
Guggenberger, Patrik; Smith, Richard J.

Working Paper

Generalized empirical likelihood estimamtors and tests
under partial, weaks and strong identification

cemmap working paper, No. CWP08/03

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Guggenberger, Patrik; Smith, Richard J. (2003) : Generalized empirical likelihood
estimamtors and tests under partial, weaks and strong identification, cemmap working paper, No.
CWP08/03, Centre for Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2003.0803

This Version is available at:
https://hdl.handle.net/10419/79303

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2003.0803%0A
https://hdl.handle.net/10419/79303
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 

GENERALIZED EMPIRICAL LIKELIHOOD

ESTIMATORS AND TESTS UNDER PARTIAL,
WEAK AND STRONG IDENTIFICATION

Patrik Guggenberger
Richard J. Smith

THE INSTITUTE FOR FISCAL STUDIES

DEPARTMENT OF ECONOMICS, UCL

cemmap working paper CWP08/03



Generalized Empirical Likelihood Estimators and

Tests under Partial, Weak and Strong Identification1

Patrik Guggenberger2

Department of Economics
U.C.L.A.

Richard J. Smith
CEMMAP

and
Department of Economics

University of Warwick

First Draft: June 2002
This Revision: July 2003

Abstract

The principal purpose of this paper is to describe the performance of generalized
empirical likelihood (GEL) methods for time series instrumental variable models
specified by nonlinear moment restrictions when identification may be weak. The
paper makes two main contributions. Firstly, we show that all GEL estimators are
first-order equivalent under weak identification. The GEL estimator under weak
identification is inconsistent and has a nonstandard asymptotic distribution. Sec-
ondly, the paper proposes new GEL test statistics, which have chi-square asymp-
totic null distributions independent of the strength or weakness of identification.
Consequently, unlike those for Wald and likelihood ratio statistics, the size of tests
formed from these statistics is not distorted by the strength or weakness of iden-
tification. Modified versions of the statistics are presented for tests of hypotheses
on parameter subvectors when the parameters not under test are strongly iden-
tified. Monte Carlo results for the linear instrumental variable regression model
suggest that tests based on these statistics have very good size properties even in
the presence of conditional heteroskedasticity. The tests have competitive power
properties, especially for thick tailed or asymmetric error distributions.
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1 Introduction

It is often the case that the instruments available to empirical researchers are only weakly

correlated with the endogenous variables. That is, identification is weak. In such situa-

tions it is well known that classical normal and chi-square asymptotic approximations to

the finite-sample distributions of instrumental variables estimators and statistics can be

very poor. For example, even though likelihood ratio and Wald test statistics are asymp-

totically chi-square, use of chi-square critical values can lead to extreme size distortions

in finite samples. The main purpose then of this paper is to ascertain the performance

of generalized empirical likelihood (GEL) methods [Newey and Smith (2003), henceforth

NS] for time series instrumental variable models specified by nonlinear moment restric-

tions when identification may be weak [as in Stock and Wright (2000), henceforth SW].

In particular, the paper makes two principal contributions. Firstly, the asymptotic dis-

tribution of the GEL estimator is derived for a weakly identified set-up. Secondly, the

paper proposes new, theoretically and computationally attractive GEL test statistics.

The asymptotic null distribution of these statistics is chi-square under partial [Phillips

(1989)], weak [SW] and strong identification. Thus, the size of tests formed from these

statistics is invariant to the strength or weakness of identification. Importantly, we also

provide asymptotic power results for the various statistics suggested in this paper.

GEL estimators and test statistics are alternatives to those based on generalized

method of moments (GMM); see Hansen (1982), Newey (1985) and Newey and West

(1987). GEL has received considerable attention recently due to its competitive bias

properties. For example, NS show that for many models the asymptotic bias of empirical

likelihood (EL) does not grow with the number of moment restrictions, while that of

GMM estimators grows without bound, a finding that may imply favorable properties

for GEL-based test statistics.

Similar to the findings of Phillips (1989) and SW for two stage least squares (2SLS)

and GMM, GEL estimators of weakly identified parameters have nonstandard asymptotic

distributions and are in general inconsistent. Therefore, inference based on the classical

normal approximation is inappropriate under weak identification. As in NS for strong

identification, the first-order asymptotics of the GEL estimator under weak identifica-

tion do not depend on the choice of the GEL criterion function. This finding is rather

surprising and contrasts with 2SLS and limited information maximum likelihood (LIML)

estimators whose first-order asymptotic theory differs under weak identification.

The statistics proposed here are asymptotically pivotal in contrast to classical Wald

and likelihood ratio statistics no matter the strength of identification. The first statistic

GELRρ is based on the GEL criterion function and may be thought of as a nonparametric

likelihood ratio statistic. Two further statistics generalize Kleibergen’s (2001) GMM-

based K-statistic to the GEL context. Like the K-statistic which is a quadratic form

in the first derivative vector of the GMM objective function, the second GEL statistic
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Sρ is a score-type statistic being a quadratic form in the GEL criterion score vector.

The third statistic LMρ is similar in structure to a GMM Lagrange multiplier statistic

[Newey and West (1987)] and is asymptotically equivalent to the score-type statistic

being a quadratic form in the sample moment vector. Confidence regions constructed

from the K- and GEL score-type statistics are never empty and contain the continuous

updating estimator (CUE) and GEL estimator respectively. All forms of GEL statistics

admit limiting chi-square null distributions with degrees of freedom equal to the number

of instruments or moment conditions for the first and the dimension of the parameter

vector for the second and third. In over-identified situations, therefore, tests based on the

latter statistics should be expected to have better power properties than those based on

the former. In many cases, an applied researcher is interested in inference on a parameter

subvector rather than the whole parameter vector. Modified versions of the GEL-based

statistics are therefore suggested for the subvector case when the remaining parameters

are strongly identified.

Monte Carlo simulations for the i.i.d. linear instrumental variable model with a wide

range of error distributions compare our test statistics to several others, including the K-

statistic of Kleibergen (2002a) and the similar conditional likelihood ratio statistic LRM

of Moreira (2003) which has been shown to have particularly good power properties in

this context. We find that our tests have very good size properties even in the presence of

conditional heteroskedasticity. In contrast, the K-statistic of Kleibergen (2002a) and the

LRM -statistic of Moreira (2003) are size-distorted under conditional heteroskedasticity.

Our tests have competitive power properties, especially for certain features of the error

distribution such as thick tails or asymmetry. Given the nonparametric construction of

the GEL estimator, robustness of GEL-based test statistics to different error distributions

should be expected.

The proof method and content in this paper are virtually identical to those in Guggen-

berger (2003) for the i.i.d. linear model. The proofs generalize Guggenberger (2003) to

the time series setting and the nonlinear moment restrictions. The proofs for consistency

and for the asymptotic distribution of the GEL estimator in Guggenberger (2003) adapt

those given in NS for the i.i.d. strongly identified context.

Subsequent to the i.i.d. linear version of this paper, two related papers have appeared.

Firstly, Caner (2003) derives the asymptotic distribution of the exponential tilting (ET)

estimator [see Imbens, Spady and Johnson (1998) and Kitamura and Stutzer (1997)]

under weak identification with nonlinear moment restrictions for independent observa-

tions. Caner (2003) also obtains an ET version of the K-statistic for nonlinear moment

restrictions. Secondly, Otsu (2003) considers GEL based tests under weak identification

for a time series setting and examines the GEL criterion function statistic GELRρ and

a modified version of the K-statistic based on Smith’s (2001) GEL estimator that is

efficient under strong identification.
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The remainder of the paper is organized as follows. In Section 2, the model and the

assumptions are discussed, the GEL estimator is briefly reviewed and the asymptotic dis-

tribution of the GEL estimator under weak identification is derived. Section 3 introduces

the GEL-based test statistics. We derive their asymptotic limiting distribution and show

that it is unaffected by the degree of identification. Section 4 generalizes these results to

hypotheses involving subvectors of the unknown parameter vector. Section 5 describes

the simulation results. All proofs are relegated to the Appendix.

The following notation is used in the paper. The symbols “ →d ”, “ →p ” and “ ⇒ ”

denote convergence in distribution, convergence in probability and weak convergence of

empirical processes, respectively. For the latter, see Andrews (1994) for a definition. For

convergence “almost surely” we write “a.s.” and “with probability approaching 1” is

replaced by “w.p.a.1”.

The space Ci(M) contains all functions that are i times continuously differentiable on

M . For a symmetric matrix A, “A > 0” means that A is positive definite and λmin(A) and

λmax(A) denote the smallest and largest eigenvalue of A in absolute value, respectively.

For a full column rank matrix A ∈ Rk×p and positive definite matrix K ∈ Rk×k, we denote

by PA(K) the oblique projection matrix A(A′K−1A)−1A′K−1 on the column space of A

in the metric K and define MA(K) := Ik −PA(K), where Ik is the k-dimensional identity

matrix; we abbreviate this notation to PA and MA if K = Ik. The symbol “⊗” denotes

the Kronecker product. Furthermore, vec(M) stands for the column vectorization of the

k× p matrix M , i.e. if M = (m1, ...,mp) then vec(M) = (m′
1, ...,m

′
p)

′. By || · || we denote

the Euclidean norm.

2 Estimation

This section is concerned with the asymptotic distribution of the GEL estimator when

some elements of the parameter vector of interest may be only weakly identified. In-

tuitively, then, the moment conditions which define the model may not be particularly

informative about these parameters.

2.1 Model

We consider models specified by a finite number of moment restrictions. Let {zi : i =

1, ..., n} be Rl-valued data and, for each n ∈ N , gn : G×Θ → Rk a given function, where

G ⊂ Rl and Θ ⊂ Rp denotes the parameter space. The model has a true parameter θ0

for which the moment condition

Egn(zi, θ0) = 0 (2.1)

is satisfied. For gn(zi, θ) we will usually write gi(θ).
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Example 1: (I.i.d. Linear Instrumental Variable (IV) Regression.) Guggenberger

(2003, first chapter) discusses in detail GEL estimation and testing for this model under

weak identification. The structural form (SF) equation is given by

y = Y θ0 + u, (2.2)

and the reduced form (RF) for Y by

Y = ZΠ + V, (2.3)

where y, u ∈ Rn, Y, V ∈ Rn×p, Z ∈ Rn×k and Π ∈ Rk×p. The matrix Y may contain

both exogenous and endogenous variables, Y = (X, W ) say, where X ∈ Rn×pX and

W ∈ Rn×pW denote the respective observation matrices of exogenous and endogenous

variables. The variables Z = (X, ZW ) constitute a set of instruments for the endogenous

variables W . The first pX columns of Π equal the first pX columns of Ik and the first

pX columns of V are 0. Denote by Yi, Vi, Zi, ... (i = 1, ..., n) the ith row of the matrix

Y, V, Z, ... written as a column vector. Assuming the instruments and the structural

error are uncorrelated, EuiZi = 0, it follows that Egi(θ0) = 0, where for each i = 1, ..., n,

gi(θ) := (yi − Y ′
i θ)Zi.

Example 2: (Conditional Moment Restrictions.) As in SW the moment conditions

may result from conditional moment restrictions. Assume E[h(Yi, θ0)|Fi] = 0, where

h : H × Θ → Rk1 , H ⊂ Rk2 and Fi is the information set at time i. Let Zi be a

k3-dimensional vector of instruments contained in Fi. If gi(θ) := h(Yi, θ) ⊗ Zi, then

Egi(θ0) = 0 follows by taking iterated expectations. In (2.1), k = k1k3 and l = k2k3.

2.2 Assumptions

This section is concerned with the asymptotic distribution of the GEL estimator for θ

when some components of θ0 = (α′
0, β

′
0)

′, α0 say, α0 ∈ A, A ⊂ RpA , are only weakly

identified. Intuitively, this means that the moment condition (2.1) is not very informa-

tive about α0. For parameter vectors θ = (α′, β′
0)

′, Egn(zi, θ) may be very close to zero,

not only for α close to α0 but also when α is far from α0. In that case, the restriction

Egn(zi, θ0) = 0 is not very helpful for making inference on α0. Assumption ID below

provides a theoretical asymptotic framework for this phenomenon, which is taken from

Assumption C in SW (p.1061). We refer the reader to SW which provides substantial

detailed motivation for this assumption and an explanation of why it models α0 as weakly

and β0 as strongly identified.

To describe the moment and distributional assumptions, we require some additional

notation.
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ĝ(θ) : = n−1
n∑

i=1

gi(θ), Ĝ(θ) := n−1
n∑

i=1

Gi(θ),

Ψn(θ) : = n1/2(ĝ(θ) − Eĝ(θ)),

Ω̂(θ) : = n−1
n∑

i=1

gi(θ)gi(θ)
′,

where, if defined, Gi(θ) := (∂gi/∂θ)(θ) ∈ Rk×p. For notational convenience, a subscript

n has been omitted in certain expressions. Define the k × k matrices3

Ω(θ) : = lim
n→∞

En−1
n∑

i=1

gi(θ)gi(θ)
′,

∆(θ1, θ2) : = lim
n→∞

EΨn(θ1)Ψn(θ2)
′ and ∆(θ) := ∆(θ, θ).

Let θ = (α′, β′)′, where α ∈ A, A ⊂ RpA , β ∈ B, B ⊂ RpB and pA + pB = p. Also let

N ⊂ B denote an open neighborhood β0.

Assumption Θ: The true parameter θ0 = (α′
0, β

′
0)

′ is in the interior of the compact

space Θ = A × B.

Assumption ID: (i) Eĝ(θ) = n−1/2m1n(θ) + m2(β), where m1n, m1 : Θ → Rk

and m2 : B → Rk are continuous functions such that m1n(θ) → m1(θ) uniformly on

Θ, m1(θ0) = 0 and m2(β) = 0 if and only if β = β0; (ii) m2 ∈ C1(N ); (iii) Let

M2(β) := (∂m2/∂β)(β) ∈ Rk×pB . M2(β0) has full column rank pB.

Next we detail the necessary moment assumptions.4

Assumption M: (i) max1≤i≤n supθ∈Θ ||gi(θ)|| = op(n
1/2); (ii) Ω(·) is in C0(A×{β0})

and bounded on Θ, Ω(θ) is nonsingular for all θ ∈ A × {β0}, supθ∈Θ ||Ω̂(θ) − Ω(θ)|| =

op(1), supθ∈A×N n−1
∑n

i=1 ||gi(θ)gi(θ)
′|| = Op(1); (iii) Ψn ⇒ Ψ, where Ψ(θ) is a Gaus-

sian stochastic process on Θ with mean zero and covariance function EΨ(θ1)Ψ(θ2)
′ =

∆(θ1, θ2). For each ε > 0 there exists a Mε < ∞ such that Pr(supθ∈A×N ||Ψ(θ)|| ≤ Mε) >

1 − ε.

M(i) adapts Assumption 1(d) of NS, E supβ∈B ||gi(β)||ξ < ∞ for some ξ > 2, from

the i.i.d. setting with strong identification (pA = 0 and thus θ = β and Θ = B) to the

weakly identified set-up considered here. A sufficient condition for M(i) in the time series

context and under ID is given by

sup
i≥1

E sup
θ∈Θ

||gi(θ)||
ξ < ∞ for some ξ > 2. (2.4)

[5]



Indeed, a simple application of the Markov inequality shows that (2.4) implies max1≤i≤n

supθ∈Θ ||gi(θ)|| = Op(n
1/ξ) = op(n

1/2). See the Appendix for a proof. M(ii), which adapts

Assumption 1(e) of NS to the weakly identified set-up, ensures that Ω̂(θ) is nonsingular for

θ ∈ A×N . M(iii) is essentially the “high level” Assumption B of SW (p.1059) that states

that Ψn obeys a functional central limit theorem. In Assumption B’, SW provide primi-

tive sufficient conditions for their Assumption B that can also be found in Andrews (1994).

Note that the definition of weak convergence [Andrews (1994, p.2250)] and M(iii) imply

that supθ∈Θ ||Ψn(θ)|| →d supθ∈Θ ||Ψ(θ)|| and, thus, also that supθ∈Θ ||ĝ(θ)−Eĝ(θ)|| →p 0.

In the proof of Theorem 2 below, we require supθ∈A×N ||Ψ(θ)|| bounded in probability.

