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Abstract

We introduce test statistics based on generalized empirical likelihood methods that can be used

to test simple hypotheses involving the unknown parameter vector in moment condition time series

models. The test statistics generalize those in Guggenberger and Smith (2005) from the i.i.d. to the

time series context and are alternatives to those in Kleibergen (2001) and Otsu (2003). The main

feature of these tests is that their empirical null rejection probabilities are not affected much by the

strength or weakness of identification. More precisely, we show that the statistics are asymptotically

distributed as chi—square under both classical asymptotic theory and weak instrument asymptotics

of Stock and Wright (2000). A Monte Carlo study reveals that the finite—sample performance of the

suggested tests is very competitive.
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1 Introduction

There has recently been a lot of interest in robust inference in weakly identified models, see inter alia

Dufour (1997), Staiger and Stock (1997), Stock andWright (2000), Kleibergen (2001, 2002), Caner (2003),

Dufour and Taamouti (2003), Moreira (2003), Otsu (2003), Andrews and Marmer (2004), Andrews et

al. (2004), Chao and Swanson (2005) and Guggenberger and Smith (2005, GS henceforth). For a recent

discussion of that literature, see Dufour (2003). This paper adds to this literature by introducing two

types of test statistics that can be used to test simple hypotheses involving the unknown parameter vector

in nonlinear moment condition time series models. The main feature of these statistics is that they lead

to tests whose empirical rejection probabilities (ERP) under the null hypothesis do not depend much on

the strength or weakness of identification of the model. More precisely, we show that the statistics are

asymptotically distributed as chi—square under both classical and the weak instrument asymptotic theory

of Stock and Wright (2000). This is in contrast to many of the classical test statistics, like for example

a Wald statistics, that have a chi—square under the former but a nonstandard asymptotic distribution

under the latter theory.

The first test statistic is given as the renormalized criterion function of the generalized empirical

likelihood (GEL) estimator, see Newey and Smith (2004), and the second one as a quadratic form in

the first order condition (FOC) of the GEL estimator; both statistics are evaluated at the hypothesized

parameter vector. The statistics generalize those in GS from the i.i.d. and martingale difference sequence

(m.d.s.) setup to the time series case. One advantage of the second statistic over the first one is that

the degrees of freedom parameter of its asymptotic chi—square distribution equals p, the dimension of

the unknown parameter vector, while for the first statistic the degrees of freedom parameter equals

k, the number of moment conditions. This negatively affects power properties of tests based on the

first statistic in overidentified situations. To adapt the statistics to the time series context, we work

with smoothed counterparts of the moment indicator functions based on a kernel function k(·) and a
bandwidth parameter Sn, an approach which was originally used in Kitamura and Stutzer (1997) and

Smith (1997, 2001). This method for the construction of test statistics in the weakly identified framework

was suggested by Guggenberger (2003, Introduction of the first chapter). See also Otsu (2003).

While most of the papers on robust testing with weak identification are written for the linear i.i.d.

instrumental variables model, there are two closely related procedures for robust inference in nonlinear

time series models available in the literature. First, Kleibergen (2001) introduces a test statistic that is

given as a quadratic form in the FOC of the generalized method of moments (GMM, Hansen (1982))

continuous updating estimator (CUE). The statistic includes consistent estimators for the long—run co-

variance matrix of the sums of the renormalized moment indicators and derivatives thereof. Kleibergen

(2001) suggests the use of heteroskedasticity and autocorrelation consistent (HAC) estimators as given in

Andrews (1991). Secondly, Otsu’s (2003) procedure is based on the criterion function of the GEL estima-

tor. An asymptotic chi—square distribution with p degrees of freedom is obtained by evaluating the GEL

criterion function at transformed moment indicators of dimension p rather than at the original moment

indicators that are k—dimensional. In section 2.3. below we give a detailed comparison of the various

approaches. There we also introduce modifications to Otsu’s (2003) statistic that are computationally
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more attractive.

Besides technicalities, the main assumptions needed to establish the asymptotic chi—square distribu-

tion of the new test statistics introduced in this paper are that 1) an appropriate HAC estimator of

the long—run covariance matrix of the sums of the moment indicators is consistent and that 2) a central

limit theorem (CLT) holds for the moment indicators and derivatives thereof with respect to the weakly

identified parameters. These assumptions are very similar to the ones used in Kleibergen (2001). They

are stated and discussed in the Appendix.

The tests in this paper are for simple hypotheses on the full parameter vector. They could straight-

forwardly be generalized to subvector tests under the assumption that the parameters not under test

are strongly identified, see e.g. Kleibergen (2001, 2004), Otsu (2003) and GS. The idea is to replace the

parameters not under test by consistently estimated counterparts in the test statistics. We omit this

generalization here to avoid complicating the presentation. In any case, simulations in Guggenberger and

Wolf (2004) indicate that the use of subsampling techniques for subvector tests may prove advantageous,

especially in scenarios where the assumption of strong identification of the parameters not under test is

questionable.

To investigate the finite—sample performance of the new tests, we compare them to those in Kleibergen

(2001) and Otsu (2003) in a Monte Carlo study that focuses on a time series linear model with AR(1)

or MA(1) variables. We find that both in terms of size and power the new tests compare very favorably

to the alternative procedures. Even though the tests are first—order equivalent, there can be huge power

differences between Otsu’s (2003) and the tests in this paper.

To implement the tests here and those in Kleibergen (2001) and Otsu (2003) a bandwidth Sn has to

be chosen. Andrews (1991) and Newey and West (1994) provide theory of how to choose the bandwidth,

if the goal is to minimize the mean squared error of a (HAC) covariance matrix estimator. However, in

the testing context here, we are really interested in size and power properties of the tests and it is unclear

of how to develop a theory of bandwidth choice. One could still follow the procedures in Andrews (1991)

or Newey and West (1994) but very likely this would not lead to any optimality result. The bandwidth

choice is an important problem that is beyond the scope of this paper. Future research has to tackle this

challenging question.

The remainder of the paper is organized as follows. In section 2 the model is introduced and the

test statistics and their asymptotic theory are discussed. The tests are compared to Kleibergen’s (2001)

and Otsu’s (2003) approaches. Section 3 contains the Monte Carlo study. All technical assumptions and

proofs are relegated to the Appendix.

The symbols “ →d ” and “ →p ” denote convergence in distribution and convergence in probability,

respectively. Convergence “almost surely” is written as “a.s.” and “with probability approaching 1” is

replaced by “w.p.a.1”. The space Ci(S) contains all functions that are i—times continuously differentiable

on the set S. Furthermore, vec(M) stands for the column vectorization of the k × p matrix M , i.e. if
M = (m1, ...,mp) then vec(M) = (m0

1, ...,m
0
p)
0, “M 0” denotes the transpose matrix of M, (M)i,j the

element in the i—th row and j—th column, “M > 0” means that M is positive definite and ||M || stands
for the square root of the largest eigenvalue ofM 0M . By Ip we denote the p—dimensional identity matrix.
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2 Robust Testing

2.1 Model and Notation

The paper considers models specified by a finite number of moment restrictions. More precisely, let {zi :
i = 1, ..., n} be Rl—valued time series data, where n ∈ N denotes the sample size. Let gn : H ×Θ→ Rk,
where H ⊂ Rl and Θ ⊂ Rp denotes the parameter space. The model has a true parameter θ0 for which
the moment condition

Egn(zi, θ0) = 0 (2.1)

is satisfied. For gn(zi, θ), usually the shorter gi(θ) is used.
1 Interest focuses on testing a simple hypothesis

H0 : θ0 = θ versus the alternative H1 : θ0 6= θ. (2.2)

Define

bg(θ) : = n−1 nP
i=1
gi(θ), Ψn(θ) := n

1/2(bg(θ)−Ebg(θ)) and
∆(θ) : = lim

n→∞
EΨn(θ)Ψn(θ)

0 ∈ Rk×k,

the long—run covariance matrix of gi(θ). Let θ = (α
0,β0)0, where α ∈ A, A ⊂ RpA , β ∈ B, B ⊂ RpB for

Θ = A× B and pA + pB = p. In the following, we adopt Assumption C from Stock and Wright (2000)

in which α0 and β0 are modelled respectively as weakly and strongly identified parameter vectors. For a

detailed discussion of this assumption, see Stock and Wright (2000, pp. 1060—1). Let N ⊂ B denote an

open neighborhood β0.

