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INFERENCE ON COUNTERFACTUAL DISTRIBUTIONS

VICTOR CHERNOZHUKOV† IVÁN FERNÁNDEZ-VAL§ BLAISE MELLY‡

Abstract. Counterfactual distributions are important ingredients for policy analysis and de-

composition analysis in empirical economics. In this article we develop modeling and inference

tools for counterfactual distributions based on regression methods. The counterfactual scenarios

that we consider consist of ceteris paribus changes in either the distribution of covariates related

to the outcome of interest or the conditional distribution of the outcome given covariates. For

either of these scenarios we derive joint functional central limit theorems and bootstrap validity

results for regression-based estimators of the status quo and counterfactual outcome distribu-

tions. These results allow us to construct simultaneous confidence sets for function-valued effects

of the counterfactual changes, including the effects on the entire distribution and quantile func-

tions of the outcome as well as on related functionals. These confidence sets can be used to

test functional hypotheses such as no-effect, positive effect, or stochastic dominance. Our theory

applies to general counterfactual changes and covers the main regression methods including clas-

sical, quantile, duration, and distribution regressions. We illustrate the results with an empirical

application to wage decompositions using data for the United States.

As a part of developing the main results, we introduce distribution regression as a comprehen-

sive and flexible tool for modeling and estimating the entire conditional distribution. We show

that distribution regression encompasses the Cox duration regression and represents a useful

alternative to quantile regression. We establish functional central limit theorems and bootstrap

validity results for the empirical distribution regression process and various related functionals.

Key Words: Counterfactual distribution, decomposition analysis, policy analysis, quantile

regression, distribution regression, duration/transformation regression, Hadamard differentiabil-

ity of the counterfactual operator, weighted bootstrap, unconditional quantile and distribution

effects
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1. Introduction

Counterfactual distributions are important ingredients for policy analysis (Stock, 1989, Heck-

man and Vytlacil, 2007) and decomposition analysis (e.g., Juhn, Murphy, and Pierce, 1993,

DiNardo, Fortin, and Lemieux, 1996, Fortin, Lemieux, and Firpo, 2011) in empirical economics.

For example, we might be interested in predicting the effect of cleaning up a local hazardous waste

site on the marginal distribution of housing prices (Stock, 1991). Or, we might be interested in

decomposing differences in wage distributions between men and women into a discrimination ef-

fect, arising due to pay differences between men and women with the same characteristics, and a

composition effect, arising due to differences in characteristics between men and women (Oaxaca,

1973, and Blinder, 1973). In either example, the key policy or decomposition effects are differ-

ences between observed and counterfactual distributions. Using econometric terminology, we can

often think of a counterfactual distribution as the result of either a change in the distribution of

a set of covariates X that determine the outcome variable of interest Y , or as a change in the

relationship of the covariates with the outcome, i.e. a change in the conditional distribution of

Y given X. Counterfactual analysis consists of evaluating the effects of such changes.

The main objective and contribution of this paper is to provide estimation and inference

procedures for the entire marginal counterfactual distribution of Y and its functionals based on

regression methods. Starting from regression estimators of the conditional distribution of the

outcome given covariates and nonparametric estimators of the covariate distribution, we obtain

uniformly consistent and asymptotically Gaussian estimators for functionals of the status quo

and counterfactual marginal distributions of the outcome. Examples of these functionals include

distribution functions, quantile functions, quantile effects, distribution effects, Lorenz curves, and

Gini coeffi cients. We then construct confidence sets that take into account the sampling variation

coming from the estimation of the conditional and covariate distributions. These confidence sets

are uniform in the sense that they cover the entire functional with pre-specified probability

and can be used to test functional hypotheses such as no-effect, positive effect, or stochastic

dominance.

Our analysis specifically targets and covers the regression methods for estimating condi-

tional distributions most commonly used in empirical work, including classical, quantile, du-

ration/transformation, and distribution regressions. We consider simple counterfactual scenarios

consisting of marginal changes in the values of a given covariate, as well as more elaborate

counterfactual scenarios consisting of general changes in the covariate distribution or in the con-

ditional distribution of the outcome given covariates. For example, the changes in the covariate

and conditional distributions can correspond to known transformations of these distributions in

a population or to the distributions in different populations. This array of alternatives allows us

to answer a wide variety of counterfactual questions such as the ones mentioned above.

This paper contains two sets of new theoretical results on counterfactual analysis. First, we

establish the validity of the estimation and inference procedures under two high-level conditions.
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The first condition requires the first stage estimators of the conditional and covariate distribu-

tions to satisfy a functional central limit theorem. The second condition requires validity of the

bootstrap for estimating the limit laws of the first stage estimators. Under the first condition,

we derive functional central limit theorems for the estimators of the counterfactual function-

als of interest, taking into account the sampling variation coming from the first stage. Under

both conditions, we show that the bootstrap is valid for estimating the limit laws of the estima-

tors of the counterfactual functionals. The key new theoretical result to all these results is the

Hadamard differentiability of the counterfactual operator —that maps the conditional distribu-

tions and covariate distributions into the marginal counterfactual distributions —with respect to

its arguments, which we establish in Lemma D.1. Given this key result, the other theoretical

results above follow from the functional delta method. A convenient and important feature of

these results is that they automatically imply estimation and inference validity of any existing

or potential estimation method that obeys the two high-level conditions set forth above.

The second set of results deals with estimation and inference under primitive conditions in

two leading regression methods. Specifically, we prove that the high-level conditions —functional

central limit theorem and validity of bootstrap —hold for estimators of the conditional distribution

based on quantile and distribution regression. In the process of proving these results we establish

also some auxiliary results, which are of independent interest. In particular, we derive a functional

central limit theorem and prove the validity of exchangeable bootstrap for the (entire) empirical

coeffi cient process of distribution regression and related functionals. We also prove the validity of

the exchangeable bootstrap for the (entire) empirical coeffi cient process of quantile regression and

related functionals. (These are a consequence of a more general result on functional delta method

for Z-processes that we establish in Appendix E.1).1 Note that the exchangeable bootstrap covers

the empirical, weighted, subsampling, and m out of n bootstraps as special cases, which gives

much flexibility to the practitioner.

This paper contributes to the previous literature on counterfactual analysis based on regression

methods. Stock (1989) introduced integrated kernel regression-based estimators to evaluate the

mean effect of policy interventions. Gosling, Machin, and Meghir (2000) and Machado and Mata

(2005) proposed quantile regression-based estimators to evaluate distributional effects, but pro-

vided no econometric theory for these estimators. We also work with quantile regression-based

estimators for evaluating counterfactual effects, though our estimators differ in some details,

and we establish the limit laws as well as inference theory for our estimators. We also consider

distribution regression-based estimators for evaluating counterfactual effects, and derive the cor-

responding limit laws as well as inference theory for our estimators. Moreover, our main results

1Prior work by Hahn (1995, 1997) showed empirical and weighted bootstrap validity for estimating pointwise

laws of quantile regression coeffi cients; see also Chamberlain and Imbens (2003) and Chen and Pouzo (2009). An

important exception is the independent work by Kline and Santos (2013) that established validity of weighted

bootstrap for the entire coeffi cient process of Chamberlain (1994) minimum distance estimator in models with

discrete covariates.
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are generic and apply to any estimator of the conditional and covariate distributions that satisfy

the conditions mentioned above, including classical regression (Juhn, Murphy and Pierce, 1993),

flexible duration regression (Donald, Green and Paarsch, 2000), and other potential approaches.

