
w.p.a.1l. Thus, under weak identification the FOC do not pin down the true value 6,.
Consequently, the power properties of hypothesis tests for 6, based on the statistics 5,(0)
or LM, () should be expected to be better under strong rather than weak identification.
Size properties however are not affected by the strength or weakness of identification.

This is corroborated by the Monte Carlo simulations reported below and theoretically by
Theorem 4.

We now turn to consider the asymptotic distribution of GELR,(f) evaluated at a
vector § = (a/, B;)’, thus allowing for a fixed alternative in the weakly identified compo-
nents. We need the following local version of Assumption M.

Assumption My: Let 0§ = (o/,3;)" € A x {B,}. Suppose (i) maxi<i<n |[:(0)[| =
op(n'2); (ii) A(0) > 0, 6) —, AD), n" 322, [lg:(0)g:(0)'l| = Op(1); (i) Wi(6) —a
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U(#), where U(0) = N(0, A(H)).

Note that for 6 = («/, 35) Mg(iii) and ID imply that g(f) —, 0. Thus, under Mg(iii)
and ID the assumption Q(6) —, A(0) is equivalent to the assumption n=' 3" (g;(6) —
3(0))(g:(0) — g(0)) —, A(B) for 6 = (¢, B;)’, which is Assumption D’ in SW. Without
assuming () —, A(6), a limiting chi-square distribution would no longer obtain in the
following theorems. The problem arises because the GEL estimator as defined in (2.5) is
not efficient in the time series set-up considered here.

Theorem 3 Suppose ID, My(i)-(iii) and p hold for 6 = (o, 3,)'. Then
GELR,(0) —q x*(k,6),

where the noncentrality parameter § = my(0)'A(0)"'m4(0). In particular,
GELR,(00) —a X*(k).

To describe the asymptotic distribution of the statistics LM,(6y) and S,(6,), we need
the following additional assumptions. Write G;(0) = (G;4(0), G;5(0)), where the matrices

Gia(0) and G;p(0) are of column dimension p4 and pg, respectively.
Let 0 = (o, By) € A x {B3,} and M C © an open neighborhood of 6.

Assumption My: (cont.) (iv) g(-) is differentiable at 0 a.s. for each § € M, g(0)
is integrable for all § € M, supg. |G(8)]] is integrable, my, € C(O) and My, (-) =
(Oma,,/00)(-) converges uniformly on © to some function; (v) n=t 37"  (vecGia(6))gi(0) —
A(0) (A4(0) is defined in (vii)), 5(9) —, A(0), G(0) :=n"' 3", Gip(0) —, EGp(6);
(vi) n7 350, [|Gia(6 )||||gz( )|| = Op(1), 23 |Gis(O)lllg:(O)]] = 0,(1); (vii)

n 25 (vee(Gaa(6) — EGia(6)))', (6:(6) — Fgi(0))) —a N(0, V(9)), where V(9) =
lim,, oo var(n=42 370 1((UGCG1A(0)) g:(0))) € R* pA“)Xk(pA“ has full column rank.

In My(vii) write

V(6) = ( AAf}A AAA ) (0), where Ay4(0) € RPAR*Pak,
A

Assumption My(iv) allows the interchange of the order of integration and differenti-
ation in Assumption ID, i.e. (0EG/90)(0) = EG(H). It also guarantees that M, (0) —
M;i(0) := (0m1/00)(0). Assumption ID and My thus imply that

EG(0) = n" /2 M1,(0) + (0, Ms(8,)) — (0, Ma(83y)), (3.6)

where by ID the limit matrix (0, M5(3,)) is singular of rank pg. Assumption (v) is com-
parable to (ii), where (0) —, A(#) was assumed and extends (ii) to cross-product terms
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in vecG;4(0) and g¢;(0). Assumption (vi) contains additional weak technical conditions
that guarantee that certain expressions in the proof of Theorem 4 are asymptotically
negligible.

The key assumption is My(vii) which is a stronger version of My(iii) and states that a
CLT theorem holds simultaneously for the centered g¢;(6) and part of the derivative ma-
trix, namely vecGia(6). Write LM,(6) = ng Q" D(D'Q~'D)"'D'Q~'g, where D = D,,(6)
and Q = 6(9) As shown in the proof of Theorem 4, for § = (a/, 3;)’, Assumptions ID,
p, Mp(i)-(vi) and G4(0) := ™ -7, Gia(0) —, EGA(0) imply that D —, —(0, My(8,)).
Therefore, the probability limit of D’ Q~'D is not invertible without renormalisation.
Define D* := DA where the p x p diagonal matrix A := diag(n'/?,...,n'/?,1,...,1) with

1/2

first p4 diagonal elements equal to n'/¢ and the remainder equal to unity. Hence,

LM,(0) = ng'Q ' D*(D¥Q~'D*) "' D"Q7'7. (3.7)

In the proof of Theorem 4 we show that under Assumptions ID, p and My (i)-(vi)

veeD* = vee(0, —My(B,)) + ( s BaB)AO ) /2 ; ( ““g%(@) ) +o,(1).

The additional My(vii), in particular the full rank assumption on V(6), ensures that
D¥Q~'D* has full rank w.p.a.l. Assumption My(vii) is closely related to Kleibergen’s
(2001) Assumption 1. Unlike Kleibergen (2001), however, we assume ID which, as just
shown, requires that we are specific about which part of the derivative matrix G;(6)
together with g¢;(6) satisfies a CLT with full rank covariance matrix, namely G;(0)
which corresponds to the weakly identified parameters. Assumption ID possesses the
advantage that we can obtain the asymptotic distribution of the test statistics under
fixed alternatives of the form 6 = (/, 3;)" and therefore derive asymptotic power results.

Theorem 4 Suppose ID, My (i)-(vii) and p hold for 8 = (/, B;)'. Then,
Sp(0), LM, (0) —a (W(a) + ¢)'(W(a) +¢),

where the random p-vector W («a) is defined in (A.11) of the Appendiz, ( ~ N(0, 1,) and
W and ¢ are independent. We have W(ag) = 0 and therefore

S,(00), LM, (8) —a x*(p).

Remark 1: The proof of Theorem 4 crucially hinges on the fact that n'/2\(6,) and
vecD,(6p) (suitably normalized) from the FOC (3.2) are asymptotically jointly normally
distributed and, moreover, are asymptotically independent. A similar result is critical
also for Kleibergen’s (2001) K-statistic which generalizes Brown and Newey’s (1998)
analysis of efficient GMM moment estimation to the weakly identified set-up. Therefore,
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by using an appropriate weighting matrix in the quadratic forms (3.4) and (3.5) that
define S,(6y) and LM,(6,), respectively, we immediately obtain the limiting x?(p) null
distribution of Theorem 4.

Remark 2: Theorems 3 and 4 provide a straightforward method to construct con-
fidence regions or hypothesis tests on 6y. For example, a critical region for a test of
the hypothesis Hy : 8 = 0y versus Hy : 6 # 0y at significance level r is given by
{GELR,(00) > x2(k)}, where x2(k) denotes the (1 — r)-critical value from the x*(k)
distribution. A (1—7)-confidence region for 6 is obtained by inverting the just-described
test, i.e. {# € © : GELR,() < x2(k)}. Confidence regions and hypothesis tests based
on S,(0) and LM,(f) may be constructed in a similar fashion.

Remark 3: Theorems 3 and 4 demonstrate that GELR,(6y), S,(68y) and LM,(6,)
are asymptotically pivotal statistics under weak and strong identification. Therefore, the
size of tests based on these statistics should not vary much with the strength or weakness
of identification in finite samples. However, they also show that under weak identification
hypothesis tests based on these statistics are inconsistent. For example, the noncentrality
parameter 0 does not diverge for increasing sample size and therefore the rejection rate
under the alternative does not converge to 1. This is intuitive as when identification is
weak one cannot learn much about «g from the data.

Remark 4: A drawback of GELR, () is that its limiting null distribution has de-
grees of freedom equal to k, the number of moment conditions rather than the dimension
of the parameter vector. In general, this has a negative impact on the power properties
of hypothesis tests based on GELR,(6y) in over-identified situations. On the other hand,
the limiting null distribution of S,(fy) and LM,(6,) has degrees of freedom equal to p.
Therefore the power of tests based on these statistics should not be negatively affected
by a high degree of over-identification. Anderson and Rubin’s (1949) AR-statistic has
a x%(k) limiting null distribution as well. Kleibergen (2002b) shows that it equals the
sum of two independent statistics, namely the K-statistic [Kleibergen (2002a)] and a
J-statistic [Hansen (1982)] that test location and misspecification, respectively. Mutatis
mutandis, a similar decomposition may be given for the GELR,(6,) statistic in terms of

S,(0o) or LM,(6y).

Remark 5: SW (Theorem 2) derive the asymptotic distribution under weak identi-
fication of the analogue of GELR,(6,) for the (GMM) CUE which is also a x*(k) null
distribution. In the i.i.d. context, Qin and Lawless (1994, Theorem 2) propose the
statistic 21n R(/H\EL) — 2In R(6y) to test the hypothesis Hy : 6 = 6y which is shown to
be asymptotically distributed as x*(p) under strong identification. However, due to the
dependence on EEL, this statistic is no longer asymptotically pivotal and thus leads to
size-distorted tests under weak identification.
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Example 1 (cont.): Guggenberger (2003) derives the results given in Theorems 3
and 4 under Assumptions ©, ID’, M’ and p allowing for alternatives a € A and Pitman
drift in the data generating process for the strongly identified parameters to assess the
asymptotic power properties of the tests; i.e. ID’ holds and for some fixed b € RPB,
y =Y (0p+n"2(0,¥)) +u. To simplify our presentation here we ignore the possibility
of Pitman drift. Results for the i.i.d. linear IV model follow directly from the above
theorems because, as is easily shown, Assumptions ID’, M’; p and V' (6) > 0 imply M, for
any consistent estimator Q(6) of Q(6). In particular, V(6) has a simple representation.
For 6 = (o, 3y), Q(0) = A(0) and Axa(0) = E(ViaVy ® Z;Z!), where V4 consists of
the first p4 components of V; in (2.3).

4 Subvector Test Statistics

We now assume that interest is focussed on the subvector ag € RPA of 0y = (o, 3y)'
However, we no longer maintain Assumption ID. In particular, oy may not necessarily
be weakly identified.