Assumption ID: The true parameter θ0 = (α
0
0,β

0
0)
0 is in the interior of the compact space Θ = A×B

and (i) Ebg(θ) = n−1/2m1n(θ) +m2(β), where m1n,m1 : Θ→ Rk and m2 : B → Rk are continuous func-
tions such that m1n(θ) → m1(θ) uniformly on Θ, m1(θ0) = 0 and m2(β) = 0 if and only if β = β0; (ii)

m2 ∈ C1(N ); (iii) let M2(β) := (∂m2/∂β)(β) ∈ Rk×pB . M2(β0) has full column rank pB.

Following the suggestion in Guggenberger (2003), we work with smoothed counterparts of the moment

indicators gi(θ) to handle the general time series setup considered here as in Kitamura and Stutzer (1997)

1The function g is allowed to depend on the sample size n to model weak identification, see Assumption ID below. For

example, consider the i.i.d. linear instrumental variable (IV) model given by the structural and reduced form equations

y = Y θ0 + u, Y = ZΠ+ V, where y, u ∈ Rn, Y, V ∈ Rn×p, Z ∈ Rn×k and Π ∈ Rk×p. The matrices Y and Z contain the

endogenous and instrumental variables, respectively. Denote by Yi, Vi, Zi, ... (i = 1, ..., n) the ith row of the matrix Y, V,

Z, ... written as a column vector. Assume EZiui = 0 and EZiV
0
i = 0. The first condition implies that Egi(θ0) = 0, where

for each i = 1, ..., n, gi(θ) := Zi(yi − Y 0i θ). Note that in this example gi(θ) depends on n if the reduced form coefficient

matrix Π is modeled to depend on n, see Stock and Wright (2000), where Π = Πn = (n−1/2ΠA,ΠB) and ΠA and ΠB are

fixed matrices with pA and pB columns, p = pA + pB and ΠB has full column rank.
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and Smith (1997, 2001). See also Otsu (2003) and Smith (2000, 2005).2 For i = 1, ..., n, define

gin(θ) := S
−1
n

i−1X
j=i−n

k(j/Sn)gi−j(θ),

where Sn is a bandwidth parameter (Sn →∞ as n→∞) and k(·) is a kernel. For simplicity, from now

on the truncated kernel is used given by

k(x) = 1 if |x| ≤ 1 and k(x) = 0 otherwise

and thus gin(θ) = S
−1
n

Pmin{Sn,i−1}
j=max{−Sn,i−n} gi−j(θ).

3 Define

bgn(θ) := n−1 nP
i=1
gin(θ) and b∆(θ) := Sn nX

i=1

gin(θ)gin(θ)
0/n. (2.3)

Under assumptions given in Lemma 2 below, the estimator b∆(θ0) is shown to be consistent for 2∆(θ0) whereas
the “unsmoothed” version of the estimator

Pn
i=1 gi(θ0)gi(θ0)

0/n used in GS, while being consistent in

an i.i.d. or m.d.s. setup, would not be consistent in the general time series context considered here. See

GS’s discussion of their assumption Mθ(ii). The consistency of b∆(θ) is crucial for the testing procedures
suggested in the next section.

The statistics below are based on the GEL estimator. In what follows, a brief definition of the GEL

estimator is given. For a more comprehensive discussion see Smith (1997, 2001), Newey and Smith (2004)

and GS. Let ρ be a real—valued function Q→ R, where Q is an open interval of the real line that contains
0 and bΛn(θ) := {λ ∈ Rk : λ0gin(θ) ∈ Q for i = 1, ..., n}. If defined, let ρj(v) := (∂jρ/∂vj)(v) and

ρj := ρj(0) for nonnegative integers j.

The GEL estimator is the solution to a saddle point problem

bθρ : = argmin
θ∈Θ

sup
λ∈bΛn(θ)

bPρ(θ,λ), where (2.4)

bPρ(θ,λ) : = 2 nP
i=1
(ρ(λ0gin(θ))− ρ0)/n. (2.5)

Assumption ρ: (i) ρ is concave on Q; (ii) ρ is C2 in a neighborhood of 0 and ρ1 = ρ2 = −1.

Examples of GEL estimators include the CUE, see Hansen, Heaton and Yaron (1996), empirical

likelihood (EL, see Imbens (1997) and Qin and Lawless (1994)) and exponential tilting (ET, see Kitamura

and Stutzer (1997) and Imbens, Spady and Johnson (1998)) which correspond to ρ(v) = −(1 + v)2/2,
ρ(v) = ln(1− v) and ρ(v) = − exp v, respectively.

2An alternative procedure would be to work with a blocking method as in Kitamura (1997).
3In general, one could employ kernels in the class K1 of Andrews (1991, p.821) taking into account technical modifications

in Jansson (2002); see for example Smith (2001) and Otsu (2003). Here we focus on the truncated kernel because it

significantly simplifies the proofs and notation. In addition, for the testing purpose in this paper, it is not clear on what

basis a kernel should be chosen and Monte Carlo simulations reveal that the finite sample performance is not very sensitive

to the kernel choice, see also Newey and West (1994) for similar findings in the HAC literature.
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2.2 Test Statistics

Here statistics are introduced that can be used to test (2.2) in the time series model given by (2.1). It is

established that they are asymptotically pivotal quantities and have limiting chi—square null distributions

under Assumption ID. Therefore these statistics lead to tests whose level properties in finite samples

should not be affected much by the strength or weakness of identification. There are other statistics

that share this property in the general time series set—up considered here, namely Kleibergen’s (2001)

GMM—based and Otsu’s (2003) GEL—based statistic.4 These statistics are compared to the approach of

this paper in more detail below.

Let ρ be any function satisfying Assumption ρ. The first statistic is given by5

GELRρ(θ) : = S
−1
n n bPρ(θ,λ(θ))/2, where, if it exists, (2.6)

λ(θ) : = arg max
λ∈bΛn(θ) bPρ(θ,λ).

The statistic GELRρ(θ) has a nonparametric likelihood ratio interpretation, see GS, where motivation

is provided in the i.i.d. context.