Let us comment on the results for distribution regression separately. Distribution regression,

as defined here, consists of the application of a continuum of binary regressions to the data.

We introduce distribution regression as a comprehensive tool for modeling and estimating the

entire conditional distribution. This partly builds on, but significantly differs from Foresi and

Peracchi (1995), that proposed to use several binary regressions as a partial description of the

conditional distribution.2 We show that distribution regression encompasses the Cox (1972)

transformation/duration model as a special case, and represents a useful alternative to Koenker

and Bassett’s (1978) quantile regression.

An alternative approach to counterfactual analysis, which is not covered by our theoretical

results, consists in reweighing the observations using the propensity score, in the spirit of Horvitz

and Thompson (1952). For instance, DiNardo, Fortin, and Lemieux (1996) apply this idea to

estimate counterfactual densities, Firpo (2007) to quantile treatment effects, and Donald and

Hsu (2013) to the distribution and quantile functions of potential outcomes. Under correct

specification, the regression and the weighting approaches are equally valid. In particular, if

we use saturated specifications for the propensity score and conditional distribution, then both

approaches lead to numerically identical results. An advantage of the regression approach is that

the intermediate step– the estimation of the conditional model– is often of independent economic

interest. For example, Buchinsky (1994) applies quantile regression to analyze the determinants

of conditional wage distributions. This model nests the classical Mincer wage regression and is

useful for decomposing changes in the wage distribution into factors associated with between-

group and within-group inequality.

We illustrate our estimation and inference procedures with a decomposition analysis of the

evolution of the U.S. wage distribution, motivated by the in influential article by DiNardo, Fortin,

and Lemieux (1996). We complement their analysis by employing a wide range of regression

methods (instead of reweighing methods), providing standard errors for the estimates of the main

effects, and extending the analysis to the entire distribution using simultaneous confidence bands.

The use of standard errors allows us to disentangle the economic significance of various effects

from the statistical uncertainty, which was previously ignored in most decomposition analyses

in economics. We also compare quantile and distribution regression as competing models for

the conditional distribution of wages and discuss the different choices that must be made to

2Foresi and Peracchi (1995) considered a fixed number of binary regressions. In sharp contrast, we consider a

continuum of binary regressions, and show that the continuum provides a coherent and flexible model for the entire

conditional distribution. Moreover, we derive the limit theory for the continuum of binary regressions, establishing

functional central limit theorems and bootstrap functional central limit theorems for the distribution regression

coeffi cient process and other related functionals, including the estimators of the entire conditional distribution and

quantile functions.
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implement our estimators. Our empirical results highlight the important role of the decline in

the real minimum wage and the minor role of de-unionization in explaining the increase in wage

inequality during the 80s.

We organize the rest of the paper as follows. Section 2 presents our setting, the counterfactual

distributions and effects of interest, and gives conditions under which these effects have a causal

interpretation. In Section 3 we describe regression models for the conditional distribution, in-

troduce the distribution regression method and contrast it with the quantile regression method,

define our proposed estimation and inference procedures, and outline the main estimation and

inference results. Section 4 contains the main theoretical results under simple high-level con-

ditions, which cover a broad array of estimation methods. In Section 5 we verify the previous

high-level conditions for the main estimators of the conditional distribution function– quantile

and distribution regression– under suitable primitive conditions. In Section 6 we present the

empirical application, and in Section 7 we conclude with a summary of the main results and

pointing out some possible directions of future research. In the Appendix, we include all the

proofs and additional technical results. We give a consistency result for bootstrap confidence

bands, a numerical example comparing quantile and distribution regression, and additional em-

pirical results in the online supplemental material (Chernozhukov, Fernandez-Val, and Melly,

2013).

2. The Setting for Counterfactual Analysis

2.1. Counterfactual distributions. In order to motivate the analysis, let us first set up a
simple running example. Suppose we would like to analyze the wage differences between men and

women. Let 0 denote the population of men and 1 the population of women. Yj denotes wages

and Xj denotes job market-relevant characteristics affecting wages for populations j = 0 and

j = 1. The conditional distribution functions FY0|X0(y|x) and FY1|X1(y|x) describe the stochastic

assignment of wages to workers with characteristics x, for men and women, respectively. Let

FY 〈0|0〉 and FY 〈1|1〉 represent the observed distribution function of wages for men and women,

and FY 〈0|1〉 represent the counterfactual distribution function of wages that would have prevailed

for women had they faced the men’s wage schedule FY0|X0 :

FY 〈0|1〉(y) :=

∫
X1
FY0|X0(y|x)dFX1(x).

The latter distribution is called counterfactual, since it does not arise as a distribution from any

observable population. Rather, this distribution is constructed by integrating the conditional

distribution of wages for men with respect to the distribution of characteristics for women. This

quantity is well defined if X0, the support of men’s characteristics, includes X1, the support of

women’s characteristics, namely X1 ⊆ X0.
4



The difference in the observed wage distributions between men and women can be decomposed

in the spirit of Oaxaca (1973) and Blinder (1973) as follows:

FY 〈1|1〉 − FY 〈0|0〉 = [FY 〈1|1〉 − FY 〈0|1〉] + [FY 〈0|1〉 − FY 〈0|0〉],

where the first term in brackets is due to differences in the wage structure and the second term

is a composition effect due to differences in characteristics. We can decompose similarly any

functional of the observed wage distributions such as the quantile function or Lorenz curve into

wage structure and composition effects. These counterfactual effects are well defined econometric

parameters and are widely used in empirical analysis, e.g. the first term of the decomposition is a

measure of gender discrimination. It is important to note that these effects do not necessarily have

a causal interpretation without additional conditions. Section 2.3 provides suffi cient conditions for

such an interpretation to be valid. Thus, our theory covers both the descriptive decomposition

analysis and the causal policy analysis, because the econometric objects — the counterfactual

distributions and their functionals —are the same in either case.

In what follows we formalize these definitions and treat the more general case with several

populations. We suppose that the populations are labeled by k ∈ K, and that for each population
k there is a random dx-vector Xk of covariates and a random outcome variable Yk. The covariate

vector is observable in all populations, but the outcome is only observable in populations j ∈ J ⊆
K. Given observability, we can identify the covariate distribution FXk in each population k ∈ K,
and the conditional distribution FYj |Xj in each population j ∈ J , as well as the corresponding
conditional quantile function QYj |Xj .