To adapt the test statistics of section 3 to the subvector case, the basic idea is to
replace § by a GEL estimator B(a). To make this idea more rigorous, define the GEL
estimator 3(a) for 3,

~ ~

B(a) :=argmin sup P((c/,5),\). (4.1)
BEB \eRn(ar 8y
We usually write B for 3(04) where there is no ambiguity. A requirement of the analysis
below is that B —, By if @ = ag. Therefore, we assume that the nuisance parameters 3,
which are not involved in the hypothesis under test are strongly identified; see Theorem
2. On the other hand, the components of oy can be weakly or strongly identified and
in Assumption ID, below we assume the former holds for ag; and the latter for apqo,
where ag = (af;, @),)".? The main advantage of the subvector test statistics introduced
in this section is that asymptotically they have accurate sizes independent of whether
ap is weakly or strongly identified. This property is not shared by classical tests based
on Wald, likelihood ratio or Lagrange multiplier statistics. In general, they have correct
size only if 0 is strongly identified.
Let 6 = (o}, ah, '), where a; € A;j, A; C RP5, (j = 1,2), pa, +pa, = pa and 3 € B,
B C RPE. Also let N C Ay x B be an open neighborhood of (apg, f;)-

Assumption A: The true parameter 6y = (o, gy, ;) is in the interior of the
compact space ©, where © = A; x Ay X B.

Assumption ID,: (i) E§(0) = n=2my,(0) + ma(as, B), where my,, m; : © — R*
and my : Ay x B — R are continuous functions such that m,(0) — mq(6) uniformly
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on O, my(6y) = 0 and ms(az, 3) = 0 if and only if (ay, 3) = (aps, By); (ii) me € CH(N);
(iii) Let My(-) := (Omg/d(aky, B))(-) € RF>*®Paxtps) My (g, 3,) has full column rank
DA, +pB

Assumption ID,, implies ag; and (aoe, §,) are weakly and strongly identified, respec-
tively.
Let
0, = (O/,B(a)’)’ and 0,5 := (o, 3')".
We now introduce the subvector statistics. Recall the definition of GELR,(f) in (3.1).
The GELR, subvector test statistic is given by

GELR:™(a) := GELR,(0,).

We need the following technical assumptions for our derivation of its asymptotic
distribution. To obtain theoretical power properties, we again allow a fixed alternative
for the weakly identified components, ag; here.

For a; € Ay let a := (a},af,). Let M C B be an open neighborhood of f,,.

Assumption M,: (i) maxi<i<, supgeg |[9i(0as)|| = 0,(n'/?); (ii) supgep 11Q2(0,5) —
['(045)|| —p 0 for some matrix I'(-) that is uniformly bounded on {f.5 : 5 € B}, con-
tinuous at 5, and I'(0as,) = A(fag,) > 0and n=' Y7 | ||gi£\9a50)gi(9a50)’\| = 0,(1); (iii)
Wa(Basy) —a U(Basy), where W(Ba,) = N(0, AlBag,)); (iv) Gi() i= n- X0, (9:/95)(
exists at 0,5 a.s. for each 3 € M, g(04p) is integrable for all 3 € M, supgcpq ||G(0ap)|] is
integrable, dmy,,/03(-) is continuous at 0,5 a.s. for each § € M and dmy,,/0F(6,3) con-
verges uniformly over § € M to some function; (v) g(6.5) —, £g(0,s) uniformly over 5 €
B, Gp(0.p) —p EG (0,3) uniformly over 8 € M; (vi) sUpge iy ||Gis(0ap)|| =
O,(1).

Mutatis mutandis M, has the same interpretation as My. For example M,(ii) guar-
antees that )\max(@@a)) is bounded and Amin(ﬁ(/@a)) is bounded away from zero w.p.a.l
while M, (iv) and ID,, imply that for 3 € M we have EGp(6a5) = n=Y2(0m1n/08)(0as)+
(Oms/0B) (a2, B) — (Ome/IB)(ape, 5). By ID,, this last matrix has full column rank for
B = By. If we assume that the G;p(6.5), (1 = 1,...,n), viewed as functions of [3, are
continuous at 3, a.s., then we can simplify M (vi) to n™' 3°% | [|Gip(bag,)|| = Op(1). A
similar comment holds for the assumptions in the continuation of M, below.

Theorem 5 Assume 1 < py < p. Suppose Assumptions A, ID,, M,(i)-(vi) and p hold
for some a; € Ay and a = (ay, agy,)’. Then,

GELR"(a) —q x*(k — p5.0),
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where the noncentrality parameter ¢ is given by

8 == ma(0apy) A0ap,) ™ Mitys(aon,80) (D(0as,) )1 (Bag, ),
where Mag(+) := (Omy/0B)(-) € R¥*P5. In particular,
GELR:"(cg) —a X*(k — pa).

Theorem 5 confirms that the subvector statistic GELRZ“b(ozo), like the full vector
statistic GELR,(fy), is asymptotically pivotal. As above, this result can be used to
construct hypothesis tests and confidence regions for «y.

We now generalize the statistics S, and LM, to the subvector case. The asymp-
totic variance matrices of n'/2§(6,) and n/2A(6,) differ from those of n!/ ?9(0as,) and
n'2X(0ap,). Therefore different weighting matrices are required in the quadratic forms
defining these subvector statistics. In the Appendlx (proof of Theorem 6) it is shown
that for a = (a}, aly), A(0,) = arg max, 3 g, P(8,, \) exists w.p.a.1 and that n'/2A(8,)
is asymptotically normal with covariance matrlx M (a), where for a = (o, o) € RPA

M () = ABag,) ™ Mty (az,60) (D(0as,)- (4.2)

The first ps elements of the FOC (3.2), evaluated at 5(1; are

N0 2 71 (A6, 9:0.))Gia () = 0 (1.3
For a € RPA| let
Dy() = 3 py(ABa) 0:0))Gia Bu) fm € B9 (4.4

which coincides with the definition of D,(6) (3.3) when « is the full vector ¢. Similarly
to S,(f) (3.4) the subvector test statistic S5**(r) is constructed as a quadratic form in
the vector )\(ga)’Dp(ga) from (4.3) with weighting matrix given by M («a) in (4.2). Let
M (a) be an estimator of M () that is given by replacing the expressions A(fag,) and
Mys(as, By) in M (a) by consistent estimators, Q and Mz say. By Assumptions M, (ii) and
M (vii) below we may choose Q(6,) for Q and G4,(8,) for My when o = a = (), ),
where GAj(é’) =n"1Y " (0g:i/0ay)(0), (j =1,2). Hence,

53(0) := nA@Ba) Dyla) (Dyla) M(a)Dy(0)) " Dya)A(E)

The statistic LM3**(r) is constructed like S5**(a) but replaces /\(5 ) by ﬁ_lﬁ(ga).
Thus,

LM;™(a) = ng(8.) D, (@) (Dyle) M <a>Dp<a>)‘1 D) 1G(0a)-
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Let a = (a), afy)" and M C B be an open neighborhood of .

Assumption M,: (cont.) (vii) G4, (f.s) viewed as a function in 3 is continuously
differentiable at § a.s. for each 8 € M, (82]60@/;1/35)(0&5) —p E(@vec@Al/ﬁﬁ)(Qag) =
(0B vecCa, /08)(as), Ca(Bas) —p ECa(Bas) = (DEG/90) Ba), (Bvec(Omin/01)/0B) (Bas)
— (Ovec(Omy /0ay)/0B)(0,45), where convergence is uniform over § € M in all cases,
Omy,/0a(-) is continuous at 0,43 a.s. for each § € M and dmy,/0a(8,5) converges uni-
formly over 3 € M to some function; (viii) n=' > (vecGia, (045))gi(0as) —p P(bup)
uniformly over 8 € M for some matrix ®(-) that is continuous at 6,3, and satis-
fies ®(0ap,) = Auy(0ag,) (Aa,(-) is defined in (x) below), Q0,) —, A(lag,); (ix)
B G, Bas)| 156(Bas)l] = Op(1), 02 S0 [1Grny (Bus) | 19s(Gas)l| = 0p(1) uni
formly over § € M (x) n-V2 0, (vee( G, (Buz,)~ EGis, (9a3,)'s (9:(0us, )~ Egi(68as,)) )
—q N(0, V*(0a3,)), where V*(043,) is the appropriate submatrix of V(,g,) defined in
My (vii). V¥(04g,) is full column rank.

In M, (x) write

Ve(g) = ( S A ) (0), where Ay, 4, (0) € RPMFxPark,
Aq

M, (x) is the key assumption and plays a similar role to My(vii) above. M,/(vii)
extends (iv) by explicitly assuming that integration and differentiation can be exchanged
in the expectation of G4, (Aap) whereas (iv) gave primitive conditions that imply that
exchange holds for g(0,3). Ma(v), (vii) and ID, imply that (OvecG A, /08)(0,) —, 0
which is an important result used in the proof of the next theorem; in a linear model this
result is trivially true because dvecG 4, /83 = 0. Assumptions M, (vii)-(x) are analogous
to My(iv)-(vii) with A; and As now playing the roles of A and B, respectively.

Theorem 6 Assume 1 < py < p. Suppose Assumptions A, ID,, M, (i)-(x) and p hold
fora = (a},ap,) fora; € Ay. Then,

Syt (a), LMy (a) —a (Wa(a) + (o) (Wala) + ),

where the random pa-vector Wy (o) is defined in (A.22) of the Appendiz, (, ~ N(0,1,,)
and ¢, and W, are independent. We have W, (ag) = 0 and therefore

S5 (ag), LM (0g) —a X*(pa)-

Remark 1: The subvector statistics are asymptotically pivotal when elements of «y
are arbitrarily weakly or strongly identified. This result can be used for the construction
of test statistics or confidence regions that have correct size or coverage probabilities
asymptotically, independent of the strength or weakness of identification of crg. Compared
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to Kleibergen’s (2001) GMM-subvector statistic the statistics S5**(a) and LM3**(a) are
appealing due to their compact formulation.

