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Abstract. Suppose that a target function f0 : Rd → R is monotonic, namely, weakly

increasing, and an original estimate f̂ of the target function is available, which is not

weakly increasing. Many common estimation methods used in statistics produce such

estimates f̂ . We show that these estimates can always be improved with no harm using

rearrangement techniques: The rearrangement methods, univariate and multivariate,

transform the original estimate to a monotonic estimate f̂∗, and the resulting estimate

is closer to the true curve f0 in common metrics than the original estimate f̂ . We

illustrate the results with a computational example and an empirical example dealing

with age-height growth charts.
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1. Introduction

A common problem in statistics is to approximate an unknown monotonic function

on the basis of available samples. For example, biometric age-height charts should be

monotonic in age; econometric demand functions should be monotonic in price; and

quantile functions should be monotonic in the probability index. Suppose an original,

possibly non-monotonic, estimate is available. Then, the rearrangement operation from

variational analysis (Hardy, Littlewood, and Pólya 1952, Lorentz 1953, Villani 2003)

can be used to monotonize the original estimate. The rearrangement has been shown

to be useful in producing monotonized estimates of conditional mean functions (Dette,

Neumeyer, and Pilz 2006, Dette and Pilz 2006) and various conditional quantile and

probability functions (Chernozhukov, Fernandez-Val, and Galichon (2006a, 2006b)). In

this paper, it is shown that the rearrangement of the original estimate is useful not

only for producing monotonicity, but also has the following important property: The

rearrangement always improves over the original estimate, whenever the latter is not

monotonic. Namely, the rearranged curves are always closer (often considerably closer)

to the target curve being estimated. Furthermore, this improvement property is generic,

i.e. it does not depend on the underlying specifics of the original estimate and applies

to both univariate and multivariate cases.

The paper is organized as follows. In Section 2.1, we motivate the monotonicity

issue in regression problems, and discuss common estimates/approximations of regression

functions that are not naturally monotonic. In Section 2.2, we analyze the improvements

in estimation/approximation properties that the rearranged estimates deliver. In Section

2.3, we discuss the computation of the rearrangement, using sorting and simulation. In

Section 2.4, we extend the analysis of Section 2.2 to multivariate functions. In Section 3,

we provide proofs of the main results. In Section 4, we present an empirical application to

biometric age-height charts. We show how the rearrangement monotonizes and improves

the original estimates of the conditional mean function in this example, and quantify

the improvement in a simulation example resembling the empirical one. In the same

section, we also analyze estimation of conditional quantile processes for height given age

that need to be monotonic in both age and the quantile index. We apply a multivariate

rearrangement to doubly monotonize the estimates both in age and the quantile index.

We show that the rearrangement monotonizes and improves the original estimates, and
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quantify the improvement in a simulation example mimicking the empirical example. In

Section 5 we offer a summary and a conclusion.

2. Improving Approximations of Monotonic Functions

2.1. Common Estimates of Monotonic Functions. A basic problem in many ar-

eas of analysis is to approximate an unknown function f0 : Rd → R on the basis of

some available information. In statistics, the common problem is to approximate an

unknown regression function, such as the conditional mean or a conditional quantile, us-

ing an available sample. In numerical analysis, the common problem is to approximate

an intractable target function by a more tractable function on the basis of the target

function’s values at a collection of points.

Suppose we know that the target function f0 is monotonic, namely weakly increasing.

Suppose further that an original estimate f̂ is available, which is not necessarily mono-

tonic. Many common estimation methods do indeed produce such estimates. Can these

estimates always be improved with no harm? The answer provided by this paper is yes:

the rearrangement method transforms the original estimate to a monotonic estimate

f̂ ∗, and this estimate is in fact closer to the true curve f0 than the original estimate f̂

in common metrics. Furthermore, the rearrangement is computationally tractable, and

thus preserves the computational appeal of the original estimates.

Estimation methods, specifically the ones used in regression analysis, can be grouped

into global methods and local methods. An example of a global method is the series

estimator of f0 taking the form

f̂(x) = Pkn(x)′b̂,

where Pkn(x) is a kn-vector of suitable transformations of the variable x, such as B-

splines, polynomials, and trigonometric functions. Section 4 lists specific examples in

the context of an empirical example. The estimate b̂ is obtained by solving the regression

problem

b̂ = arg min
b∈Rkn

n∑
i=1

ρ(Yi − Pkn(Xi)
′b),

where (Yi, Xi), i = 1, ..., n denotes the data. In particular, using the square loss ρ(u) = u2

produces estimates of the conditional mean of Yi given Xi (Gallant 1981, Andrews
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1991, Stone 1994, Newey 1997), while using the asymmetric absolute deviation loss

ρ(u) = (u − 1(u < 0))u produces estimates of the conditional u-quantile of Yi given Xi

(Koenker and Bassett 1978, Portnoy 1997, He and Shao 2000). Likewise, in numerical

analysis “data” often consist of values Yi of a target function evaluated at a collection

of mesh points {Xi, i = 1, , n} and the mesh points themselves. The series estimates

x 7→ f̂(x) = Pkn(x)′b̂ are widely used in data analysis due to their good approximation

properties and computational tractability. However, these estimates need not be natu-

rally monotone, unless explicit constraints are added into the optimization program (for

example, Matzkin (1994), Silvapulle and Sen (2005), and Koenker and Ng (2005)).