3 Thus, we can associate each FXk with label k and each

FYj |Xj with label j. We denote the support of Xk by Xk ⊆ Rdx and the region of interest for Yj
by Yj ⊆ R.4 We assume for simplicity that the number of populations, |K|, is finite. Further, we
define YjXj = {(y, x) : y ∈ Yj , x ∈ Xj}, YXJ = {(y, x, j) : (y, x) ∈ YjXj , j ∈ J }, and generate
other index sets by taking Cartesian products, e.g., JK = {(j, k) : j ∈ J , k ∈ K}.

Our main interest lies in the counterfactual distribution and quantile functions created by com-

bining the conditional distribution in population j with the covariate distribution in population

k, namely:

FY 〈j|k〉(y) :=

∫
Xk
FYj |Xj (y|x)dFXk(x), y ∈ Yj , (2.1)

QY 〈j|k〉(τ) := F←Y 〈j|k〉(τ), τ ∈ (0, 1), (2.2)

3The inference theory of Section 4 does not rely on observability of Xk and (Xj , Yj), but it only requires that

FXk and FYj |Xj
are identified and estimable at parametric rates. In principle, FXk and FYj |Xj

can correspond

to distributions of latent random variables. For example, FYj |Xj
might be the conditional distribution of an

outcome that we observe censored due to top coding, or it might be a structural conditional function identified

by IV methods in a model with endogeneity. We focus on the case of observable random variables, because it is

convenient for the exposition and covers our leading examples in Section 5. We briefly discuss extensions to models

with endogeneity in the conclusion.
4We shall typically exclude tail regions of Yj in estimation, as in Koenker (2005, p. 148).
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where F←Y 〈j|k〉 is the left-inverse function of FY 〈j|k〉 defined in Appendix A. In the definition (2.1)

we assume the support condition:

Xk ⊆ Xj , for all (j, k) ∈ JK, (2.3)

which ensures that the integral is well defined. This condition is analogous to the overlap con-

dition in treatment effect models with unconfoundedness (Rosenbaum and Rubin, 1983). In the

gender wage gap example, it means that every female worker can be matched with a male worker

with the same characteristics. If this condition is not met initially, we need to explicitly trim the

supports and define the parameters relative to the common support.5

The counterfactual distribution FY 〈j|k〉 is the distribution function of the counterfactual out-

come Y 〈j|k〉 created by first sampling the covariate Xk from the distribution FXk and then

sampling Y 〈j|k〉 from the conditional distribution FYj |Xj (·|Xk). This mechanism has a strong

representation in the form6

Y 〈j|k〉 = QYj |Xj (U |Xk), where U ∼ U(0, 1) independently of Xk ∼ FXk . (2.4)

This representation is useful for connecting counterfactual analysis with various forms of regres-

sion methods that provide models for conditional quantiles. In particular, conditional quantile

models imply conditional distribution models through the relation:

FYj |Xj (y|x) ≡
∫

(0,1)
1{QYj |Xj (u|x) ≤ y}du. (2.5)

In what follows, we define a counterfactual effect as the result of a shift from one counterfactual

distribution FY 〈l|m〉 to another FY 〈j|k〉, for some j, l ∈ J and k,m ∈ K. Thus, we are interested
in estimating and performing inference on the distribution and quantile effects

∆DE(y) = FY 〈j|k〉(y)− FY 〈l|m〉(y) and ∆QE(τ) = QY 〈j|k〉(τ)−QY 〈l|m〉(τ),

as well as other functionals of the counterfactual distributions. For example, Lorenz curves,

commonly used to measure inequality, are ratios of partial means to overall means

L(y, FY 〈j|k〉) =

∫
Yj

1(ỹ ≤ y)ỹdFY 〈j|k〉(ỹ)/

∫
Yj
ỹdFY 〈j|k〉(ỹ),

defined for non-negative outcomes only, i.e. Yj ⊆ [0,∞). In general, the counterfactual effects

take the form

∆(w) := φ
(
FY 〈j|k〉 : (j, k) ∈ JK

)
(w). (2.6)

This includes, as special cases, the previous distribution and quantile effects; Lorenz effects,

with ∆(y) = L(y, FY 〈j|k〉)−L(y, FY 〈l|m〉); Gini coeffi cients, with ∆ = 1− 2
∫
Yj L(FY 〈j|k〉, y)dy =:

GY 〈j|k〉; and Gini effects, with ∆ = GY 〈j|k〉 −GY 〈l|m〉.

5Specifically, given initial supports X oj and X ok such that X ok 6⊆ X oj , we can set Xk = Xj = (X ok ∩ X oj ). Then

the covariate distributions are redefined over this support. See, e.g., Heckman, Ichimura, Smith, and Todd (1998),

and Crump, Hotz, Imbens, and Mitnik (2009) for relevant discussions.
6This representation for counterfactuals was suggested by Roger Koenker in the context of quantile regression,

as noted in Machado and Mata (2005).
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2.2. Types of counterfactuals effects. Focusing on quantile effects as the leading functional
of interest, we can isolate the following special cases of counterfactual effects (CE):

1) CE of changing the conditional distribution: QY 〈j|k〉(τ)−QY 〈l|k〉(τ).

2) CE of changing the covariate distribution: QY 〈j|k〉(τ)−QY 〈j|m〉(τ).

3) CE of changing the conditional and covariate distributions: QY 〈j|k〉(τ)−QY 〈l|m〉(τ).

In the gender wage gap example mentioned at the beginning of the section, the wage structure

effect is a type 1 CE (with j = 1, k = 1, and l = 0), while the composition effect is an example of

a type 2 CE (with j = 0, k = 1, and m = 0). In the wage decomposition application in Section

6 the populations correspond to time periods, the minimum wage is treated as a feature of the

conditional distribution, and the covariates include union status and other worker characteristics.

We consider type 1 CE by sequentially changing the minimum wage and the wage structure. We

also consider type 2 CE by sequentially changing the components of the covariate distribution.

The CE of simultaneously changing the conditional and covariate distributions are also covered

by our theoretical results but are less common in applications.

While in the previous examples the populations correspond to different demographic groups or

time periods, we can also create populations artificially by transforming status quo populations.

This is especially useful when considering type 2 CE. Formally, we can think of Xk as being

created through a known transformation of X0 in population 0:

Xk = gk(X0), where gk : X0 → Xk. (2.7)

This case covers, for example, adding one unit to the first covariate, X1k = X10 + 1, holding

the rest of the covariates constant. The resulting effect becomes the unconditional quantile

regression, which measures the effect of a unit change in a given covariate component on the

unconditional quantiles of Y .7 For example, this type of counterfactual is useful for estimating

the effect of smoking on the marginal distribution of infant birth weights. Another example is a

mean preserving redistribution of the first covariate implemented as X1k = (1−α)E[X10]+αX10.

These and more general types of transformation defined in (2.7) are useful for estimating the effect

of a change in taxation on the marginal distribution of food expenditure, or the effect of cleaning

up a local hazardous waste site on the marginal distribution of housing prices (Stock, 1991).

Even though the previous examples correspond to conceptually different thought experiments,

our econometric analysis covers all of them.