The second set of statistics is based on the FOC with respect to θ of the GEL estimator bθ. If the
minimum of the objective function bP (θ,λ(θ)) is obtained in the interior of Θ, the score vector with respect
to θ must equal 0 at bθ. Using the envelope theorem it can be shown that this results in

00 = λ(bθ)0 nP
i=1

ρ1(λ(
bθ)0gin(bθ))Gin(bθ)/n, where if defined (2.7)

Gin(θ) : = (∂gin/∂θ)(θ) ∈ Rk×p, (2.8)

see Newey and Smith (2004) and GS for a rigorous argument of this statement in the i.i.d. case. For

θ ∈ Θ, define

Dρ(θ) :=
nP
i=1

ρ1(λ(θ)
0gin(θ))Gin(θ)/n ∈ Rk×p. (2.9)

Thus, (2.7) may be written as λ(bθ)0Dρ(bθ) = 00. The test statistic is given as a quadratic form in the score
vector λ(θ)0Dρ(θ) evaluated at the hypothesized parameter vector θ and renormalized by the appropriate

rate

Sρ(θ) := S
−2
n nλ(θ)0Dρ(θ)

³
Dρ(θ)

0 b∆(θ)−1Dρ(θ)
´−1

Dρ(θ)
0λ(θ)/2. (2.10)

In addition, the following variant of Sρ(θ)

LMρ(θ) := nbgn(θ)0 b∆(θ)−1Dρ(θ)
³
Dρ(θ)

0 b∆(θ)−1Dρ(θ)
´−1

Dρ(θ)
0 b∆(θ)−1bgn(θ)/2 (2.11)

is considered that substitutes S−1n λ(θ) in Sρ(θ) by the asymptotically equivalent expression−b∆(θ)−1bgn(θ),
see eq. (A.6) below. The names Sρ(θ) and LMρ(θ) of the statistics are taken from GS and are based

4There are various other robust tests introduced for i.i.d. models, e.g. Kleibergen (2002), Caner (2003) and Moreira

(2003).
5The generalization of the GELRρ statistic in GS to the time series context has now been independently introduced by

Otsu (2003), see his bSGEL statistic.
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on the interpretation of the statistics as score and Lagrange multiplier statistics, respectively, see GS for

more discussion.

The next theorem discusses the asymptotic distribution of these test statistics evaluated at θ0. The

technical assumptions Mθ0 and their interpretation are given in the Appendix.

Theorem 1 Suppose ID, ρ and Mθ0(i)—(iii) hold. Then for Sn → ∞ as n → ∞ and Sn = o(n1/2) it

follows that

(i) GELRρ(θ0)→d χ
2(k).

If in addition Mθ (iv)—(vii) hold then

(ii) Sρ(θ0), LMρ(θ0)→d χ
2(p).

Remarks: 1) Theorem 1 implies a straightforward method to construct confidence regions or hy-

pothesis tests for θ0. For example, a critical region for the test (2.2) at significance level r is given

by {GELRρ(θ0) ≥ χ2r(k)}, where χ2r(k) denotes the (1 − r)—critical value from the χ2(k) distribution.

Unlike classical test statistics such as a Wald statistic, the statistics GELRρ(θ0), Sρ(θ0) and LMρ(θ0)

are asymptotically pivotal statistics under Assumption ID. Therefore, the level of tests based on these

statistics should not vary much with the strength or weakness of identification in finite samples. For

the statistics Sρ(θ0) and LMρ(θ0) to be pivotal, it is crucial that Dρ(θ0) (appropriately renormalized)

and n1/2bgn are asymptotically independent under both weak and strong identification, see the proof of
the theorem.6 Theorem 1 also shows that the asymptotic null distribution of the test statistics does not

depend on the choice of ρ.

2) Theorem 1 provides an approach to full—vector inference for θ0. There are various approaches to

subvector inference for θ01, where θ0 = (θ
0
01, θ

0
02)

0.

First, under the assumption that the parameters θ02 not under test are strongly identified, one can

replace θ02 in the test statistics above by their consistently estimated counterparts bθ02, where bθ02 is a GEL
estimator, say, calculated under the restriction that θ1 = θ01. This approach is investigated in Kleibergen

(2001, 2004) for the GMM CUE, in Otsu (2003) and GS for GEL and could also be implemented here at

the expense of more difficult notation and longer proofs.

Second, confidence intervals can be constructed by a projection argument, see Dufour (1997). However,

this approach is conservative and in general computationally cumbersome. In a recent paper, Dufour and

Taamouti (2003) show that the Anderson and Rubin (1949) statistic is an exception, in that a closed

form solution is available.

Third, Guggenberger and Wolf (2004) suggest an alternative approach based on subsampling. Unlike

the first and second procedures, subsampling leads to subvector tests whose type I error converges to the

desired nominal level without additional identification assumptions for each fixed degree of identification.

Guggenberger and Wolf’s (2004) Monte Carlos suggest that for subvector inference subsampling seems

to do better than Kleibergen (2001, 2004) and Dufour and Taamouti (2003). In their simulation study,

6Also see Smith (2001) which demonstrates this property for the strongly identified case.
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the former procedure tends to underreject when θ02 is only weakly identified and the latter seems to

underreject across all the scenarios. On the other hand, they find that for full—vector inference, subsam-

pling is outperformed by Kleibergen (2001) and GS. Therefore, in this paper, subvector inference along

the first approach, is not included because it would unnecessarily complicate the presentation without

contributing much.

3) A drawback of GELRρ(θ0) is that its limiting null distribution has degrees of freedom equal to

k, the number of moment conditions rather than the dimension of the parameter vector p. In general,

this has a negative impact on the power properties of hypothesis tests based on GELRρ(θ0) in over—

identified situations. On the other hand, the limiting null distribution of Sρ(θ0) and LMρ(θ0) has degrees

of freedom equal to p. Therefore the power of tests based on these statistics should not be negatively

affected by a high degree of over—identification.

4) Besides technicalities, assumption Mθ0 (given in the Appendix) essentially states that (i) the

Bartlett HAC estimator consistently estimates the long—run variance matrix ∆(θ0) and (ii) that a CLT

holds for the times series (vecG0iA(θ0), g
0
i(θ0))

0 with full rank asymptotic covariance matrix V (θ0), where

GiA(θ0) is the submatrix of Gin(θ0) corresponding to the weakly identified parameters, see the Appendix

for a detailed discussion. Part (ii) is very closely related to Assumption 1 in Kleibergen (2001) that

states a CLT for (vecG0i(θ0), g
0
i(θ0))

0 with possibly singular covariance matrix. Assumptions (i) and (ii)

are compatible with many time series models. Therefore, the approach taken in this paper generalizes

the setup in GS whose applications were restricted to m.d.s..

5) The theorem does not give any guidelines on how to choose the bandwidth Sn in finite samples.

In fact, just as for the choice of the kernel k, it is difficult to provide theory for its choice in the testing

context considered here, where size and power properties matter. One could still follow Andrews (1991)

and choose Sn such that the mean-squared error of the covariance matrix estimator is minimized after

a time series model has been specified. However, it is unclear what effect this procedure would have on

size and power of the test and it would be surprising if this procedure led to any optimality property.

2.3 Comparison with Kleibergen (2001) and Otsu (2003)

Here we compare our statistics to the K— and bKGEL—statistics of Kleibergen (2001) and Otsu (2003).
These statistics, Sρ and LMρ, and the ones defined below have the same first—order theory under the null

hypothesis; asymptotically they are all distributed as χ2(p) under the null.