Examples of local methods include kernel and locally polynomial estimators. A kernel

estimator takes the form

f̂(x) = arg min
b∈R

n∑
i=1

wiρ(Yi − b), wi = K

(
Xi − x

h

)
,

where the loss function ρ plays the same role as above, K(u) is a standard, possibly

high-order, kernel function, and h > 0 is a vector of bandwidths (see, for example,

Wand and Jones (1995) and Ramsay and Silverman (2005)). The resulting estimate

x 7→ f̂(x) needs not be naturally monotone. Dette, Neumeyer, and Pilz (2006) show

that the rearrangement transforms the kernel estimate into a monotonic one. We further

show here that the rearranged estimate necessarily improves upon the original estimate,

whenever the latter is not monotonic. The locally polynomial regression is a related

local method (Chaudhuri 1991, Fan and Gijbels 1996). In particular, the locally linear

estimator takes the form

(f̂(x), d̂(x)) = argmin
b∈R,d∈R

n∑
i=1

wiρ(Yi − b− d(Xi − x))2, wi = K

(
Xi − x

h

)
.

The resulting estimate x 7→ f̂(x) may also be non-monotonic, unless explicit constrains

are added to the optimization problem. Section 4 illustrates the non-monotonicity of

the locally linear estimate in an empirical example.

In summary, there are many attractive estimation and approximation methods in sta-

tistics that do not necessarily produce monotonic estimates. These estimates do have

other attractive features though, such as good approximation properties and computa-

tional tractability. Below we show that the rearrangement operation applied to these

estimates produces (monotonic) estimates that improve the approximation properties of
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the original estimates by bringing them closer to the target curve. Furthermore, the re-

arrangement is computationally tractable, and thus preserves the computational appeal

of the original estimates.

2.2. The Rearrangement and its Approximation Property: The Univariate

Case. In what follows, let X be a compact interval. Without loss of generality, it is

convenient to take this interval to be X = [0, 1]. Let f(x) be a measurable function

mapping X to K, a bounded subset of R. Let Ff (y) =
∫
X 1{f(u) ≤ y}du denote the

distribution function of f(X) when X follows the uniform distribution on [0, 1]. Let

f ∗(x) := Qf (x) := inf {y ∈ R : Ff (y) ≥ x}

be the quantile function of Ff (y). Thus,

f ∗(x) := inf

{
y ∈ R :

[∫

X
1{f(u) ≤ y}du

]
≥ x

}
.

This function f ∗ is called the increasing rearrangement of the function f .

Thus, the rearrangement operator simply transforms a function f to its quantile func-

tion f ∗. That is, x 7→ f ∗(x) is the quantile function of the random variable f(X) when

X ∼ U(0, 1). It is also convenient to think of the rearrangement as a sorting operation:

given values of the function f(x) evaluated at x in a fine enough net of equidistant

points, we simply sort the values in an increasing order. The function created in this

way is the rearrangement of f .

The main point of this paper is the following:

Proposition 1. Let f0 : X → K be a weakly increasing measurable function in x, where

K is a bounded subset of R. This is the target function. Let f̂ : X → K be another

measurable function, an initial estimate of the target function f0.

1. For any p ∈ [1,∞], the rearrangement of f̂ , denoted f̂ ∗, weakly reduces the estimation

error: [∫

X

∣∣∣f̂ ∗(x)− f0(x)
∣∣∣
p

dx

]1/p

≤
[∫

X

∣∣∣f̂(x)− f0(x)
∣∣∣
p

dx

]1/p

. (2.1)

2. Suppose that there exist regions X0 and X ′
0, each of measure greater than δ > 0, such

that for all x ∈ X0 and x′ ∈ X ′
0 we have that (i) x′ > x, (ii) f̂(x) > f̂(x′) + ε, and (iii)
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f0(x
′) > f0(x) + ε, for some ε > 0. Then the gain in the quality of approximation is

strict for p ∈ (1,∞). Namely, for any p ∈ [1,∞],

[∫

X

∣∣∣f̂ ∗(x)− f0(x)
∣∣∣
p

dx

]1/p

≤
[∫

X

∣∣∣f̂(x)− f0(x)
∣∣∣
p

dx− δηp

]1/p

, (2.2)

where ηp = inf{|v − t′|p + |v′ − t|p − |v − t|p − |v′ − t′|p} and ηp > 0 for p ∈ (1,∞), with

the infimum taken over all v, v′, t, t′ in the set K such that v′ ≥ v + ε and t′ ≥ t + ε.

The first part of the proposition states the weak inequality (2.1), and the second part

states the strict inequality (2.2). For example, the inequality is strict for p ∈ (1,∞) if

the original estimate f̂(x) is decreasing on a subset of X having positive measure, while

the target function f̂0(x) is increasing on X (by increasing, we mean strictly increasing

throughout). Of course, if f0(x) is constant, then the inequality (2.1) becomes an equal-

ity, as the distribution of the rearranged function f̂ ∗ is the same as the distribution of

the original function f̂ , that is Ff̂∗ = Ff̂ .

This proposition establishes that the rearranged estimate f̂ ∗ has a smaller estimation

error in the Lp norm than the original estimate whenever the latter is not monotone.

This is a very useful and generally applicable property that is independent of the sample

size and of the way the original estimate f̂ is obtained.

An indirect proof of the weak inequality (2.1) is a simple but important consequence

of the following classical inequality due to Lorentz (1953): Let q and g be two functions

mapping X to K, a bounded subset of R. Let q∗ and g∗ denote their corresponding

increasing rearrangements. Then,

∫

X
L(q∗(x), g∗(x), x)dx ≤

∫

X
L(q(x), g(x), x)dx,

for any submodular discrepancy function L : R3 7→ R. Set q(x) = f̂(x), q∗(x) =

f̂ ∗(x), g(x) = f0(x), and g∗(x) = f ∗0 (x). Now, note that in our case f ∗0 (x) = f0(x)

almost everywhere, that is, the target function is its own rearrangement. Moreover,

L(v, w, x) = |w − v|p is submodular for p ∈ [1,∞). This proves the first part of the

proposition above. For p = ∞, the first part follows by taking the limit as p →∞.