2.3. When counterfactual effects have a causal interpretation. Under an assumption
called conditional exogeneity, selection on observables or unconfoundedness (e.g., Rosenbaum

and Rubin, 1983, Heckman and Robb, 1984, and Imbens, 2004), CE can be interpreted as causal

7The resulting notion of unconditional quantile regression is related but strictly different from the notion

introduced by Firpo, Fortin and Lemieux (2009). The latter notion measures a first order approximation to such

an effect, whereas the notion described here measures the exact size of such an effect on the unconditional quantiles.

When the change is small, the two notions coincide approximately, but generally they can differ substantially.
7



effects. In order to explain this assumption and define causal effects, it is convenient to rely upon

the potential outcome notation. Let (Y ∗j : j ∈ J ) denote a vector of potential outcome variables

for various values of a policy, j ∈ J , and let X be a vector of control variables or, simply,

covariates.8 Let J denote the random variable describing the realized policy, and Y := Y ∗J the

realized outcome variable. When the policy J is not randomly assigned, it is well known that the

distribution of the observed outcome Y conditional on J = j, i.e. the distribution of Y | J = j,

may differ from the distribution of Y ∗j . However, if J is randomly assigned conditional on the

control variables X– i.e. if the conditional exogeneity assumption holds– then the distributions

of Y | X, J = j and Y ∗j | X agree. In this case the observable conditional distributions have a

causal interpretation, and so do the counterfactual distributions generated from these conditionals

by integrating out X.

To explain this point formally, let FY ∗j |J(y | k) denote the distribution of the potential outcome

Y ∗j in the population with J = k ∈ J . The causal effect of exogenously changing the policy from
l to j on the distribution of the potential outcome in the population with realized policy J = k,

is

FY ∗j |J(y | k)− FY ∗l |J(y | k).

In the notation of the previous sections, the policy J corresponds to an indicator for the popu-

lation labels j ∈ J , and the observed outcome and covariates are generated as Yj = Y | J = j,

and Xk = X | J = k.9 The lemma given below shows that under conditional exogeneity, for any

j, k ∈ J the counterfactual distribution FY 〈j|k〉 (y) exactly corresponds to FY ∗j |J(y | k), and hence

the causal effect of exogenously changing the policy from l to j in the population with J = k

corresponds to the CE of changing the conditional distribution from l to j, i.e.,

FY ∗j |J(y | k)− FY ∗l |J(y | k) = FY 〈j|k〉 (y)− FY 〈l|k〉 (y) .

Lemma 2.1 (Causal interpretation for counterfactual distributions). Suppose that

(Y ∗j : j ∈ J ) ⊥⊥ J | X, a.s., (2.8)

where ⊥⊥ denotes independence. Under (2.3) and (2.8),

FY 〈j|k〉(·) = FY ∗j |J(· | k), j, k ∈ J .

The CE of changing the covariate distribution, FY 〈j|k〉(y)−FY 〈j|m〉(y), also has a causal inter-

pretation as the policy effect of changing exogenously the covariate distribution from FXm to FXk

8We use the term policy in a very broad sense, which could include any program or treatment. The definition of

potential outcomes relies implicitly on a notion of manipulability of the policy via some thought experiment. Here

there are different views about whether such thought experiment should be implementable or could be a purely

mental act, see e.g., Rubin (1978) and Holland (1986) for the former view, and Heckman (1998, 2008) and Bollen

and Pearl (2012) for the latter view. Following the treatment effects literature, we exclude general equilibrium

effects in the definition of potential outcomes.
9The notation Yj = Y | J = j designates that Yj = Y if J = j, and Xk = X | J = k designates that Xk = X if

J = k.
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under the assumption that the policy does not affect the conditional distribution. Such a policy

effect arises, for example, in Stock (1991)’s analysis of the impact of cleaning up a hazardous site

on housing prices. Here, the distance to the nearest hazardous site is one of the characteristics,

X, that affect the price of a house, Y , and the cleanup changes the distribution of X, say, from

FXm to FXk . The assumption for causality is that the cleanup does not alter the hedonic pricing

function FYm|Xm(y|x), which describes the stochastic assignment of prices y to houses with char-

acteristics x. We do not discuss explicitly the potential outcome notation and the formal causal

interpretation for this case.

3. Modeling Choices and Inference Methods for Counterfactual Analysis

In this section we discuss modeling choices, introduce our proposed estimation and inference

methods, and outline our results, without submersing into mathematical details. Counterfactual

distributions in our framework have the form (2.1), so we need to model and estimate the condi-

tional distributions FYj |Xj and covariate distributions FXk . As leading approaches for modeling

and estimating FYj |Xj we shall use semi-parametric quantile and distribution regression meth-

ods. As the leading approach to estimating FXk we shall consider an unrestricted nonparametric

method. Note that our proposal of using distribution regressions is new for counterfactual analy-

sis, while our proposal of using quantile regressions builds on earlier work by Machado and Mata

(2005), though differs in algorithmic details.

3.1. Regression models for conditional distributions. The counterfactual distributions of
interest depend on either the underlying conditional distribution, FYj |Xj , or the conditional quan-

tile function, QYj |Xj , through the relation (2.5). Thus, we can proceed by modeling and estimating

either of these conditional functions. There are several principal approaches to carry out these

tasks, and our theory covers these approaches as leading special cases. In this section we drop

the dependence on the population index j to simplify the notation.

1. Conditional quantile models. Classical regression is one of the principal approaches
to modeling and estimating conditional quantiles. The classical location-shift model takes the

linear-in-parameters form: Y = P (X)′β + V, V = QV (U), where U ∼ U(0, 1) is independent

of X, P (X) is a vector of transformations of X such as polynomials or B-splines, and P (X)′β

is a location function such as the conditional mean. The additive disturbance V has unknown

distribution and quantile functions FV and QV . The conditional quantile function of Y given X

is QY |X(u|x) = P (X)′β +QV (u), and the corresponding conditional distribution is FY |X(y|x) =

FV (y − P (X)′β). This model, used in Juhn, Murphy and Pierce (1993), is parsimonious but

restrictive, since no matter how flexible P (X) is, the covariates impact the outcome only through

the location. In applications this model as well as its location-scale generalizations are often

rejected, so we cannot recommend its use without appropriate specification checks.

A major generalization and alternative to classical regression is quantile regression, which is

a rather complete method for modeling and estimating conditional quantile functions (Koenker
9



and Bassett, 1978, Koenker, 2005).10 In this approach, we have the general non-separable rep-

resentation: Y = QY |X(U |X) = P (X)′β(U), where U ∼ U(0, 1) is independent of X(Koenker,

2005, p. 59). We can back out the conditional distribution from the conditional quantile function

through the integral transform:

FY |X(y|x) =

∫
(0,1)

1{P (x)′β(u) ≤ y}du, y ∈ Y.