Remark 2: Even though it is unclear how the asymptotic distribution of these test
statistics might be derived without assuming strong identification of f3,, it is obvious
neither S5**(ap) nor /I\/M sub(a) would converge /’Eo a x*(pa) random variable. In general
the quantities n*/2A(6,,) in S5**(cg) and n'/2G(6,,) in LM:"* () are no longer asymp-
totically normal because of their dependence on the GEL estimator B(ag), which as a
direct consequence of Theorem 2 has a nonstandard limiting distribution if 3, is not
strongly identified. Moreover, the subvector version of Kleibergen’s (2001) K-statistic
also experiences the same problem in these circumstances as the (GMM) CUE of j,
has a nonnormal limiting distribution under weak identification; see SW. Somewhat sur-
prisingly, however, Monte Carlo simulations by the authors (not reported here) for the
subvector statistic LM j“b(ozo) indicate that its size properties are not much affected by the
strength or weakness of identification of 3,. Zivot, Startz, and Nelson (2003) report simi-
lar findings from Monte Carlo simulations for Kleibergen’s (2001) subvector test statistic.

Example 1 (cont.): Guggenberger (2003) derives the corresponding results. Note
that Assumptions ©, ID’, M, p and also assuming that V*(6,4,) is full column rank imply
Assumption M. In the linear model the components of V*(6,3,) can be easily calculated.
For example, Ay, 4, = E(Via, Viy, ® Z;Z]), where Viy, is the subvector of V; that contains
its first p4, components. Let Y = (X, W) denote the partition of the included variables
of the structural equation into exogenous and endogenous variables. Partition 6, =
(0'x0,0w0) and 6 = (0, 0y,) conformably. Valid inference is possible on any subvector
of Oy if the appropriate assumptions given above are fulfilled. Unfortunately, if the
dimension of the parameter vector not subject to test is large, then the argmin-sup
problem in (4.1) is computationally very involved. Premultiplication of equation (2.2) by
My should ameliorate this problem through the elimination of the exogenous variables;
ie. Mxy = MxW6wo + Mxu. If Assumption M, holds for Oy¢ = (awo, Byo) and
9i(Ow) == Mx ,(y — Wow)Z;, where My ; denotes the ith row of My written as a column
vector, valid inference may be undertaken on ayyg.

5 Simulation Evidence

To assess the efficacy of the hypothesis tests introduced in Theorems 3 and 4, we conduct
a set of Monte Carlo experiments. The data generating process (DGP) is given by model
(2.2) considered in Example 1 above and is similar to that in Kleibergen (2002a, p.1791);
VIZ.

y = Y0, +u, (5.1)
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Y = ZII+V.

There is a single right hand side endogenous variable and no included exogenous variables,
p=1,7Z ~ N(0,I; ® I,), where k is the number of instruments and n the sample size.
In the just-identified case, that is, &k = 1, II = II; whereas, in the over-identified case,
k> 1,11 = (I}, 0", i.e. irrelevant instruments are added.

Interest focuses on testing the scalar null hypothesis Hy : 6y = 0 versus the alternative

hypothesis H; : 6y # 0.

5.1 Error Distributions

We examine several distributions for (u, V') to investigate the robustness of the test statis-
tics to potentially different features of the error distribution. All designs are constructed
from Design (I) obtained by modifying the distribution of the structural error w.

e Design (I): (u,V) ~ N(0,X ® I,,), where ¥ € R**? with diagonal elements unity
and off-diagonal elements p, .

e Design (II): u; in Design (I) is modified as u;/(w;/r)*/?, where w; is a x?(r) random
variable independent of u; and V;, i.e. u; is t,-distributed. We fix r = 2.

e Design (IIT): modifies Design (I) by exchanging u? — 1 for u;, i.e. u; is a recentered
x%(1) random variable.

e Design (IV): u; from Design (I) is replaced by B; |u; + 2| — (1 — B;) |u; 4+ 2] where
B; is Bernoulli (.5,.5) distributed and independent of all other random variables.

Design (IT) examines the robustness of the performance of the test statistics to thick
tailed distributions for the structural equation error. Design (III) examines robustness
with respect to asymmetric structural error distributions. In Design (IV) the structural
error u; is bimodal with peaks at —2 and +2.

In addition, the impact of conditional heteroskedasticity on the performance of the
test statistics is examined. Designs (Iggr)-(IVgger) modify Designs (I)-(IV) respectively
replacing w; by u; = || Z;||u;.

5.2 Test Statistics

We calculate three versions of the statistic GELR,(6) (3.1), for p(v) = —(14v)?/2 (CUE),
p(v) = In(1 —v) (EL) and p(v) = —expwv (ET). We also consider the corresponding
versions for each of S,(0) (3.4) and LM,(#) (3.5) with () replaced by Q(6). As noted
above, for CUE, S,(0) and LM,(#) are then numerically identical. Theorems 3 and 4

present the asymptotic null distributions of these statistics.!?
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Additional statistics considered are the Anderson-Rubin test statistic (AR), see An-
derson and Rubin (1949),

AR(0) := (y = Y0)' Pz(y = Y0)/5uu(0),

where s,,(0) == (y—Y0)Mz(y—Y0)/(n—k) and the K-statistic proposed by Kleibergen
(2002a),'

K(0) := (y = YO0) Py (y = Y0)/5(0),
where Y(0) = ZII(0), T1(0) = (Z'2)*Z'[Y — (y — YO)suy(0)/suu(6)] and sy (0) =
(y —YO0)MzY/(n—k). Under Hy: 0y = 0, AR(0) —4 x*(k) and K(0) —4 x*(p). In the
just-identified case k = p = 1, the AR- and K-statistics coincide.

We also examine Moreira’s (2003) conditional likelihood ratio test which for (5.1) is
given by

LRy = %[E’? ~TT+{(SS+TT)?~4(S'STT — (ST)*)}'/*,

where S := (Z2'Z) Y28 (byAby) V2, T = (Z'Z)"\PT(ahbA " ag) V2, S = Z'(y — Yby),
T = Z'(y,Y)A Yag, ag == (0,1), by := (1,—6,) and A = (y,Y)Mz(y,Y)/(n — k).
Moreira (2003) suggests a simulation method to find the critical value for LRy, condi-
tional on 7'T = 7 from which a hypothesis test with exact size may be formulated for
the normal model with known reduced form covariance matrix A.'2

Finally, we consider two versions of the two-stage least squares (2SLS) Wald statistic,
see for example Wooldridge (2002, p. 98, 100), one assuming homoskedastic errors and
the other robust to conditional heteroskedasticity

2SLSHoM = /é/W_lb\, 2SLSypr == yW};gT/a

where 0 := (Y'P,Y) 'Y'Pyy, W :=*(Y'P,Y) 1, 6% = (n—k) " S0, 02, Uy := yi— Y-’Q

zlz7

(i = 1,...,n) and Wypr = n(Y'P,Y) 231, l(PZY) )/(n—k) is a condltlonal het-
eroskedasticity robust estimator for the variance of . Both Wald statistics are asymp-

totically distributed as x?(1) under Hy : 6 = 6, and strong identification.

5.3 Size Comparison

Empirical sizes are calculated using 5% asymptotic critical values for all of the above
statistics for DGPs (5.1) corresponding to all 54 possible combinations of sample size
n = 50,100, 250, number of instruments & = 1,5, 10, structural and reduced form error
correlation p,;, = 0.0,0.5,0.99, and reduced form coefficient II; = 0.1,1.0 for Designs
(D-(IV) and (Igpr)-(IVypr).t3

We use R = 3,000 replications of each DGP. We also use 3,000 realizations each of
x*(1) and x*(k — 1) random variables to simulate the critical values of Moreira’s LRy,
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statistic. For the results reported in the Tables 1 and 2 below we use R = 10,000
replications. We refer to II; = 0.1 and 1.0 as the “weak” and “strong” instrument cases,
respectively. The value of p, allows the degree of endogeneity of Y to be varied. While
for p,y = 0, Y is exogenous, Y is strongly endogenous for p,;,; = .99. We include the
just-identified case, k = 1, and two over-identified-cases, k£ = 5 and 10.

Table 1 about here

We now turn to describe the results for Design (I) given in Table 1 which exclude
those for AR, GELRgr, Spr and LMgr. For k = 1, AR coincides with K and, for k > 1,
we find that in most cases K has better size properties than AR. The qualitative features
of the size results for GELRgr, Spr and LMpgr are identical to their F'L counterparts.

Firstly, we consider the separate effects of Iy, n, p,,; and k on the size results.

The most important finding is that the empirical sizes of all statistics except 2SLS
show little or no dependence on II;; (some additional Monte Carlo results show that this
even holds true for the completely unidentified case where II; = 0). However, those for
25 LS depend crucially on the strength or weakness of identification. While for II; = 1.0,
2S5 LS has reliable size properties for many cases, with weak instruments sizes range over
the entire interval, 0% to 100%.

In general, increasing n leads to more accurate size across all statistics. This holds
especially true for those that are poor for smaller n. For example, the 25L.S statistics,
GELRpg; and Sgp severely over-reject in over-identified and strongly endogenous cases
when n = 50. Even though they still over-reject for n = 250, the rejection rates are much
closer to the 5% significance level.

It is easily shown that the rejection rates under the null hypothesis for AR and GELR,
are independent of the value of p,;,. The slight dependence of the size results in Table 1
on p,, results from the use of different samples. For all the remaining statistics except for
25LS, there does not appear to be a clear pattern for how p,,- affects their size properties.
Moreover, there is little dependence of the results on p,,;,. However, for 25LS, increasing
p.v leads to severe over-rejection when combined with over-identification, especially so
in the weak instrument case.

Increasing the number of instruments k£ usually leads to over-rejection for 2SLS,
GELRg; and Sgr. For 25LS this is especially true under weak identification and/or
strong endogeneity. All the other statistics show little dependence on k.

We now turn to a comparison of performance across statistics. The 25LS statistics
should not be used with weak instruments or in strongly endogenous over-identified sit-
uations. In all other cases, 25LS has very competitive size properties. Using 2SLSger
instead of 25 LSyoas usually slightly increases the rejection rates. The statistics GELRgy,
and Sgr severely over-reject in over-identified problems when the sample size is small.
Overall, then, the statistics LMgr, LMcyg, GELRcyg, K and LR); lead to the best size
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results. Across the 54 experiments in Table 1, the sizes of LMgr, LMcyr, GELRcyE,
K and LR, are in the intervals [3.7,6.3], [1.4,5.3], [1.4,5.3], [4.9,8.5] and [4.7,9.3], respec-
tively. While LM¢oyp and GELRqyE tend to under-reject, especially in over-identified
situations, K and LR,; usually slightly over-reject. In 26 of the 54 cases, the size of
LMpgr, comes closest to the 5% significance level across all the statistics. The corre-
sponding numbers for LMoyg, GELRcye, K and LRy, are 5, 5, 19 and 13. Based on

Design (I), LMpg; seems to have a slight advantage over the remaining statistics.