Kleibergen’s K—statistic is defined as

K(θ) : = nbg(θ)0 e∆(θ)−1Dθ(D
0
θ
e∆(θ)−1Dθ)

−1D0
θ
e∆(θ)−1bg(θ), (2.12)

where

Gi(θ) : = (∂gi/∂θ)(θ), bG(θ) := n−1Pn
i=1Gi(θ) ∈ Rk×p, (2.13)

Dθ : = bG(θ)− eΩ(θ)[Ip ⊗ (e∆(θ)−1bg(θ))] ∈ Rk×p and
e∆(θ) and eΩ(θ) are consistent estimators for∆(θ) and the long—run covariance matrix limn→∞E{n−1Pn

i,j=1

[Gi(θ)−EGi(θ)][(Ip⊗ gj(θ)0)−E(Ip⊗ gj(θ)0)]}, respectively. Kleibergen (2001) suggests the use of HAC
estimators for e∆(θ) and eΩ(θ), see e.g. Andrews (1991). The statistics LMρ and the K—statistic are given

[7]



as quadratic forms in the FOC of the GEL and the GMM CUE estimator, respectively. The intuition for

tests based on these statistics is as follows: under strong identification, GEL and GMM estimators are

consistent. In consequence, in large samples the FOC for the estimator also holds at the true parameter

vector θ0. Therefore, the statistics are quadratic forms which are expected to be small at the true vector

θ0. Even though the GMM CUE and GEL CUE are numerically identical (see Newey and Smith (2004,

fn. 2)), their FOC are different and therefore LMCUE and K will typically differ. For i.i.d. or m.d.s.

scenarios GS specify for which estimators e∆(θ) and eΩ(θ) in the K—statistic, K and LMCUE are identical.

These statements in GS cannot be generalized to the general time series setup, where K and LMCUE are

different. The reason is that in this latter statistic functions of the smoothed indicators gin and Gin are

used, e.g. bgn, while the former statistic uses functions of the unsmoothed indicators, e.g. bg.
Otsu’s (2003) statistic is given by

bKGEL(θ) : = S
−1
n n sup

γ∈Γ(θ)
bPρ(θ, b∆(θ)−1Dρ(θ)γ)/2, where (2.14)

Γ(θ) : = {γ ∈ Rp; b∆(θ)−1Dρ(θ)γ ∈ bΛn(θ)} and
b∆(θ) and Dρ(θ) are defined in (2.3) and (2.9), respectively. Otsu’s (2003) statistic has been formulated

here based on the truncated kernel but can of course be implemented using more general kernels, see

Otsu (2003). Otsu’s (2003) statistic is not given as a quadratic form in the FOC and the above intuition

does not apply. Unlike the GELRρ statistic, however, the asymptotic null distribution of bKGEL does not

depend on the number of moment conditions k. This is achieved by considering the transformed moment

indicators g0in
b∆(θ)−1Dρ(θ) in (2.14) rather than g

0
in as in (2.6). A drawback of Otsu’s (2003) approach

is that two maximizations are necessary to calculate the statistic, one to calculate λ(θ) in Dρ(θ) of (2.9)

and one in (2.14). The latter maximization may be simply avoided as follows. Let

µρ(θ) : = −Sn b∆(θ)−1Dρ(θ)
³
Dρ(θ)

0 b∆(θ)−1Dρ(θ)
´−1

Dρ(θ)
0 b∆(θ)−1bgn(θ),

µ̃ρ(θ) : = b∆(θ)−1Dρ(θ)
³
Dρ(θ)

0 b∆(θ)−1Dρ(θ)
´−1

Dρ(θ)
0λ(θ).

Define the statistic

GELRρ(θ, µ) := S
−1
n nP̂ρ(θ, µ)/2.

Theorem 2 Suppose ID, ρ and Mθ0(i)—(vii) hold. Then for Sn → ∞ as n → ∞ and Sn = o(n1/2) it

follows that

GELRρ(θ0, µρ(θ0)),GELRρ(θ0, µ̃ρ(θ0))→d χ
2(p).

Remark: The function ρ used in obtaining µρ(θ) or µ̃ρ(θ) through Dρ(θ) and λ(θ) may be allowed to

differ from that defining GELRρ(θ, µ) as long as both functions satisfy Assumption ρ.

3 Monte Carlo Study

In this section, the finite sample properties of the hypotheses tests in Theorem 1 are investigated in a

Monte Carlo study and compared to the tests suggested in Kleibergen (2001) and Otsu (2003).
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3.1 Design

The data generating process is given by the linear instrumental variables time series model

y = Y θ0 + u, (3.1)

Y = ZΠ+ V.

There is only a single right hand side endogenous variable Y and no included exogenous variables. Let

Z ∈ Rn×k, where k is the number of instruments and n the sample size. The reduced form matrix Π ∈ Rk

equals a vector of ones times a constant Π1 that determines the strength or weakness of identification.

Similar to the design in Otsu (2003), each column of Z and u are generated as AR(1) or MA(1) processes

(with autoregressive and moving—average parameters φ and ν, respectively) with innovations distributed

as independent N(0, 1) random variables and V has i.i.d. N(0, 1) components. The innovations of the

process for u and the i—th component of V are correlated; their joint distribution is N(0,Σ), where

Σ ∈ R2×2 with diagonal elements equal to unity and off—diagonal elements ρuV .
Interest focuses on testing the scalar null hypothesis H0 : θ0 = 0 versus the alternative hypothesis

H1 : θ0 6= 0. Results are reported at nominal levels of 5% for sample size n = 200. The following 40

parameter combinations are considered and for each we simulate 10, 000 repetitions:

k = 2, 10; Π1 = .01, .5; ρuV = 0, .5;

φ = 0, .5, .9; ν = .5, .9.

We include the test statistics LMEL, SEL, GELREL, K and bKGEL in the study. For the K—statistic
we use a Bartlett kernel to calculate the covariance matrix estimators and for bKGEL we use the EL
specification. To implement the statistics, the bandwidth Sn has to be chosen. We consider fixed

bandwidths Sn = 1, ..., 10 and also calculate the i.i.d. versions of the test statistics. Note that for

the Bartlett kernel, Sn = 1 leads to numerically identical results for K as no smoothing. To solve the

maximization problems in the GEL—based statistics, a Newton—Raphson algorithm is used. Size and

power properties are investigated by considering θ0 = 0, 1 and −1.

3.2 Results

Tests based on the statistics SEL and GELREL have less desirable size properties in our study than tests

based on LMEL and therefore only results for LMEL, K and bKGEL are discussed in detail. Size problems
of the i.i.d. versions of SEL and GELREL in finite—samples were also reported in GS.

Size distortion, if any, is generally smaller for the MA(1) than for the AR(1) cases and for size purposes

we therefore restrict attention to the AR(1) cases. The Monte Carlo results show that dependence of

the results on ρuV = 0, .5 is small, especially when k = 2. If anything, the rejection probabilities of

the tests are slightly higher for higher endogeneity. In what follows, we therefore restrict attention to

ρuV = .5. As to be expected from theory, the size results do generally not vary much with Π1, the strength

of the instruments. The exceptions are occasionally cases of high degree of overidentification and high

endogeneity (k = 10, ρuV = .5), where the size performance is typically somewhat worse. Therefore, for

size, we restrict attention to Π1 = .01. In contrast to size, power properties do of course strongly depend
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on Π1, with usually little power for small Π1. Therefore, for power, we restrict attention to Π1 = .5.

While the size properties of the K—test appear to be better when k = 10, the effect of the number of

instruments is mixed for the GEL—type tests. The power results for θ0 = −1 and 1 are qualitatively
identical and therefore we restrict attention to the former. All results not reported here are available

upon request.

Figures I.1—4 contain size and Figures II. 1—4, III.1—4 power curves of the LMEL, K and bKGEL
(referred to as KhatEL in the Figures) tests as functions of the smoothing parameters Sn for the cases

Figure I : k = 2, 10, Π1 = .01, ρuV = .5, φ = .5, .9, θ0 = 0 (size),

Figure II : k = 2, 10, Π1 = .5, ρuV = .5, φ = .5, .9, θ0 = −1 (power, AR(1)—case),

Figure III : k = 2, 10, Π1 = .5, ρuV = .5, ν = .5, .9, θ0 = −1 (power, MA(1)—case).