The main advantage of quantile regression is that it permits covariates to impact the outcome

by changing not only the location or scale of the distribution but also its entire shape. Moreover,

quantile regression is flexible in that by considering P (X) that is rich enough, one could approx-

imate the true conditional quantile function arbitrarily well, when Y has a smooth conditional

density (Koenker, 2005, p. 53).

2. Conditional distribution models. A common approach to model conditional distri-

butions is through the Cox (1972) transformation (duration regression) model: FY |X(y|x) =

1− exp(− exp(t(y)− P (x)′β)), where t(·) is an unknown monotonic transformation. This condi-
tional distribution corresponds to the following location-shift representation: t(Y ) = P (X)′β+V,

where V has an extreme value distribution and is independent of X. In this model, covariates

impact an unknown monotone transformation of the outcome only through the location. The role

of covariates is therefore limited in an important way. Note, however, that since t(·) is unknown
this model is not a special case of quantile regression.

Instead of restricting attention to the transformation model for the conditional distribution,

we advocate modelling FY |X(y|x) separately at each threshold y ∈ Y, building upon related, but
different, contributions by Foresi and Peracchi (1995) and Han and Hausman (1990). Namely,

we propose considering the distribution regression model

FY |X(y|x) = Λ(P (x)′β(y)), for all y ∈ Y, (3.1)

where Λ is a known link function and β(·) is an unknown function-valued parameter. This

specification includes the Cox (1972) model as a strict special case, but allows for a much more

flexible effect of the covariates. Indeed, to see the inclusion, we set the link function to be the

complementary log-log link, Λ(v) = 1 − exp(− exp(v)), take P (x) to include a constant as the

first component, and let P (x)′β(y) = t(y) − P (x)′β, so that only the first component of β(y)

varies with the threshold y. To see the greater flexibility of (3.1), we note that (3.1) allows all

components of β(y) to vary with y.

The fact that distribution regression with a complementary log-log link nests the Cox model

leads us to consider this specification as an important reference point. Other useful link functions

include the logit, probit, linear, log-log, and Gosset functions (see Koenker and Yoon, 2009, for

10Quantile regression is one of most important methods of regression analysis in economics. For applications,

including to counterfactual analysis, see, e.g., Buchinsky (1994), Chamberlain (1994), Abadie (1997), Gosling,

Machin, and Meghir (2000), Machado and Mata (2005), Angrist, Chernozhukov, and Fernández-Val (2006), and

Autor, Katz, and Kearney (2006b).
10



the latter). We also note that the distribution regression model is flexible in the sense that, for

any given link function Λ, we can approximate the conditional distribution function FY |X(y|x)

arbitrarily well by using a rich enough P (X).11 Thus, the choice of the link function is not

important for suffi ciently rich P (X).

Comparison of distribution regression vs. quantile regression. It is important to
compare and contrast the quantile regression and distribution regression models. Just like quan-

tile regression generalizes location regression by allowing all the slope coeffi cients β(u) to depend

on the quantile index u, distribution regression generalizes transformation (duration) regression

by allowing all the slope coeffi cients β(y) to depend on the threshold index y. Both mod-

els therefore generalize important classical models and are semiparametric because they have

infinite-dimensional parameters β(·). When the specification of P (X) is saturated, the quan-

tile regression and distribution regression models coincide.12 When the specification of P (X) is

not saturated, distribution and quantile regression models may differ substantially and are not

nested. Accordingly, the model choice cannot be made on the basis of generality.

Both models are flexible in the sense that by allowing for a suffi ciently rich P (X), we can

approximate the conditional distribution arbitrarily well. However, linear-in-parameters quantile

regression is only flexible if Y has a smooth conditional density, and may provide a poor approx-

imation to the conditional distribution otherwise, e.g. when Y is discrete or has mass points,

as it happens in our empirical application. In sharp contrast, distribution regression does not

require smoothness of the conditional density, since the approximation is done pointwise in the

threshold y, and thus handles continuous, discrete, or mixed Y without any special adjustment.

Another practical consideration is determined by the functional of interest. For example, we

show in Remark 3.1 that the algorithm to compute estimates of the counterfactual distribution

involves simpler steps for distribution regression than for quantile regression, whereas this com-

putational advantage does not carry over the counterfactual quantile function. Thus, in practice,

we recommend researchers to choose one method over the other on the basis of empirical perfor-

mance, specification testing, ability to handle complicated data situations, or the functional of

interest. In section 6 we explain how these factors influence our decision in a wage decomposition

application.

3.2. Estimation of counterfactual distributions and their functionals. The estimator of
each counterfactual distribution is obtained by the plug-in-rule, namely integrating an estimator

of the conditional distribution F̂Yj |Xj with respect to an estimator of the covariate distribution

F̂Xk ,

F̂Y 〈j|k〉(y) =

∫
Xk
F̂Yj |Xj (y|x)dF̂Xk(x), y ∈ Yj , (j, k) ∈ JK. (3.2)

11Indeed, let P (X) denote the first p components of a basis in L2(X , P ). Suppose that Λ−1(FY |X(y|X)) ∈
L2(X , P ) and λ(t) = ∂Λ(t)/∂t is bounded above by λ̄. Then, there exists β(y) depending on p, such that

δp = E
[
Λ−1(FY |X(y|X))− P (X)′β(y)

]2 → 0 as p grows, so that E
[
FY |X(y|X)− Λ (P (X)′β (y))

]2 ≤ λ̄δp → 0.
12For example, when P (X) contains indicators of all points of support of X, if the support of X is finite.
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For counterfactual quantiles and other functionals, we also obtain the estimators via the plug-in

rule:

Q̂Y 〈j|k〉(τ) = F̂ r←Y 〈j|k〉(τ) and ∆̂(w) = φ(F̂Y 〈j|k〉 : (j, k) ∈ JK)(w), (3.3)

where F̂ rY 〈j|k〉 denotes the rearrangement of F̂Y 〈j|k〉 if F̂Y 〈j|k〉 is not monotone (see Chernozhukov,

Fernandez-Val, and Galichon, 2010).13

Assume that we have samples {(Yki, Xki) : i = 1, ..., nk} composed of i.i.d. copies of (Yk, Xk)

for all populations k ∈ K, where Yji is observable only for j ∈ J ⊆ K. We estimate the covariate
distribution FXk using the empirical distribution function

F̂Xk(x) = n−1
k

nk∑
i=1

1{Xki ≤ x}, k ∈ K. (3.4)

To estimate the conditional distribution FYj |Xj , we develop methods based on the regression

models described in Section 3.1. The estimator based on distribution regression (DR) takes the

form:

F̂Yj |Xj (y|x) = Λ(P (x)′β̂j(y)), (y, x) ∈ YjXj , j ∈ J , (3.5)

β̂j(y) = arg max
b∈Rdp

nj∑
i=1

[
1{Yji ≤ y} ln[Λ(P (Xji)

′b)] + 1{Yji > y} ln[1− Λ(P (Xji)
′b)]
]
,(3.6)

where dp = dimP (Xj). The estimator based on quantile regression (QR) takes the form:

F̂Yj |Xj (y|x) = ε+

∫ 1−ε

ε
1{P (x)′β̂j(u) ≤ y}du, (y, x) ∈ YjXj , j ∈ J , (3.7)

β̂j(u) = arg min
b∈Rdp

nj∑
i=1

[u− 1{Yji ≤ P (Xji)
′b}][Yji − P (Xji)

′b], (3.8)

for some small constant ε > 0. The trimming by ε avoids estimation of tail quantiles (Koenker,

2005, p. 148), and is valid under the conditions set forth in Theorem 4.1.14

We provide additional examples of estimators of the conditional distribution function in the

working paper version (Chernozhukov, Fernandez-Val and Melly, 2009). Also our conditions in

Section 4 allow for various additional estimators of the covariate distribution.