It is interesting to note that for i.i.d. data, an application of the Borel-Cantelli Lemma

shows that M(i) is implied by Assumption 1(d) of NS even if ξ = 2; see Owen (1990,

Lemma 3) for a proof. Hence, using Lemmas 7-9 given below, their Assumption 1(d) can

be weakened to ξ ≥ 2 for the consistency and asymptotic normality of the GEL estimator

under strong identification with i.i.d. data (see their Theorems 3.1 and 3.2). Therefore,

for i.i.d. data, identical assumptions guarantee consistency and asymptotic normality for

both GEL and two step efficient GMM estimators [Hansen (1982)].

Example 1 (cont.): See Guggenberger (2003). For the linear IV model (2.2) As-

sumption ID can be expressed as

Assumption ID’: Π = Πn = (ΠAn, ΠB) ∈ Rk×(pA+pB), where pA + pB = p. For a

fixed matrix CA ∈ Rk×pA , ΠAn = n−1/2CA and ΠB has full column rank.

Under Assumption ID’, i.i.d. data and instrument exogeneity it follows that

Eĝ(θ) = Egi(θ) = E(ZiZ
′
i)(n

−1/2CA, ΠB)(θ0 − θ),

which implies that in the notation of ID(i), m1n(θ) = m1(θ) = E(ZiZ
′
i)CA(α0 −α) and

m2(β) = E(ZiZ
′
i)ΠB(β0 − β). Also, note that Assumption ID’ includes the partially

identified model of Phillips (1989). In particular, choosing pA and setting CA = 0, one

obtains a model in which Π may have any desired (less than full) rank.

We now give simple sufficient conditions that imply Assumption M. Let U := (u, V ).

Assumption M’: (i) {(Ui, Zi) : i ≥ 1} are i.i.d.; (ii) EZiU
′
i = 0; (iii) E||Zi||

4 < ∞,

QZZ := E(ZiZ
′
i) > 0, Eu2

i ZiZ
′
i, EuiVijZiZ

′
i and EVijVikZiZ

′
i exist and are finite for j, k =

1, ..., p, where Vij denotes the jth component of the vector Vi; (iv) Ω(θ) is nonsingular

for all θ ∈ A × {β0}.

Assumptions M’(i) and (ii) state that errors and exogenous variables are jointly i.i.d.

and the standard instrument exogeneity assumption is satisfied whereas M’(iii) and (iv)

are technical conditions.

The following lemma shows that Assumption M’ in the linear model implies Assump-

tion M.
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Lemma 1 Suppose that Assumptions ID’, M’ and Θ hold in the linear IV model (2.2).

Then Assumption ID and M hold.

Therefore the various technical conditions of Assumption M reduce to very simple

moment conditions in the linear model. Note that M’ implies E[supθ∈Θ ||gi(θ)||
ξ] < ∞

for ξ = 2. However, we do not need this assumption for ξ > 2 to prove n1/2-consistency

of the GEL estimator of the strongly identified parameters.

Assumption HOM: (Conditional Homoskedasticity) E(UiU
′
i |Zi) = ΣU > 0.

HOM, which is used in Staiger and Stock (1997), is sufficient for Assumption M’(iv).

That is, Assumptions M’(i)-(iii) and HOM imply M’(iv) under ID’. This follows from

Ω(θ) = QZZv′
αΣuVA

vα for θ ∈ A × {β0}, where v′
α := (1, (α0 − α)′) and ΣuVA

is the

(1 + pA)× (1 + pA) upper left submatrix of ΣU . However, M’ is more general than HOM

because it allows for conditional heteroskedasticity. For example, ui = ||Zi||ζ i, where

ζ i ∼ N(0, 1) is independent of Zi ∼ N(0, Ik), is compatible with M’.

2.3 The GEL Estimator

This subsection provides a formal definition of the GEL estimator of θ0.

Let ρ be a real-valued function Q → R, where Q is an open interval of the real line

that contains 0 and Λ̂n(θ) := {λ ∈ Rk : λ′gi(θ) ∈ Q for i = 1, ..., n}. If defined, let

ρj(v) := (∂jρ/∂vj)(v) and ρj := ρj(0) for nonnegative integers j.

The GEL estimator is the solution to a saddle point problem5

θ̂ρ := arg min
θ∈Θ

sup
λ∈Λ̂n(θ)

P̂ρ(θ, λ), (2.5)

where

P̂ρ(θ, λ) := (2
n∑

i=1

ρ(λ′gi(θ))/n) − 2ρ0. (2.6)

Assumption ρ: (i) ρ is concave on Q; (ii) ρ is C2 in a neighborhood of 0 and

ρ1 = ρ2 = −1.

The definition of the GEL estimator θ̂ρ is adopted from NS. We slightly modify their

definition of P̂ρ(θ, λ) by recentering and rescaling which simplifies the presentation. We

usually write P̂ (θ, λ) for P̂ρ(θ, λ) and θ̂ for θ̂ρ.

The most popular GEL estimators are the continuous updating estimator (CUE),

empirical likelihood (EL) and exponential tilting (ET) which correspond to ρ(v) = −(1+

v)2/2, ρ(v) = ln(1−v) and ρ(v) = − exp v, respectively. The EL estimator was introduced

by Imbens (1997), Owen (1988, 1990) and Qin and Lawless (1994) and the ET estimator
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by Imbens, Spady and Johnson (1998) and Kitamura and Stutzer (1997). For a recent

survey of GEL methods see Imbens (2002).6

Baggerly (1998) introduces a class of estimators based on the Cressie-Read discrep-

ancy measure, which are also members of the GEL class. Its leading members are also

CUE, EL and ET which are thus also minimum discrepancy (MD) estimators. For ex-

ample, NS show that under certain conditions including {zi : i ≥ 1} i.i.d.

θ̂EL = arg max
θ∈Θ

ln R(θ), (2.7)

where

R(θ) := sup
w1,...,wn

{
n∏

i=1

wi

(1/n)
|

n∑
i=1

wigi(θ) = 0, wi > 0,
n∑

i=1

wi = 1}. (2.8)

The criterion function R(θ) can be interpreted as a nonparametric likelihood ratio. For

fixed θ ∈ Θ and given gi(θ), (i = 1, ..., n), the numerator of R(θ) is the maximal proba-

bility of observing the given sample gi(θ), (i = 1, ..., n), over all discrete probability dis-

tributions (w1, ..., wn) on the sample such that the sample analogue
∑n

i=1 wigi(θ) = 0 of

the moment condition (2.1) is satisfied. The denominator (1/n)n equals the unrestricted

maximal probability. While the MD formulation is more intuitive, it is impractical for

computational purposes.

2.4 First-Order Equivalence

This subsection obtains the asymptotic distribution of the GEL estimator θ̂ρ under As-

sumption ID. Theorem 2 shows that the weakly identified parameters of θ0 are estimated

inconsistently and their GEL estimator has a nonstandard limiting distribution while

the GEL estimator of the strongly identified parameters is n1/2-consistent but no longer

asymptotically normal. Analogous results are available for GMM; see SW, Theorem 1.

The rather surprising finding is that the first-order asymptotic theory under ID is iden-

tical for all GEL estimators θ̂ρ, as long as ρ satisfies Assumption ρ.7 This is in contrast

to the asymptotic theory for k-class estimators under weak identification. As shown in

Staiger and Stock (1997, Theorem 1), the nonstandard asymptotic distribution of the

k-class estimator depends on κ defined by n(k − 1) →d κ. Therefore, LIML and 2SLS

are not first-order equivalent under weak identification.

If defined, let λ(θ) be such that P̂ (θ, λ(θ)) = maxλ∈Λ̂n(θ) P̂ (θ, λ). For θ = (α′, β′)′ ∈ Θ

and b ∈ RpB let

P (θ, b) := [Ψ(θ) + m1(θ) + M2(β)b]′Ω(θ)−1[Ψ(θ) + m1(θ) + M2(β)b].

The next theorem establishes the asymptotic behavior of θ̂ = (α̂′, β̂
′
)′ under Assumption

ID.

[8]



Theorem 2 Suppose Assumptions Θ, ID, M and ρ are satisfied.

(i) α̂ is in general inconsistent and

n1/2(β̂ − β0) = Op(1).

(ii) The following more precise result holds. For any fixed M > 0 let BM := {b ∈

RpB : ||b|| ≤ M} and define θαb := (α′, β′
0 + n−1/2b′)′. Then, for (α, b) ∈ A × BM ,

nP̂ (θαb, λ(θαb)) ⇒ Pαb := P ((α′, β′
0)

′, b). Assume there exists a random element (α∗, b∗) ∈

A × RpB such that a.s. Pα∗b∗ < inf(α,b)∈(A×RpB )\G Pαb for every open set G that contains

(α∗, β∗). Then

(α̂, n1/2(β̂ − β0)) →d (α∗, b∗).

Remark 1: The proof of Theorem 2 also provides a formula (A.7) for b∗(α) :=

arg minb∈RpB Pαβ for given α ∈ A. In particular, if pA = 0, where all parameters are

strongly identified, (A.7) shows that

n1/2(β̂ − β0) →d N(0, V (β0)),

where

V (β0) := (M ′
2Ω

−1M2)
−1M ′

2Ω
−1∆Ω−1M2(M

′
2Ω

−1M2)
−1,

M2 = M2(β0), Ω = Ω(β0) and ∆ = ∆(β0). The matrix V (β0) simplifies to (M ′
2Ω

−1M2)
−1

in the i.i.d. case and thus the above formula coincides with Theorem 3.2 of NS. However,

the asymptotic variance matrix of n1/2(β̂ − β0) in the time series context is in general

different from that in NS and the estimator β̂ as defined above would thus be inefficient.

Block methods as in Kitamura (1997) or kernel-smoothing methods as in Smith (2001)

can be used for efficient GEL estimation in a time series context with strong identification.

In the case pA > 0, the fact that the asymptotic distribution of the strongly identified pa-

rameter estimates is in general nonnormal is a consequence of the inconsistent estimation

of α0.

Remark 2: Given the nonnormal asymptotic distribution of the GMM and GEL

parameter estimates under weak identification (established in Theorem 1 in SW and

Theorem 2 above, respectively) the asymptotic distribution of test statistics based on

these estimators, such as t- or Wald statistics, will also be nonstandard and non-pivotal.

Furthermore, these limiting distributions depend on quantities that cannot be consis-

tently estimated [see Staiger and Stock (1997, p.564)] which militates against their use

for the construction of test statistics or confidence regions for θ0. The next section intro-

duces alternative approaches that overcome these difficulties.

Example 1 (cont.): The specialization of Theorem 2 to the i.i.d. linear IV model

of Example 1 was derived in Guggenberger (2003).
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3 Test Statistics

This section proposes several statistics to test the simple hypothesis H0 : θ = θ0 versus

H1 : θ 6= θ0. We establish that they are asymptotically pivotal quantities and have limit-

ing chi-square null distributions under Assumption ID. Therefore these statistics lead to

tests whose size properties are unaffected by the strength or weakness of identification.

For the general time series set-up considered here there are at least two other statistics

that share this property, namely Anderson and Rubin’s (1949) AR- and Kleibergen’s

(2001, 2002a) K-statistic. The first statistic GELRρ(θ) that we describe may be inter-

preted as a likelihood ratio statistic. It has an asymptotic χ2(k) null distribution and

is first-order equivalent to the AR-statistic. The second set of statistics in this section,

Sρ(θ) and LMρ(θ), are based on the FOC of P̂ρ(θ, λ) with respect to θ. Each has a lim-

iting χ2(p) null distribution and is first-order equivalent to the K-statistic. For a recent

survey on robust inference methods with weak identification, see Stock, Wright and Yogo

(2002).

To motivate the first statistic, consider an i.i.d. setting. In this case, GELREL(θ)

may be thought of in terms of the empirical likelihood ratio statistic R(θ) defined in

(2.8) above. Setting up the Lagrangian for the restricted maximization problem in the

definition (2.7) of the MD estimator and solving the FOC, one can eliminate the empirical

probabilities (w1, ..., wn). It can then be shown that −2 ln R(θ0) = nP̂EL(θ0, λ(θ0)), where

λ(θ0) is the vector of Lagrange multipliers associated with the k moment restrictions∑n
i=1 wigi(θ0) = 0. Therefore, the renormalized criterion function of the EL estimator

has an interpretation as −2 times the logarithm of the likelihood ratio statistic R(θ0).

Generalizing from the i.i.d. set-up and EL to the time series set-up and arbitrary ρ,

the first statistic we consider is the renormalized GEL criterion function (2.6)

GELRρ(θ) := nP̂ρ(θ, λ(θ)). (3.1)

Following Kleibergen’s (2001) suggestion of constructing a statistic from the FOC

with respect to θ but in the GMM framework, we construct a test statistic based on the

GEL FOC for θ̂. If the minimum of the objective function P̂ (θ, λ(θ)) is obtained in the

interior of Θ, the score vector with respect to θ must equal 0 at θ̂, i.e.

λ(θ̂)′
n∑

i=1

ρ1(λ(θ̂)′gi(θ̂))Gi(θ̂)/n = 0′. (3.2)

For θ ∈ Θ, define the k × p matrix

Dρ(θ) :=
n∑

i=1

ρ1(λ(θ)′gi(θ))Gi(θ)/n. (3.3)

Thus, (3.2) may be written as λ(θ̂)′Dρ(θ̂) = 0′. The test statistic is therefore given as a

quadratic form in the score vector λ(θ)′Dρ(θ) evaluated at the hypothesized parameter
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vector θ

Sρ(θ) := nλ(θ)′Dρ(θ)
(
Dρ(θ)

′Ω̃(θ)−1Dρ(θ)
)−1

Dρ(θ)
′λ(θ), (3.4)

where ρ is any function satisfying Assumption ρ and Ω̃(θ) is a consistent estimator of

∆(θ). We also consider the following variant of Sρ(θ)

LMρ(θ) := nĝ(θ)′Ω̃(θ)−1Dρ(θ)
(
Dρ(θ)

′Ω̃(θ)−1Dρ(θ)
)−1

Dρ(θ)
′Ω̃(θ)−1ĝ(θ) (3.5)

that substitutes −∆(θ)−1ĝ(θ) for λ(θ) in Sρ(θ); see (A.5) in the Appendix, where it

is shown that n1/2λ(θ) = −∆(θ)−1n1/2ĝ(θ) + op(1). The statistic LMρ(θ) is similar to

a GMM Lagrange multiplier statistic given in Newey and West (1987). To use these

statistics for hypothesis tests or for the construction of confidence regions one needs a

consistent estimator Ω̃(θ) of ∆(θ). Under assumptions given below, the sample average

Ω̂(θ) may be used for Ω̃(θ).8 Note that when ρ(v) = −(1+v)2/2, the GEL CUE criterion,

the GEL statistics Sρ(θ) (3.4) and LMρ(θ) (3.5) are then identical. As noted above the

GEL and GMM CUE estimator are numerically identical. However, in general this does

not imply that LMCUE(θ) and Kleibergen’s (2001) K-statistic are identical. The reason

is that in general the first derivative of the GMM and GEL CUE objective functions are

not equal.

Some intuition for these test statistics is provided under strong identification. Under

strong identification, NS show consistency of θ̂. Therefore, if the FOC (3.2) hold at θ̂,

then, at least asymptotically, they also hold at the true value θ0. The statistic Sρ(θ)

can then be interpreted as a quadratic form whose criterion is expected to be small at

the true value θ0. If, however, all parameters are weakly identified this argument is no

longer valid. From Theorem 2, θ̂ is no longer consistent for θ0. Therefore, although

the FOC hold at θ̂, this does not imply automatically that they also approximately

hold at the true value θ0. However, it can be shown that under weak identification the

FOC λ(θ)′Dρ(θ) = 0′ not only hold at θ̂ w.p.a.1 but are satisfied uniformly over θ ∈ Θ

w.p.a.1. Thus, under weak identification the FOC do not pin down the true value θ0.

Consequently, the power properties of hypothesis tests for θ0 based on the statistics Sρ(θ)

or LMρ(θ) should be expected to be better under strong rather than weak identification.

Size properties however are not affected by the strength or weakness of identification.