For convenience, at Sn = 0 we report the results for the unsmoothed i.i.d. versions of the statistics.

We first discuss the size results. As to be expected, all tests are typically size—distorted in the time

series models considered here when there is no smoothing. The higher the autoregressive coefficient φ the

higher the size—distortion, e.g. compare Figures I.1—2 and I.3—4. ERPs are typically decreasing functions

of Sn for all tests in the study and in most cases the maximum smoothing number Sn = 10 considered

here is enough to reduce ERPs to about the nominal level or even less. However, for various scenarios

with few instruments, Otsu’s (2003) test continues to overreject even for Sn = 10, see Figures I.1 and

especially I.3, where k = 2. Many times, the ERPs of the LMEL test decrease fastest as a function of Sn

and then seem to level out at about the nominal level, see Figures I.1 and 3. This is a desirable property

because it makes the test least dependent on the choice of Sn.

Next the power results are summarized. It seems that increasing k has a negative impact on the

power properties of bKGEL and K (see, e.g., Figures II.1—2 and II.3—4). On the other hand, for LMEL, the

effect of k on power is mixed and seems to depend on the bandwidth Sn. See, e.g., Figures II.1—2, where

for small bandwidths Sn ≤ 2 power of LMEL is smaller for k = 10 but bigger for larger bandwidths.

While increasing the autoregressive coefficient φ generally seems to have a negative impact on power

(Figure II), the impact of the moving average parameter ν seems to be minor (Figure III). While forbKGEL and K an increase in Sn generally leads to a reduction in ERPs, the effect of the bandwidth on the

power of LMEL depends on the scenario. For example, for k = 10 and φ = .5, power of LMEL increases

in Sn (Figure II.2). While for k = 2 the K test tends to have best power properties (for basically all Sn

values considered here), the LMEL test seems to be the winner in the many instruments case k = 10 with

oftentimes huge power gains for bandwidths Sn ≥ 3. GS found that the comparative advantage of GEL
based tests in i.i.d. simulations occur in situations with thick tailed or asymmetric error distributions.

Here we find that even with normal errors, GEL—based tests can outperform the K—test, depending on

the scenario, most crucially the number of instruments.

In summary we find that both the finite—sample size and power properties of the tests based on the

new statistic LMEL are very competitive.
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Appendix

Additional notation is given and then the assumptions for Theorem 1 are stated.

For the proof of Theorem 1, consistency of b∆(θ0)/2 in (2.3) for the long—run variance matrix ∆(θ0)
is essential. To show consistency of b∆(θ0)/2, we assume consistency of the classical Bartlett kernel
HAC estimator (which holds under appropriate assumptions given in Andrews (1991, Proposition 1))

and then show that the HAC estimator differs from b∆(θ0)/2 by a op(1) term only. The latter is similar

to Lemmata 2.1 and A.3 in Smith (2001, 2005). The same procedure can be applied to other long—run

variance expressions, such as∆A(θ0), defined in Mθ0(vii) below and its corresponding estimator
b∆A(θ0)/2,

where

b∆A(θ0) := Sn nP
i=1
(vecGinA(θ0))g

0
in(θ0)/n,

GinA(θ) is defined by Gin(θ) = (GinA(θ), GinB(θ)) for GinA(θ) ∈ Rk×pA and GinB(θ) ∈ Rk×pB , see eq.
(2.8). We now give the details.

In (2.13), decompose Gi(θ) into (GiA(θ), GiB(θ)), where GiA(θ) ∈ Rk×pA and GiB(θ) ∈ Rk×pB and
analogously, decompose bG(θ) into ( bGA(θ), bGB(θ)).
Denote by k∗ the Bartlett kernel given by

k∗(x) := 1− |x/2| if |x| ≤ 2 and k∗(x) = 0 otherwise.

The Bartlett kernel is essentially the convolution of the truncated kernel, in fact, k∗(x) =
R
k(x −

y)k(y)dy/2, see Smith (2001, Example 2.1). The Bartlett HAC estimator of the long—run covariance

between sequences of mean zero random vectors r = (ri)i=1,...,n and s = (si)i=1,...,n, is given by

eJn(r, s) : = n−1P
j=−n+1

k∗(j/Sn)eΓj(r, s), where
eΓj(r, s) : =

⎧⎪⎪⎨⎪⎪⎩
nP

i=j+1
ris

0
i−j/n for j ≥ 0,

nP
i=−j+1

ri+js
0
i/n for j < 0,

see Andrews (1991, eq. (3.2)). Under certain assumptions, that include stationarity, it can be shown that

(see Andrews (1991, Assumption A, Proposition 1))

eJn(gi, gi)→p ∆, eJn(vecGiA, gi)→p ∆A, (A.1)

where the argument θ0 was left out to simplify notation. Below it is shown that the Bartlett HAC esti-

mator and b∆(θ0)/2 have the same probability limit.7 Therefore, assuming (A.1) and some technicalities,
7Note that the assumptions eJn(vecGiA, gi) →p ∆A and eJn(vec(GiA − EGiA), gi) →p ∆A are equivalent under weak

conditions, for example under stationarity. Therefore, for consistency of the HAC estimator the possibly non—zero mean of

vecGiA does not matter as long as Egi = 0. More precisely, it can be shown that under stationarityeJn(vecGiA, gi)− eJn(vec(GiA −EGiA), gi) = eJn(vecEGiA, gi)→p 0.

This can be shown by establishing that for any s = 1, ..., pAk and t = 1, ..., k and for some c < ∞ it holds that

(E eJn(vecEGiA, gi))s,t = 0 and (n/S2n)E( eJn(vecEGiA, gi))2s,t ≤ c, see Hannan (1970, p.280) for similar calculations.

Because by assumption (n/S2n)→∞, the latter implies consistency.
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b∆(θ0)/2 is consistent for the long—run variance ∆(θ0). The same statement is true for ∆A(θ0) and its
estimator.

A.1 Assumptions

The assumptions of Theorem 1 are now stated and discussed. For the asymptotic distribution of GELRρ

the following assumptions are made. Here Z denotes the set of integer numbers.

Assumption Mθ0: Suppose (i) max1≤i≤n ||gi(θ0)|| = op(S
−1
n n1/2); (ii) for Sn → ∞ and Sn =

o(n1/2) we have eJn((gi(θ0)), (gi(θ0))) →p ∆(θ0) > 0; supi,j≥1E||gi(θ0)g0j(θ0)|| < ∞, supi∈Z n−1
Pn
j=1

E||gj+i(θ0)g0i(θ0)|| = o(1), Snn−1
Pn
i=1 ||gin(θ0)gin(θ0)0|| = Op(1); (iii) Ψn(θ0)→d Ψ(θ0), whereΨ(θ0) ≡

N(0,∆(θ0)).

To describe the asymptotic distribution of the statistics LMρ(θ0) and Sρ(θ0), we need the following

additional assumptions. For notational simplicity, the argument θ0 is left out in Mθ(v)—(vii) and in the

following discussion.

Assumption Mθ0: (cont.)