Table 2 about here

We now discuss the size results for Design (Iggr) summarized in Table 2. As most
findings are similar to those discussed for Design (I), we only describe the new features.

The statistics 2SLSgon, K and LRy, perform uniformly worse as compared to
Design (I). Tests based on these statistics severely over-reject, especially in the just-
identified case. Their performance does not improve when n increases. Rejection rates
of the three tests across the 54 combinations are in the intervals [0.9,100], [7.5,26.9] and
[7.4,26.8], respectively. In contrast, the size properties of 2SLSypr and statistics based
on GEL methods do not appear to be negatively influenced by the presence of condi-
tional heteroskedasticity. This is to be expected from our earlier theoretical discussion
of the GEL statistics which does not assume conditional homoskedasticity. Of course,
2S5 LSyt still suffers in weakly identified models and GELRg;, and Sgy, perform poorly
in over-identified situations for small n. Rejection rates of the three test statistics LMgp,
LMcyg and GELRoyg across the 54 experiments are in the intervals [3.5,6.5], [1.4,5.0]
and [1.1,5.0], respectively.

In summary, the only statistics with accurate size properties across all experiments of
Designs (I) and (Iggr) are LMg,, LMcyr and GELRoyg. Based on the above results
it seems that LMpg enjoys a slight advantage over the other two. From the 108 cases in
Tables 1 and 2 the empirical size of LMgy, is closest to the nominal 5% in 74 cases across
all statistics.

The qualitative features of the size results for Designs (II)-(IV) and (Ilggr)-(IVger)
are generally very similar to their normal counterparts of Designs (I) and (Iygr). For
this reason, we do not include additional tables for these designs. One striking difference
however occurs for 25 LS under weak identification with x?(1) (Design (IIT)) and bimodal
errors (Design (IV)). Rejection rates across these 54 combinations for 2SLSyops are in
the intervals [0.1,7.1] and [0.0,5.4], respectively. While with normal errors and weak
identification 25 LS severely over-rejects, with these error distributions it severely under-
rejects.

To summarise this size study, LMg;, LMcyg and GELRcyg have reliable size prop-
erties across all designs which appear independent of both the strength or weakness of
identification and possible conditional heteroskedasticity. 2SLS performs very poorly
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in the presence of weak instruments. Using 2S5 LSy pr instead of 25 LSy significantly
improves the size properties when there is conditional heteroskedasticity and only slightly
worsens the size properties in its absence. The statistics K and LR, perform well in
homoskedastic cases but poorly otherwise.

5.4 Power Comparison

Empirical power curves are calculated for the above statistics and DGPs (5.1) correspond-
ing to all 16 possible combinations of sample size n = 100, 250, number of instruments
k =5, 10, structural and reduced form error correlation p,;, = 0.5, 0.99 and reduced form
coefficient II; = 0.1, 1.0 for each of the error distributions of Designs (I)-(III). Except for
LRy, we report size-corrected power curves at the 5% significance level, using critical
values calculated in the size comparison above. We do so because size-correction of LR,
is not straightforward due to the conditional construction of LR,; and, as shown above,
for Designs (I)-(III), LRy, has empirical size very close to nominal at the 5% significance
level.

We use R = 1,000 replications from the DGP (5.1) with various values of the true
value 6y. The null hypothesis under test is again Hy : 8 = 0. For weak identification
(II; = 0.1), 6y takes values in the interval [—4.0,4.0] while, with strong identification
(I, = 1.0), 6y € [-0.4,0.4]. We use 1,000 realizations each of x*(1) and x?(k — 1)
random variables to simulate the critical values of LR,;. For those results reported in
the figures below, we use 10,000 replications from (5.1).

Detailed results are presented only for the statistics LMgr, K, LRy and 2SLSggr.
The statistics LMcoyg, LMgr, and LM gr display a very similar performance across almost
all scenarios. We therefore only report results for LMg;. We do not report power results
for the statistics Sgr, and Sgr because, as seen above, their size properties appear to be
quite poor for the sample sizes considered here. When k = 1, AR and K are numerically
identical. In over-identified cases, K generally performs better than AR. We therefore
do not report results for AR; see Kleibergen (2002a) for a comparison of K and AR.
Similarly, GELRcyg is numerically identical to LM, for k& = 1 but leads to a less
powerful test for k& > 1. Also EL and ET versions of GELR, have rather unreliable
size properties for the sample sizes considered here. Therefore we do not report detailed
results for GELR,,.

We firstly focus on the separate effects of 11y, n, p,,, and k on power.

With strong identification all statistics have a U-shaped power curve. With the
exception of 2S5 LSy pr, the lowest point of the power curve is usually achieved at 6y = 0.
In Designs (I) and (II), 2S LSy gr is usually biased, taking on its lowest value at a negative
0y value in the interval [-0.2,0.0]. When 6, is weakly identified, the power curves of LMgy,,
K and LR), are generally very flat across all 6 values, often only slightly exceeding the
significance level of the test. This is especially true for LMg;, and K but less so for LR,
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which is generally more powerful than the other two statistics in this situation. There is
one exception when the power of the three tests is high. In Design (I) with p,,, = 0.99,
while being flat at about 5% for positive 6, values, the power curves reach a sharp peak
of almost 100% around #y = —1.1 For negative 0, values with |fy| > 1 power quickly
falls, reaching between 20% and 50% across the different designs at 0y = —4.

In contrast to the power curves of LMpgy, K and LR);, the power curve of 2SLSygr
retains its U-shaped form for II; = 0.1. In many cases, the power curve reaches values
close to 100% when |6] is close to 4.

As to be expected the tests are more powerful when n is increased from 100 to 250.
This holds uniformly across all statistics and designs with a more pronounced power
increase in the strongly identified cases.

There does not seem to be a systematic effect due to p,,, as it varies with the spe-
cific design. For reasons explained above, the shape of the power curves can change
dramatically in Design (I) when p,,;, is increased from 0.5 to 0.99 if II; = 0.1.

In most cases, there is only little change in the power functions when k is increased
from 5 to 10. In general, if the power function changes, then power is slightly lower for
larger k.

Figures (i)-(vi) about here

We now compare the power functions across statistics. Figures (i)-(vi) display the
power curves of the four statistics for Designs (I)-(III) in cases II; = 0.1, 1.0, n = 250,
puy = 0.5 and k£ = 5. The qualitative comparison for the other parameter combinations
is very similar and we therefore focus on these representative cases.

When identification is weak, the test based on LR, is usually more powerful than
those based on LMg; and K. The power gain of using LR, is quite substantial for
negative 6y values but less so for positive 6,. However, the Wald test 25 LSygr is by far
the most powerful test in all three designs. Except for some small negative 6, values its
power curve uniformly dominates the power curves of the other tests, see Figures (ii),
(iv) and (vi). Recall though that 2SLSygr has unreliable size properties under weak
identification.

When identification is strong, L Mgy, uniformly dominates LR, and K in Designs (II)
and (III), see Figures (iii) and (v). However, LRy, and K uniformly dominate LMg, in
Design (I), see Figure (i). This result is to be expected. On the one hand, the LMpg/, test
is based on nonparametric GEL methods. On the other hand, LR,; and K are motivated
within the normal model framework. While the power gain of LMpgy is small in Design
(I11), it is substantial in Design (II). Therefore, L Mgy, should be used when errors have
thick tails.

With strong identification, the Wald test is the most powerful test for positive 6,
values. For negative 6, values, its performance varies from being most powerful in De-
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sign (III) to least powerful in Design (I). These results confirm that the Wald test is a
reasonable choice when identification is strong.

Overall, therefore, the power study does not lead to an unambiguous ranking of the
different tests considered here. Which test is most appropriate depends on the particular
error distribution and degree of identification. We find that with strong identification
and errors with thick tails or asymmetric errors, LMpg;, seems to be the best choice while
with normal errors LR,; and K appear preferable. When identification is weak, LR,
generally dominates K and LMpgy, in terms of power although as noted above the size
properties of LR); deteriorate substantially in the presence of heteroskedasticity.
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Appendix: Proofs

Proof of Eq. (2.4). Let f; := supgcg ||9:(0)||. Define K := sup;-, Eff < o0o. Let e >0
and choose a positive C' € R such that K/C < . Then

Pr{(llrgzagifz-)n_l/£ > OV < ilPr{ff >nC} < il%E(ff) <K/C <e,

where the first inequality follows from Pr(AUB) < Pr(A)+Pr(B) and the second uses the
Markov inequality. It follows that (max;<;<, f;)n~ /¢ = O,(1) and thus (maxi<;<, fi) =
0,(n'/?) by ¢ > 2. Thus (2.4) implies M(i).0

Proof of Lemma 1. ID holds trivially. By (2.2) and (2.3), ¢:(6) = (y; — Y/0)Z; =
Z(ZM + V) (0o — 0) + Zu;. Next max;<i<, Supgeg |1gi(0)]| = 0,(n'/?) is established.
An application of the Borel-Cantelli Lemma shows that for real-valued i.i.d. random
variables W; such that EW? < oo, max;<i<, |W;| = o(n'/?); see Owen (1990, Lemma 3)
for a proof. By the definition of g;(#) and the triangle inequality,

maxsup (6} < max sup((| 22118 — )| + 123, (6o — )+ 1| Zewl
By Assumption M’(iii), we can apply the just-mentioned result to each of the three
summands in the above equation which proves the result.

Next M(ii) is shown. By the i.i.d. assumption, Q(0) = lim, ., Fg;(f)g;(#)" and
continuity and boundedness in M(ii) follow immediately from M’(iii) and compactness
of ©. The same is true for the O,(1) statement in M(ii). Finally, uniform convergence
follows from the WLLN and compactness of ©.

Next M(iii) is proven. Because supgeg || D 1 (Z:Z] — Qz2)Ca(cg — )] —, 0, we
only have to deal with the empirical process

(-, 0) i= 2 S22 (B — ) + V(6o — 0) + ui) — QuaMn(By — ).