This is corroborated by the Monte Carlo simulations reported below and theoretically by

Theorem 4.

We now turn to consider the asymptotic distribution of GELRρ(θ) evaluated at a

vector θ = (α′, β′
0)

′, thus allowing for a fixed alternative in the weakly identified compo-

nents. We need the following local version of Assumption M.

Assumption Mθ: Let θ = (α′, β′
0)

′ ∈ A × {β0}. Suppose (i) max1≤i≤n ||gi(θ)|| =

op(n
1/2); (ii) ∆(θ) > 0, Ω̂(θ) →p ∆(θ), n−1

∑n
i=1 ||gi(θ)gi(θ)

′|| = Op(1); (iii) Ψn(θ) →d
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Ψ(θ), where Ψ(θ) ≡ N(0, ∆(θ)).

Note that for θ = (α′, β′
0)

′ Mθ(iii) and ID imply that ĝ(θ) →p 0. Thus, under Mθ(iii)

and ID the assumption Ω̂(θ) →p ∆(θ) is equivalent to the assumption n−1
∑n

i=1(gi(θ) −

ĝ(θ))(gi(θ) − ĝ(θ))′ →p ∆(θ) for θ = (α′, β′
0)

′, which is Assumption D’ in SW. Without

assuming Ω̂(θ) →p ∆(θ), a limiting chi-square distribution would no longer obtain in the

following theorems. The problem arises because the GEL estimator as defined in (2.5) is

not efficient in the time series set-up considered here.

Theorem 3 Suppose ID, Mθ(i)-(iii) and ρ hold for θ = (α′, β′
0)

′. Then

GELRρ(θ) →d χ2(k, δ),

where the noncentrality parameter δ = m1(θ)
′∆(θ)−1m1(θ). In particular,

GELRρ(θ0) →d χ2(k).

To describe the asymptotic distribution of the statistics LMρ(θ0) and Sρ(θ0), we need

the following additional assumptions. Write Gi(θ) = (GiA(θ), GiB(θ)), where the matrices

GiA(θ) and GiB(θ) are of column dimension pA and pB, respectively.

Let θ = (α′, β′
0)

′ ∈ A × {β0} and M ⊂ Θ an open neighborhood of θ.

Assumption Mθ: (cont.) (iv) ĝ(·) is differentiable at θ a.s. for each θ ∈ M, ĝ(θ)

is integrable for all θ ∈ M, supθ∈M ||Ĝ(θ)|| is integrable, m1n ∈ C1(Θ) and M1n(·) :=

(∂m1n/∂θ)(·) converges uniformly on Θ to some function; (v) n−1
∑n

i=1(vecGiA(θ))g′
i(θ) →p

∆A(θ) (∆A(θ) is defined in (vii)), Ω̃(θ) →p ∆(θ), ĜB(θ) := n−1
∑n

i=1 GiB(θ) →p EĜB(θ);

(vi) n−1
∑n

i=1 ||GiA(θ)||||gi(θ)|| = Op(1), n−3/2
∑n

i=1 ||GiB(θ)||||gi(θ)|| = op(1); (vii)

n−1/2
∑n

i=1 ((vec(GiA(θ) − EGiA(θ)))′, (gi(θ) − Egi(θ))
′)′ →d N(0, V (θ)), where V (θ) :=

limn→∞ var(n−1/2
∑n

i=1((vecGiA(θ))′, gi(θ)
′)′) ∈ Rk(pA+1)×k(pA+1) has full column rank.

In Mθ(vii) write

V (θ) =

(
∆AA ∆A

∆′
A ∆

)
(θ), where ∆AA(θ) ∈ RpAk×pAk.

Assumption Mθ(iv) allows the interchange of the order of integration and differenti-

ation in Assumption ID, i.e. (∂Eĝ/∂θ)(θ) = EĜ(θ). It also guarantees that M1n(θ) →

M1(θ) := (∂m1/∂θ)(θ). Assumption ID and Mθ thus imply that

EĜ(θ) = n−1/2M1n(θ) + (0, M2(β0)) → (0, M2(β0)), (3.6)

where by ID the limit matrix (0, M2(β0)) is singular of rank pB. Assumption (v) is com-

parable to (ii), where Ω̂(θ) →p ∆(θ) was assumed and extends (ii) to cross-product terms
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in vecGiA(θ) and gi(θ). Assumption (vi) contains additional weak technical conditions

that guarantee that certain expressions in the proof of Theorem 4 are asymptotically

negligible.

The key assumption is Mθ(vii) which is a stronger version of Mθ(iii) and states that a

CLT theorem holds simultaneously for the centered gi(θ) and part of the derivative ma-

trix, namely vecGiA(θ). Write LMρ(θ) = nĝ′Ω̃−1D(D′Ω̃−1D)−1D′Ω̃−1ĝ, where D = Dρ(θ)

and Ω̃ = Ω̃(θ). As shown in the proof of Theorem 4, for θ = (α′, β′
0)

′, Assumptions ID,

ρ, Mθ(i)-(vi) and ĜA(θ) := n−1
∑n

i=1 GiA(θ) →p EĜA(θ) imply that D →p −(0, M2(β0)).

Therefore, the probability limit of D′Ω̃−1D is not invertible without renormalisation.

Define D∗ := DΛ where the p × p diagonal matrix Λ := diag(n1/2, ..., n1/2, 1, ..., 1) with

first pA diagonal elements equal to n1/2 and the remainder equal to unity. Hence,

LMρ(θ) = nĝ′Ω̃−1D∗(D∗′Ω̃−1D∗)−1D∗′Ω̃−1ĝ. (3.7)

In the proof of Theorem 4 we show that under Assumptions ID, ρ and Mθ(i)-(vi)

vecD∗ = vec(0,−M2(β0)) +

(
−IkpA

∆A(θ)∆(θ)−1

0 0

)
n−1/2

n∑
i=1

(
vecGiA(θ)

gi(θ)

)
+ op(1).

The additional Mθ(vii), in particular the full rank assumption on V (θ), ensures that

D∗′Ω̃−1D∗ has full rank w.p.a.1. Assumption Mθ(vii) is closely related to Kleibergen’s

(2001) Assumption 1. Unlike Kleibergen (2001), however, we assume ID which, as just

shown, requires that we are specific about which part of the derivative matrix Gi(θ)

together with gi(θ) satisfies a CLT with full rank covariance matrix, namely GiA(θ)

which corresponds to the weakly identified parameters. Assumption ID possesses the

advantage that we can obtain the asymptotic distribution of the test statistics under

fixed alternatives of the form θ = (α′, β′
0)

′ and therefore derive asymptotic power results.

Theorem 4 Suppose ID, Mθ (i)-(vii) and ρ hold for θ = (α′, β′
0)

′. Then,

Sρ(θ), LMρ(θ) →d (W (α) + ζ)′(W (α) + ζ),

where the random p-vector W (α) is defined in (A.11) of the Appendix, ζ ∼ N(0, Ip) and

W and ζ are independent. We have W (α0) ≡ 0 and therefore

Sρ(θ0), LMρ(θ0) →d χ2(p).

Remark 1: The proof of Theorem 4 crucially hinges on the fact that n1/2λ(θ0) and

vecDρ(θ0) (suitably normalized) from the FOC (3.2) are asymptotically jointly normally

distributed and, moreover, are asymptotically independent. A similar result is critical

also for Kleibergen’s (2001) K-statistic which generalizes Brown and Newey’s (1998)

analysis of efficient GMM moment estimation to the weakly identified set-up. Therefore,
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by using an appropriate weighting matrix in the quadratic forms (3.4) and (3.5) that

define Sρ(θ0) and LMρ(θ0), respectively, we immediately obtain the limiting χ2(p) null

distribution of Theorem 4.

Remark 2: Theorems 3 and 4 provide a straightforward method to construct con-

fidence regions or hypothesis tests on θ0. For example, a critical region for a test of

the hypothesis H0 : θ = θ0 versus H1 : θ 6= θ0 at significance level r is given by

{GELRρ(θ0) ≥ χ2
r(k)}, where χ2

r(k) denotes the (1 − r)-critical value from the χ2(k)

distribution. A (1−r)-confidence region for θ0 is obtained by inverting the just-described

test, i.e. {θ ∈ Θ : GELRρ(θ) ≤ χ2
r(k)}. Confidence regions and hypothesis tests based

on Sρ(θ) and LMρ(θ) may be constructed in a similar fashion.

Remark 3: Theorems 3 and 4 demonstrate that GELRρ(θ0), Sρ(θ0) and LMρ(θ0)

are asymptotically pivotal statistics under weak and strong identification. Therefore, the

size of tests based on these statistics should not vary much with the strength or weakness

of identification in finite samples. However, they also show that under weak identification

hypothesis tests based on these statistics are inconsistent. For example, the noncentrality

parameter δ does not diverge for increasing sample size and therefore the rejection rate

under the alternative does not converge to 1. This is intuitive as when identification is

weak one cannot learn much about α0 from the data.

Remark 4: A drawback of GELRρ(θ0) is that its limiting null distribution has de-

grees of freedom equal to k, the number of moment conditions rather than the dimension

of the parameter vector. In general, this has a negative impact on the power properties

of hypothesis tests based on GELRρ(θ0) in over-identified situations. On the other hand,

the limiting null distribution of Sρ(θ0) and LMρ(θ0) has degrees of freedom equal to p.

Therefore the power of tests based on these statistics should not be negatively affected

by a high degree of over-identification. Anderson and Rubin’s (1949) AR-statistic has

a χ2(k) limiting null distribution as well. Kleibergen (2002b) shows that it equals the

sum of two independent statistics, namely the K-statistic [Kleibergen (2002a)] and a

J-statistic [Hansen (1982)] that test location and misspecification, respectively. Mutatis

mutandis, a similar decomposition may be given for the GELRρ(θ0) statistic in terms of

Sρ(θ0) or LMρ(θ0).

Remark 5: SW (Theorem 2) derive the asymptotic distribution under weak identi-

fication of the analogue of GELRρ(θ0) for the (GMM) CUE which is also a χ2(k) null

distribution. In the i.i.d. context, Qin and Lawless (1994, Theorem 2) propose the

statistic 2 ln R(θ̂EL) − 2 ln R(θ0) to test the hypothesis H0 : θ = θ0 which is shown to

be asymptotically distributed as χ2(p) under strong identification. However, due to the

dependence on θ̂EL, this statistic is no longer asymptotically pivotal and thus leads to

size-distorted tests under weak identification.
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Example 1 (cont.): Guggenberger (2003) derives the results given in Theorems 3

and 4 under Assumptions Θ, ID’, M’ and ρ allowing for alternatives α ∈ A and Pitman

drift in the data generating process for the strongly identified parameters to assess the

asymptotic power properties of the tests; i.e. ID’ holds and for some fixed b ∈ RpB ,

y = Y (θ0 + n−1/2(0′, b′)′) + u. To simplify our presentation here we ignore the possibility

of Pitman drift. Results for the i.i.d. linear IV model follow directly from the above

theorems because, as is easily shown, Assumptions ID’, M’, ρ and V (θ) > 0 imply Mθ for

any consistent estimator Ω̃(θ) of Ω(θ). In particular, V (θ) has a simple representation.

For θ = (α′, β′
0)

′, Ω(θ) = ∆(θ) and ∆AA(θ) = E(ViAV ′
iA ⊗ ZiZ

′
i), where ViA consists of

the first pA components of Vi in (2.3).

4 Subvector Test Statistics

We now assume that interest is focussed on the subvector α0 ∈ RpA of θ0 = (α′
0, β

′
0)

′.

However, we no longer maintain Assumption ID. In particular, α0 may not necessarily

be weakly identified.

To adapt the test statistics of section 3 to the subvector case, the basic idea is to

replace β by a GEL estimator β̂(α). To make this idea more rigorous, define the GEL

estimator β̂(α) for β0

β̂(α) := arg min
β∈B

sup
λ∈Λ̂n(α′,β′)′

P̂ ((α′, β′)′, λ). (4.1)

We usually write β̂ for β̂(α) where there is no ambiguity. A requirement of the analysis

below is that β̂ →p β0 if α = α0. Therefore, we assume that the nuisance parameters β0

which are not involved in the hypothesis under test are strongly identified; see Theorem

2. On the other hand, the components of α0 can be weakly or strongly identified and

in Assumption IDα below we assume the former holds for α01 and the latter for α02,

where α0 = (α′
01, α

′
02)

′.9 The main advantage of the subvector test statistics introduced

in this section is that asymptotically they have accurate sizes independent of whether

α0 is weakly or strongly identified. This property is not shared by classical tests based

on Wald, likelihood ratio or Lagrange multiplier statistics. In general, they have correct

size only if θ0 is strongly identified.

Let θ = (α′
1, α

′
2, β

′)′, where αj ∈ Aj, Aj ⊂ RpAj , (j = 1, 2), pA1
+pA2

= pA and β ∈ B,

B ⊂ RpB . Also let N ⊂ A2 × B be an open neighborhood of (α02, β0).

Assumption A: The true parameter θ0 = (α′
01, α

′
02, β

′
0)

′ is in the interior of the

compact space Θ, where Θ = A1 × A2 × B.

Assumption IDα: (i) Eĝ(θ) = n−1/2m1n(θ) + m2(α2, β), where m1n, m1 : Θ → Rk

and m2 : A2 × B → Rk are continuous functions such that m1n(θ) → m1(θ) uniformly
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on Θ, m1(θ0) = 0 and m2(α2, β) = 0 if and only if (α2, β) = (α02, β0); (ii) m2 ∈ C1(N );

(iii) Let M2(·) := (∂m2/∂(α′
2, β

′)′)(·) ∈ Rk×(pA2
+pB). M2(α02, β0) has full column rank

pA2
+ pB.

Assumption IDα implies α01 and (α02, β0) are weakly and strongly identified, respec-

tively.

Let

θ̂α := (α′, β̂(α)′)′ and θαβ := (α′, β′)′.

We now introduce the subvector statistics. Recall the definition of GELRρ(θ) in (3.1).

The GELRρ subvector test statistic is given by

GELRsub
ρ (α) := GELRρ(θ̂α).

We need the following technical assumptions for our derivation of its asymptotic

distribution. To obtain theoretical power properties, we again allow a fixed alternative

for the weakly identified components, α01 here.

For a1 ∈ A1 let a := (a′
1, α

′
02)

′. Let M ⊂ B be an open neighborhood of β0.

Assumption Mα: (i) max1≤i≤n supβ∈B ||gi(θaβ)|| = op(n
1/2); (ii) supβ∈B ||Ω̂(θaβ) −

Γ(θaβ)|| →p 0 for some matrix Γ(·) that is uniformly bounded on {θaβ : β ∈ B}, con-

tinuous at θaβ0
and Γ(θaβ0

) = ∆(θaβ0
) > 0 and n−1

∑n
i=1 ||gi(θaβ0

)gi(θaβ0
)′|| = Op(1); (iii)

Ψn(θaβ0
) →d Ψ(θaβ0

), where Ψ(θaβ0
) ≡ N(0, ∆(θaβ0

)); (iv) ĜB(·) := n−1
∑n

i=1(∂gi/∂β)(·)

exists at θaβ a.s. for each β ∈ M, ĝ(θaβ) is integrable for all β ∈ M, supβ∈M ||ĜB(θaβ)|| is

integrable, ∂m1n/∂β(·) is continuous at θaβ a.s. for each β ∈ M and ∂m1n/∂β(θaβ) con-

verges uniformly over β ∈ M to some function; (v) ĝ(θaβ) →p Eĝ(θaβ) uniformly over β ∈

B, ĜB(θaβ) →p EĜB(θaβ) uniformly over β ∈ M; (vi) supβ∈M n−1
∑n

i=1 ||GiB(θaβ)|| =

Op(1).

Mutatis mutandis Mα has the same interpretation as Mθ. For example Mα(ii) guar-

antees that λmax(Ω̂(θ̂a)) is bounded and λmin(Ω̂(θ̂a)) is bounded away from zero w.p.a.1

while Mα(iv) and IDα imply that for β ∈ M we have EĜB(θaβ) = n−1/2(∂m1n/∂β)(θaβ)+

(∂m2/∂β)(α02, β) → (∂m2/∂β)(α02, β). By IDα this last matrix has full column rank for

β = β0. If we assume that the GiB(θaβ), (i = 1, ..., n), viewed as functions of β, are

continuous at β0 a.s., then we can simplify Mα(vi) to n−1
∑n

i=1 ||GiB(θaβ0
)|| = Op(1). A

similar comment holds for the assumptions in the continuation of Mα below.