To sum-up, our estimates are computed using the following algorithm:

Algorithm 1 (Estimation of counterfactual distributions and their functionals). (i) Obtain es-
timates F̂Xk of the covariate distributions FXk using (3.4). (ii) Obtain estimates F̂Yj |Xj of the

13If a functional φ0 requires proper distribution functions as inputs, we assume that the rearrangement is applied

before applying φ0. Hence formally, to keep notation simple, we interpret the final functional φ as the composition

of the original functional φ0 with the rearrangement.
14In our empirical example, we use ε = .01. Tail trimming seems unavoidable in practice, unless we impose

stringent tail restrictions on the conditional density or use explicit extrapolation to the tails as in Chernozhukov

and Du (2008).
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conditional distribution using (3.5)—(3.6) for DR or (3.7)—(3.8) for QR. (iii) Obtain estimates

of the counterfactual distributions, quantiles and other functionals via (3.2) and (3.3). �

Remark 3.1. In practice, the quantile regression coeffi cients can be estimated on a fine mesh
ε = u1 < ... < uS = 1−ε, with meshwidth δ such that δ√nj → 0. In this case the final counterfac-

tual distribution estimator is computed as: F̂Y 〈j|k〉(y) = ε + n−1
k δ

∑nk
i=1

∑S
s=1 1{P (Xki)

′β̂(us) ≤
y}. For distribution regression, the counterfactual distribution estimator takes the computation-
ally convenient form F̂Y 〈j|k〉(y) = n−1

k

∑nk
i=1 Λ(P (Xki)

′β̂j(y)) that does not involve inversion nor

trimming �

3.3. Inference. The estimators of the counterfactual effects follow functional central limit theo-
rems under conditions that we will make precise in the next section. For example, the estimators

of the counterfactual distributions satisfy
√
n(F̂Y 〈j|k〉 − FY 〈j|k〉) Z̄jk, jointly in (j, k) ∈ JK,

where n is a sample size index (say, n denotes the sample size of population 0) and Z̄jk are

zero-mean Gaussian processes. We characterize the limit processes for our leading examples

in Section 5, so that we can perform inference using standard analytical methods. However,

for ease of inference, we recommend and prove the validity of a general resampling procedure

called the exchangeable bootstrap (e.g., Praestgaard and Wellner, 1993, and van der Vaart and

Wellner, 1996). This procedure incorporates many popular forms of resampling as special cases,

namely the empirical bootstrap, weighted bootstrap, m out of n bootstrap, and subsampling. It

is quite useful for applications to have all of these schemes covered by our theory. For example,

in small samples with categorical covariates, we might want to use the weighted bootstrap to

gain accuracy and robustness to “small cells", whereas in large samples, where computational

tractability can be an important consideration, we might prefer subsampling.

In the rest of this section we briefly describe the exchangeable bootstrap method and its

implementation details, leaving a more technical discussion of the method to Sections 4 and 5.

Let (wk1, ..., wknk), k ∈ K, be vectors of nonnegative random variables that are independent

of data, and satisfy Condition EB in Section 5. For example, (wk1, ..., wknk) are multinomial

vectors with dimension nk and probabilities (1/nk, . . . , 1/nk) in the empirical bootstrap. The

exchangeable bootstrap uses the components of (wk1, ..., wknk) as random sampling weights in

the construction of the bootstrap version of the estimators. Thus, the bootstrap version of the

estimator of the counterfactual distribution is

F̂ ∗Y 〈j|k〉(y) =

∫
Xk
F̂ ∗Yj |Xj (y|x)dF̂ ∗Xk(x), y ∈ Yj , (j, k) ∈ JK. (3.9)

The component F̂ ∗Xk is a bootstrap version of covariate distribution estimator. For example, if

using the estimator of FXk in (3.4), set

F̂ ∗Xk(x) = (n∗k)
−1

nk∑
i=1

wki1{Xki ≤ x}, x ∈ Xk, k ∈ K, (3.10)
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for n∗k =
∑nk

i=1wki. The component F̂
∗
Yj |Xj is a bootstrap version of the conditional distribution

estimator. For example, if using DR, set F̂ ∗Yj |Xj (y|x) = Λ(P (x)′β̂
∗
j (y)), (y, x) ∈ YjXj , j ∈ J , for

β̂
∗
j (y) = arg max

b∈Rdp

nj∑
i=1

wji

[
1{Yji ≤ y} ln[Λ(P (Xji)

′b)] + 1{Yji > y} ln[1− Λ(P (Xji)
′b)]
]
.

If using QR, set F̂ ∗Yj |Xj (y|x) = ε+
∫ 1−ε
ε 1{P (x)′β̂

∗
j (u) ≤ y}du, (y, x) ∈ YjXj , j ∈ J , for

β̂
∗
j (u) = arg min

b∈Rdp

nj∑
i=1

wji[u− 1(Yji ≤ P (Xji)
′b)][Yji − P (Xji)

′b)].

Bootstrap versions of the estimators of the counterfactual quantiles and other functionals are

obtained by monotonizing F̂ ∗Y 〈j|k〉 using rearrangement if required and setting

Q̂∗Y 〈j|k〉(τ) = F̂ ∗←Y 〈j|k〉(τ) and ∆̂∗(w) = φ
(
F̂ ∗Y 〈j|k〉 : (j, k) ∈ JK

)
(w). (3.11)

The following algorithm describes how to obtain an exchangeable bootstrap draw of a coun-

terfactual estimator.