=1

Finite dimensional joint convergence follows from the CLT and M’(iii) and stochastic
equicontinuity follows from the fact that (6o — @) enters W, (-, ) linearly:

sup  [[Wn (-, 01) — W (-, 02)]|

1101 —02]|<8
= sup ||(By = By)'n V2 M(ZiZ] = Qzz) + (02 — 01)'n™ 2 3o ViZi]|,
[|61—02]|<d i=1 =1

where the last expression is bounded by dO,(1) by the CLT. Furthermore, © is compact
by assumption. The proposition in Andrews (1994, p.2251) can thus be applied which
yields the desired result.[]

[27]



The following proofs are straightforward generalizations of Guggenberger’s (2003)
proofs for the i.i.d. linear model to the more general context considered here. We require
three lemmas that are modified versions of Lemmas A1-A3 in NS for the proofs of our
theorems. These modifications are necessary because unlike NS we need to work with
weakly and strongly identified parameters and do not make an i.i.d. assumption.

Forn € Nlet ©, C ©. Let ¢, := n~"? maxi<;<, supgeo, ||g:(0)|]. Let A, := {\ € R*:
Il < n=Y2¢,*} if ¢, # 0 and A, = R* otherwise. Write “u.w.p.a.1” for “uniformly
over § € ©, w.p.a.l”.

Lemma 7 Assume maxi<i<, Supgeo, ||9:(0)|] = op(n'/?).
Then suPgee, ren,1<i<n 1N gi(0)] —p 0 and A, C Ay () ww.p.a.1.

Proof: The case ¢, = 0 is trivial and thus wlog ¢, # 0 can be assumed. By
assumption ¢, = 0,(1) and the first part of the statement follows from

sup INgi(O)] < n™'2e; V2 max sup [|g:(0)]] =
0€0L NEAR,1<i<n 1<isngeo,

n~ V2212 = (A2 0,(1),
which also immediately implies the second part.[J

GO = 0,(n"2), Auin(Q(0)) > € w.w.p.a.1 for
some € > 0, §(0) = O,(n~Y2) uniformly over 6 € ©,, and Assumption p holds.

Then A(0) € An(0) satisfying P(6, A(0)) = supycz g P(6,A) exists u.w.p.a.1, A(0) =
O,(n~Y?) and SUP) 3, (o P(Q A) = Op(n1) uniformly over 6 € ©,,.

Lemma 8 Suppose max;<;<y,

Proof: Wlog ¢, # 0 and thus A,, can be assumed compact. For § € ©,,, let \y € A,
be such that 13(9, Ag) = maxyea, 13(97)\). Such a Ay € A, exists u.w.p.a.l because
a continuous function takes on its maximum on a compact set and by Lemma 7 and
Assumption p, I/D\(é’, A) (as a function in A for fixed #) is C? on some open neighborhood
of A, u.w.p.a.1. We now show that actually ﬁ(&, X)) = SUP )3, (o) ﬁ(@, A) w.w.p.a.1l which
then proves the first part of the lemma. By a second order Taylor expansion around A = 0,
there is a Aj on the line segment joining 0 and Ay such that for some positive constants
C, and Cy

— P(6,0) < (6, \g) = —2X,5(6) + Aa[il Pa(N5:(0))g:(8)g:(8) /] g
< —2XG(0) — CL(O) e < 2Nl 1G] — Col Mol (A1)

u.w.p.a.1, where the second inequality follows as max;<;<, po(Ay g:(0)) < —1/2 u.w.p.a.1
from Lemma 7, continuity of p,(-) at zero and p, = —1. The last inequality follows
from Apin(2(6)) > ¢ > 0 uww.p.a.l. Now, (A.1) implies that (Cy/2)||Ne|| < |[g(0)]]
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uw.w.p.a.1, the latter being O,(n~/2) uniformly over § € ©,, by assumption. It follows
that \p € int(A,) w.w.p.a.1. To prove this, let € > 0. Because A\g = O,(n~1/2) uniformly
over § € O, and ¢, = 0,(1), there exists M, < co and n. € N such that Pr(||n/2)\y|| <
M) > 1 — €/2 uniformly over 6 € ©,, and Pr(c;l/2 > M) >1—¢/2 for all n > n.. Then
Pr(\g € int(A,)) = Pr(|[n/2Xg]| < cn'’?) = Pr((|[n*?Xo]| < M) A (cn™? > M) > 1—¢
for n > n, uniformly over 0 € ©,,.

Hence, the FOC for an interior maximum (8?/8/\)(9, A) = 0hold at A = \g u.w.p.a.l.
By Lemma 7, \y € T\n(e) u.w.p.a.l and thus by concavity of 13(9, A) (as a function in A
for fixed #) and convexity of _/A\n(é’) it follows that 16(6, Ag) = SUPycx, (o) ]3(9, A) u.w.p.a.l
which implies the first part of the lemma. From above Ay = O,(n~'/2) uniformly over
6 € ©,,. Thus the second and by (A.1) the third parts of the lemma follow.[d

Suppose ©1 X Oy C ©, ©; C RPi, p; + py = p. Partition 6y = (6;,,6;,)" accordingly
and assume 6y € ©,. For d; € ©; define

gg(dl) ;= arg min sup  P((d,,d,),\) € R”,

d2€0 N
2T AeAn ((ddh)")

O, o= (d,,05(dy)') € R?, 64, := (d},0),) € R”.

By “u.w.p.a.1” we denote “uniformly over d; € ©; w.p.a.1”.

A~ o~

Lemma 9 Suppose maxi<i<, SUPpeo, xo, |19:(0)]] = 0p(n/?), Amax(2(04,)) < K w.w.p.a.1
for some Kk < 0, SUDACR, (9,) ]3(6'd1, A) = O,(n™') uniformly over d; € ©1 and Assump-
tion p holds.

Then /g\(adl) = 0,(n"Y%) uniformly over d; € ©,.

Proof: Wlog §(64,) # 0 can be assumed. Define A := —n~Y25(84,)/||5(04,)||. Note
that A € A,, and thus )\ € /A\n(é’) u.w.p.a.l (see Lemma 7 with ©,, := ©; X 0). By a
second order Taylor expansion around A = 0, there is a X on the line segment joining 0
and A, such that for some positive constants C and Cy

A~ A~

PP 2) = ~2X5(00) + X3 22X 0:01.))9: 0 )P}

> 20 2([G(04,)]] — LN 6:(04,)9:(8ay)' /] A
=1
> 207 2([G(0a,)|| — Con™ (A.2)

u.w.p.a.l, where the first inequality follows from Lemma 7 which implies that min;—; _,

pQ(X,gi(gdl)) > —1.5 u.w.p.a.l. The second inequality follows by )\max(ﬁ(gdl)) <Kk <o
u.w.p.a.l. The definition of 6, implies

PB4, N) < sup Py, N) < sup P, ) =0,(nh) (A.3)
XA (Bay) AEAR(04,)
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uniformly over d; € ©;. Combining equations (A.2) and (A.3) implies n~/2|[§(04,)|| =
O,(n~!) uniformly over d; € ©,.00

Proof of Theorem 2: (i) We first show consistency of 3 By Assumption ID and
M(iii) suppee ||3(0) — (n72my,,(0) + ma(B))|| —p 0, where my(8) = 0 if and only if
B = B,. Therefore, /g\(g) = 0,(1) is a sufficient condition for consistency of B Applying
Lemma 8 to the case ©, = {00}, gives sup, .z (5, P A(QO, A) = Oy(n~1). Assumption M(ii)
implies )\max(ﬁ(Q)) < £ w.p.a.l for some £ < oo and thus Lemma 9 (applied to the case
p1 =0, O, = O) implies 9(9) O,(n _1/2)

Next we establish n'/2-consistency of ﬁ. By consistency of B and Assumption M(ii)
)\min(ﬁ@)) > ¢ w.p.a.l for some € > 0 and thus Lemma 8 for the case ©,, = {5} implies
that the FOC

n

n 3 P (Ngi(0))gi(0) =0 (A.4)

i=1
have to hold at (6,A) w.p.a.1, where A := A(d) = O,(n"/2) and A(#), for given 6 € ©,
is defined in Lemma 8. Expanding the FOC in A around 0, there exists a mean value A
between 0 and A (that may be different for each row) such that

n

0= —3(0) + > (X 9:(9)):(0)0: (B) /n]x = —G(B) — Dy,

i=1

where the matrix Qs; has been implicitly defined. Because A = O,(n"/2), Lemma 7
and Assumption p imply that sup,_; _, gco |p2(X/gz( 6)) +1] —, 0. By Assumption M(ii),
it follows that ﬁié —, Q((@', 3,)) and thus SA2~A is invertible w.p.a.1 and (Qw) t—,
Q@' By))~L. Therefore R R R

A= —(Q55)7'9(0) (A.5)
w.p.a.1. Inserting this into a second order Taylor expansion for P(6, A) (with mean value
A" as in (A.1) above) it follows that

P(0, %) = 29(0YQ5,3(0) - 5(0)055Q,505,5(0). (A.6)
The same argument as for Q 5 proves Q v —p U@, 50) ). We therefore have ﬁ(/H\, /):) =
3(0) (@, By)) + 0,(1))g (9) By the deﬁmtlon of 0,

~

nP(0,X) — nP (6, M0y >>
V2G@) (@, 55)) 1+ 0,(1)nY25(6) — n'/?G(80) (280) " + 0,(1))n/*G(6)

o 3

<

By Assumption ID, we have up to 0,(1) terms that nl/Q’g\(@) =V, (5)—|—m1n (/6’\)—|—n1/2m2(§)
and n'/2g(6y) = ¥,,(Ay). The same analysis as in the proof of Lemma A1 in SW (p.1091,

1/2

line six from the top) can now be applied to prove n'/*-consistency of B, where the
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symmetric matrix Q((@, 3,)') "' + 0,(1) plays the role of Wy (67()) in SW. Note that in
eq. (A.4) in SW, the assumption M(iii) of bounded sample paths w.p.a.1l is used. Finally,
note that A\ (Q((@', 3)) ! + 0,(1)) is bounded away from zero w.p.a.l.