Theorem 5 Assume 1 ≤ pA < p. Suppose Assumptions A, IDα, Mα(i)-(vi) and ρ hold

for some a1 ∈ A1 and a = (a′
1, α

′
02)

′. Then,

GELRsub
ρ (a) →d χ2(k − pB, δ),
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where the noncentrality parameter δ is given by

δ := m1(θaβ0
)′∆(θaβ0

)−1MM2β(α02,β0)(∆(θaβ0
))m1(θaβ0

),

where M2β(·) := (∂m2/∂β)(·) ∈ Rk×pB . In particular,

GELRsub
ρ (α0) →d χ2(k − pA).

Theorem 5 confirms that the subvector statistic GELRsub
ρ (α0), like the full vector

statistic GELRρ(θ0), is asymptotically pivotal. As above, this result can be used to

construct hypothesis tests and confidence regions for α0.

We now generalize the statistics Sρ and LMρ to the subvector case. The asymp-

totic variance matrices of n1/2ĝ(θ̂α) and n1/2λ(θ̂α) differ from those of n1/2ĝ(θαβ0
) and

n1/2λ(θαβ0
). Therefore different weighting matrices are required in the quadratic forms

defining these subvector statistics. In the Appendix (proof of Theorem 6) it is shown

that for a = (a′
1, α

′
02)

′, λ(θ̂a) = arg maxλ∈Λ̂n(θ̂a) P̂ (θ̂a, λ) exists w.p.a.1 and that n1/2λ(θ̂a)

is asymptotically normal with covariance matrix M(a), where for α = (α′
1, α

′
2)

′ ∈ RpA

M(α) := ∆(θαβ0
)−1MM2β(α2,β0)(∆(θαβ0

)). (4.2)

The first pA elements of the FOC (3.2), evaluated at θ̂a, are

λ(θ̂a)
′

n∑
i=1

ρ1(λ(θ̂a)
′gi(θ̂a))GiA(θ̂a)/n = 0′. (4.3)

For α ∈ RpA , let

Dρ(α) :=
n∑

i=1

ρ1(λ(θ̂α)′gi(θ̂α))GiA(θ̂α)/n ∈ Rk×pA , (4.4)

which coincides with the definition of Dρ(θ) (3.3) when α is the full vector θ. Similarly

to Sρ(θ) (3.4) the subvector test statistic Ssub
ρ (α) is constructed as a quadratic form in

the vector λ(θ̂α)′Dρ(θ̂α) from (4.3) with weighting matrix given by M(α) in (4.2). Let

M̃(α) be an estimator of M(α) that is given by replacing the expressions ∆(θαβ0
) and

M2β(α2, β0) in M(α) by consistent estimators, Ω̃ and M̃2 say. By Assumptions Mα(ii) and

Mα(vii) below we may choose Ω̂(θ̂a) for Ω̃ and ĜA2
(θ̂a) for M̃2 when α = a = (a′

1, α
′
02)

′,

where ĜAj
(θ) := n−1

∑n
i=1(∂gi/∂αj)(θ), (j = 1, 2). Hence,

Ssub
ρ (α) := nλ(θ̂α)′Dρ(α)

(
Dρ(α)′M̃(α)Dρ(α)

)−1

Dρ(α)′λ(θ̂α).

The statistic LM sub
ρ (α) is constructed like Ssub

ρ (α) but replaces λ(θ̂α) by −Ω̃−1ĝ(θ̂α).

Thus,

LM sub
ρ (α) := nĝ(θ̂α)′Ω̃−1Dρ(α)

(
Dρ(α)′M̃(α)Dρ(α)

)−1

Dρ(α)′Ω̃−1ĝ(θ̂α).
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Let a = (a′
1, α

′
02)

′ and M ⊂ B be an open neighborhood of β0.

Assumption Mα: (cont.) (vii) ĜA1
(θaβ) viewed as a function in β is continuously

differentiable at β a.s. for each β ∈ M, (∂vecĜA1
/∂β)(θaβ) →p E(∂vecĜA1

/∂β)(θaβ) =

(∂EvecĜA1
/∂β)(θaβ), ĜA(θaβ) →p EĜA(θaβ) = (∂Eĝ/∂α)(θaβ), (∂vec(∂m1n/∂α1)/∂β)(θaβ)

→ (∂vec(∂m1/∂α1)/∂β)(θaβ), where convergence is uniform over β ∈ M in all cases,

∂m1n/∂α(·) is continuous at θaβ a.s. for each β ∈ M and ∂m1n/∂α(θaβ) converges uni-

formly over β ∈ M to some function; (viii) n−1
∑n

i=1(vecGiA1
(θaβ))g′

i(θaβ) →p Φ(θaβ)

uniformly over β ∈ M for some matrix Φ(·) that is continuous at θaβ0
and satis-

fies Φ(θaβ0
) = ∆A1

(θaβ0
) (∆A1

(·) is defined in (x) below), Ω̃(θ̂a) →p ∆(θaβ0
); (ix)

n−1
∑n

i=1 ||GiA1
(θaβ)|| ||gi(θaβ)|| = Op(1), n−3/2

∑n
i=1 ||GiA2

(θaβ)|| ||gi(θaβ)|| = op(1) uni-

formly over β ∈ M; (x) n−1/2
∑n

i=1((vec(GiA1
(θaβ0

)−EGiA1
(θaβ0

)))′, (gi(θaβ0
)−Egi(θaβ0

))′)′

→d N(0, V α(θaβ0
)), where V α(θaβ0

) is the appropriate submatrix of V (θaβ0
) defined in

Mθ(vii). V α(θaβ0
) is full column rank.

In Mα(x) write

V α(θ) =

(
∆A1A1

∆A1

∆′
A1

∆

)
(θ), where ∆A1A1

(θ) ∈ RpA1
k×pA1

k.

Mα(x) is the key assumption and plays a similar role to Mθ(vii) above. Mα(vii)

extends (iv) by explicitly assuming that integration and differentiation can be exchanged

in the expectation of ĜA1
(θaβ) whereas (iv) gave primitive conditions that imply that

exchange holds for ĝ(θaβ). Mα(v), (vii) and IDα imply that (∂vecĜA1
/∂β)(θ̂a) →p 0

which is an important result used in the proof of the next theorem; in a linear model this

result is trivially true because ∂vecĜA1
/∂β ≡ 0. Assumptions Mα(vii)-(x) are analogous

to Mθ(iv)-(vii) with A1 and A2 now playing the roles of A and B, respectively.

Theorem 6 Assume 1 ≤ pA < p. Suppose Assumptions A, IDα, Mα(i)-(x) and ρ hold

for a = (a′
1, α

′
02)

′ for a1 ∈ A1. Then,

Ssub
ρ (a), LM sub

ρ (a) →d (Wα(a) + ζα)′(Wα(a) + ζα),

where the random pA-vector Wα(α) is defined in (A.22) of the Appendix, ζα ∼ N(0, IpA
)

and ζα and Wα are independent. We have Wα(α0) ≡ 0 and therefore

Ssub
ρ (α0), LM sub

ρ (α0) →d χ2(pA).

Remark 1: The subvector statistics are asymptotically pivotal when elements of α0

are arbitrarily weakly or strongly identified. This result can be used for the construction

of test statistics or confidence regions that have correct size or coverage probabilities

asymptotically, independent of the strength or weakness of identification of α0. Compared
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to Kleibergen’s (2001) GMM-subvector statistic the statistics Ssub
ρ (a) and LM sub

ρ (a) are

appealing due to their compact formulation.

Remark 2: Even though it is unclear how the asymptotic distribution of these test

statistics might be derived without assuming strong identification of β0, it is obvious

neither Ssub
ρ (α0) nor LM sub

ρ (α0) would converge to a χ2(pA) random variable. In general

the quantities n1/2λ(θ̂α0
) in Ssub

ρ (α0) and n1/2ĝ(θ̂α0
) in LM sub

ρ (α0) are no longer asymp-

totically normal because of their dependence on the GEL estimator β̂(α0), which as a

direct consequence of Theorem 2 has a nonstandard limiting distribution if β0 is not

strongly identified. Moreover, the subvector version of Kleibergen’s (2001) K-statistic

also experiences the same problem in these circumstances as the (GMM) CUE of β0

has a nonnormal limiting distribution under weak identification; see SW. Somewhat sur-

prisingly, however, Monte Carlo simulations by the authors (not reported here) for the

subvector statistic LM sub
ρ (α0) indicate that its size properties are not much affected by the

strength or weakness of identification of β0. Zivot, Startz, and Nelson (2003) report simi-

lar findings from Monte Carlo simulations for Kleibergen’s (2001) subvector test statistic.

Example 1 (cont.): Guggenberger (2003) derives the corresponding results. Note

that Assumptions Θ, ID’, M’, ρ and also assuming that V α(θaβ0
) is full column rank imply

Assumption Mα. In the linear model the components of V α(θaβ0
) can be easily calculated.

For example, ∆A1A1
= E(ViA1

V ′
iA1

⊗ZiZ
′
i), where ViA1

is the subvector of Vi that contains

its first pA1
components. Let Y = (X, W ) denote the partition of the included variables

of the structural equation into exogenous and endogenous variables. Partition θ0 =

(θ′X0, θ
′
W0)

′ and θ = (θ′X , θ′W )′ conformably. Valid inference is possible on any subvector

of θW0 if the appropriate assumptions given above are fulfilled. Unfortunately, if the

dimension of the parameter vector not subject to test is large, then the argmin-sup

problem in (4.1) is computationally very involved. Premultiplication of equation (2.2) by

MX should ameliorate this problem through the elimination of the exogenous variables;

i.e. MXy = MXWθW0 + MXu. If Assumption Mα holds for θW0 = (αW0, βW0) and

gi(θW ) := M ′
X,i(y−WθW )Zi, where MX,i denotes the ith row of MX written as a column

vector, valid inference may be undertaken on αW0.

5 Simulation Evidence

To assess the efficacy of the hypothesis tests introduced in Theorems 3 and 4, we conduct

a set of Monte Carlo experiments. The data generating process (DGP) is given by model

(2.2) considered in Example 1 above and is similar to that in Kleibergen (2002a, p.1791);

viz.

y = Y θ0 + u, (5.1)
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Y = ZΠ + V.

There is a single right hand side endogenous variable and no included exogenous variables,

p = 1, Z ∼ N(0, Ik ⊗ In), where k is the number of instruments and n the sample size.

In the just-identified case, that is, k = 1, Π = Π1 whereas, in the over-identified case,

k > 1, Π = (Π1, 0
′)′, i.e. irrelevant instruments are added.

Interest focuses on testing the scalar null hypothesis H0 : θ0 = 0 versus the alternative

hypothesis H1 : θ0 6= 0.

5.1 Error Distributions

We examine several distributions for (u, V ) to investigate the robustness of the test statis-

tics to potentially different features of the error distribution. All designs are constructed

from Design (I) obtained by modifying the distribution of the structural error u.

• Design (I): (u, V )′ ∼ N(0, Σ ⊗ In), where Σ ∈ R2×2 with diagonal elements unity

and off-diagonal elements ρuV .

• Design (II): ui in Design (I) is modified as ui/(wi/r)
1/2, where wi is a χ2(r) random

variable independent of ui and Vi, i.e. ui is tr-distributed. We fix r = 2.

• Design (III): modifies Design (I) by exchanging u2
i − 1 for ui, i.e. ui is a recentered

χ2(1) random variable.

• Design (IV): ui from Design (I) is replaced by Bi |ui + 2| − (1 − Bi) |ui + 2| where

Bi is Bernoulli (.5,.5) distributed and independent of all other random variables.

Design (II) examines the robustness of the performance of the test statistics to thick

tailed distributions for the structural equation error. Design (III) examines robustness

with respect to asymmetric structural error distributions. In Design (IV) the structural

error ui is bimodal with peaks at −2 and +2.

In addition, the impact of conditional heteroskedasticity on the performance of the

test statistics is examined. Designs (IHET )-(IVHET ) modify Designs (I)-(IV) respectively

replacing ui by ui = ||Zi||ui.

5.2 Test Statistics

We calculate three versions of the statistic GELRρ(θ) (3.1), for ρ(v) = −(1+v)2/2 (CUE),

ρ(v) = ln(1 − v) (EL) and ρ(v) = − exp v (ET). We also consider the corresponding

versions for each of Sρ(θ) (3.4) and LMρ(θ) (3.5) with Ω̃(θ) replaced by Ω̂(θ). As noted

above, for CUE, Sρ(θ) and LMρ(θ) are then numerically identical. Theorems 3 and 4

present the asymptotic null distributions of these statistics.10
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Additional statistics considered are the Anderson-Rubin test statistic (AR), see An-

derson and Rubin (1949),

AR(θ) := (y − Y θ)′PZ(y − Y θ)/suu(θ),

where suu(θ) := (y−Y θ)′MZ(y−Y θ)/(n−k) and the K-statistic proposed by Kleibergen

(2002a),11

K(θ) := (y − Y θ)′PỸ (θ)(y − Y θ)/suu(θ),

where Ỹ (θ) := ZΠ̃(θ), Π̃(θ) = (Z ′Z)−1Z ′[Y − (y − Y θ)suV (θ)/suu(θ)] and suV (θ) :=

(y − Y θ)′MZY/(n − k). Under H0 : θ0 = 0, AR(θ) →d χ2(k) and K(θ) →d χ2(p). In the

just-identified case k = p = 1, the AR- and K-statistics coincide.

We also examine Moreira’s (2003) conditional likelihood ratio test which for (5.1) is

given by

LRM :=
1

2
[S

′
S − T

′
T + {(S

′
S + T

′
T )2 − 4(S

′
ST

′
T − (S

′
T )2)}1/2],

where S := (Z ′Z)−1/2S(b′0Λ̂b0)
−1/2, T := (Z ′Z)−1/2T (a′

0Λ̂
−1a0)

−1/2, S := Z ′(y − Y θ0),

T := Z ′(y, Y )Λ̂−1a0, a0 := (θ0, 1)′, b0 := (1,−θ0)
′ and Λ̂ := (y, Y )′MZ(y, Y )/(n − k).

Moreira (2003) suggests a simulation method to find the critical value for LRM condi-

tional on T
′
T = t

′
t from which a hypothesis test with exact size may be formulated for

the normal model with known reduced form covariance matrix Λ.12

Finally, we consider two versions of the two-stage least squares (2SLS) Wald statistic,

see for example Wooldridge (2002, p. 98, 100), one assuming homoskedastic errors and

the other robust to conditional heteroskedasticity

2SLSHOM := θ̂
′
W−1θ̂, 2SLSHET := θ̂

′
W−1

HET θ̂,

where θ̂ := (Y ′PZY )−1Y ′PZy, W := σ̂2(Y ′PZY )−1, σ̂2 := (n−k)−1
∑n

i=1 û2
i , ûi := yi−Y ′

i θ̂,

(i = 1, ..., n) and WHET := n(Y ′PZY )−2(
∑n

i=1 û2
i (PZY )2

i )/(n − k) is a conditional het-

eroskedasticity robust estimator for the variance of θ̂. Both Wald statistics are asymp-

totically distributed as χ2(1) under H0 : θ = θ0 and strong identification.

5.3 Size Comparison

Empirical sizes are calculated using 5% asymptotic critical values for all of the above

statistics for DGPs (5.1) corresponding to all 54 possible combinations of sample size

n = 50, 100, 250, number of instruments k = 1, 5, 10, structural and reduced form error

correlation ρuV = 0.0, 0.5, 0.99, and reduced form coefficient Π1 = 0.1, 1.0 for Designs

(I)-(IV) and (IHET )-(IVHET ).13

We use R = 3, 000 replications of each DGP. We also use 3,000 realizations each of

χ2(1) and χ2(k − 1) random variables to simulate the critical values of Moreira’s LRM
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statistic. For the results reported in the Tables 1 and 2 below we use R = 10, 000

replications. We refer to Π1 = 0.1 and 1.0 as the “weak” and “strong” instrument cases,

respectively. The value of ρuV allows the degree of endogeneity of Y to be varied. While

for ρuV = 0, Y is exogenous, Y is strongly endogenous for ρuV = .99. We include the

just-identified case, k = 1, and two over-identified-cases, k = 5 and 10.