In Section 3 we provide a proof of the strong inequality (2.2) as well as the direct proof

of the weak inequality (2.1). The direct proof illustrates how reductions of the estimation
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error arise from even a partial sorting of the values of the estimate f̂ . Moreover, the

direct proof characterizes the conditions for the strict reduction of the estimation error.

The following immediate implication of the above finite-sample result is also worth

emphasizing: The rearranged estimate f̂ ∗ inherits the Lp rates of convergence from the

original estimates f̂ . For p ∈ [1,∞], if λn = [
∫
X |f0(x)− f̂(x)|pdu]1/p = OP (an) for some

sequence of constants an, then [
∫
X |f0(x)− f̂ ∗(x)|pdu]1/p ≤ λn = OP (an).

2.3. Computation of the Rearranged Estimate. One of the following methods can

be used for computing the rearrangement. Let {Xj, j = 1, ..., B} be either (1) a net of

equidistant points in [0, 1] or (2) a sample of i.i.d. draws from the uniform distribution

on [0, 1]. Then the rearranged estimate f̂ ∗(u) at point u ∈ X can be approximately

computed as the u-quantile of the sample {f(Xj), j = 1, ..., B}. The first method is

deterministic, and the second is stochastic. Thus, for a given number of draws B, the

complexity of computing the rearranged estimate f ∗(u) in this way is equivalent to the

complexity of computing the sample u-quantile in the sample of size B.

The number of evaluations B can depend on the problem. Suppose that the den-

sity function of the random variable f(X), when X ∼ U(0, 1), is bounded away from

zero over a neighborhood of f ∗(x). Then f ∗(x) can be computed with the accuracy

of OP (1/
√

B), as B → ∞, where the rate follows from the results of Knight (2002).

As shown in Chernozhukov, Fernandez-Val, and Galichon (2006a), the density of f(X),

denoted F ′
f (t), exists if f(x) is continuously differentiable and the number of elements

in {x ∈ X : f ′(x) = 0} is bounded; in particular,

F ′
f (t) =

∑

x∈{r∈X :f(r)=t}

1

|f ′(x)| . (2.3)

Thus, the density F ′
f (t) is bounded away from zero if f ′(x) is bounded away from infinity.

Interestingly, the density has infinite poles at {t ∈ X : there is an x such that f ′(x) =

0 and f(x) = t}.

2.4. The Rearrangement and Its Approximation Property: The Multivariate

Case. In this section, we consider multivariate functions f : X d → K, where X d =

[0, 1]d and K is a bounded subset of R. The notion of monotonicity we seek to impose

on f is the following: We say that the function f is weakly increasing in x if f(x′) ≥ f(x)

whenever x′ ≥ x. The notation x′ = (x′1, ..., x
′
d) ≥ x = (x1, ..., xd) means that one vector
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is weakly larger than the other in each of the components, that is, x′j ≥ xj for each

j = 1, ..., d. In what follows, we use the notation f(xj, x−j) to denote the dependence of

f on its j-th argument, xj, and all other arguments, x−j, that exclude xj. The notion

of monotonicity above is equivalent to the requirement that for each j in 1, ..., d the

mapping xj 7→ f(xj, x−j) is weakly increasing in xj, for each x−j in X d−1.

Define the rearranged operator Rj and the rearranged function f ∗j (x) with respect to

the j-th argument as follows:

f ∗j (x) := Rj ◦ f(x) := inf

{
y :

[∫

X
1{f(x′j, x−j) ≤ y}dx′j

]
≥ xj

}
.

This is the one-dimensional increasing rearrangement applied to one-dimensional func-

tion xj 7→ f(xj, x−j), holding the other arguments x−j fixed. The rearrangement is

applied for every value of the other arguments x−j.

Let π = (π1, ..., πd) be an ordering, i.e. a permutation, of the integers 1, ..., d. Let us

define the π-rearrangement operator Rπ and the π-rearranged function f ∗π(x) as follows:

f ∗π(x) := Rπ ◦ f(x) := Rπ1 ◦ ... ◦Rπd
◦ f(x).

For any ordering π, the π-rearrangement operator rearranges the function with respect

to all of its arguments. As shown below, the resulting function fπ(x) is weakly increasing

in x.

In general, two different orderings π and π′ of 1, ..., d can yield different rearranged

functions f ∗π(x) and f ∗π′(x). Therefore, to resolve the conflict among rearrangements

done with different orderings, we may consider averaging among them: letting Π be any

collection of distinct orderings π, we can define the average rearrangement as

f ∗(x) :=
1

|Π|
∑
π∈Π

f ∗π(x), (2.4)

where |Π| denotes the number of elements in the set of orderings Π. As shown below, the

approximation error of the average rearrangement is weakly smaller than the average of

approximation errors of individual π-rearrangements.

The following proposition describes the properties of multivariate π-rearrangements:

Proposition 2. Let the target function f0 : X d → K be weakly increasing and measur-

able in x. Let f̂ : X d → K be a measurable function that is an initial estimate of the
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target function f0. Let f̄ : X d → K be another estimate of f0, which is measurable in x,

including, for example, a rearranged f̂ with respect to some of the arguments. Then,

1. For each ordering π of 1, ..., d, the π-rearranged estimate f̂ ∗π(x) is weakly increasing

in x. Moreover, f̂ ∗(x), an average of π-rearranged estimates, is weakly increasing in x.