(ii) By Assumptions ID and M(iii) and the CMT

n'? sup ||g(0a) — EG0as)ll = sup  [[U(0an)l| = Op(1)
(Oé,b)EAXBM (O(,b)EAXB]W

and because (for some mean-vector 3 between 3, and 3, + n~/2b that may differ across
rows)

n2EG(0a) = min(as) + n2ma(By + n72b) = man(0as) + Ma(B)b

is bounded, it follows that §(6.,) = O,(n"*/?) u.w.p.a.1, where “w.w.p.a.1” stands for
“uniformly over (a,b) € A x By w.p.a.1”. Therefore, by Lemma 8, A\(f,;) such that
POy, AOop)) = SUDP\CR, (6) P(ap, \) exists ww.p.a.1 and A(f) = O, (n~1/2) uniformly
over (a,b) € A x By. This implies that the FOC n='>>" | p;(XNg:(0))g:(6) = 0 have to
hold at A = A(04) and 6 = 0, u.w.p.a.1. Expanding the FOC and using the same steps
and notation as in part (i), it follows that A\(0,) = —(ﬁ;eab)’lﬁ(%b) and upon inserting

this into a second order Taylor expansion of ]3(9, A) we have

P(Bap Mban)) = 20(0) 5, G(6an) — G(0ar) sy oo, Q5 G(6an)

u.w.p.a.l. The matrices QXGM and ﬁ)\*gab converge to Q((a/, 3;)") uniformly over A x
By By M(iii), n'/2g(0a) = Y((o/, 35)) + mi((e, 8})") + Ma(B,)b and therefore that
NP0 o, AOap)) = Poy = P((o, 8,),b) on A x By.

By part (i) of the proof and Lemma 3.2.1 in van der Vaart and Wellner (1996, p.286)
it follows that

(a/7 n1/2(b\ _ 50)/)/ sy (Oé*/, b*/)l.
For given o € A, one can calculate arg mingeges P,y by solving the FOC for b. Writing
Q for Q((o/, By)’) and My for My(3,) the result is

b (o) = —(M3Q ™" My) " MEQ (o, By)") + ma (o, 5p)")]. (A7)

This holds in particular for o = o*. Tt follows that o = arg mingea Pop (o).

Proof of Theorem 3: Applying Lemma 8 to the case ©, = {6}, it follows that
A(0) € An(8) exists, such that P(6, A(0)) = sup,z ) P(0,A). Using the same steps and
notation as in the proof of Theorem 2 leads to

P(0, A(0)) = 25(0)Q515(0) — §(0)' Q) -0,/ 5(0),
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where by My(ii) both ﬁie and Q- converge in probability to A(6). By My(iii),
n'?G(8) —a N(mi(8), A®9)),

from which the result follows.OJ

Proof of Theorem 4: Using M(i)-(iii) and a similar argument that led to (A.5) we
have
n'2A(0) = —A(0)"'n'g(0) + 0,(1) (A.8)

and therefore the statement of the theorem involving S,(6) follows immediately from the
one for LM ,(#). Therefore, we only deal with the statistic LM,(#) given in eq. (3.7).

First, we show that the matrix D* is asymptotically independent of n'/?g(6). For
notational convenience from now on we omit the argument 6, e.g., we write g; for ¢;(0).
By a mean value expansion about 0 we have p,(N'g;) = —1 + p,(&;)giA for a mean value
¢; between 0 and \'g; and thus by (A.8) and the definition of A we have

D = _12( V20, Gip) =072 3 [05(6) (02 Gin, Gin) gi A0 2] + 0, (1)

=1

= —(n7'? ; Gia—n" ; GiagiA™ G, My(B,)) + 0,(1),

where for the last equality we use (3.6) and Assumption My(v)-(vi). By Assumption
My (v) it thus follows that

vec(D*,n'%g) = wy + Mv 4 0,(1),

where w; := vec(0, —My(3,),0) € RFPATFPETE and

—1 A AT
M = SPA AO vi=n"1? i ( vecGia ) ;
0 I, i=1 gi

M and v have dimensions (kpa + kpp + k) X (kpa + k) and (kpa + k) x 1, respectively.
By Assumption ID, My(vii) and (3.6) v —4 N(wsq, V(0)), where wy := ((vecMi4), m})
and M, are the first p4 columns of M;. Therefore

vec(D*,n?§) —4 N(wy + Muws,,

o O K
o o o

0
0 ), (A.9)
A

where U := A4 — A4A7TA’, has full column rank. Equation (A.9) proves that D* and

n'/?g are asymptotically independent.

We now derive the asymptotic distribution of LM,(#). Denote by D and g the

1/25

limiting normal distributions of D* and n'/#g, respectively, see (A.9). Below we show
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that the function h : R¥*? — RP** defined by h(D) := (D'A~'D)~Y2D' for D € R¥*?
is continuous on a set C C R*? with Pr(D € C) = 1. By the Continuous Mapping
Theorem and My(v) we have

(D¥Q D) V2DYQ ' %G —, (D'A'D)Y*D' A g, (A.10)

By the independence of D and @, the latter random variable is distributed as W + (,
where the random p-vector W is defined as

W =W(a) := (D'A"D)~"Y?D A~'m,y(6), (A.11)

¢ ~ N(0,1,) and W and ¢ are independent. Note that for § = 6y, W = 0. From (A.10)
the statement of the theorem follows.

We now prove the continuity claim for h. Note that h is continuous at each D that
has full column rank. It is therefore sufficient to show that D has full column rank a.s..
From (A.9) it follows that the last pp columns of D equal —M,(3,) which has full column
rank by assumption. Define O := {0 € R4 : 36 € R*P4, s.t. 0 = vec(0) and the k x p-
matrix (0, —Ms(,)) has linearly dependent columns}. Clearly, O is closed and therefore
Lebesgue-measurable. Furthermore, O has empty interior and thus has Lebesgue-measure
0. For the first p4 columns of D, Ep . say, it has been shown that vecﬁp . 1s normally
distributed with full rank covariance matrix W. This implies that for any measurable set
O* C R*4 with Lebesgue-measure 0, it holds that Pr(vec(D,,) € O*) = 0, in particular,
for O* = O. This proves the continuity claim for h.[]

Proof of Theorem 5. By Assumption M, (v) and ID, §(6,) = ma((coz, 8)) + 0,(1)
and by Lemmas 8 and 9 (applied to ©,, = {043,} and ©; = {a}, ©y = B, respectively)
we have §(0,) = O,(n~1/%). Assumption 1D, then implies consistency of 3. Applying
Lemma 8 to the case ©, = {f,} implies that the FOC for A must hold in the definition
of ga, see (A.4) above. Then repeating the analysis that leads to (A.6) in the proof of
Theorem 2, we have by M, (ii)

GELRS™(a) = n"?§(0.) A(0ag,) ' n"%G(0,) + 0,(1). (A.12)

The next goal is to derive the asymptotic distribution of n'/ 2/9\(5(1) Our analysis follows
NS, see their proof of Theorem 3.2. Differentiating the FOC (A.4) with respect to A yields
the matrix n= 1Y " | p, (X,gz(/e\a)) gi (5a)gl- (5(1)’ which by M,(ii) converges in probability
to —A(fa,) which is nonsir}\gular. Therefore, the implicit function Eheorem implies that
there is a neighborhood of 6, where the solution to the FOC, say A(f), is continuously

differentiable w.p.a.1. The envelope theorem then implies

n! zp (V' 9:(0.))(9:/03)' (B)A = 0 (A.13)
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w.p.a.l. Also, a mean-value expansion of (A.4) in (3, \) about (3,,0) yields (where g;(0)
inside p, is kept constant at g;(6,))

—§(0as,) 1" Y2101 (XN 0:(02)Gin(0,5)(B—Bo) + 92 (N 9:(04))9:(8,5)9:(0a)' N = 0, (A.14)

where (3, X) are mean-values on the line segment that joins (Bp,0') and (B/, /)\\/) that may
be different for each row. Combining the pg rows of (A.13) with the k rows of (A.14) we

get
( —E(gag ) ) + M ( 5%50 ) =0, (A.15)

where the (pp+£k) % (pp+k) matrix M has been implicitly defined. By M, (ii) and (iv)-(vi)
the matrix M converges in probability to M, where (writing Mg for Mos((anz, 8y)))

A — 0 My —-1_ (X H
M = (Mzg A(Qa)>and]\4 = (H/ P>

and (omitting the argument 6,4,)
5= (MygA~ Mag) ™', H := SMjzA~" and P = A~ — A~ MygS My A"
It follows that M is nonsingular w.p.a.1. Equation (A.15) implies that w.p.a.l

nH(B = 50) XY = MO0 G (6as, ) (A.16)
An expansion of §(§a) in 8 around [, and the above lead to

3(0.) = §(0us,) + Gu(0)(B — Bo) = (I — MagH)G(0p,) + 0p(n~?). (A.17)

Note that
I, — MopH = MMQB(A(QQQO)) (A.18)

which has rank k—pp. From (A.12), GELRS"(a) —q & A(0ag,) ™ M, (A(fag,))E, where
£~ N(mi(0as,), A(fag,)), which concludes the proof.[]

Proof of Theorem 6. As in the proof of Theorem 5, n'/2\(6,) = —A(8a,) " "n"/*5(6,)
+0,(1). Hence, the result for LM3**(a) thus implies the result for S5*(a).

As in the proof of Theorem 4 renormalize D* := D,(a)A, where the diagonal ps X
pa matrix A := diag(n'/?,...,n'/? 1,...,1) has first p4, diagonal elements equal n'/?
and the remaining pa, elements equal to unity. We now show that D* and n'/ 2?]\(5&)
are asymptotically independent. By a mean value expansion about 6, and Assumption

M, (vii) we have for some mean value 6 = (a, ﬁ/) (that may be different for each row)

711/21}606141 (@a) _ nlﬂvecém(@a,@o) + (81}60@,41/35) (a)nlﬂ(g — B)
= n2vecG a, (0ap,) — (BvecG 4, /0B)(0) HnV%G(8as,) + 0,(1),
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where we have used (A.16) for the last equation. My (vii) and ID,, imply (BvecG 4, /03)(9)
= (n"Y2my(0) +ma((aoz, 8))) /001 + 0,(1) —, 0 (recall that m, does not depend on
aq) and thus

n'vecG A, (6,) = n1/2vec@A1(9ago) + 0,(1). (A.19)

Proceeding exactly as in the proof of Theorem 4, using (A.17), (A.19) and Assumptions
M, (vii)-(ix) it follows that

vee(D*,n%§(6,)) = m + Mv + 0p(1), (A.20)

where M € Rpay+kpa,+k)x(kpa, +F) and

-1 AAlA_l
M. SpAl 0 ( ]kPAl 0 ) ’
0 I 0 I, — MysH

vi=nt?Y ( vecCi (Bus,) ) , m = vec(0, —(Omz/das), 0),
i=1 gi(eaﬁo)

where the arguments (aog, 3;) in Maz and (Oma/das) and 0,5, in A4, and A are omitted.