Table 1 about here

We now turn to describe the results for Design (I) given in Table 1 which exclude

those for AR, GELRET , SET and LMET . For k = 1, AR coincides with K and, for k > 1,

we find that in most cases K has better size properties than AR. The qualitative features

of the size results for GELRET , SET and LMET are identical to their EL counterparts.

Firstly, we consider the separate effects of Π1, n, ρuV and k on the size results.

The most important finding is that the empirical sizes of all statistics except 2SLS

show little or no dependence on Π1; (some additional Monte Carlo results show that this

even holds true for the completely unidentified case where Π1 = 0). However, those for

2SLS depend crucially on the strength or weakness of identification. While for Π1 = 1.0,

2SLS has reliable size properties for many cases, with weak instruments sizes range over

the entire interval, 0% to 100%.

In general, increasing n leads to more accurate size across all statistics. This holds

especially true for those that are poor for smaller n. For example, the 2SLS statistics,

GELREL and SEL severely over-reject in over-identified and strongly endogenous cases

when n = 50. Even though they still over-reject for n = 250, the rejection rates are much

closer to the 5% significance level.

It is easily shown that the rejection rates under the null hypothesis for AR and GELRρ

are independent of the value of ρuV . The slight dependence of the size results in Table 1

on ρuV results from the use of different samples. For all the remaining statistics except for

2SLS, there does not appear to be a clear pattern for how ρuV affects their size properties.

Moreover, there is little dependence of the results on ρuV . However, for 2SLS, increasing

ρuV leads to severe over-rejection when combined with over-identification, especially so

in the weak instrument case.

Increasing the number of instruments k usually leads to over-rejection for 2SLS,

GELREL and SEL. For 2SLS this is especially true under weak identification and/or

strong endogeneity. All the other statistics show little dependence on k.

We now turn to a comparison of performance across statistics. The 2SLS statistics

should not be used with weak instruments or in strongly endogenous over-identified sit-

uations. In all other cases, 2SLS has very competitive size properties. Using 2SLSHET

instead of 2SLSHOM usually slightly increases the rejection rates. The statistics GELREL

and SEL severely over-reject in over-identified problems when the sample size is small.

Overall, then, the statistics LMEL, LMCUE, GELRCUE, K and LRM lead to the best size
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results. Across the 54 experiments in Table 1, the sizes of LMEL, LMCUE, GELRCUE,

K and LRM are in the intervals [3.7,6.3], [1.4,5.3], [1.4,5.3], [4.9,8.5] and [4.7,9.3], respec-

tively. While LMCUE and GELRCUE tend to under-reject, especially in over-identified

situations, K and LRM usually slightly over-reject. In 26 of the 54 cases, the size of

LMEL comes closest to the 5% significance level across all the statistics. The corre-

sponding numbers for LMCUE, GELRCUE, K and LRM are 5, 5, 19 and 13. Based on

Design (I), LMEL seems to have a slight advantage over the remaining statistics.

Table 2 about here

We now discuss the size results for Design (IHET ) summarized in Table 2. As most

findings are similar to those discussed for Design (I), we only describe the new features.

The statistics 2SLSHOM , K and LRM perform uniformly worse as compared to

Design (I). Tests based on these statistics severely over-reject, especially in the just-

identified case. Their performance does not improve when n increases. Rejection rates

of the three tests across the 54 combinations are in the intervals [0.9,100], [7.5,26.9] and

[7.4,26.8], respectively. In contrast, the size properties of 2SLSHET and statistics based

on GEL methods do not appear to be negatively influenced by the presence of condi-

tional heteroskedasticity. This is to be expected from our earlier theoretical discussion

of the GEL statistics which does not assume conditional homoskedasticity. Of course,

2SLSHET still suffers in weakly identified models and GELREL and SEL perform poorly

in over-identified situations for small n. Rejection rates of the three test statistics LMEL,

LMCUE and GELRCUE across the 54 experiments are in the intervals [3.5,6.5], [1.4,5.0]

and [1.1,5.0], respectively.

In summary, the only statistics with accurate size properties across all experiments of

Designs (I) and (IHET ) are LMEL, LMCUE and GELRCUE. Based on the above results

it seems that LMEL enjoys a slight advantage over the other two. From the 108 cases in

Tables 1 and 2 the empirical size of LMEL is closest to the nominal 5% in 74 cases across

all statistics.

The qualitative features of the size results for Designs (II)-(IV) and (IIHET )-(IVHET )

are generally very similar to their normal counterparts of Designs (I) and (IHET ). For

this reason, we do not include additional tables for these designs. One striking difference

however occurs for 2SLS under weak identification with χ2(1) (Design (III)) and bimodal

errors (Design (IV)). Rejection rates across these 54 combinations for 2SLSHOM are in

the intervals [0.1,7.1] and [0.0,5.4], respectively. While with normal errors and weak

identification 2SLS severely over-rejects, with these error distributions it severely under-

rejects.

To summarise this size study, LMEL, LMCUE and GELRCUE have reliable size prop-

erties across all designs which appear independent of both the strength or weakness of

identification and possible conditional heteroskedasticity. 2SLS performs very poorly
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in the presence of weak instruments. Using 2SLSHET instead of 2SLSHOM significantly

improves the size properties when there is conditional heteroskedasticity and only slightly

worsens the size properties in its absence. The statistics K and LRM perform well in

homoskedastic cases but poorly otherwise.

5.4 Power Comparison

Empirical power curves are calculated for the above statistics and DGPs (5.1) correspond-

ing to all 16 possible combinations of sample size n = 100, 250, number of instruments

k = 5, 10, structural and reduced form error correlation ρuV = 0.5, 0.99 and reduced form

coefficient Π1 = 0.1, 1.0 for each of the error distributions of Designs (I)-(III). Except for

LRM , we report size-corrected power curves at the 5% significance level, using critical

values calculated in the size comparison above. We do so because size-correction of LRM

is not straightforward due to the conditional construction of LRM and, as shown above,

for Designs (I)-(III), LRM has empirical size very close to nominal at the 5% significance

level.

We use R = 1, 000 replications from the DGP (5.1) with various values of the true

value θ0. The null hypothesis under test is again H0 : θ0 = 0. For weak identification

(Π1 = 0.1), θ0 takes values in the interval [−4.0, 4.0] while, with strong identification

(Π1 = 1.0), θ0 ∈ [−0.4, 0.4]. We use 1,000 realizations each of χ2(1) and χ2(k − 1)

random variables to simulate the critical values of LRM . For those results reported in

the figures below, we use 10,000 replications from (5.1).

Detailed results are presented only for the statistics LMEL, K, LRM and 2SLSHET .

The statistics LMCUE, LMEL and LMET display a very similar performance across almost

all scenarios. We therefore only report results for LMEL. We do not report power results

for the statistics SEL and SET because, as seen above, their size properties appear to be

quite poor for the sample sizes considered here. When k = 1, AR and K are numerically

identical. In over-identified cases, K generally performs better than AR. We therefore

do not report results for AR; see Kleibergen (2002a) for a comparison of K and AR.

Similarly, GELRCUE is numerically identical to LMρ for k = 1 but leads to a less

powerful test for k > 1. Also EL and ET versions of GELRρ have rather unreliable

size properties for the sample sizes considered here. Therefore we do not report detailed

results for GELRρ.

We firstly focus on the separate effects of Π1, n, ρuV and k on power.

With strong identification all statistics have a U-shaped power curve. With the

exception of 2SLSHET , the lowest point of the power curve is usually achieved at θ0 = 0.

In Designs (I) and (II), 2SLSHET is usually biased, taking on its lowest value at a negative

θ0 value in the interval [-0.2,0.0]. When θ0 is weakly identified, the power curves of LMEL,

K and LRM are generally very flat across all θ0 values, often only slightly exceeding the

significance level of the test. This is especially true for LMEL and K but less so for LRM
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which is generally more powerful than the other two statistics in this situation. There is

one exception when the power of the three tests is high. In Design (I) with ρuV = 0.99,

while being flat at about 5% for positive θ0 values, the power curves reach a sharp peak

of almost 100% around θ0 = −1.14 For negative θ0 values with |θ0| > 1 power quickly

falls, reaching between 20% and 50% across the different designs at θ0 = −4.

In contrast to the power curves of LMEL, K and LRM , the power curve of 2SLSHET

retains its U-shaped form for Π1 = 0.1. In many cases, the power curve reaches values

close to 100% when |θ0| is close to 4.

As to be expected the tests are more powerful when n is increased from 100 to 250.

This holds uniformly across all statistics and designs with a more pronounced power

increase in the strongly identified cases.

There does not seem to be a systematic effect due to ρuV as it varies with the spe-

cific design. For reasons explained above, the shape of the power curves can change

dramatically in Design (I) when ρuV is increased from 0.5 to 0.99 if Π1 = 0.1.

In most cases, there is only little change in the power functions when k is increased

from 5 to 10. In general, if the power function changes, then power is slightly lower for

larger k.

Figures (i)-(vi) about here

We now compare the power functions across statistics. Figures (i)-(vi) display the

power curves of the four statistics for Designs (I)-(III) in cases Π1 = 0.1, 1.0, n = 250,

ρuV = 0.5 and k = 5. The qualitative comparison for the other parameter combinations

is very similar and we therefore focus on these representative cases.

When identification is weak, the test based on LRM is usually more powerful than

those based on LMEL and K. The power gain of using LRM is quite substantial for

negative θ0 values but less so for positive θ0. However, the Wald test 2SLSHET is by far

the most powerful test in all three designs. Except for some small negative θ0 values its

power curve uniformly dominates the power curves of the other tests, see Figures (ii),

(iv) and (vi). Recall though that 2SLSHET has unreliable size properties under weak

identification.

When identification is strong, LMEL uniformly dominates LRM and K in Designs (II)

and (III), see Figures (iii) and (v). However, LRM and K uniformly dominate LMEL in

Design (I), see Figure (i). This result is to be expected. On the one hand, the LMEL test

is based on nonparametric GEL methods. On the other hand, LRM and K are motivated

within the normal model framework. While the power gain of LMEL is small in Design

(III), it is substantial in Design (II). Therefore, LMEL should be used when errors have

thick tails.

With strong identification, the Wald test is the most powerful test for positive θ0

values. For negative θ0 values, its performance varies from being most powerful in De-
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sign (III) to least powerful in Design (I). These results confirm that the Wald test is a

reasonable choice when identification is strong.

Overall, therefore, the power study does not lead to an unambiguous ranking of the

different tests considered here. Which test is most appropriate depends on the particular

error distribution and degree of identification. We find that with strong identification

and errors with thick tails or asymmetric errors, LMEL seems to be the best choice while

with normal errors LRM and K appear preferable. When identification is weak, LRM

generally dominates K and LMEL in terms of power although as noted above the size

properties of LRM deteriorate substantially in the presence of heteroskedasticity.
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Appendix: Proofs

Proof of Eq. (2.4). Let fi := supθ∈Θ ||gi(θ)||. Define K := supi≥1 Ef ξ
i < ∞. Let ε > 0

and choose a positive C ∈ R such that K/C < ε. Then

Pr{(max
1≤i≤n

fi)n
−1/ξ > C1/ξ} ≤

n∑
i=1

Pr{f ξ
i > nC} ≤

n∑
i=1

1

nC
E(f ξ

i ) ≤ K/C < ε,

where the first inequality follows from Pr(A∪B) ≤ Pr(A)+Pr(B) and the second uses the

Markov inequality. It follows that (max1≤i≤n fi)n
−1/ξ = Op(1) and thus (max1≤i≤n fi) =

op(n
1/2) by ξ > 2. Thus (2.4) implies M(i).�

Proof of Lemma 1. ID holds trivially. By (2.2) and (2.3), gi(θ) = (yi − Y ′
i θ)Zi =

Zi(Z
′
iΠ + V ′

i )(θ0 − θ) + Ziui. Next max1≤i≤n supθ∈Θ ||gi(θ)|| = op(n
1/2) is established.

An application of the Borel-Cantelli Lemma shows that for real-valued i.i.d. random

variables Wi such that EW 2
i < ∞, max1≤i≤n |Wi| = o(n1/2); see Owen (1990, Lemma 3)

for a proof. By the definition of gi(θ) and the triangle inequality,

max
1≤i≤n

sup
θ∈Θ

||gi(θ)|| ≤ max
1≤i≤n

sup
θ∈Θ

(||ZiZ
′
iΠ(θ0 − θ)|| + ||ZiV

′
i (θ0 − θ)|| + ||Ziui||).

By Assumption M’(iii), we can apply the just-mentioned result to each of the three

summands in the above equation which proves the result.

Next M(ii) is shown. By the i.i.d. assumption, Ω(θ) = limn→∞ Egi(θ)gi(θ)
′ and

continuity and boundedness in M(ii) follow immediately from M’(iii) and compactness

of Θ. The same is true for the Op(1) statement in M(ii). Finally, uniform convergence

follows from the WLLN and compactness of Θ.

Next M(iii) is proven. Because supθ∈Θ ||n−1
∑n

i=1(ZiZ
′
i −QZZ)CA(α0 −α)|| →p 0, we

only have to deal with the empirical process

Ψn(·, θ) := n−1/2
n∑

i=1

[Zi(Z
′
iΠB(β0 − β) + V ′

i (θ0 − θ) + ui) − QZZΠB(β0 − β)].

Finite dimensional joint convergence follows from the CLT and M’(iii) and stochastic

equicontinuity follows from the fact that (θ0 − θ) enters Ψn(·, θ) linearly:

sup
||θ1−θ2||<δ

||Ψn(·, θ1) − Ψn(·, θ2)||

= sup
||θ1−θ2||<δ

||(β2 − β1)
′n−1/2

n∑
i=1

Π′
B(ZiZ

′
i − QZZ) + (θ2 − θ1)

′n−1/2
n∑

i=1

ViZ
′
i||,

where the last expression is bounded by δOp(1) by the CLT. Furthermore, Θ is compact

by assumption. The proposition in Andrews (1994, p.2251) can thus be applied which

yields the desired result.�
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The following proofs are straightforward generalizations of Guggenberger’s (2003)

proofs for the i.i.d. linear model to the more general context considered here. We require

three lemmas that are modified versions of Lemmas A1-A3 in NS for the proofs of our

theorems. These modifications are necessary because unlike NS we need to work with

weakly and strongly identified parameters and do not make an i.i.d. assumption.

For n ∈ N let Θn ⊂ Θ. Let cn := n−1/2 max1≤i≤n supθ∈Θn
||gi(θ)||. Let Λn := {λ ∈ Rk :

||λ|| ≤ n−1/2c
−1/2
n } if cn 6= 0 and Λn = Rk otherwise. Write “u.w.p.a.1” for “uniformly

over θ ∈ Θn w.p.a.1”.

Lemma 7 Assume max1≤i≤n supθ∈Θn
||gi(θ)|| = op(n

1/2).

Then supθ∈Θn,λ∈Λn,1≤i≤n |λ′gi(θ)| →p 0 and Λn ⊂ Λ̂n(θ) u.w.p.a.1.

Proof: The case cn = 0 is trivial and thus wlog cn 6= 0 can be assumed. By

assumption cn = op(1) and the first part of the statement follows from

sup
θ∈Θn,λ∈Λn,1≤i≤n

|λ′gi(θ)| ≤ n−1/2c−1/2
n max

1≤i≤n
sup
θ∈Θn

||gi(θ)|| =

n−1/2c−1/2
n n1/2cn = c1/2

n = op(1),

which also immediately implies the second part.�

Lemma 8 Suppose max1≤i≤n supθ∈Θn
||gi(θ)|| = op(n

1/2), λmin(Ω̂(θ)) ≥ ε u.w.p.a.1 for

some ε > 0, ĝ(θ) = Op(n
−1/2) uniformly over θ ∈ Θn and Assumption ρ holds.