2. (a) For any j in 1, ..., d and any p in [1,∞], the rearrangement of f̄ with respect

to the j-th argument produces a weak reduction in the approximation error:

[∫

X d

|f̄ ∗j (x)− f0(x)|pdx

]1/p

≤
[∫

X d

|f̄(x)− f0(x)|pdx

]1/p

. (2.5)

(b) Consequently, a π-rearranged estimate f̂ ∗π(x) of f̂(x) weakly reduces the approxi-

mation error of the original estimate:

[∫

X d

|f̂ ∗π(x)− f0(x)|pdx

]1/p

≤
[∫

X d

|f̂(x)− f0(x)|pdx

]1/p

. (2.6)

3. Suppose that f̄(x) and f0(x) have the following properties: there exist subsets

Xj ⊂ X and X ′
j ⊂ X , each of measure δ > 0, and a subset X−j ⊆ X d−1, of measure

ν > 0, such that for all x = (xj, x−j) and x′ = (x′j, x−j), with x′j ∈ X ′
j , xj ∈ Xj,

x−j ∈ X−j, we have that (i) x′j > xj, (ii) f̄(x) > f̄(x′) + ε, and (iii) f0(x
′) > f0(x) + ε,

for some ε > 0.

(a) Then, for any p ∈ [1,∞],

[∫

X d

|f̄ ∗j (x)− f0(x)|pdx

]1/p

≤
[∫

X d

|f̄(x)− f0(x)|pdx− ηpδν

]1/p

, (2.7)

where ηp = inf{|v− t′|p + |v′− t|p − |v− t|p − |v′− t′|p}, and ηp > 0 for p ∈ (1,∞), with

the infimum taken over all v, v′, t, t′ in the set K such that v′ ≥ v + ε and t′ ≥ t + ε.

(b) Further, for an ordering π = (π1, ..., πk, ..., πd) with πk = j, let f̄ be a partially

rearranged function, f̄(x) = Rπk+1
◦ ... ◦ Rπd

◦ f̂(x) (for k = d we set f̄(x) = f̂(x)). If

the function f̄(x) and the target function f0(x) satisfy the condition stated above, then,

for any p ∈ [1,∞],

[∫

X d

|f̂ ∗π(x)− f0(x)|pdx

]1/p

≤
[∫

X d

|f̂(x)− f0(x)|pdx− ηpδν

]1/p

. (2.8)
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4. The approximation error of an average rearrangement is weakly smaller than the

average approximation error of the individual π- rearrangements: For any p ∈ [1,∞],

[∫

X d

|f̂ ∗(x)− f0(x)|pdx

]1/p

≤ 1

|Π|
∑
π∈Π

[∫

X d

|f̂ ∗π(x)− f0(x)|pdx

]1/p

. (2.9)

This proposition generalizes the results of Proposition 1 to the multivariate case,

also demonstrating several features unique of the multivariate case. We see that the

π-rearranged functions are monotonic in all of the arguments. The rearrangement along

any argument improves the approximation properties of the estimate. Moreover, the

improvement is strict when the rearrangement with respect to a j-th argument is per-

formed on an estimate that is decreasing in the j-th argument, while the target function

is increasing in the same j-th argument, in the sense precisely defined in the proposition.

Moreover, averaging different π-rearrangements is better (on average) than using a single

π-rearrangement chosen at random. All other basic implications of the proposition are

similar to those discussed for the univariate case.

3. Proofs of Propositions

3.1. Proof of Proposition 1. The first part establishes the weak inequality, following

in part the strategy in Lorentz’s (1953) proof. The proof focuses directly on obtaining

the result stated in the proposition. The second part establishes the strong inequality.

Proof of Part 1. We assume at first that the functions f̂(·) and f0(·) are simple

functions, constant on intervals ((s− 1)/r, s/r], s = 1, ..., r. For any simple f(·) with r

steps, let f denote the r-vector with the s-th element, denoted fs, equal to the value of

f(·) on the s-th interval. Let us define the sorting operator S(f) as follows: Let ` be an

integer in 1, ..., r such that f` > fm for some m > l. If ` does not exist, set S(f) = f . If

` exists, set S(f) to be a r-vector with the `-th element equal to fm, the m-th element

equal to f`, and all other elements equal to the corresponding elements of f . For any

submodular function L : R2 → R+, by f` ≥ fm, f0m ≥ f0` and the definition of the

submodularity,

L(fm, f0`) + L(f`, f0m) ≤ L(f`, f0`) + L(fm, f0m).
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Therefore, we conclude that

∫

X
L(S(f̂)(x), f0(x))dx ≤

∫

X
L(f̂(x), f0(x))dx, (3.1)

using that we integrate simple functions.

Applying the sorting operation a sufficient finite number of times to f̂ , we obtain a

completely sorted, that is, rearranged, vector f̂ ∗. Thus, we can express f̂ ∗ as a finite

composition f̂ ∗ = S ◦ ... ◦ S(f̂) . By repeating the argument above, each composition

weakly reduces the approximation error. Therefore,

∫

X
L(f̂ ∗(x), f0(x))dx ≤

∫

X
L(S ◦ ... ◦ S︸ ︷︷ ︸

finite times

(f̂), f0(x))dx ≤
∫

X
L(f̂(x), f0(x))dx. (3.2)

Furthermore, this inequality is extended to general measurable functions f̂(·) and f0(·)
mapping X to K by taking a sequence of bounded simple functions f̂ (r)(·) and f

(r)
0 (·)

converging to f̂(·) and f0(·) almost everywhere as r → ∞. The almost everywhere

convergence of f̂ (r)(·) to f̂(·) implies the almost everywhere convergence of its quantile

function f̂ ∗(r)(·) to the quantile function of the limit, f̂ ∗(·). Since inequality (3.2) holds

along the sequence, the dominated convergence theorem implies that (3.2) also holds for

the general case. ¤
Proof of Part 2. Let us first consider the case of simple functions, as defined in Part

1. We take the functions to satisfy the following hypotheses: there exist regions X0 and

X ′
0, each of measure greater than δ > 0, such that for all x ∈ X0 and x′ ∈ X ′

0, we have

that (i) x′ > x, (ii) f̂(x) > f̂(x′) + ε, and (iii) f0(x
′) > f0(x) + ε, for ε > 0 specified in

the proposition. For any strictly submodular function L : R2 → R+ we have that

η = inf{L(v′, t) + L(v, t′)− L(v, t)− L(v′, t′)} > 0,

where the infimum is taken over all v, v′, t, t′ in the set K such that v′ ≥ v + ε and

t′ ≥ t + ε.