By M,(x) v is asymptotically normal with full rank covariance matrix V*(6,3,) and

thus the asymptotic covariance matrix of vec(D*,n'/?3(6,)) is given by MV (Oqp,) M.

1725(0,) the upper right k(pa, + pa,) X k-submatrix of

MV(8,3,)M" must be 0. This is clear for the kp4, x k-dimensional submatrix and we

only have to show that the kp4, X k upper right submatrix

For independence of D* and n

(—AAI + AAlAil([k — MggH)A)([k — MggH)/ (A21)

is 0. Using (A.18), the matrix in (A.21) equals —A 4, A~ Py, (A) My, (A)A which is
clearly 0. This proves the independence claim.

Now denote by D and g the limiting normal distributions of D* and n'/ 2fq\(§a), implied
by (A.20). Recall M(a) = A" My, (A), see (4.2). If the function h : R¥P41 — RPaxF
defined by h(D) := (D'M(a)D)~'/2D’ for D € R¥*P41 is continuous on a set C' C R¥*P4

with Pr(D € C) = 1, then by the Continuous Mapping Theorem
(D* M (a)D*) 2D A= 'n1?4(8,) —4 (D'M(a)D)Y*D'A~'g.
By (A.17) and (A.18) the latter variable is distributed as W, (a) + C,, where
Wa(a) :== (D'M(a)D)"Y2D' M (a)mi(fag, )- (A.22)

Therefore the theorem is proven once we have proved the continuity claim for A. For this
step of the proof we need the full rank assumption for V*(0.5,) in Ms(x). It is enough
to show that with probability 1, rank(Mig,,(A)D) = pa. Because ker My, (A) = Mag

and rank(Mas) = pp, the latter condition holds if rank(Mas, D) = p. Denote by D,
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the last p,, columns of D which by (A.20) equal —(0msy/0as). By Assumption ID,, the
matrix (Omsy/d(cd, 3'))((ape, B,y)) has rank pa, + pp and it remains to show that with
probability one, this matrix is linearly independent of the first p4, columns of D, Ep 4
say. Using (A.20) and V*(f,5,) > 0, the covariance matrix of vecD,, is easily shown
to have full column rank p4, k. An argument analogous to the last step in the proof of
Theorem 4 can then be applied to conclude the proof.[]
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Footnotes

! The paper is based on the first chapter of the first author’s dissertation, Guggen-
berger (2003) and is a revised and generalized version of Guggenberger’s job market paper
“Generalized Empirical Likelihood Tests under Partial, Weak, and Strong Identification”
which it replaces. To make the origin of the test statistics in the paper clearer, the names
K,(6) and K pL (0) previously given to the statistics, have been changed to LM,(6) and
S,(0), respectively. Guggenberger gratefully acknowledges the continuous help and sup-
port of his advisor Donald Andrews who played a prominent role in the formulation of this
paper. He also thanks Peter Phillips and Joseph Altonji for their extremely valuable com-
ments. The authors are grateful to seminar participants at Austin, Chicago, Konstanz,
Madison Wisconsin, Mannheim, Penn, Penn State, Pittsburgh, Princeton, Rochester,
Texas A&M, UCLA, USC and Yale for their helpful comments. We would also like to
thank John Chao, Guido Imbens, Michael Jansson, Frank Kleibergen, Marcelo Moreira,
Jonathan Wright and Motohiro Yogo for helpful discussions and/or correspondence and
Vadim Marner for help with the simulation section. The first author received financial
support through a Carl Arvid Anderson Prize Fellowship.

2 Corresponding author: Patrik Guggenberger, Bunche Hall 9357, Department of
Economics, U.C.L.A, Box 951477, Los Angeles, CA 90095-1477.

3 Note that A(f) is Q(#) in SW. We choose our notation for (6) for consistency with
NS.

4 Weak convergence here is defined with respect to the sup-norm on function spaces
and Euclidean norm on RF.

® For compact ©, continuous P and ¢; (i = 1,...,n), the existence of an argmin 0
may be shown. In fact, sup, 3 P(9 A), viewed as a function in 6, can be shown to be
lower semicontinuous (Is). A functlon f(z) is Is at x¢ if, for each real number ¢ such that
¢ < f(xg), there exists an open neighborhood U of z, such that ¢ < f(z) holds for all
x € U. The function f is said to be Is if it is Is at each z( of its domain. It is easily shown
that Is functions on compact sets take on their minimum. Uniqueness of 5, however, is
not implied. As a simple example, consider the i.i.d. linear IV model in (2.2) when
p = 2 and let the two components Y;;, (j = 1,2), of ¥; be independent Bernoulli random
variables. Then, for each n, the probability that Y;; = Y5 for every ¢ = 1 ,n is positive.
If Y;; =Y, for every i = 1,...,n and 9 cOisan argmin of sup)\EA ) (9 )\) then each

0 e O with 6, + 0, = /0\1 + 02 is as well. To uniquely define 9 we could, for example do
the following. From the set of all vectors § € © that minimize sup,.3 (9 A), let 0
be the vector that has smallest first component. (If that does not pin down 0 uniquely,
choose from the remaining vectors according to the second component, and so on.)

6 A choice of Q(8)~! as the weighting matrix Wr(87(8)) in SW ((2.2), p.1058), i.e
(>=r, 9i(0)gi(0) /n)~", results in the CUE which is the GEL estimator based on p(v )
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—(1 4+ v)?/2; see NS, Theorem 2.1. Hansen, Heaton, and Yaron (1996) and Pakes and
Pollard (1989) define the (GMM) CUE using a different weighting matrix (3., (g:(6) —

9(0))(g:(0) — g(#))'/n)~'. However, as shown in NS, fn.1, both versions of the CUE are
identical.

" The proof of Theorem 2 uses a second order Taylor expansion of I3p(0, A) in A about
0 in which the only impact of p asymptotically is through p; and p, which are both —1.

8 Alternatively, instead of using uniform weights in the definition of (AZ(G) one could
use empirical probabilities that are associated with each GEL estimator; see section 2 of
NS. However, preliminary Monte Carlo simulations (not reported here) showed no clear
improvement in the performance of the test statistics.

9 Strong identification of 3, appears to be a necessary assumption but one which
we would prefer to avoid. However, to the authors’ knowledge there is no meaningful
approach in the literature for subvector inference that does not require this assumption;
see, e.g., Kleibergen (2001). An outstanding research question concerns the existence or
otherwise of a subvector test statistic for ag whose limiting null distribution is similarly
independent of the strength or weakness of identification of 3.

10 To calculate GELR,(0), S,(0) and LM,(0) for EL and ET, the globally concave
maximization problem max, 5 () P(6,\) must be solved numerically. To do so we im-
plement a variant of the Newton-Raphson algorithm. We initialize the algorithm by
setting A\ equal to the zero vector. At each iteration the algorithm tries several shrinking
stepsizes in the search direction and accepts the first one that increases the function
value compared to the previous value for A. This procedure enforces an “uphill climbing”
feature of the algorithm.

"' The K-statistic is not robust to conditional heteroskedasticity. However, a version
of the K-statistic in Kleibergen (2001, equation (22)) that uses a heteroskedasticity
consistent estimator for the covariance matrix of g;(6), overcomes this drawback. For
model (5.1), the statistic is given by

K*(0) == ng(6)'(6)"'D(6) (D(6)2(8) " D(9)) ™" D(6)'(6)"4(6),
ul

where Q(6) = Q(0) — §(0)3(0), D(6) == Y1, Gy — nV(B)20)§(0), G = Y0, Gi/n
and V(0) :=>"" (G; — G)(g:(0) — §(0))' /n. Note that G; := G;(6) does not depend on
f in a linear model.

12 The simulation method works as follows. For fixed T'T = t't, simulate R values

from

LR = [@1+Qk1—TT+{<Q1+Qk1+T'> —4Q 1 T'T}H'),

where (7 and ka—l are independent realizations from x?(1) and x?(k — 1) distributions,
respectively. If k =1, let Q1 = 0. For a fixed size r, let ¢(r) be the (1 — r)-quantile of
the R realizations of LR. Reject if and only if LRy > ¢(r).
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13 Kleibergen (2002a) generates one sample for the instrument matrix Z from a
N(0,I; ® I,) distribution and then keeps Z fixed across R = 10,000 samples of the
DGP (5.1) using Design (I) with n = 100 and p,;, = .99. We simulate a new matrix Z
with each sample of the DGP (5.1). As a consequence, our results do not coincide with
those reported by Kleibergen (2002a).

To investigate the sensitivity of the results in Kleibergen (2002a) to the choice of
Z, we iterated Kleibergen’s (2002a) procedure 100 times, i.e. each time we simulated
a matrix Z of instruments that we then kept fixed across R = 1,000 samples of the
DGP (5.1). We found strong dependence of the numerical results of the Monte Carlo
experiment on Z. For example, in the case I[I; = 1, k = 1, the power of the K-statistic
to reject the hypothesis 6y = 0 when 6y = .4, varied from about 60% to 95% in the 100
experiments. For the specific Z that Kleibergen (2002a) generates, he reports power of
about 93% (see his Figure 1, p.1793).