Then λ(θ) ∈ Λ̂n(θ) satisfying P̂ (θ, λ(θ)) = supλ∈Λ̂n(θ) P̂ (θ, λ) exists u.w.p.a.1, λ(θ) =

Op(n
−1/2) and supλ∈Λ̂n(θ) P̂ (θ, λ) = Op(n

−1) uniformly over θ ∈ Θn.

Proof: Wlog cn 6= 0 and thus Λn can be assumed compact. For θ ∈ Θn, let λθ ∈ Λn

be such that P̂ (θ, λθ) = maxλ∈Λn
P̂ (θ, λ). Such a λθ ∈ Λn exists u.w.p.a.1 because

a continuous function takes on its maximum on a compact set and by Lemma 7 and

Assumption ρ, P̂ (θ, λ) (as a function in λ for fixed θ) is C2 on some open neighborhood

of Λn u.w.p.a.1. We now show that actually P̂ (θ, λθ) = supλ∈Λ̂n(θ) P̂ (θ, λ) u.w.p.a.1 which

then proves the first part of the lemma. By a second order Taylor expansion around λ = 0,

there is a λ∗
θ on the line segment joining 0 and λθ such that for some positive constants

C1 and C2

0 = P̂ (θ, 0) ≤ P̂ (θ, λθ) = −2λ′
θĝ(θ) + λ′

θ[
n∑

i=1

ρ2(λ
∗′
θ gi(θ))gi(θ)gi(θ)

′/n]λθ

≤−2λ′
θĝ(θ) − C1λ

′
θΩ̂(θ)λθ ≤ 2||λθ|| ||ĝ(θ)|| − C2||λθ||

2 (A.1)

u.w.p.a.1, where the second inequality follows as max1≤i≤n ρ2(λ
∗′
θ gi(θ)) < −1/2 u.w.p.a.1

from Lemma 7, continuity of ρ2(·) at zero and ρ2 = −1. The last inequality follows

from λmin(Ω̂(θ)) ≥ ε > 0 u.w.p.a.1. Now, (A.1) implies that (C2/2)||λθ|| ≤ ||ĝ(θ)||
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u.w.p.a.1, the latter being Op(n
−1/2) uniformly over θ ∈ Θn by assumption. It follows

that λθ ∈ int(Λn) u.w.p.a.1. To prove this, let ε > 0. Because λθ = Op(n
−1/2) uniformly

over θ ∈ Θn and cn = op(1), there exists Mε < ∞ and nε ∈ N such that Pr(||n1/2λθ|| ≤

Mε) > 1− ε/2 uniformly over θ ∈ Θn and Pr(c
−1/2
n > Mε) > 1− ε/2 for all n ≥ nε. Then

Pr(λθ ∈ int(Λn)) = Pr(||n1/2λθ|| < c
−1/2
n ) ≥ Pr((||n1/2λθ|| ≤ Mε)∧ (c

−1/2
n > Mε)) > 1− ε

for n ≥ nε uniformly over θ ∈ Θn.

Hence, the FOC for an interior maximum (∂P̂/∂λ)(θ, λ) = 0 hold at λ = λθ u.w.p.a.1.

By Lemma 7, λθ ∈ Λ̂n(θ) u.w.p.a.1 and thus by concavity of P̂ (θ, λ) (as a function in λ

for fixed θ) and convexity of Λ̂n(θ) it follows that P̂ (θ, λθ) = supλ∈Λ̂n(θ) P̂ (θ, λ) u.w.p.a.1

which implies the first part of the lemma. From above λθ = Op(n
−1/2) uniformly over

θ ∈ Θn. Thus the second and by (A.1) the third parts of the lemma follow.�

Suppose Θ1 × Θ2 ⊂ Θ, Θi ⊂ Rpi , p1 + p2 = p. Partition θ0 = (θ′01, θ
′
02)

′ accordingly

and assume θ02 ∈ Θ2. For d1 ∈ Θ1 define

θ̂2(d1) : = arg min
d2∈Θ2

sup
λ∈Λ̂n((d′

1
,d′

2
)′)

P̂ ((d′
1, d

′
2)

′, λ) ∈ Rp2 ,

θ̂d1
: = (d′

1, θ̂2(d1)
′)′ ∈ Rp, θd1

:= (d′
1, θ

′
02)

′ ∈ Rp.

By “u.w.p.a.1” we denote “uniformly over d1 ∈ Θ1 w.p.a.1”.

Lemma 9 Suppose max1≤i≤n supθ∈Θ1×Θ2
||gi(θ)|| = op(n

1/2), λmax(Ω̂(θ̂d1
)) ≤ κ u.w.p.a.1

for some κ < ∞, supλ∈Λ̂n(θd1
) P̂ (θd1

, λ) = Op(n
−1) uniformly over d1 ∈ Θ1 and Assump-

tion ρ holds.

Then ĝ(θ̂d1
) = Op(n

−1/2) uniformly over d1 ∈ Θ1.

Proof: Wlog ĝ(θ̂d1
) 6= 0 can be assumed. Define λ := −n−1/2ĝ(θ̂d1

)/||ĝ(θ̂d1
)||. Note

that λ ∈ Λn and thus λ ∈ Λ̂n(θ) u.w.p.a.1 (see Lemma 7 with Θn := Θ1 × Θ2). By a

second order Taylor expansion around λ = 0, there is a λ̃ on the line segment joining 0

and λ, such that for some positive constants C1 and C2

P̂ (θ̂d1
, λ) = −2λ′ĝ(θ̂d1

) + λ′[
n∑

i=1

ρ2(λ̃
′
gi(θ̂d1

))gi(θ̂d1
)gi(θ̂d1

)′/n]λ

≥ 2n−1/2||ĝ(θ̂d1
)|| − C1λ

′[
n∑

i=1

gi(θ̂d1
)gi(θ̂d1

)′/n]λ

≥ 2n−1/2||ĝ(θ̂d1
)|| − C2n

−1 (A.2)

u.w.p.a.1, where the first inequality follows from Lemma 7 which implies that mini=1,...,n

ρ2(λ̃
′
gi(θ̂d1

)) ≥ −1.5 u.w.p.a.1. The second inequality follows by λmax(Ω̂(θ̂d1
)) ≤ κ < ∞

u.w.p.a.1. The definition of θ̂d1
implies

P̂ (θ̂d1
, λ) ≤ sup

λ∈Λ̂n(θ̂d1
)

P̂ (θ̂d1
, λ) ≤ sup

λ∈Λ̂n(θd1
)

P̂ (θd1
, λ) = Op(n

−1) (A.3)
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uniformly over d1 ∈ Θ1. Combining equations (A.2) and (A.3) implies n−1/2||ĝ(θ̂d1
)|| =

Op(n
−1) uniformly over d1 ∈ Θ1.�

Proof of Theorem 2: (i) We first show consistency of β̂. By Assumption ID and

M(iii) supθ∈Θ ||ĝ(θ) − (n−1/2m1n(θ) + m2(β))|| →p 0, where m2(β) = 0 if and only if

β = β0. Therefore, ĝ(θ̂) = op(1) is a sufficient condition for consistency of β̂. Applying

Lemma 8 to the case Θn = {θ0}, gives supλ∈Λ̂n(θ0) P̂ (θ0, λ) = Op(n
−1). Assumption M(ii)

implies λmax(Ω̂(θ̂)) ≤ κ w.p.a.1 for some κ < ∞ and thus Lemma 9 (applied to the case

p1 = 0, Θ2 = Θ) implies ĝ(θ̂) = Op(n
−1/2).

Next we establish n1/2-consistency of β̂. By consistency of β̂ and Assumption M(ii)

λmin(Ω̂(θ̂)) ≥ ε w.p.a.1 for some ε > 0 and thus Lemma 8 for the case Θn = {θ̂} implies

that the FOC

n−1
n∑

i=1

ρ1(λ
′gi(θ))gi(θ) = 0 (A.4)

have to hold at (θ̂, λ̂) w.p.a.1, where λ̂ := λ(θ̂) = Op(n
−1/2) and λ(θ), for given θ ∈ Θ,

is defined in Lemma 8. Expanding the FOC in λ around 0, there exists a mean value λ̃

between 0 and λ̂ (that may be different for each row) such that

0 = −ĝ(θ̂) + [
n∑

i=1

ρ2(λ̃
′
gi(θ̂))gi(θ̂)gi(θ̂)

′/n]λ̂ = −ĝ(θ̂) − Ω̂λ̃θ̂λ̂,

where the matrix Ω̂λ̃θ̂ has been implicitly defined. Because λ̂ = Op(n
−1/2), Lemma 7

and Assumption ρ imply that supi=1,...,n,θ∈Θ |ρ2(λ̃
′
gi(θ)) +1| →p 0. By Assumption M(ii),

it follows that Ω̂λ̃θ̂ →p Ω((α̂′, β′
0)

′) and thus Ω̂λ̃θ̂ is invertible w.p.a.1 and (Ω̂λ̃θ̂)
−1 →p

Ω((α̂′, β′
0)

′)−1. Therefore

λ̂ = −(Ω̂λ̃θ̂)
−1ĝ(θ̂) (A.5)

w.p.a.1. Inserting this into a second order Taylor expansion for P̂ (θ, λ) (with mean value

λ∗ as in (A.1) above) it follows that

P̂ (θ̂, λ̂) = 2ĝ(θ̂)′Ω̂−1

λ̃θ̂
ĝ(θ̂) − ĝ(θ̂)′Ω̂−1

λ̃θ̂
Ω̂λ∗θ̂Ω̂

−1

λ̃θ̂
ĝ(θ̂). (A.6)

The same argument as for Ω̂λ̃θ̂ proves Ω̂λ∗θ̂ →p Ω((α̂′, β′
0)

′). We therefore have P̂ (θ̂, λ̂) =

ĝ(θ̂)′(Ω((α̂′, β′
0)

′)−1 + op(1))ĝ(θ̂). By the definition of θ̂,

nP̂ (θ̂, λ̂) − nP̂ (θ0, λ(θ0))

= n1/2ĝ(θ̂)′(Ω((α̂′, β′
0)

′)−1 + op(1))n1/2ĝ(θ̂) − n1/2ĝ(θ0)
′(Ω(θ0)

−1 + op(1))n1/2ĝ(θ0)

≤ 0.

By Assumption ID, we have up to op(1) terms that n1/2ĝ(θ̂) = Ψn(θ̂)+m1n(θ̂)+n1/2m2(β̂)

and n1/2ĝ(θ0) = Ψn(θ0). The same analysis as in the proof of Lemma A1 in SW (p.1091,

line six from the top) can now be applied to prove n1/2-consistency of β̂, where the

[30]



symmetric matrix Ω((α̂′, β′
0)

′)−1 + op(1) plays the role of WT (θT (θ̂)) in SW. Note that in

eq. (A.4) in SW, the assumption M(iii) of bounded sample paths w.p.a.1 is used. Finally,

note that λmin(Ω((α̂′, β′
0)

′)−1 + op(1)) is bounded away from zero w.p.a.1.

(ii) By Assumptions ID and M(iii) and the CMT

n1/2 sup
(α,b)∈A×BM

||ĝ(θαb) − Eĝ(θαb)|| − sup
(α,b)∈A×BM

||Ψ(θαb)|| = Op(1)

and because (for some mean-vector β between β0 and β0 + n−1/2b that may differ across

rows)

n1/2Eĝ(θαb) = m1n(θαb) + n1/2m2(β0 + n−1/2b) = m1n(θαb) + M2(β)b

is bounded, it follows that ĝ(θαb) = Op(n
−1/2) u.w.p.a.1, where “u.w.p.a.1” stands for

“uniformly over (α, b) ∈ A × BM w.p.a.1”. Therefore, by Lemma 8, λ(θαb) such that

P̂ (θαb, λ(θαb)) = supλ∈Λ̂n(θαb)
P̂ (θαb, λ) exists u.w.p.a.1 and λ(θαb) = Op(n

−1/2) uniformly

over (α, b) ∈ A × BM . This implies that the FOC n−1
∑n

i=1 ρ1(λ
′gi(θ))gi(θ) = 0 have to

hold at λ = λ(θαb) and θ = θαb u.w.p.a.1. Expanding the FOC and using the same steps

and notation as in part (i), it follows that λ(θαb) = −(Ω̂λ̃θαb
)−1ĝ(θαb) and upon inserting

this into a second order Taylor expansion of P̂ (θ, λ) we have

P̂ (θαb, λ(θαb)) = 2ĝ(θαb)
′Ω̂−1

λ̃θαb

ĝ(θαb) − ĝ(θαb)
′Ω̂−1

λ̃θαb

Ω̂λ∗θαb
Ω̂−1

λ̃θαb

ĝ(θαb)

u.w.p.a.1. The matrices Ω̂λ̃θαb
and Ω̂λ∗θαb

converge to Ω((α′, β′
0)

′) uniformly over A ×

BM . By M(iii), n1/2ĝ(θαb) ⇒ Ψ((α′, β′
0)

′) + m1((α
′, β′

0)
′) + M2(β0)b and therefore that

nP̂ (θαb, λ(θαb)) ⇒ Pαb = P ((α′, β′
0)

′, b) on A × BM .

By part (i) of the proof and Lemma 3.2.1 in van der Vaart and Wellner (1996, p.286)

it follows that

(α̂′, n1/2(β̂ − β0)
′)′ →d (α∗′, b∗′)′.

For given α ∈ A, one can calculate arg minb∈RpB Pαb by solving the FOC for b. Writing

Ω for Ω((α′, β′
0)

′) and M2 for M2(β0) the result is

b∗(α) = −(M ′
2Ω

−1M2)
−1M ′

2Ω
−1[Ψ((α′, β′

0)
′) + m1((α

′, β′
0)

′)]. (A.7)

This holds in particular for α = α∗. It follows that α∗ = arg minα∈A Pαb∗(α).�

Proof of Theorem 3: Applying Lemma 8 to the case Θn = {θ}, it follows that

λ(θ) ∈ Λ̂n(θ) exists, such that P̂ (θ, λ(θ)) = supλ∈Λ̂n(θ) P̂ (θ, λ). Using the same steps and

notation as in the proof of Theorem 2 leads to

P̂ (θ, λ(θ)) = 2ĝ(θ)′Ω̂−1

λ̃θ
ĝ(θ) − ĝ(θ)′Ω̂−1

λ̃θ
Ω̂λ∗θΩ̂

−1

λ̃θ
ĝ(θ),
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where by Mθ(ii) both Ω̂λ̃θ and Ω̂λ∗θ converge in probability to ∆(θ). By Mθ(iii),

n1/2ĝ(θ) →d N(m1(θ), ∆(θ)),

from which the result follows.�

Proof of Theorem 4: Using Mθ(i)-(iii) and a similar argument that led to (A.5) we

have

n1/2λ(θ) = −∆(θ)−1n1/2ĝ(θ) + op(1) (A.8)

and therefore the statement of the theorem involving Sρ(θ) follows immediately from the

one for LMρ(θ). Therefore, we only deal with the statistic LMρ(θ) given in eq. (3.7).

First, we show that the matrix D∗ is asymptotically independent of n1/2ĝ(θ). For

notational convenience from now on we omit the argument θ, e.g., we write gi for gi(θ).

By a mean value expansion about 0 we have ρ1(λ
′gi) = −1 + ρ2(ξi)g

′
iλ for a mean value

ξi between 0 and λ′gi and thus by (A.8) and the definition of Λ we have

D∗ = −n−1
n∑

i=1

(n1/2GiA, GiB) − n−3/2
n∑

i=1

[ρ2(ξi)(n
1/2GiA, GiB)g′

i∆
−1n1/2ĝ] + op(1)

= −(n−1/2
n∑

i=1

GiA − n−1
n∑

i=1

GiAg′
i∆

−1n1/2ĝ,M2(β0)) + op(1),

where for the last equality we use (3.6) and Assumption Mθ(v)-(vi). By Assumption

Mθ(v) it thus follows that

vec(D∗, n1/2ĝ) = w1 + Mv + op(1),

where w1 := vec(0,−M2(β0), 0) ∈ RkpA+kpB+k and

M :=




−IkpA
∆A∆−1

0 0
0 Ik


 , v := n−1/2

n∑
i=1

(
vecGiA

gi

)
;

M and v have dimensions (kpA + kpB + k) × (kpA + k) and (kpA + k) × 1, respectively.