(iv) M1n(θ0) : = (∂m1n/∂θ)|θ=θ0 →M1(θ0) := (∂m1/∂θ)|θ=θ0 ∈ Rk×p, (A.2)

E bG(θ0) = n−1/2M1n(θ0) + (0,M2(β0))→ (0,M2(β0));

(v) eJn((vecGiA), (gi)) →p ∆A (∆A is defined in (vii)), supi,j≥1E||vecGiAg0j || < ∞, supi∈Z n−1
Pn
j=1

E||vecGj+iAg0i|| = o(1), bGB := n−1Pn
i=1GiB →p E bGB; (vi)max1≤i≤n ||GiA|| = op(S−1n n1/2), Snn

−1Pn
i=1

||vecGinAg0in|| = Op(1), max1≤i≤n ||GiB|| = op(S−1n n), Snn
−3/2 Pn

i=1 ||vecGinBg0in|| = op(1); (vii) n−1/2Pn
i=1 ((vec(GiA −EGiA))0, gi0)0 →d N(0, V ), where

V := lim
n→∞

var(n−1/2
nP
i=1
(vecGiA

0, gi
0))0 ∈ Rk(pA+1)×k(pA+1)

has full column rank. Decompose V into

V =

Ã
∆AA ∆A

∆0A ∆

!
, where ∆AA ∈ RpAk×pAk.

A discussion of Assumption Mθ0 now follows. Assuming Sn = cnα for positive constants c and

α < 1/2, a sufficient condition for Mθ0(i) is given by the moment condition supi≥1E||gi(θ0)||ξ < ∞
for some ξ > 2/(1 − 2α), see GS, eq. (2.4), for a similar statement and a proof. Analogous sufficient
conditions can be formulated for Mθ0(vi).

The high level assumption eJn((gi), (gi))→p ∆ in Mθ0(ii) is satisfied under sufficient conditions given

in Andrews (1991, Proposition 1) which include stationarity. We prefer the high level assumption to the
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sufficient condition because it may hold even when the data are not stationary, e.g. in cases of non—

identically distributed data. Mθ0(ii) then guarantees that b∆→p 2∆, see Lemma 2 below. The technical

assumption supi∈Z n
−1Pn

j=1E||gj+ig0i|| = o(1) can be interpreted as some mild form of mixing, see also

Mθ0(v), and is needed in the proof of Lemma 2. The assumption Snn
−1Pn

i=1 ||gingin0|| = Op(1) is needed
in the proof of Theorem 1(i) to show that Sn

Pn
i=1(ρ2(

eλ0gin)+1)gingin0/n is op(1). A sufficient condition
in terms of the moment functions gi is supi∈Z n

−1Pn
j=1E||gj+i(θ0)g0i(θ0)|| = O(S−1n ), which is a stronger

form of mixing condition.8 Similar comments apply for the analogous assumptions in Mθ0(v) and (vi),

parts of which are needed in deriving (A.10).

Mθ0(iii) is the “high level” assumption also used in Stock and Wright (2000).

A sufficient condition for Mθ0(iv) is given by: For some open neighborhood M ⊂ Θ of θ0, bg(·) is
differentiable at θ a.s. for each θ ∈M, bg(θ) is integrable for all θ ∈M (with respect to the probability

measure), supθ∈M || bG(θ)|| is integrable, m1n ∈ C1(Θ) and M1n(·) converges uniformly on Θ to some

function. These conditions allow the interchange of the order of integration and differentiation in As-

sumption ID, i.e. (∂Ebg/∂θ)|θ=θ0 = E bG(θ0). Note that by ID the limit matrix (0,M2(β0)) is singular of

rank pB.

Let bGn(θ) := n−1
Pn
i=1Gin(θ) and decompose

bGn(θ) as ( bGnA(θ), bGnB(θ)), where bGnA(θ) ∈ Rk×pA
and bGnB(θ) ∈ Rk×pB . The assumption max1≤i≤n ||GiB || = op(S

−1
n n) in Mθ0(vi) ensures that

bGnB −
2 bGB = op(1). This can be shown along the lines of Lemma 1.
Besides technical assumptions, Mθ0 essentially states that the HAC estimator

eJn is consistent (parts
(ii) and (v)) and that a CLT holds for ((vec(GiA − EGiA))0, gi0)0, (parts (iii) and (vii)). For the latter,
primitive sufficient conditions based on mixing properties can be stated along the lines of Wooldridge

and White (1988). The CLT assumption is very closely related to Assumption 1 in Kleibergen (2001).

A.2 Proofs

The next lemmata are helpful in the proof of the main result. Note that the assumptions made in Lemma

1 are implied by Mθ0(i), (iii), (vi) and (vii), e.g. bGA(θ0) = Op(n
−1/2) follows from Mθ0(vii) and eq.

(A.2). Recall bGnA(θ) = n−1Pn
i=1GinA(θ).

Lemma 1 Suppose Sn →∞ and Sn = o(n
1/2).

If max
1≤i≤n

||gi|| = op(S−1n n1/2), bg = Op(n−1/2) then n1/2(bgn − 2bg) = op(1).
If max

1≤i≤n
||GiA|| = op(S−1n n1/2), bGA = Op(n−1/2) then n1/2( bGnA − 2 bGA) = op(1),

where again θ0 is left out to simplify the notation.

8The tedious proof of this statement is along the exact same lines as the proof of Lemma 2.
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Proof: For the first equation tedious but straightforward calculations imply that

n−1
nP
i=1
gin = n

−1
nP
i=1
S−1n

i−1P
j=i−n

k(j/Sn)gi−j = n
−1

nP
i=1
S−1n

min(i−1,Sn)P
j=max(i−n,−Sn)

gi−j

= n−1
n−SnP
i=Sn+1

2Sn + 1

Sn
gi + n

−1
SnP
i=1

Sn + i

Sn
gi + n

−1
nP

i=n−Sn+1

n− i+ Sn + 1
Sn

gi

= 2n−1
nP
i=1
gi + n

−1
n−SnP
i=Sn+1

1

Sn
gi +

n−1
SnP
i=1

i− Sn
Sn

gi + n
−1

nP
i=n−Sn+1

−Sn + n− i+ 1
Sn

gi

= 2n−1
nP
i=1
gi + op(n

−1/2),

where the last equation uses max1≤i≤n ||gi|| = op(S−1n n1/2) and bg = Op(n−1/2) to show that the remainder
terms are op(n

−1/2). The proof of the second equation can be derived in exactly the same way. ¤

It is now shown that under Mθ0 ,
b∆/2 and b∆A/2 are consistent for ∆ and ∆A. The first part of the

following lemma is similar to Lemma A.3 in Smith (2001). Note that the assumptions in the Lemma are

part of Mθ0(ii) and (v).

Lemma 2 For Sn →∞ assume Sn = o(n
1/2). If supi,j≥1E||gig0j || <∞ and supi∈Z n

−1Pn
j=1E||gj+ig0i|| =

o(1) then

b∆− 2 eJn((gi), (gi)) = op(1).
If supi,j≥1E||vecGiAg0j || <∞ and supi∈Z n

−1Pn
j=1E||vecGj+iAg0i|| = o(1) then

b∆A − 2 eJn((vecGiA), (gi)) = op(1), (A.3)

where the argument θ0 is left out to simplify the notation.

Proof: For the first statement easy calculations lead to

2 eJn((gi), (gi))− b∆ = n−1P
i=−n+1

n−1
min(n,n−i)P
j=max(1,1−i)

kijgj+ig
0
j for

kij : = 2k
∗(i/Sn)− S−1n

n−jP
l=1−j

k((l − i)/Sn)k(l/Sn).