14 The reason for this anomaly is most easily explained in the case k = 1, where
LMpg(0) = GELRcyp(0) = ng(0)Q(0)7'5(0). We have Q(0) —, E(u; + Y;0p)?, which
in Design (I) with IT; = 0.1 equals 1 + 20yp,, + (1.01)8. If p,, = .99 this expression is
minimized at around 6y = —.98 where it equals approximately .03. Therefore, this peak
is caused by KAZ(O)*1 taking on large values for 6y in the neighborhood of —1.
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TABLE 1

Size results for Design (I) at 5% significance level. Strong instrument IT; = 1

2SLS GELR,

50 1 .0 4.9 6.0 5.7 5.4 4.7 6.7 4.7 4.7 8.9
D 5.1 6.3 5.5 5.3 4.8 6.9 438 4.8 8.9

99 5.8 6.7 5.1 5.1 | 4.2 6.4 4.2 4.2 8.3

5 .0 3.9 5.3 5.9 6.2 2.8 17.8 2.6 4.2 15.1

) 2.8 7.1 2.3 5.4 2.5 175 24 4.1 14.8

99 129 142 58 5.7 |27 176 2.7 4.3* 15.7

10 .0 3.2 42 6.2 6.4 1.4 446 1.8 4.3* 27.2

D 8.5 10.0  5.6® 5.7 1.4 442 1.9 4.4* 26.3

99 284 30,5 5.8° 58" |16 454 14 3.7 25.1

100 1 .0 46 54 2.2* 5.3 4.6 2.6 4.6 4.6 6.3
D 5.0 5.8 5.4 54 5.1 6.2 5.1 5.1 6.8

99 5.3 5.9 5.0 4.9 4.5 5.6 4.5 4.5 6.3

5 .0 4.7 54 5.6 5.8 3.9 10.8 3.9 5.0* 9.3

D 54 6.1 5.1 5.3 3.6 10.3 3.5 4.7 9.5

99 92 97 5.6  5.2* |39 10.5 3.7 4.8* 9.2

10 .0 4.2 4.8 5.5  b.2* |27 21.1 2.7 4.7 14.1

) 73 8.0 0.4* 54" | 3.0 217 25 4.4 13.3

99 186 198 53 5.1 |23 214 2.6 4.5 13.3

250 1 .0 5.0 5.5 2.2 5.0° |52 5.6 5.2 5.2 5.6
D 2.1 54 2.2 4.8 5.3 5.6 5.3 2.3 2.5

99 4.9 54 5.2 5.2 5.1% 2.5  5.1* 5.1% 5.4

5> .0 4.8 5.1F 5.2 54 4.6 71 4.2 4.8 6.1

D 2.0 5.3 49 5.2 4.2 6.3 4.2 4.8 5.9

99 6.9 7.3 5.1 5.2 4.6 6.7 4.3 4.9 6.2

10 .0 46  5.0" 5.2 5.1 4.3 99 3.7 4.9 7.6

D 6.0 6.2 5.0" 4.9 3.8 98 34 4.7 7.2

99 10.7 109 5.1 438 4.0 95 35 4.8 7.7

Notes: Asterisks in each row denote the number closest to the 5% significance level.
The size results are computed using R=10,000 simulation repetitions.
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TABLE 1 (continued)

Size results for Design (I) at 5% significance level. Weak instrument IT; = .1

2SLS GELR,
n k p, HOM HET K LRy CUE EL LMcyp LMg, Sp

20 1 .0 0.1 0.3 2.7 54 4.7 6.7 4.7 4.7* 8.9
D 22 3.0 2.5 5.3 4.8 6.9 48" 4.8* 8.9

99 24.7 25.7 5.1% 5.1* |42 6.4 4.2 4.2 8.3

5> .0 0.6 1.2 6.6 7.3 2.8 17.8 3.7 5.5" 17.1

D 16,5 189 68 7.3 2.5 175 3.7 5.4* 17.0

99 965 96.6 58 6.1 2.7 176 2.8 4.3* 15.6

10 .0 09 21 85 9.2 1.4 446 3.1 6.0* 30.1

D 33.7 369 82 93 1.4 442 3.2 6.3* 30.6

99 | 100.0 100.0 6.7 74 1.6 454 2.0 4.6* 27.6

100 1 .0 0.1 0.2 5.2 5.3 4.6 5.6 4.6 4.6 6.3
) 26 3.0 5.4 54 5.1* 6.2 5.17 5.1* 6.8

99 185 19.0 5.0 49 4.5 2.6 4.5 4.5 6.3

5 .0 06 0.9 59 6.1 3.9 10.8 4.3 5.6" 10.7

D 170 183 56 6.2 3.6 10.3 4.2 5.5" 10.3

99 927 928 5.6 5.5 3.9 10.5 3.8 4.9 9.2

10 .0 1.3 2.0 6.8 6.6 2.7 21.1 34 6.2* 16.1

D 36.6 375 65 6.9 3.0 21.7 3.7 5.9* 15.7

99 99.8 99.8 55 H4* |23 214 2.5 4.5 14.0

250 1 .0 0.3 0.3 5.2  5.00 |52 5.6 5.2 5.2 5.6
D 3.2 35 0.2% 4.8% | 5.3 5.6 5.3 5.3 5.5

99 13.0 133 52 5.2 5.1 55 517 5.1* 5.4

5 .0 0.7 0.8 5.1 5.7 4.6 71 44 5.1% 6.5

) 15,5 16.0 5.2 54 4.2 6.3 4.7 5.4 6.6

99 80.1 80.3 5.1" 5.3 4.6 6.7 4.3 4.9 6.5

10 .0 1.6 1.9 5.4* 6.0 4.3 99 4.1 5.4% 8.2

D 343 349 56 5.5 |38 98 44 5.9 8.4

99 99.0 99.0 5.2 4.7 4.0 95 35 5.0* 7.6

Notes: Asterisks in each row denote the number closest to the 5% significance level.
The size results are computed using R=10,000 simulation repetitions.



TABLE 2

Size results for Design (Iygr) at 5% significance level. Strong instrument IT; = 1

2SLS GELR,

50 1 .0 247 7.6 26.8 263 |39 96 397 3.9 16.6
D 237 7.7 266 263 |39 96 3.9 3.9 16.3

99 229 83 26.0 26.1 |35 9.2 357 3.5% 16.2

5 .0 7.7 5.8 11.0 121 | 2.0 234 24 4.1 20.1

) 99 76 10.7 11.6 | 2.0 224 24 3.9% 18.9

.99 18.1  14.3 11.2 114 | 2.1 229 2.6 4.1* 20.3

10 .0 4.7 4.5 93 103 | 1.1 494 1.9 4.4 30.3

D 106 100 88 94 1.3 498 1.9 4.4* 29.2

99 321 299 88 89 1.4 50.3 1.4 3.7 27.9

100 1 .0 25.3 6.2 264 266 |4.37 7.1 4.3 4.3* 11.1
D 256 6.8 26.9 26.8 | 4.57 8.2 4.5* 4.5% 12.1

99 240 7.0 25.5 252 | 4.57 7.7 457 4.5* 11.2

5 .0 8.8 5.8 10.3 11.0 | 3.3 144 3.6 4.8 12.3

D 96 6.6 9.9 103 | 3.1 14.1 3.5 4.5% 12.5

99 141 10.1 10.5 10.1 | 3.5 13.8 3.6 4.5% 12.7

10 .0 6.3  5.07 8.3 8.1 24 25.1 2.7 4.6 16.5

) 96 8.0 8.1 8.2 2.7 25.9 2.6 4.4* 15.9

99 220 192 79 7.7 2.2 26.0 2.5 4.5% 15.8

250 1 .0 25.3 5.8 25.7 254 |47 63 47 4.7* 7.7
D 264 5.8 26.6 260 |50 63 507 2.0* 7.8

99 254 59 26.0 26.1 |4.9" 6.3 4.9* 4.9 7.5

5> .0 93 5.17 99 102 | 4.1 85 4.0 4.6 7.6

D 95 5.6 9.7 103 | 4.0 79 4.1 4.6 7.9

99 115 7.3 10.1 10.5 | 4.1 8.3 4.3 5.0 8.1

10 .0 6.8 4.8 76 7.7 3.9 12.6 3.6 5.0 9.1

D 84 6.3 75 7.5 3.5 12.0 3.3 4.7 8.8

99 13.7 109 79 74 3.7 11.7 3.5 4.8* 9.2

Notes: Asterisks in each row denote the number closest to the 5% significance level.
The size results are computed using R=10,000 simulation repetitions.



TABLE 2 (continued)

Size results for Design (Igpr) at 5% significance level. Weak instrument IT; = .1

2SLS GELR,
n k p, HOM HET K LRy CUE EL LMcyp LMg, Sgr

50 1 .0 09 04 26.8 263 |39 96 3.9 3.9* 16.6

D 4.4* 3.0 266 26.3 | 3.9 9.6 3.9 3.9 16.3

99 234 245 260 26.1 | 3.57 9.2 357 3.5% 16.2

5> .0 14 1.5 12.2 185 | 2.0 234 3.9 2.6" 22.5

D 204 18.0 127 187 |20 224 3.6 5.3 22.2

99 947 933 181 212 |21 229 28 4.9* 22.8

10 .0 1.0 24 119 171 | 1.1 494 3.1 6.1 33.5

D 36.0 358 125 17.0 | 1.3 49.8 3.2 6.5 34.2

99 | 1000 999 179 214 |14 50.3 2.3 5.7 32.2

100 1 .0 1.1 0.2 264 26.6 | 4.3 7.1 4.3 4.3* 11.1

) 6.1 2.9 269 268 |45 82 457 4.5% 12.1
99 244 185 255 252 |45% 7.7 457 4.5" 11.2

5 .0 1.4 0.9 10.7 17.0 | 3.3 14.4 4.3 5.6" 14.0
D 21.7 176 11.2 170 | 3.1 141 4.1 0.4% 14.1
99 920 89.0 15.0 181 |35 13.8 3.5 2.0* 13.7

10 .0 2.1 1.9 96 134 |24 25.1 3.3 6.0* 18.9
D 40.0 36.5 9.2 144 |27 259 3.5 6.0* 18.4
99 99.7 99.6 138 154 |22 26.0 2.7 5.3 18.5

250 1 .0 3.0 0.3 25.7 254 |47 6.3 AT 4.7 7.7
D 93 3.2 266 26.0 |5.0° 63 5.0 2.0* 7.8
99 23.2 126 26.0 26.1 |49 6.3 4.9 4.9* 7.5

5 .0 1.8 0.9 10.1 158 | 4.1 8.5 4.3 5.2% 8.1
) 208 14.8 105 154 | 4.0 79 4.3 5.0 7.9
99 81.5 76.0 123 143 |41 8.3 4.2 5.1% 8.2

10 .0 25 20 7.8 125 |39 12.6 4.1 5.5* 9.9
D 389 339 84 11.7 |35 12.0 4.57 2.8 10.3
99 98.8 983 103 104 | 3.7 11.7 34 2.0% 9.3

Notes: Asterisks in each row denote the number closest to the 5% significance level.
The size results are computed using R=10,000 simulation repetitions.
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Figure (1) Power curves, strong instrument, normal errors
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Figure (i) Power curves, weak instrument, normal errors
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Figure (i) Power curves, strong instrument, o errors
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Figure (Iv) Power curves, weak instrument, to errors
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Figure (v) Power curves, strong instrument, chi=square errors
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Figure [vi) Power curves, weak instrument, chi=square errors
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