By Assumption ID, Mθ(vii) and (3.6) v →d N(w2, V (θ)), where w2 := ((vecM1A)′, m′
1)

′

and M1A are the first pA columns of M1. Therefore

vec(D∗, n1/2ĝ) →d N(w1 + Mw2,




Ψ 0 0
0 0 0
0 0 ∆


), (A.9)

where Ψ := ∆AA −∆A∆−1∆′
A has full column rank. Equation (A.9) proves that D∗ and

n1/2ĝ are asymptotically independent.

We now derive the asymptotic distribution of LMρ(θ). Denote by D and g the

limiting normal distributions of D∗ and n1/2ĝ, respectively, see (A.9). Below we show
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that the function h : Rk×p → Rp×k defined by h(D) := (D′∆−1D)−1/2D′ for D ∈ Rk×p

is continuous on a set C ⊂ Rk×p with Pr(D ∈ C) = 1. By the Continuous Mapping

Theorem and Mθ(v) we have

(D∗′Ω̃−1D∗)−1/2D∗′Ω̃−1n1/2ĝ →d (D
′
∆−1D)−1/2D

′
∆−1g. (A.10)

By the independence of D and g, the latter random variable is distributed as W + ζ,

where the random p-vector W is defined as

W = W (α) := (D
′
∆−1D)−1/2D

′
∆−1m1(θ), (A.11)

ζ ∼ N(0, Ip) and W and ζ are independent. Note that for θ = θ0, W ≡ 0. From (A.10)

the statement of the theorem follows.

We now prove the continuity claim for h. Note that h is continuous at each D that

has full column rank. It is therefore sufficient to show that D has full column rank a.s..

From (A.9) it follows that the last pB columns of D equal −M2(β0) which has full column

rank by assumption. Define O := {o ∈ RkpA : ∃õ ∈ Rk×pA , s.t. o = vec(õ) and the k × p-

matrix (õ,−M2(β0)) has linearly dependent columns}. Clearly, O is closed and therefore

Lebesgue-measurable. Furthermore, O has empty interior and thus has Lebesgue-measure

0. For the first pA columns of D, DpA
say, it has been shown that vecDpA

is normally

distributed with full rank covariance matrix Ψ. This implies that for any measurable set

O∗ ⊂ RkpA with Lebesgue-measure 0, it holds that Pr(vec(DpA
) ∈ O∗) = 0, in particular,

for O∗ = O. This proves the continuity claim for h.�

Proof of Theorem 5. By Assumption Mα(v) and IDα ĝ(θ̂a) = m2((α02, β̂)) + op(1)

and by Lemmas 8 and 9 (applied to Θn = {θaβ0
} and Θ1 = {a}, Θ2 = B, respectively)

we have ĝ(θ̂a) = Op(n
−1/2). Assumption IDα then implies consistency of β̂. Applying

Lemma 8 to the case Θn = {θ̂a} implies that the FOC for λ must hold in the definition

of θ̂a, see (A.4) above. Then repeating the analysis that leads to (A.6) in the proof of

Theorem 2, we have by Mα(ii)

GELRsub
ρ (a) = n1/2ĝ(θ̂a)

′∆(θaβ0
)−1n1/2ĝ(θ̂a) + op(1). (A.12)

The next goal is to derive the asymptotic distribution of n1/2ĝ(θ̂a). Our analysis follows

NS, see their proof of Theorem 3.2. Differentiating the FOC (A.4) with respect to λ yields

the matrix n−1
∑n

i=1 ρ2(λ̂
′
gi(θ̂a)) gi(θ̂a)gi(θ̂a)

′ which by Mα(ii) converges in probability

to −∆(θaβ0
) which is nonsingular. Therefore, the implicit function theorem implies that

there is a neighborhood of θ̂a where the solution to the FOC, say λ̂(θ), is continuously

differentiable w.p.a.1. The envelope theorem then implies

n−1
n∑

i=1

ρ1(λ̂
′
gi(θ̂a))(∂gi/∂β)′(θ̂a)λ̂ = 0 (A.13)
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w.p.a.1. Also, a mean-value expansion of (A.4) in (β, λ) about (β0, 0) yields (where gi(θ)

inside ρ1 is kept constant at gi(θ̂a))

−ĝ(θaβ0
)+n−1

n∑
i=1

[ρ1(λ
′
gi(θ̂a))GiB(θaβ)(β̂−β0)+ρ2(λ

′
gi(θ̂a))gi(θaβ)gi(θ̂a)

′λ̂] = 0, (A.14)

where (β
′
, λ

′
) are mean-values on the line segment that joins (β′

0, 0
′) and (β̂

′
, λ̂

′
) that may

be different for each row. Combining the pB rows of (A.13) with the k rows of (A.14) we

get (
0

−ĝ(θaβ0
)

)
+ M

(
β̂ − β0

λ̂

)
= 0, (A.15)

where the (pB+k)×(pB+k) matrix M has been implicitly defined. By Mα(ii) and (iv)-(vi)

the matrix M converges in probability to M , where (writing M2β for M2β((α02, β0)))

M := −

(
0 M ′

2β

M2β ∆(θa)

)
and M

−1
= −

(
−Σ H
H ′ P

)

and (omitting the argument θaβ0
)

Σ := (M ′
2β∆−1M2β)−1, H := ΣM ′

2β∆−1 and P := ∆−1 − ∆−1M2βΣM ′
2β∆−1.

It follows that M is nonsingular w.p.a.1. Equation (A.15) implies that w.p.a.1

n1/2((β̂ − β0)
′, λ̂

′
)′ = M−1(0′, n1/2ĝ(θaβ0

)′)′. (A.16)

An expansion of ĝ(θ̂a) in β around β0 and the above lead to

ĝ(θ̂a) = ĝ(θaβ0
) + ĜB(θ)(β̂ − β0) = (Ik − M2βH)ĝ(θaβ0

) + op(n
−1/2). (A.17)

Note that

Ik − M2βH = MM2β
(∆(θaβ0

)) (A.18)

which has rank k−pB. From (A.12), GELRsub
ρ (a) →d ξ′∆(θaβ0

)−1MM2β
(∆(θaβ0

))ξ, where

ξ ∼ N(m1(θaβ0
), ∆(θaβ0

)), which concludes the proof.�

Proof of Theorem 6. As in the proof of Theorem 5, n1/2λ(θ̂a) = −∆(θaβ0
)−1n1/2ĝ(θ̂a)

+op(1). Hence, the result for LM sub
ρ (a) thus implies the result for Ssub

ρ (a).

As in the proof of Theorem 4 renormalize D∗ := Dρ(a)Λ, where the diagonal pA ×

pA matrix Λ := diag(n1/2, ..., n1/2, 1, ..., 1) has first pA1
diagonal elements equal n1/2

and the remaining pA2
elements equal to unity. We now show that D∗ and n1/2ĝ(θ̂a)

are asymptotically independent. By a mean value expansion about θa and Assumption

Mα(vii) we have for some mean value θ̃ = (a′, β̃
′
)′ (that may be different for each row)

n1/2vecĜA1
(θ̂a) = n1/2vecĜA1

(θaβ0
) + (∂vecĜA1

/∂β)(θ̃)n1/2(β̂ − β0)

= n1/2vecĜA1
(θaβ0

) − (∂vecĜA1
/∂β)(θ̃)Hn1/2ĝ(θaβ0

) + op(1),
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where we have used (A.16) for the last equation. Mα(vii) and IDα imply (∂vecĜA1
/∂β)(θ̃)

= ∂(n−1/2m1(θ̃) + m2((α02, β̃)))/∂β∂α1 + op(1) →p 0 (recall that m2 does not depend on

α1) and thus

n1/2vecĜA1
(θ̂a) = n1/2vecĜA1

(θaβ0
) + op(1). (A.19)

Proceeding exactly as in the proof of Theorem 4, using (A.17), (A.19) and Assumptions

Mα(vii)-(ix) it follows that

vec(D∗, n1/2ĝ(θ̂a)) = m + Mv + op(1), (A.20)

where M ∈ R(kpA1
+kpA2

+k)×(kpA1
+k) and

M : =




−IkpA1
∆A1

∆−1

0 0
0 Ik



(

IkpA1
0

0 Ik − M2βH

)
,

v : = n−1/2
n∑

i=1

(
vecGiA1

(θaβ0
)

gi(θaβ0
)

)
, m := vec(0,−(∂m2/∂α2), 0),

where the arguments (α02, β0) in M2β and (∂m2/∂α2) and θaβ0
in ∆A1

and ∆ are omitted.

By Mα(x) v is asymptotically normal with full rank covariance matrix V α(θaβ0
) and

thus the asymptotic covariance matrix of vec(D∗, n1/2ĝ(θ̂a)) is given by MV α(θaβ0
)M ′.

For independence of D∗ and n1/2ĝ(θ̂a) the upper right k(pA1
+ pA2

) × k-submatrix of

MV α(θaβ0
)M ′ must be 0. This is clear for the kpA2

× k-dimensional submatrix and we

only have to show that the kpA1
× k upper right submatrix

(−∆A1
+ ∆A1

∆−1(Ik − M2βH)∆)(Ik − M2βH)′ (A.21)

is 0. Using (A.18), the matrix in (A.21) equals −∆A1
∆−1PM2β

(∆)MM2β
(∆)∆ which is

clearly 0. This proves the independence claim.

Now denote by D and g the limiting normal distributions of D∗ and n1/2ĝ(θ̂a), implied

by (A.20). Recall M(a) = ∆−1MM2β
(∆), see (4.2). If the function h : Rk×pA1 → RpA1

×k

defined by h(D) := (D′M(a)D)−1/2D′ for D ∈ Rk×pA1 is continuous on a set C ⊂ Rk×pA1

with Pr(D ∈ C) = 1, then by the Continuous Mapping Theorem

(D∗′M(a)D∗)−1/2D∗′∆−1n1/2ĝ(θ̂a) →d (D
′
M(a)D)−1/2D

′
∆−1g.

By (A.17) and (A.18) the latter variable is distributed as Wα(a) + ζα, where

Wα(a) := (D
′
M(a)D)−1/2D

′
M(a)m1(θaβ0

). (A.22)

Therefore the theorem is proven once we have proved the continuity claim for h. For this

step of the proof we need the full rank assumption for V α(θaβ0
) in Mα(x). It is enough

to show that with probability 1, rank(MM2β
(∆)D) = pA. Because ker MM2β

(∆) = M2β

and rank(M2β) = pB, the latter condition holds if rank(M2β, D) = p. Denote by DpA2
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the last pA2
columns of D which by (A.20) equal −(∂m2/∂α2). By Assumption IDα, the

matrix (∂m2/∂(α′
2, β

′)′)((α02, β0)) has rank pA2
+ pB and it remains to show that with

probability one, this matrix is linearly independent of the first pA1
columns of D, DpA1

say. Using (A.20) and V α(θaβ0
) > 0, the covariance matrix of vecDpA1

is easily shown

to have full column rank pA1
k. An argument analogous to the last step in the proof of

Theorem 4 can then be applied to conclude the proof.�
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Footnotes
1 The paper is based on the first chapter of the first author’s dissertation, Guggen-

berger (2003) and is a revised and generalized version of Guggenberger’s job market paper

“Generalized Empirical Likelihood Tests under Partial, Weak, and Strong Identification”

which it replaces. To make the origin of the test statistics in the paper clearer, the names

Kρ(θ) and KL
ρ (θ) previously given to the statistics, have been changed to LMρ(θ) and

Sρ(θ), respectively. Guggenberger gratefully acknowledges the continuous help and sup-

port of his advisor Donald Andrews who played a prominent role in the formulation of this

paper. He also thanks Peter Phillips and Joseph Altonji for their extremely valuable com-

ments. The authors are grateful to seminar participants at Austin, Chicago, Konstanz,

Madison Wisconsin, Mannheim, Penn, Penn State, Pittsburgh, Princeton, Rochester,

Texas A&M, UCLA, USC and Yale for their helpful comments. We would also like to

thank John Chao, Guido Imbens, Michael Jansson, Frank Kleibergen, Marcelo Moreira,

Jonathan Wright and Motohiro Yogo for helpful discussions and/or correspondence and

Vadim Marner for help with the simulation section. The first author received financial

support through a Carl Arvid Anderson Prize Fellowship.
2 Corresponding author: Patrik Guggenberger, Bunche Hall 9357, Department of

Economics, U.C.L.A, Box 951477, Los Angeles, CA 90095-1477.
3 Note that ∆(θ) is Ω(θ) in SW. We choose our notation for Ω(θ) for consistency with

NS.
4 Weak convergence here is defined with respect to the sup-norm on function spaces

and Euclidean norm on Rk.
5 For compact Θ, continuous ρ and gi (i = 1, ..., n), the existence of an argmin θ̂

may be shown. In fact, supλ∈Λ̂n(θ) P̂ (θ, λ), viewed as a function in θ, can be shown to be

lower semicontinuous (ls). A function f(x) is ls at x0 if, for each real number c such that

c < f(x0), there exists an open neighborhood U of x0 such that c < f(x) holds for all

x ∈ U . The function f is said to be ls if it is ls at each x0 of its domain. It is easily shown

that ls functions on compact sets take on their minimum. Uniqueness of θ̂, however, is

not implied. As a simple example, consider the i.i.d. linear IV model in (2.2) when

p = 2 and let the two components Yij, (j = 1, 2), of Yi be independent Bernoulli random

variables. Then, for each n, the probability that Yi1 = Yi2 for every i = 1, ..., n is positive.

If Yi1 = Yi2 for every i = 1, ..., n and θ̂ ∈ Θ is an argmin of supλ∈Λ̂n(θ) P̂ (θ, λ), then each

θ ∈ Θ with θ1 + θ2 = θ̂1 + θ̂2 is as well. To uniquely define θ̂, we could, for example, do

the following. From the set of all vectors θ ∈ Θ that minimize supλ∈Λ̂n(θ) P̂ (θ, λ), let θ̂

be the vector that has smallest first component. (If that does not pin down θ̂ uniquely,

choose from the remaining vectors according to the second component, and so on.)
6 A choice of Ω̂(θ)−1 as the weighting matrix WT (θT (θ)) in SW ((2.2), p.1058), i.e.

(
∑n

i=1 gi(θ)gi(θ)
′/n)−1, results in the CUE which is the GEL estimator based on ρ(v) =
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−(1 + v)2/2; see NS, Theorem 2.1. Hansen, Heaton, and Yaron (1996) and Pakes and

Pollard (1989) define the (GMM) CUE using a different weighting matrix (
∑n

i=1(gi(θ)−

ĝ(θ))(gi(θ) − ĝ(θ))′/n)−1. However, as shown in NS, fn.1, both versions of the CUE are

identical.
7 The proof of Theorem 2 uses a second order Taylor expansion of P̂ρ(θ, λ) in λ about

0 in which the only impact of ρ asymptotically is through ρ1 and ρ2 which are both −1.
8 Alternatively, instead of using uniform weights in the definition of Ω̂(θ) one could

use empirical probabilities that are associated with each GEL estimator; see section 2 of

NS. However, preliminary Monte Carlo simulations (not reported here) showed no clear

improvement in the performance of the test statistics.
9 Strong identification of β0 appears to be a necessary assumption but one which

we would prefer to avoid. However, to the authors’ knowledge there is no meaningful

approach in the literature for subvector inference that does not require this assumption;

see, e.g., Kleibergen (2001). An outstanding research question concerns the existence or

otherwise of a subvector test statistic for α0 whose limiting null distribution is similarly

independent of the strength or weakness of identification of β0.
10 To calculate GELRρ(θ), Sρ(θ) and LMρ(θ) for EL and ET, the globally concave

maximization problem maxλ∈Λ̂n(θ) P̂ (θ, λ) must be solved numerically. To do so we im-

plement a variant of the Newton-Raphson algorithm. We initialize the algorithm by

setting λ equal to the zero vector. At each iteration the algorithm tries several shrinking

stepsizes in the search direction and accepts the first one that increases the function

value compared to the previous value for λ. This procedure enforces an “uphill climbing”

feature of the algorithm.
11 The K-statistic is not robust to conditional heteroskedasticity. However, a version

of the K-statistic in Kleibergen (2001, equation (22)) that uses a heteroskedasticity

consistent estimator for the covariance matrix of gi(θ), overcomes this drawback. For

model (5.1), the statistic is given by

K∗(θ) := nĝ(θ)′Ω̄(θ)−1D(θ)
(
D(θ)′Ω̄(θ)−1D(θ)

)−1
D(θ)′Ω̄(θ)−1ĝ(θ),

where Ω̄(θ) := Ω̂(θ) − ĝ(θ)ĝ(θ)′, D(θ) :=
∑n

i=1 Gi − nV̂ (θ)Ω̄(θ)−1ĝ(θ), Ĝ :=
∑n

i=1 Gi/n

and V̂ (θ) :=
∑n

i=1(Gi − Ĝ)(gi(θ) − ĝ(θ))′/n. Note that Gi := Gi(θ) does not depend on

θ in a linear model.
12 The simulation method works as follows. For fixed T̄ ′T̄ = t̄′t̄, simulate R values

from

LR :=
1

2
[Q1 + Qk−1 − T̄ ′T̄ + {(Q1 + Qk−1 + T̄ ′T̄ )2 − 4Qk−1T̄

′T̄}1/2],

where Q1 and Qk−1 are independent realizations from χ2(1) and χ2(k − 1) distributions,

respectively. If k = 1, let Qk−1 ≡ 0. For a fixed size r, let c(r) be the (1 − r)-quantile of

the R realizations of LR. Reject if and only if LRM > c(r).
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13 Kleibergen (2002a) generates one sample for the instrument matrix Z from a

N(0, Ik ⊗ In) distribution and then keeps Z fixed across R = 10, 000 samples of the

DGP (5.1) using Design (I) with n = 100 and ρuV = .99. We simulate a new matrix Z

with each sample of the DGP (5.1). As a consequence, our results do not coincide with

those reported by Kleibergen (2002a).