Algorithm 2 (Exchangeable bootstrap for estimators of counterfactual functionals). (i) Draw a
realization of the vectors of weights (wk1, ..., wknk), k ∈ K, that satisfy Condition EB in Section
5. (ii) Obtain a bootstrap draw F̂ ∗Xk of the covariate distribution estimator F̂Xk using (3.10). (iii)

Obtain a bootstrap draw F̂ ∗Yj |Xj of the conditional distribution estimator F̂Yj |Xj using the same

regression method as for the estimator. (iv) Obtain the bootstrap draws of the estimators of the

counterfactual distribution, quantiles, and other functionals via (3.9) and (3.11). �

The exchangeable bootstrap distributions are useful to perform asymptotically valid inference

on the counterfactual effects of interest. We focus on uniform methods that cover standard

pointwise methods for real-valued parameters as special cases, and that also allow us to consider

richer functional parameters and hypotheses. For example, an asymptotic simultaneous (1− α)-

confidence band for the counterfactual distribution FY 〈j|k〉(y) over the region y ∈ Yj is defined
by the end-point functions

F̂±Y 〈j|k〉(y) = F̂Y 〈j|k〉(y)± t̂1−αΣ̂jk(y)1/2/
√
n, (3.12)

such that

lim
n→∞

P
{
FY 〈j|k〉(y) ∈ [F̂−Y 〈j|k〉(y), F̂+

Y 〈j|k〉(y)] for all y ∈ Yj
}

= 1− α. (3.13)

Here, Σ̂jk(y) is a uniformly consistent estimator of Σjk(y), the asymptotic variance function of
√
n(F̂Y 〈j|k〉(y)− FY 〈j|k〉(y)). In order to achieve the coverage property (3.13), we set the critical

value t̂1−α as a consistent estimator of the (1−α)-quantile of the Kolmogorov-Smirnov maximal

t-statistic:

t = sup
y∈Yj

√
nΣ̂jk(y)−1/2|F̂Y 〈j|k〉(y)− FY 〈j|k〉(y)|.

The following algorithm describes how to obtain uniform bands using exchangeable bootstrap:
14



Algorithm 3 (Uniform inference for counterfactual analysis). (i) Using Algorithm 2, draw

{Ẑ∗jk,b : 1 ≤ b ≤ B} as i.i.d. realizations of Ẑ∗jk(y) =
√
n(F̂ ∗Y 〈j|k〉(y) − F̂Y 〈j|k〉(y)), for y ∈ Yj ,

(j, k) ∈ JK. (ii) Compute a bootstrap estimate of Σjk(y)1/2 such as the bootstrap interquar-

tile range rescaled with the normal distribution: Σ̂jk(y)1/2 = (q.75(y) − q.25(y))/(z.75 − z.25) for

y ∈ Yj, where qp(y) is the p-th quantile of {Ẑ∗jk,b(y) : 1 ≤ b ≤ B} and zp is the p-th quantile of
N(0, 1). (3) Compute realizations of the maximal t-statistic t̂b = supy∈Yj Σ̂jk(y)−1/2|Ẑ∗jk,b(y)| for
1 ≤ b ≤ B. (iii) Form a (1 − α)-confidence band for {FY 〈j|k〉(y) : y ∈ Yj} using (3.12) setting
t̂1−α to the (1− α)-sample quantile of {t̂b : 1 ≤ b ≤ B}. �

We can obtain similar uniform bands for the counterfactual quantile functions and other func-

tionals replacing F̂ ∗Y 〈j|k〉 by Q̂
∗
Y 〈j|k〉 or ∆̂∗ and adjusting the indexing sets accordingly. If the

sample size is large, we can reduce the computational complexity of step (i) of the algorithm

by resampling the first order approximation to the estimators of the conditional distribution, by

using subsampling, or by simulating the limit process Z̄jk using multiplier methods (Barrett and

Donald, 2003).

Our confidence bands can be used to test functional hypotheses about counterfactual effects.

For example, it is straightforward to test no-effect, positive effect or stochastic dominance hy-

potheses by verifying whether the entire null hypothesis falls within the confidence band of the

relevant counterfactual functional, e.g., as in Barrett and Donald (2003) and Linton, Song, and

Whang (2010).15

Remark 3.2 (On Validity of Confidence Bands). Algorithm 3 uses the rescaled bootstrap in-

terquartile range Σ̂jk(y) as a robust estimator of Σjk(y). Other choices of quantile spreads are

also possible. If Σjk(y) is bounded away from zero on the region y ∈ Yj , uniform consistency

of Σ̂jk(y) over y ∈ Yj and consistency of the confidence bands follow from the consistency of

bootstrap for estimating the law of the limit Gaussian process Z̄jk, shown in Sections 4 and 5,

and Lemma 1 in Chernozhukov and Fernandez-Val (2005). Appendix A of the Supplemental Ma-

terial provides a formal proof for the sake of completeness. The bootstrap standard deviation is

a natural alternative estimator for Σjk(y), but its consistency requires the uniform integrability

of {Ẑ∗jk(y)2 : y ∈ Yj} , which in turn requires additional technical conditions that we do not
impose (see Kato, 2011). �

4. Inference Theory for Counterfactual Analysis under General Conditions

This section contains the main theoretical results of the paper. We state the results under

simple high-level conditions, which cover a broad array of estimation methods. We verify the

high-level conditions for the principal approaches —quantile and distribution regressions —in the

15For further references and other approaches, see McFadden (1989), Klecan, McFadden, and McFadden (1991),

Anderson (1996), Davidson and Duclos (2000), Abadie (2002), Chernozhukov and Fernandez-Val (2005), Linton,

Massoumi, and Whang (2005), Chernozhukov and Hansen (2006), or Maier (2011), among others.
15



next section. Throughout this section, n denotes a sample size index and all limits are taken as

n→∞. We refer to Appendix A for additional notation.

4.1. Theory under general conditions. We begin by gathering the key modeling conditions
introduced in Section 2.

Condition S. (a) The condition (2.3) on the support inclusion holds, so that the counter-

factual distributions (2.1) are well defined. (b) The sample size nk for the k-th population is

nondecreasing in the index n and n/nk → sk ∈ [0,∞), for all k ∈ K, as n→∞.

We impose high-level regularity conditions on the following empirical processes:

Ẑj(y, x) :=
√
nj(F̂Yj |Xj (y|x)− FYj |Xj (y|x)) and Ĝk(f) :=

√
nk

∫
fd(F̂Xk − FXk),

indexed by (y, x, j, k, f) ∈ YXJKF , where F̂Yj |Xj is the estimator of the conditional distribution
FYj |Xj , F̂Xk is the estimator of the covariate distribution FXk , and F is a function class specified
below.16 We require that these empirical processes converge to well-behaved Gaussian processes.

In what follows, we consider YjXj as a subset of R
1+dx with topology induced by the standard

metric ρ on R1+dx , where R = R ∪ {+∞,−∞}. We also let λk(f, f̃) = [
∫

(f − f̃)2dFXk ]1/2 be a

metric on F .

Condition D. Let F be a class of measurable functions that includes {FYj |Xj (y|·) : y ∈ Yj , j ∈
J } as well as the indicators of all the rectangles in Rdx, such that F is totally bounded under

λk. (a) In the metric space `∞(YXJKF)2,

(Ẑj(y, x), Ĝk(f)) (Zj(y, x), Gk(f)),

as stochastic processes indexed by (y, x, j, k, f) ∈ YXJKF . The limit process is a zero-mean tight
Gaussian process, where Zj a.s. has uniformly continuous paths with respect to ρ, and Gk a.s. has

uniformly continuous paths with respect to the metric λk on F . (b) The map y 7→ FYj |Xj (y|·)
is uniformly continuous with respect to the metric λk for all (j, k) ∈ JK, namely as δ → 0,

supρ(y,ȳ)≤δ λk(FYj |Xj (y|·), FYj |Xj (ȳ|·))→ 0 uniformly in (j, k) ∈ JK.