Using the definitions of k and k∗ tedious calculations show that for 0 ≤ i < Sn

kij =

⎧⎪⎪⎨⎪⎪⎩
S−1n (Sn − i− j) for 1 ≤ j ≤ Sn − i+ 1

−S−1n for Sn − i+ 1 < j ≤ n− Sn
−S−1n (n− j − Sn + 1) for n− Sn < j ≤ n− i

that for −Sn < i < 0

kij =

⎧⎪⎪⎨⎪⎪⎩
S−1n (Sn − j) for 1− i ≤ j ≤ Sn + 1
−S−1n for Sn + 1 < j < n− Sn − i

S−1n (Sn + i− n+ j − 1) for n− Sn − i ≤ j ≤ n
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that kij = −S−1n if Sn ≤ |i| ≤ 2Sn and that kij = 0 otherwise. Using the moment assumptions, it

then follows that 2 eJn((gi), (gi)) − b∆ reduces to op(1) expressions, for example, by Markov’s inequality

Pr(||−
P2Sn
i=Sn

n−1S−1n
Pn−i
j=1 gj+ig

0
j|| > ε) can be bounded by

ε−1S−1n
2SnP
i=Sn

n−1
n−iP
j=1

E||gj+ig0j || ≤ ε−1S−1n
2SnP
i=Sn

sup
i∈Z

n−1
nP
j=1

E||gj+ig0j || = o(1)

and similarly for the other summands. The proof of the second claim is completely analogous and

therefore omitted. ¤

Given the results in Lemma 1 and consistency of b∆/2 and b∆A/2, the proof of Theorem 1 is along the

same lines as the proofs of Theorems 3 and 4 in GS.

As in GS, the proof hinges on the following two lemmas. Let cn := Snn
−1/2max1≤i≤n ||gin(θ0)||. Let

Λn := {λ ∈ Rk : ||λ|| ≤ Snn−1/2c−1/2n } if cn 6= 0 and Λn = Rk otherwise.

Lemma 3 Assume max1≤i≤n ||gi(θ0)|| = op(S−1n n1/2). Then supλ∈Λn,1≤i≤n |λ
0gin(θ0)| →p 0 and Λn ⊂bΛn(θ0) w.p.a.1.

Proof: The case cn = 0 is trivial and thus w.l.o.g. cn 6= 0 can be assumed. Note that ||gin(θ0)|| ≤

S−1n
i−1P

j=i−n
k(j/Sn)||gi−j(θ0)|| and thus by the definition of k(·)

max
1≤i≤n

||gin(θ0)|| ≤ max
1≤i≤n

S−1n

min(Sn,i−1)P
j=max(−Sn,i−n)

||gi−j(θ0)||

≤ (2Sn + 1)S
−1
n max

1≤i≤n
||gi(θ0)|| = op(S−1n n1/2).

Therefore, cn = op(1) and the first part of the statement follows from

sup
λ∈Λn,1≤i≤n

|λ0gin(θ0)| ≤ Snn−1/2c−1/2n max
1≤i≤n

||gin(θ0)|| =

n−1/2Snc
−1/2
n n1/2S−1n cn = c

1/2
n = op(1),

which also immediately implies the second part. ¤

In the next lemma λmin(A) denotes the smallest eigenvalue in absolute value of the matrix A.

Lemma 4 Suppose max1≤i≤n ||gi(θ0)|| = op(S−1n n1/2), λmin(b∆(θ0)) ≥ ε w.p.a.1 for some ε > 0, bgn(θ0) =
Op(n

−1/2) and Assumption ρ holds.

Then λ(θ0) ∈ bΛn(θ0) satisfying bPρ(θ0,λ(θ0)) = supλ∈bΛn(θ0) bPρ(θ0,λ) exists w.p.a.1, λ(θ0) = Op(Snn−1/2)
and supλ∈bΛn(θ0) bPρ(θ0,λ) = Op(Snn−1).
Proof: W.l.o.g. cn 6= 0 and thus Λn can be assumed compact. Let λθ0 ∈ Λn be such that bPρ(θ0,λθ0) =

maxλ∈Λn bPρ(θ0,λ). Such a λθ0 ∈ Λn exists w.p.a.1 because a continuous function takes on its maximum
on a compact set and by Lemma 3 and Assumption ρ, bPρ(θ0,λ) (as a function in λ for fixed θ0) is C

2 on

some open neighborhood of Λn w.p.a.1. It is now shown that actually bPρ(θ0,λθ0) = supλ∈bΛn(θ0) bPρ(θ0,λ)
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w.p.a.1 which then proves the first part of the lemma. By a second order Taylor expansion around λ = 0,

there is a λ∗θ0 on the line segment joining 0 and λθ0 such that for some positive constants C1 and C2

0 = Sn bPρ(θ0, 0) ≤ Sn bPρ(θ0,λθ0)
= −2Snλ0θ0bgn(θ0) + λ0θ0 [Sn

nP
i=1

ρ2(λ
∗0
θ0gin(θ0))gin(θ0)gin(θ0)

0/n]λθ0

≤ −2Snλ0θ0bgn(θ0)− C1λ0θ0 b∆(θ0)λθ0 ≤ 2Sn||λθ0 || ||bgn(θ0)||− C2||λθ0 ||2 (A.4)

w.p.a.1, where the second inequality follows as max1≤i≤n ρ2(λ
∗0
θ0gin(θ0)) < −1/2 w.p.a.1 from Lemma

3, continuity of ρ2(·) at zero and ρ2 = −1. The last inequality follows from λmin(b∆(θ0)) ≥ ε > 0

w.p.a.1. Now, (A.4) implies that (C2/2)||λθ0 || ≤ Sn||bgn(θ0)|| w.p.a.1, the latter being Op(Snn−1/2) by
assumption. It follows that λθ0 ∈ int(Λn) w.p.a.1. To prove this, let ² > 0. Because λθ0 = Op(Snn−1/2)
and cn = op(1), there exists M² < ∞ and n² ∈ N such that Pr(||S−1n n1/2λθ0 || ≤ M²) > 1 − ²/2 and
Pr(c

−1/2
n > M²) > 1 − ²/2 for all n ≥ n². Then Pr(λθ0 ∈ int(Λn)) = Pr(||S−1n n1/2λθ0 || < c

−1/2
n ) ≥

Pr((||S−1n n1/2λθ0 || ≤M²) ∧ (c−1/2n > M²)) > 1− ² for n ≥ n².
Hence, the FOC for an interior maximum (∂ bPρ/∂λ)(θ0,λ) = 0 hold at λ = λθ0 w.p.a.1. By Lemma

3, λθ0 ∈ bΛn(θ0) w.p.a.1 and thus by concavity of bPρ(θ0,λ) (as a function in λ for fixed θ0) and convexity

of bΛn(θ0) it follows that bPρ(θ0,λθ0) = supλ∈bΛn(θ0) bPρ(θ0,λ) w.p.a.1 which implies the first part of the
lemma. From above λθ0 = Op(Snn

−1/2). Thus the second and by (A.4) the third parts of the lemma

follow. ¤

Proof of Theorem 1 (i): Lemma 4 implies that the FOC

n−1
nP
i=1

ρ1(λ
0gin(θ))gin(θ) = 0 (A.5)

have to hold at (θ0,λ0 := λ(θ0)) w.p.a.1. Expanding the FOC in λ around 0, there exists a mean valueeλ between 0 and λ0 (that may be different for each row) such that

0 = −bgn(θ0) + [Sn nP
i=1

ρ2(
eλ0gin(θ0))gin(θ0)gin(θ0)0/n]S−1n λ0 = −bgn(θ0)− b∆eλS−1n λ0,

where the matrix b∆eλ has been implicitly defined. Because λ0 = Op(Snn−1/2), Lemma 3 and Assumption
ρ imply that max1≤i≤n |ρ2(eλ0gin(θ0)) +1| →p 0. By Assumption Mθ0(ii) and Lemma 2 it follows thatb∆eλ →p 2∆(θ0) > 0 and thus b∆eλ is invertible w.p.a.1 and (b∆eλ)−1 →p ∆(θ0)