We can begin sorting by exchanging an element f̂(x), x ∈ X0, of r-vector f̂ with an

element f̂(x′), x′ ∈ X ′
0, of r-vector f̂ . This induces a sorting gain of at least η times 1/r.

The total mass of points that can be sorted in this way is at least δ. We then proceed to

sort all of these points in this way, and then continue with the sorting of other points.
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After the sorting is completed, the total gain from sorting is at least δη. That is,
∫

X
L(f̂ ∗(x), f0(x))dx ≤

∫

X
L(f̂(x), f0(x))dx− δη.

We then extend this inequality to the general measurable functions exactly as in the

proof of part one. ¤

3.2. Proof of Proposition 2. The proof consists of the following four parts.

Proof of Part 1. We prove the claim by induction. The claim is true for d = 1 by

f̂ ∗(x) being a quantile function. We then consider any d ≥ 2. Suppose the claim is

true in d− 1 dimensions. If so, then the estimate f̄(xj, x−j), obtained from the original

estimate f̂(x) after applying the rearrangement to all arguments x−j of x, except for the

argument xj, must be weakly increasing in x−j for each xj. Thus, for any x′−j ≥ x−j,

we have that

f̄(Xj, x
′
−j) ≥ f̄(Xj, x−j) for Xj ∼ U(0, 1). (3.3)

Therefore, the random variable on the left of (3.3) dominates the random variable on

the right of (3.3) in the stochastic sense. Therefore, the quantile function of the random

variable on the left dominates the quantile function of the random variable on the right,

namely

f̄ ∗j (xj, x
′
−j) ≥ f̄ ∗j (xj, x−j) for each xj ∈ X = (0, 1). (3.4)

Moreover, for each x−j, the function xj 7→ f̄ ∗j (xj, x−j) is weakly increasing by virtue of

being a quantile function. We conclude therefore that x 7→ f̄ ∗j (x) is weakly increasing

in all of its arguments at all points x ∈ X d. The claim of Part 1 of the Proposition now

follows by induction. ¤
Proof of Part 2 (a). By Proposition 1, we have that for each x−j,∫

X

∣∣f̄ ∗j (xj, x−j)− f0(xj, x−j)
∣∣p dxj ≤

∫

X

∣∣f̄(xj, x−j)− f0(xj, x−j)
∣∣p dxj. (3.5)

Now, the claim follows by integrating with respect to x−j and taking the p-th root of

both sides. For p = ∞, the claim follows by taking the limit as p →∞. ¤
Proof of Part 2 (b). We first apply the inequality of Part 2(a) to f̄(x) = f̂(x), then

to f̄(x) = Rπd
◦ f̂(x), then to f̄(x) = Rπd−1

◦ Rπd
◦ f̂(x), and so on. In doing so,

we recursively generate a sequence of weak inequalities that imply the inequality (2.6)

stated in the Proposition. ¤
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Proof of Part 3 (a). For each x−j ∈ X d−1 \ X−j, by Part 2(a), we have the weak

inequality (3.5), and for each x−j ∈ X−j, by the inequality for the univariate case stated

in Proposition 1 Part 2, we have the strong inequality
∫

X

∣∣f̄ ∗j (xj, x−j)− f0(xj, x−j)
∣∣p dxj ≤

∫

X

∣∣f̄(xj, x−j)− f0(xj, x−j)
∣∣p dxj − ηpδ, (3.6)

where ηp is defined in the same way as in Proposition 1. Integrating the weak inequality

(3.5) over x−j ∈ X d−1 \ X−j, of measure 1− ν, and the strong inequality (3.6) over X−j,

of measure ν, we obtain
∫

X d

∣∣f̄ ∗j (x)− f0(x)
∣∣p dx ≤

∫

X d

∣∣f̄(x)− f0(x)
∣∣p dx− ηpδν. (3.7)

The claim now follows. ¤
Proof of Part 3 (b). As in Part 2(a), we can recursively obtain a sequence of weak

inequalities describing the improvements in approximation error from rearranging se-

quentially with respect to the individual arguments. Moreover, at least one of the

inequalities can be strengthened to be of the form stated in (3.7), from the assumption

of the claim. The resulting system of inequalities yields the inequality (2.8), stated in

the proposition. ¤
Proof of Part 4. We can write

[∫

X d

∣∣∣f̂ ∗(x)− f0(x)
∣∣∣
p

dx

]1/p

=

[∫

X d

∣∣∣∣∣
1

|Π|
∑
π∈Π

(
f̂ ∗(x)− f0(x)

)∣∣∣∣∣

p

dx

]1/p

≤ 1

|Π|
∑
π∈Π

[∫

X d

∣∣∣f̂ ∗π(x)− f0(x)
∣∣∣
p

dx

]1/p

,

(3.8)

where the last inequality follows by pulling out 1/|Π| and then applying the triangle

inequality for the Lp norm. ¤

4. Illustrations

In this section we provide an empirical application to biometric age-height charts.

We show how the rearrangement monotonizes and improves various nonparametric esti-

mates, and then we quantify the improvement in a simulation example that mimics the

empirical application.
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4.1. An Empirical Illustration with Age-Height Reference Charts. Since their

introduction by Quetelet in the 19th century, reference growth charts have become com-

mon tools to asses an individual’s health status. These charts describe the evolution

of individual anthropometric measures, such as height, weight, and body mass index,

across different ages. See Cole (1988) for a classical work on the subject and Wei, Pere,

Koenker, and He (2006) for a recent analysis from a quantile regression perspective and

additional references.