To investigate the sensitivity of the results in Kleibergen (2002a) to the choice of

Z, we iterated Kleibergen’s (2002a) procedure 100 times, i.e. each time we simulated

a matrix Z of instruments that we then kept fixed across R = 1, 000 samples of the

DGP (5.1). We found strong dependence of the numerical results of the Monte Carlo

experiment on Z. For example, in the case Π1 = 1, k = 1, the power of the K-statistic

to reject the hypothesis θ0 = 0 when θ0 = .4, varied from about 60% to 95% in the 100

experiments. For the specific Z that Kleibergen (2002a) generates, he reports power of

about 93% (see his Figure 1, p.1793).
14 The reason for this anomaly is most easily explained in the case k = 1, where

LMEL(0) = GELRCUE(0) = nĝ(0)Ω̂(0)−1ĝ(0). We have Ω̂(0) →p E(ui + Yiθ0)
2, which

in Design (I) with Π1 = 0.1 equals 1 + 2θ0ρuV + (1.01)θ2
0. If ρuV = .99 this expression is

minimized at around θ0 = −.98 where it equals approximately .03. Therefore, this peak

is caused by Ω̂(0)−1 taking on large values for θ0 in the neighborhood of −1.
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TABLE 1

Size results for Design (I) at 5% significance level. Strong instrument Π1 = 1

2SLS GELRρ

n k ρuV HOM HET K LRM CUE EL LMCUE LMEL SEL

50 1 .0 4.9∗ 6.0 5.7 5.4 4.7 6.7 4.7 4.7 8.9
.5 5.1∗ 6.3 5.5 5.3 4.8 6.9 4.8 4.8 8.9
.99 5.8 6.7 5.1∗ 5.1∗ 4.2 6.4 4.2 4.2 8.3

5 .0 3.9 5.3∗ 5.9 6.2 2.8 17.8 2.6 4.2 15.1
.5 5.8 7.1 5.3∗ 5.4 2.5 17.5 2.4 4.1 14.8
.99 12.9 14.2 5.8 5.7∗ 2.7 17.6 2.7 4.3∗ 15.7

10 .0 3.2 4.2 6.2 6.4 1.4 44.6 1.8 4.3∗ 27.2
.5 8.5 10.0 5.6∗ 5.7 1.4 44.2 1.9 4.4∗ 26.3
.99 28.4 30.5 5.8∗ 5.8∗ 1.6 45.4 1.4 3.7 25.1

100 1 .0 4.6 5.4 5.2∗ 5.3 4.6 5.6 4.6 4.6 6.3
.5 5.0∗ 5.8 5.4 5.4 5.1 6.2 5.1 5.1 6.8
.99 5.3 5.9 5.0∗ 4.9 4.5 5.6 4.5 4.5 6.3

5 .0 4.7 5.4 5.6 5.8 3.9 10.8 3.9 5.0∗ 9.3
.5 5.4 6.1 5.1∗ 5.3 3.6 10.3 3.5 4.7 9.5
.99 9.2 9.7 5.6 5.2∗ 3.9 10.5 3.7 4.8∗ 9.2

10 .0 4.2 4.8∗ 5.5 5.2∗ 2.7 21.1 2.7 4.7 14.1
.5 7.3 8.0 5.4∗ 5.4∗ 3.0 21.7 2.5 4.4 13.3
.99 18.6 19.8 5.3 5.1∗ 2.3 21.4 2.6 4.5 13.3

250 1 .0 5.0∗ 5.5 5.2 5.0∗ 5.2 5.6 5.2 5.2 5.6
.5 5.1∗ 5.4 5.2 4.8 5.3 5.6 5.3 5.3 5.5
.99 4.9∗ 5.4 5.2 5.2 5.1∗ 5.5 5.1∗ 5.1∗ 5.4

5 .0 4.8 5.1∗ 5.2 5.4 4.6 7.1 4.2 4.8 6.1
.5 5.0∗ 5.3 4.9 5.2 4.2 6.3 4.2 4.8 5.9
.99 6.9 7.3 5.1∗ 5.2 4.6 6.7 4.3 4.9∗ 6.2

10 .0 4.6 5.0∗ 5.2 5.1 4.3 9.9 3.7 4.9 7.6
.5 6.0 6.2 5.0∗ 4.9 3.8 9.8 3.4 4.7 7.2
.99 10.7 10.9 5.1∗ 4.8 4.0 9.5 3.5 4.8 7.7

Notes: Asterisks in each row denote the number closest to the 5% significance level.

The size results are computed using R=10,000 simulation repetitions.
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TABLE 1 (continued)

Size results for Design (I) at 5% significance level. Weak instrument Π1 = .1

2SLS GELRρ

n k ρuV HOM HET K LRM CUE EL LMCUE LMEL SEL

50 1 .0 0.1 0.3 5.7 5.4 4.7∗ 6.7 4.7∗ 4.7∗ 8.9
.5 2.2 3.0 5.5 5.3 4.8∗ 6.9 4.8∗ 4.8∗ 8.9
.99 24.7 25.7 5.1∗ 5.1∗ 4.2 6.4 4.2 4.2 8.3

5 .0 0.6 1.2 6.6 7.3 2.8 17.8 3.7 5.5∗ 17.1
.5 16.5 18.9 6.8 7.3 2.5 17.5 3.7 5.4∗ 17.0
.99 96.5 96.6 5.8 6.1 2.7 17.6 2.8 4.3∗ 15.6

10 .0 0.9 2.1 8.5 9.2 1.4 44.6 3.1 6.0∗ 30.1
.5 33.7 36.9 8.2 9.3 1.4 44.2 3.2 6.3∗ 30.6
.99 100.0 100.0 6.7 7.4 1.6 45.4 2.0 4.6∗ 27.6

100 1 .0 0.1 0.2 5.2∗ 5.3 4.6 5.6 4.6 4.6 6.3
.5 2.6 3.0 5.4 5.4 5.1∗ 6.2 5.1∗ 5.1∗ 6.8
.99 18.5 19.0 5.0∗ 4.9 4.5 5.6 4.5 4.5 6.3

5 .0 0.6 0.9 5.9 6.1 3.9 10.8 4.3 5.6∗ 10.7
.5 17.0 18.3 5.6 6.2 3.6 10.3 4.2 5.5∗ 10.3
.99 92.7 92.8 5.6 5.5 3.9 10.5 3.8 4.9∗ 9.2

10 .0 1.3 2.0 6.8 6.6 2.7 21.1 3.4 6.2∗ 16.1
.5 36.6 37.5 6.5 6.9 3.0 21.7 3.7 5.9∗ 15.7
.99 99.8 99.8 5.5 5.4∗ 2.3 21.4 2.5 4.5 14.0

250 1 .0 0.3 0.3 5.2 5.0∗ 5.2 5.6 5.2 5.2 5.6
.5 3.2 3.5 5.2∗ 4.8∗ 5.3 5.6 5.3 5.3 5.5
.99 13.0 13.3 5.2 5.2 5.1∗ 5.5 5.1∗ 5.1∗ 5.4

5 .0 0.7 0.8 5.1∗ 5.7 4.6 7.1 4.4 5.1∗ 6.5
.5 15.5 16.0 5.2∗ 5.4 4.2 6.3 4.7 5.4 6.6
.99 80.1 80.3 5.1∗ 5.3 4.6 6.7 4.3 4.9∗ 6.5

10 .0 1.6 1.9 5.4∗ 6.0 4.3 9.9 4.1 5.4∗ 8.2
.5 34.3 34.9 5.6 5.5∗ 3.8 9.8 4.4 5.9 8.4
.99 99.0 99.0 5.2 4.7 4.0 9.5 3.5 5.0∗ 7.6

Notes: Asterisks in each row denote the number closest to the 5% significance level.

The size results are computed using R=10,000 simulation repetitions.

[T.1]



TABLE 2

Size results for Design (IHET ) at 5% significance level. Strong instrument Π1 = 1

2SLS GELRρ

n k ρuV HOM HET K LRM CUE EL LMCUE LMEL SEL

50 1 .0 24.7 7.6 26.8 26.3 3.9∗ 9.6 3.9∗ 3.9∗ 16.6
.5 23.7 7.7 26.6 26.3 3.9∗ 9.6 3.9∗ 3.9∗ 16.3
.99 22.9 8.3 26.0 26.1 3.5∗ 9.2 3.5∗ 3.5∗ 16.2

5 .0 7.7 5.8∗ 11.0 12.1 2.0 23.4 2.4 4.1 20.1
.5 9.9 7.6 10.7 11.6 2.0 22.4 2.4 3.9∗ 18.9
.99 18.1 14.3 11.2 11.4 2.1 22.9 2.6 4.1∗ 20.3

10 .0 4.7∗ 4.5 9.3 10.3 1.1 49.4 1.9 4.4 30.3
.5 10.6 10.0 8.8 9.4 1.3 49.8 1.9 4.4∗ 29.2
.99 32.1 29.9 8.8 8.9 1.4 50.3 1.4 3.7∗ 27.9

100 1 .0 25.3 6.2 26.4 26.6 4.3∗ 7.1 4.3∗ 4.3∗ 11.1
.5 25.6 6.8 26.9 26.8 4.5∗ 8.2 4.5∗ 4.5∗ 12.1
.99 24.0 7.0 25.5 25.2 4.5∗ 7.7 4.5∗ 4.5∗ 11.2

5 .0 8.8 5.8 10.3 11.0 3.3 14.4 3.6 4.8∗ 12.3
.5 9.6 6.6 9.9 10.3 3.1 14.1 3.5 4.5∗ 12.5
.99 14.1 10.1 10.5 10.1 3.5 13.8 3.6 4.5∗ 12.7

10 .0 6.3 5.0∗ 8.3 8.1 2.4 25.1 2.7 4.6 16.5
.5 9.6 8.0 8.1 8.2 2.7 25.9 2.6 4.4∗ 15.9
.99 22.0 19.2 7.9 7.7 2.2 26.0 2.5 4.5∗ 15.8

250 1 .0 25.3 5.8 25.7 25.4 4.7∗ 6.3 4.7∗ 4.7∗ 7.7
.5 26.4 5.8 26.6 26.0 5.0∗ 6.3 5.0∗ 5.0∗ 7.8
.99 25.4 5.9 26.0 26.1 4.9∗ 6.3 4.9∗ 4.9∗ 7.5

5 .0 9.3 5.1∗ 9.9 10.2 4.1 8.5 4.0 4.6 7.6
.5 9.5 5.6 9.7 10.3 4.0 7.9 4.1 4.6∗ 7.9
.99 11.5 7.3 10.1 10.5 4.1 8.3 4.3 5.0∗ 8.1

10 .0 6.8 4.8 7.6 7.7 3.9 12.6 3.6 5.0∗ 9.1
.5 8.4 6.3 7.5 7.5 3.5 12.0 3.3 4.7∗ 8.8
.99 13.7 10.9 7.9 7.4 3.7 11.7 3.5 4.8∗ 9.2

Notes: Asterisks in each row denote the number closest to the 5% significance level.

The size results are computed using R=10,000 simulation repetitions.
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TABLE 2 (continued)

Size results for Design (IHET ) at 5% significance level. Weak instrument Π1 = .1

2SLS GELRρ

n k ρuV HOM HET K LRM CUE EL LMCUE LMEL SEL

50 1 .0 0.9 0.4 26.8 26.3 3.9∗ 9.6 3.9∗ 3.9∗ 16.6
.5 4.4∗ 3.0 26.6 26.3 3.9 9.6 3.9 3.9 16.3
.99 23.4 24.5 26.0 26.1 3.5∗ 9.2 3.5∗ 3.5∗ 16.2

5 .0 1.4 1.5 12.2 18.5 2.0 23.4 3.9 5.6∗ 22.5
.5 20.4 18.0 12.7 18.7 2.0 22.4 3.6 5.3∗ 22.2
.99 94.7 93.3 18.1 21.2 2.1 22.9 2.8 4.9∗ 22.8

10 .0 1.5 2.4 11.9 17.1 1.1 49.4 3.1 6.1∗ 33.5
.5 36.5 35.8 12.5 17.0 1.3 49.8 3.2 6.5∗ 34.2
.99 100.0 99.9 17.9 21.4 1.4 50.3 2.3 5.7∗ 32.2

100 1 .0 1.1 0.2 26.4 26.6 4.3∗ 7.1 4.3∗ 4.3∗ 11.1
.5 6.1 2.9 26.9 26.8 4.5∗ 8.2 4.5∗ 4.5∗ 12.1
.99 24.4 18.5 25.5 25.2 4.5∗ 7.7 4.5∗ 4.5∗ 11.2

5 .0 1.4 0.9 10.7 17.0 3.3 14.4 4.3 5.6∗ 14.0
.5 21.7 17.6 11.2 17.0 3.1 14.1 4.1 5.4∗ 14.1
.99 92.0 89.0 15.0 18.1 3.5 13.8 3.5 5.0∗ 13.7

10 .0 2.1 1.9 9.6 13.4 2.4 25.1 3.3 6.0∗ 18.9
.5 40.0 36.5 9.2 14.4 2.7 25.9 3.5 6.0∗ 18.4
.99 99.7 99.6 13.8 15.4 2.2 26.0 2.7 5.3∗ 18.5

250 1 .0 3.0 0.3 25.7 25.4 4.7∗ 6.3 4.7∗ 4.7∗ 7.7
.5 9.3 3.2 26.6 26.0 5.0∗ 6.3 5.0∗ 5.0∗ 7.8
.99 23.2 12.6 26.0 26.1 4.9∗ 6.3 4.9∗ 4.9∗ 7.5

5 .0 1.8 0.9 10.1 15.8 4.1 8.5 4.3 5.2∗ 8.1
.5 20.8 14.8 10.5 15.4 4.0 7.9 4.3 5.0∗ 7.9
.99 81.5 76.0 12.3 14.3 4.1 8.3 4.2 5.1∗ 8.2

10 .0 2.5 2.0 7.8 12.5 3.9 12.6 4.1 5.5∗ 9.9
.5 38.9 33.9 8.4 11.7 3.5 12.0 4.5∗ 5.8 10.3
.99 98.8 98.3 10.3 10.4 3.7 11.7 3.4 5.0∗ 9.3

Notes: Asterisks in each row denote the number closest to the 5% significance level.

The size results are computed using R=10,000 simulation repetitions.
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