−1/2. Therefore

S−1n λ0 = −(b∆eλ)−1bgn(θ0) (A.6)

w.p.a.1. Inserting this into a second order Taylor expansion for bP (θ,λ) (with mean value λ∗ as in (A.4)
above) it follows that w.p.a.1

S−1n n bPρ(θ0,λ0) = 2nbgn(θ0)0 b∆−1eλ bgn(θ0)− nbgn(θ0)0 b∆−1eλ b∆λ∗
b∆−1eλ bgn(θ0). (A.7)

By Lemma 1 andMθ0(iii) n
1/2bgn(θ0) = 2n1/2bg(θ0)+op(1)→d 2N(0,∆(θ0)) and therefore S

−1
n n bPρ(θ0,λ0)/2→d

χ2(k). ¤

Proof of Theorem 1 (ii): DefineD∗ := Dρ(θ0)Λ where the p×p diagonal matrix Λ := diag(n1/2, ..., n1/2,
1, ..., 1) has first pA diagonal elements equal to n

1/2 and the remainder equal to unity. Then, (in the

[16]



remainder of the proof the argument θ0 is left out for notational simplicity) it follows that

LMρ = nbg0n b∆−1D∗(D∗0 b∆−1D∗)−1D∗0 b∆−1bgn/2. (A.8)

It follows from (A.6) and n1/2bgn = Op(1) that
S−1n n1/2λ0 = −∆−1n1/2bgn/2 + op(1) (A.9)

and therefore the statement of the theorem involving Sρ follows immediately from the one for LMρ.

Therefore, only the statistic LMρ is dealt with using its representation in eq. (A.8).

First, it is shown that the matrix D∗ is asymptotically independent of n1/2bgn. By a mean value
expansion about 0 it follows that ρ1(λ

0
0gin) = −1 + ρ2(ξi)g

0
inλ0 for a mean value ξi between 0 and λ00gin

and thus by (2.9), (A.9) and the definition of Λ it follows that (modulo op(1) terms)

D∗ = −n−1
nP
i=1
(n1/2GinA, GinB)− Snn−3/2

nP
i=1
[ρ2(ξi)(n

1/2GinA,GinB)g
0
in∆

−1n1/2bgn]/2
= −(n−1/2

nP
i=1
GinA − Snn−1

nP
i=1
GinAg

0
in∆

−1n1/2bgn/2, 2M2(β0)), (A.10)

where for the last equality we use (A.2) and Assumptions Mθ0(v)-(vi). By Assumption Mθ(v) and eq.

(A.3) it follows that b∆A = Snn−1 nP
i=1

vec(GinA)g
0
in/2→p ∆A and thus

vec(D∗, n1/2bgn) = w1 +Mv + op(1),
where w1 := vec(0,−2M2(β0), 0) ∈ RkpA+kpB+k and

M :=

⎛⎜⎜⎝
−IkpA ∆A∆

−1

0 0

0 Ik

⎞⎟⎟⎠ , v := n−1/2 nP
i=1

Ã
vecGinA

gin

!
;

M and v have dimensions (kpA + kpB + k)× (kpA + k) and (kpA + k)× 1, respectively. By Assumption
ID, Mθ0(vii), Lemma 1 and (A.2) it follows that v →d 2N(w2, V ), where w2 := ((vecM1A)

0, 0)0 and M1A

are the first pA columns of M1. Therefore

vec(D∗, n1/2bgn)→d N(w1 + 2Mw2, 4

⎛⎜⎜⎝
Ψ 0 0

0 0 0

0 0 ∆

⎞⎟⎟⎠), (A.11)

where Ψ := ∆AA − ∆A∆−1∆0A has full column rank. Eq. (A.11) proves that D∗ and n1/2bgn are
asymptotically independent.

The asymptotic distribution of LMρ is derived next. Denote by D and g the limiting normal random

matrices corresponding to D∗ and n1/2bgn, respectively, see (A.11). Below it is shown that the function
h : Rk×p → Rp×k defined by h(D) := (D0∆−1D)−1/2D0 for D ∈ Rk×p is continuous on a set C ⊂ Rk×p

with Pr(D ∈ C) = 1. By the Continuous Mapping Theorem and Mθ0(v) it follows that

2−1/2(D∗0 b∆−1D∗)−1/2D∗0 b∆−1n1/2bgn →d (D
0
∆−1D)−1/2D

0
∆−1g/2. (A.12)
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By the independence of D and g, the latter random variable is distributed as ζ, where ζ ∼ N(0, Ip).
Finally, the continuity claim for h is dealt with. Note that h is continuous at each D that has full

column rank. It is therefore sufficient to show that D has full column rank a.s.. From (A.11) it follows

that the last pB columns of D equal −2M2(β0) which has full column rank by assumption. Define

O := {o ∈ RkpA : ∃eo ∈ Rk×pA , s.t. o = vec(eo) and the k×p—matrix (eo,−2M2(β0)) has linearly dependent

columns}. Clearly, O is closed and therefore Lebesgue—measurable. Furthermore, O has empty interior

and thus has Lebesgue—measure 0. For the first pA columns of D, DpA say, it has been shown that

vecDpA is normally distributed with full rank covariance matrix Ψ. This implies that for any measurable

set O∗ ⊂ RkpA with Lebesgue—measure 0, Pr(vec(DpA) ∈ O∗) = 0, in particular, for O∗ = O. This proves
the continuity claim for h. ¤

Proof of Theorem 2: Let µ0 := µ(θ0). Inserting this into a second order Taylor expansion forbPρ(θ, µ) around µ = 0 with mean value eµ, cf. eq. (A.4) above,
Sn bPρ(θ0, µ0) = −2Snµ00bgn(θ0) + µ00[Sn nP

i=1
ρ2(eµ0gin(θ0))gin(θ0)gin(θ0)0/n]µ0

= −2Snµ00bgn(θ0) + µ00 b∆eµµ0,
where b∆eµ has been implicitly defined. As in the proof of Theorem 1(ii) define D∗ := Dρ(θ0)Λ. Hence, we

may write µ0 = −Sn b∆(θ0)−1D∗ ³D∗0 b∆(θ0)−1D∗´−1D∗0 b∆(θ0)−1bgn(θ0). From Assumption Mθ0(ii) and

Lemma 2, λmin(b∆(θ0)),λmin(b∆(θ0)−1) ≥ ε > 0 w.p.a.1. Therefore, as the expression in (A.12) and D∗

are Op(1), it follows that µ0 = Op(Snn
−1/2). By an analogous argument to that in the proof of Lemma 4,

µ0 ∈ int(Λn) w.p.a.1. Therefore, Lemma 3 and Assumption ρ imply that max1≤i≤n |ρ2(eµ0gin(θ0)) +1|→p

0 and, thus from the last part of Assumption Mθ0(ii), b∆eµ →p −2∆(θ0). Consequently, substituting for
µ0,

S−1n n bPρ(θ0, µ0) = nbgn(θ0)0 b∆(θ0)−1D∗ ³D∗0 b∆(θ0)−1D∗´−1D∗0 b∆(θ0)−1bgn(θ0) + op(1)
= 2LMρ(θ0) + op(1)→d 2χ

2(p)

from the proof of Theorem 1(ii) as b∆→p 2∆(θ0) and by Lemma 1 and Mθ0(iii) n
1/2bgn(θ0) = 2n1/2bg(θ0)+

op(1) →d 2N(0,∆(θ0)). The result for S
−1
n n bPρ(θ0, µ̃(θ0))/2 then also follows immediately as λ(θ0) =

−Sn b∆(θ0)−1bgn(θ0) + op(Snn−1/2). ¤
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