To illustrate the properties of the rearrangement method we consider the estimation

of growth charts for height. It is clear that height should naturally follow an increasing

relationship with age. Our data consist of repeated cross sectional measurements of

height and age from the 2003-2004 National Health and Nutrition Survey collected by

the National Center for Health Statistics. Height is measured as standing height in

centimeters, and age is recorded in months and expressed in years. To avoid confounding

factors that might affect the relationship between age and height, we restrict the sample

to US-born white males age two through twenty. Our final sample consists of 533 subjects

almost evenly distributed across these ages.

Let Y and X denote height and age, respectively. Let E[Y |X = x] denote the condi-

tional expectation of Y given X = x, and QY (u|X = x) denote the u-th quantile of Y

given X = x, where u is the quantile index. The population functions of interests are

(1) the conditional expectation function (CEF), (2) the conditional quantile functions

(CQF) for several quantile indices (5%, median, and 95%), and (3) the entire condi-

tional quantile process (CQP) for height given age. In the first case, the target function

x 7→ f0(x) is x 7→ E[Y |X = x]; in the second case, the target function x 7→ f0(x) is

x 7→ QY [u|X = x], for u = 5%, 50%, and 95%; and, in the third case, the target func-

tion (u, x) 7→ f0(u, x) is (u, x) 7→ QY [u|X = x]. The natural monotonicity requirements

for the target functions are the following: The CEF x 7→ E[Y |X = x] and the CQF

x 7→ QY (u|X = x) should be increasing in age x, and the CQP (u, x) 7→ QY [u|X = x]

should be increasing in both age x and the quantile index u.

We estimate the target functions using non-parametric ordinary least squares or quan-

tile regression techniques and then rearrange the estimates to satisfy the monotonicity

requirements. We consider (a) kernel, (b) local linear, (c) spline, (d) global polynomial,

(e) Fourier, and (f) flexible Fourier methods. For the kernel method, we provide a fit
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on a cell-by-cell basis, with each cell corresponding to one month. For the local linear

method, we choose a bandwidth of one year and a box kernel. For the spline method,

we use cubic B-splines with a knot sequence {3, 5, 8, 10, 11.5, 13, 14.5, 16, 18}, following

Wei, Pere, Koenker, and He (2006). For the global polynomial method, we fit a quartic

polynomial. For the Fourier method, we employ eight trigonometric terms, with four

sines and four cosines. For the flexible Fourier method, we use a quadratic polynomial

and four trigonometric terms, with two sines and two cosines. Finally, for the estima-

tion of the conditional quantile process, we use a net of two hundred quantile indices

{0.005, 0.010, ..., 0.995}. In the choice of the parameters for the different methods, we

select values that either have been used in the previous empirical work or give rise to

specifications with similar complexities for the different methods.

The panels A-F of Figure 1 show the original and rearranged estimates of the con-

ditional expectation function for the different methods. All the estimated curves have

trouble capturing the slowdown in the growth of height after age sixteen and yield non-

monotonic curves for the highest values of age. The Fourier series have a special difficulty

approximating the aperiodic age-height relationship. The rearranged estimates correct

the non-monotonicity of the original estimates, providing weakly increasing curves that

coincide with the original estimates in the parts where the latter are monotonic. More-

over, the rearranged estimates necessarily improve upon the original estimates, since,

by the theoretical results derived earlier, they are closer to the true functions than the

original estimates. We quantify this improvement in the next subsection.

Figure 2 displays similar but more pronounced non-monotonicity patterns for the

estimates of the conditional quantile functions. The rearrangement again performs well

in delivering curves that improve upon the original estimates and that satisfy the natural

monotonicity requirement.

Figures 3-7 illustrate the multivariate rearrangement of the conditional quantile pro-

cess (CQP) along both the age and the quantile index arguments. We plot in three

dimensions the original estimate, its age rearrangement, its quantile rearrangement, and

its average multivariate rearrangement (the average of the age-quantile and quantile-age

rearrangements). We also plot the corresponding contour surfaces. (Here, we do not

show the multivariate age-quantile and quantile-age rearrangements separately, because
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they are very similar to the average multivariate rearrangement.) We see from the con-

tour plots that, for all of the estimation methods considered, the estimated CQP is

non-monotone in age and non-monotone in the quantile index at extremal values of this

index. The contour plots for the estimates based on the Fourier series best illustrate the

non-monotonicity problem. We see that the average multivarite rearrangement fixes the

non-monotonicity problem, and delivers an estimate of the CQP that is monotone in

both the age and the quantile index arguments. Furthermore, by the theoretical results

of the paper, the multivariate rearranged estimates necessarily improve upon the original

estimates.

4.2. Monte-Carlo Illustration. The following Monte Carlo experiment quantifies the

improvement in the estimation/approximation properties of the rearranged estimates

relative to the original estimates. The experiment closely matches the empirical appli-

cation presented above.

Specifically, we consider the design where the outcome variable Y equals a location

function plus a disturbance ε, Y = Z(X)′β+ε, and the disturbance is independent of the

regressor X. The vector Z(X) includes a constant and a piecewise linear transformation

of the regressor X with three changes of slope, namely Z(X) = (1, X, 1{X > 5} · (X −
5), 1{X > 10} · (X − 10), 1{X > 15} · (X − 15)). This design implies the conditional

expectation function

E[Y |X] = Z(X)′β, (4.1)

and the conditional quantile function

QY (u|X) = Z(X)′β + Qε(u). (4.2)

We select the parameters of the design to match the empirical example of growth charts

in the previous subsection. Thus, we set the parameter β equal to the ordinary least

squares estimate obtained in the growth chart data, namely (71.25, 8.13, −2.72, 1.78,

−6.43). This parameter value and the location specification (4.2) imply a model for CEF

and CQP that is monotone in age over the range of 2-20. To generate the values of the

dependent variable, we draw disturbances from a normal distribution with the mean and

variance equal to the mean and variance of the estimated residuals, ε = Y − Z(X)′β,

in the growth chart data. We fix the regressor X in all of the replications to be the
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observed values of age in the growth chart data set. In each replication, we estimate the

CEF and CQP using the nonparametric methods described in the previous section.

In Table 1 we report the average Lp errors (for p = 1, 2, 3, 4 and ∞) for the original

estimates and the rearranged estimates of the CEF. We also report the relative efficiency

of the two estimates, measured as the ratio of the average error of the rearranged estimate

to the average error of the original estimate. We calculate the average Lp error as the

Monte Carlo average of

Lp :=

[∫

X
|f̄(x)− f0(x)|pdx

]1/p

,

where the target function f0(x) is the CEF E[Y |X = x], and the estimate f̄(x) denotes

either the original nonparametric estimate of the CEF or its increasing rearrangement.

For all of the methods considered, we find that the rearranged curves estimate the true

CEF more accurately than the original curves, providing a 2% to 84% reduction in the

average error, depending on the method and the norm (i.e. values of p).

In Table 2 we report the average Lp errors for the original estimates of the conditional

quantile process and their multivariate rearrangement with respect to the age and quan-

tile index arguments. We also report the ratio of the average error of the rearranged

estimate to the average error of the original estimate. The average Lp error is the Monte

Carlo average of

Lp :=

[∫

U

∫

X
|f̄(u, x)− f0(u, x)|pdxdu

]1/p

,

where the target function f0(u, x) is the conditional quantile process QY (u|X = x), and

the estimate f̄(u, x) denotes either the original nonparametric estimate of the conditional

quantile process or its multivariate rearrangement. We present the results for the av-

erage multivariate rearrangement only. The age-quantile and quantile-age multivariate

rearrangements give errors that are very similar to their average multivariate rearrange-

ment, and we therefore do not report them separately. For all the methods considered,

we find that the multivariate rearranged curves estimate the true CQP more accurately

than the original curves, providing a 4% to 74% reduction in the approximation error,

depending on the method and the norm.
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In Table 3 we report the average Lp error for the univariate rearrangements of the

conditional quantile function along either the age argument or the quantile index ar-

gument. We also report the ratio of the average error for these rearrangements to the

average error of the original estimates. For all of the methods considered, we find that

these rearranged curves estimate the true CQP more accurately than the original curves,

providing noticeable reductions in the estimation error. Moreover, in this case the re-

arrangement along the age argument is more effective in reducing the estimation error

than the rearrangement along the quantile index. Furthermore, by comparing Tables 2

and 3, we also see that the multivariate rearrangement provides an improvement over

the individual univariate rearrangements, yielding estimates of the CQP that are often

much closer to the true process.

5. Conclusion

Suppose that a target function is known to be weakly increasing, and we have an

original estimate of this function, which is not weakly increasing. Common estima-

tion methods provide estimates with such a property. We show that these estimates

can always be improved using rearrangement techniques. The univariate and multivari-

ate rearrangement methods transform the original estimate to a monotonic estimate.

The resulting monotonic estimate is in fact closer to the target function in common

metrics than the original estimate. We illustrate these theoretical results with a com-

putational example and an empirical example, dealing with estimation of conditional

mean and quantile functions of height given age. The rearrangement both monotonizes

and improves the original non-monotone estimates. It would be interesting to determine

whether this improved estimation/approximation property carries over to other methods

of monotonization. We leave this extension for future research.
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Table 1. Lp Estimation/Approximation Error of Original and Rear-

ranged Estimates of the Conditional Expectation Function, for p =

1, 2, 3, 4, and ∞. Univariate Rearrangement.

p Lp
O Lp

R Lp
R/Lp

O Lp
O Lp

R Lp
R/Lp

O

A. Kernel B. Local Polynomial

1 3.69 1.33 0.36 0.79 0.76 0.96

2 4.80 1.84 0.38 1.00 0.96 0.96

3 5.81 2.46 0.42 1.17 1.13 0.96

4 6.72 3.12 0.46 1.33 1.28 0.96

∞ 16.8 9.84 0.58 2.96 2.81 0.95

C. Splines D. Quartic

1 0.87 0.81 0.93 1.33 1.19 0.89

2 1.10 1.02 0.93 1.64 1.46 0.89

3 1.31 1.22 0.93 1.89 1.68 0.89

4 1.52 1.39 0.92 2.10 1.87 0.89

∞ 3.72 3.19 0.86 4.38 3.79 0.87

E. Fourier F. Flexible Fourier

1 6.57 3.21 0.49 0.73 0.72 0.97

2 10.7 3.79 0.35 0.91 0.89 0.97

3 15.2 4.24 0.28 1.06 1.04 0.98

4 19.0 4.59 0.24 1.18 1.16 0.98

∞ 48.9 7.79 0.16 2.44 2.40 0.98

Notes: The table is based on 10,000 replications.

Lp
O is the Lp error of the original estimate.

Lp
R is the Lp error of the rearranged estimate.
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Table 2. Lp Estimation/Approximation Error of Original and Rear-

ranged Estimates of the Conditional Quantile Process, for p = 1, 2, 3, 4,

and ∞. Average Multivariate Rearrangement.

p Lp
O Lp

RR Lp
RR/Lp

O Lp
O Lp

RR Lp
RR/Lp

O

A. Kernel B. Local Polynomial

1 5.35 3.13 0.58 1.21 1.09 0.91

2 6.97 4.37 0.63 1.61 1.46 0.91

3 8.40 5.49 0.65 2.03 1.84 0.91

4 9.72 6.49 0.67 2.48 2.24 0.91

∞ 34.3 26.4 0.77 12.3 10.4 0.84

C. Splines D. Quartic

1 1.33 1.20 0.90 1.49 1.35 0.90

2 1.78 1.60 0.90 1.87 1.69 0.90

3 2.30 2.03 0.88 2.23 1.99 0.89

4 2.92 2.50 0.86 2.62 2.29 0.87

∞ 16.9 12.1 0.72 12.6 8.61 0.68

E. Fourier F. Flexible Fourier

1 6.72 4.18 0.62 1.05 1.00 0.96

2 13.7 5.35 0.39 1.38 1.31 0.95

3 20.8 6.36 0.31 1.72 1.63 0.95

4 26.7 7.25 0.27 2.12 1.98 0.94

∞ 84.9 21.9 0.26 10.9 9.13 0.84

Notes: The table is based on 1,000 replications.

Lp
O is the Lp error of the original estimate.

Lp
RR is the Lp error of the average multivariate rearranged estimate.
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Table 3. Lp Estimation/Approximation Error of Rearranged Estimates

of the Conditional Quantile Process, for p = 1, 2, 3, 4,∞. Univariate Re-

arrangements.

p Lp
Ru

Lp
Rx

Lp
Ru

/Lp
O Lp

Rx
/Lp

O Lp
Ru

Lp
Rx

Lp
Ru

/Lp
O Lp

Rx
/Lp

O

A. Kernel B. Local Polynomial

1 5.35 3.13 1.00 0.58 1.20 1.10 1.00 0.91

2 6.97 4.37 1.00 0.63 1.60 1.47 1.00 0.91

3 8.40 5.49 1.00 0.65 2.01 1.85 0.99 0.91

4 9.72 6.49 1.00 0.67 2.45 2.26 0.99 0.91

∞ 34.3 26.4 1.00 0.77 11.8 10.8 0.96 0.88

C. Splines D. Quartic

1 1.31 1.21 0.99 0.91 1.49 1.35 1.00 0.91

2 1.75 1.63 0.98 0.91 1.87 1.69 1.00 0.90

3 2.24 2.08 0.97 0.90 2.22 2.00 0.99 0.90

4 2.80 2.59 0.96 0.89 2.60 2.30 0.99 0.88

∞ 14.4 13.9 0.85 0.82 11.9 9.11 0.95 0.72

E. Fourier F. Flexible Fourier

1 6.71 4.19 1.00 0.62 1.04 1.01 0.99 0.96

2 13.7 5.36 1.00 0.39 1.36 1.32 0.99 0.96

3 20.8 6.37 1.00 0.31 1.70 1.65 0.99 0.96

4 26.7 7.26 1.00 0.27 2.08 2.02 0.98 0.95

∞ 84.9 22.2 1.00 0.26 10.0 9.86 0.92 0.91

Notes. The table is based on 1,000 replications.

Lp
O is the Lp error of the original estimate.

Lp
Rx

is the Lp error of the estimate rearranged in age x.

Lp
Ru

is the Lp error of the estimate rearranged in the quantile index u.
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Figure 1. Nonparametric estimates of the Conditional Expectation

Function (CEF) of height given age and their increasing rearrangements.

Nonparametric estimates are obtained using kernel regression (A), locally

linear regression (B), cubic B-splines series (C), a four degree polynomial

(D), Fourier series (E), and flexible Fourier series (F).
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Figure 2. Nonparametric estimates of the 5%, 50%, and 95% Condi-

tional Quantile Functions (CQF) of height given age and their increasing

rearrangements. Nonparametric estimates are obtained using kernel re-

gression (A), locally linear regression (B), cubic B-splines series (C), a

four degree polynomial (D), Fourier series (E), and flexible Fourier series

(F).
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Figure 3. Kernel estimates of the Conditional Quantile Process (CQP)

of height given age and their increasing rearrangements. Panels C and

E plot the one dimensional increasing rearrangement along the age and

quantile dimension respectively; panel G shows the average multivariate

rearrangement.
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Figure 4. Locally linear estimates of the Conditional Quantile Process

(CQP) of height given age and their increasing rearrangements. Panels C

and E plot the one dimensional increasing rearrangement along the age and

quantile dimension respectively; panel G shows the average multivariate

rearrangement.



28

qu
an

tileage

height

A. CQP (Splines)

quantile

ag
e

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

B. CQP: Contour

qu
an

tileage

height

C. CQP: Age Rearrangement

quantile

ag
e

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

D. CQP: Contour (R−Age)

qu
an

tileage

height

E. CQP: Quantile Rearrangement

quantile

ag
e

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

F. CQP: Contour (R−Quantile)

qu
an

tileage

height

G. CQP: Average Quantile/Age Rearrangement

quantile

ag
e

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

H. CQP: Contour (RR−Quantile/Age)

Figure 5. Cubic B-splines series estimates of the Conditional Quantile

Process (CQP) of height given age and their increasing rearrangements.

Panels C and E plot the one dimensional increasing rearrangement along

the age and quantile dimension respectively; panel G shows the average

multivariate rearrangement.
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Figure 6. Quartic polynomial series estimates of the Conditional Quan-

tile Process (CQP) of height given age and their increasing rearrange-

ments. Panels C and E plot the one dimensional increasing rearrange-

ment along the age and quantile dimension respectively; panel G shows

the average multivariate rearrangement.
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Figure 7. Fourier series estimates of the Conditional Quantile Process

(CQP) of height given age and their increasing rearrangements. Panels C

and E plot the one dimensional increasing rearrangement along the age and

quantile dimension respectively; panel G shows the average multivariate

rearrangement.
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Figure 8. Flexible Fourier form series estimates of the Conditional

Quantile Process (CQP) of height given age and their increasing rearrange-

ments. Panels C and E plot the one dimensional increasing rearrangement

along the age and quantile dimension respectively; panel G shows the av-

erage multivariate rearrangement.