Condition D requires that a uniform central limit theorem holds for the estimators of the

conditional and covariate distributions. We verify Condition D for semi-parametric estimators

of the conditional distribution function, such as quantile and distribution regression, under i.i.d.

sampling assumption. For the case of duration/transformation regression, this condition follows

from the results of Andersen and Gill (1982) and Burr and Doss (1993). For the case of classical

(location) regression, this condition follows from the results reported in the working paper version

(Chernozhukov, Fernandez-Val and Melly, 2009). We expect Condition D to hold in many other

applied settings. The requirement Ĝk  Gk on the estimated measures is weak and is satisfied

when F̂Xk is the empirical measure based on a random sample, as in the previous section. Fi-

nally, we note that Condition D does not even impose the i.i.d sampling conditions, only that a

16Throughout the paper we assume that F̂Yj |Xj
takes values in [0, 1]. This can always be imposed in practice

by truncating negative values to 0 and values above 1 to 1.
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functional central limit theorem is satisfied. Thus, Condition D can be expected to hold more

generally, which may be relevant for time series applications.

Remark 4.1. Condition D does not require that the regions Yj and Xk are compact subsets
of R and Rdx , but we shall impose compactness when we provide primitive conditions. The
requirement Ĝk  Gk holds not only for empirical measures but also for various smooth empirical

measures; in fact, in the latter case the indexing class of functions F can be much larger than

Glivenko-Cantelli or Donsker; see Radulovic and Wegkamp (2003) and Gine and Nickl (2008). �

Theorem 4.1 (Uniform limit theory for counterfactual distributions and quantiles). Suppose
that Conditions S and D hold. (1) Then,

√
n
(
F̂Y 〈j|k〉(y)− FY 〈j|k〉(y)

)
 Z̄jk(y) (4.1)

as a stochastic process indexed by (y, j, k) ∈ YJK in the metric space `∞(YJK), where Z̄jk is a

tight zero-mean Gaussian process with a.s. uniformly continuous paths on Yj, defined by

Z̄jk(y) :=
√
sj

∫
Zj(y, x)dFXk(x) +

√
skGk(FYj |Xj (y|·)). (4.2)

(2) If in addition FY 〈j|k〉 admits a positive continuous density fY 〈j|k〉 on an interval [a, b]containing

an ε-enlargement of the set {QY 〈j|k〉(τ) : τ ∈ T } in Yj, where T ⊂ (0, 1), then
√
n
(
Q̂Y 〈j|k〉(τ)−QY 〈j|k〉(τ)

)
 −Z̄jk(QY 〈j|k〉(τ))/fY 〈j|k〉(QY〈j|k〉(τ)) =: Vjk(τ), (4.3)

as a stochastic process indexed by (τ , j, k) ∈ T JK in the metric space `∞(T JK), where Vjk is a

tight zero mean Gaussian process with a.s. uniformly continuous paths on T .

This is the first main and new result of the paper. It shows that if the estimators of the condi-

tional and covariate distributions satisfy a functional central limit theorem, then the estimators

of the counterfactual distributions and quantiles also obey a functional central limit theorem.

This result forms the basis of all inference results on counterfactual estimators.

As an application of the result above, we derive functional central limit theorems for distrib-

ution and quantile effects. Let Y ⊆ Yj ∩ Yl, T ⊂ (0, 1), and

∆DE(y) = FY 〈j|k〉(y)− FY 〈l|m〉(y), ∆̂DE(y) = F̂Y 〈j|k〉(y)− F̂Y 〈l|m〉(y),

∆QE(τ) = QY 〈j|k〉(τ)−QY 〈l|m〉(τ), ∆̂QE(τ) = Q̂Y 〈j|k〉(τ)− Q̂Y 〈l|m〉(τ).

Corollary 4.1 (Limit theory for quantile and distribution effects). Under the conditions of
Theorem 4.1, part 1,

√
n
(

∆̂DE(y)−∆DE(y)
)
 Z̄jk(y)− Z̄lm(y) =: St(y), (4.4)

as a stochastic process indexed by y ∈ Y in the space `∞(Y), where St is a tight zero-mean

Gaussian process with a.s. uniformly continuous paths on Y. Under conditions of Theorem 4.1,

part 2, √
n
(

∆̂QE(τ)−∆QE(τ)
)
 Vjk(τ)− Vlm(τ) =: Wt(τ), (4.5)
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as a stochastic process indexed by τ ∈ T in the space `∞(T ), where Wt is a tight zero-mean

Gaussian process with a.s. uniformly continuous paths on T .

The following corollary is another application of the result above. It shows that plug-in es-

timators of Hadamard-differentiable functionals also satisfy functional central limit theorems.

Examples include Lorenz curves and Lorenz effects, as well as real-valued parameters, such as

Gini coeffi cients and Gini effects. Regularity conditions for Hadamard-differentiability of Lorenz

and Gini functionals are given in Bhattacharya (2007).

Corollary 4.2 (Limit theory for smooth functionals). Consider the parameter θ as an element of
a parameter space Dθ ⊂ D = ×(jk)∈JK`

∞(Yj), with Dθ containing the true value θ0 = (FY 〈j|k〉 :

(j, k) ∈ JK). Consider the plug-in estimator θ̂ = (F̂Y 〈j|k〉 : (j, k) ∈ JK). Suppose φ(θ), a

functional of interest mapping Dθ to `∞(W), is Hadamard differentiable in θ at θ0 tangentially

to ×(jk)∈JKC(Yj) with derivative (φ′jk : (j, k) ∈ JK). Let ∆ = φ(θ0) and ∆̂ = φ(θ̂). Then,

under the conditions of Theorem 4.1, part 1,

√
n
(

∆̂(w)−∆(w)
)
 

∑
(j,k)∈JK

(φ′jkZ̄jk)(w) =: T (w), (4.6)

as a stochastic processes indexed by w ∈ W in `∞(W), where T is a tight zero-mean Gaussian

process with a.s continuous paths on W.

4.2. Validity of resampling and other simulation methods for counterfactual analy-
sis. As we discussed in Section 3.3, Kolmogorov-Smirnov type procedures offer a convenient and
computationally attractive approach for performing inference on function-valued parameters us-

ing functional central limit theorems. A complication in our case is that the limit processes in

(4.2)—(4.6) are non-pivotal, as their covariance functions depend on unknown, though estimable,

nuisance parameters.17 We deal with this non-pivotality by using resampling and simulation

methods. An attractive result shown as part of our theoretical analysis is that the counterfactual

operator is Hadamard differentiable with respect to the underlying conditional and covariate

distributions. As a result, if bootstrap or any other method consistently estimates the limit laws

of the estimators of the conditional and covariate distributions, it also consistently estimates

the limit laws of the estimators of the counterfactual distributions and their smooth function-

als. This convenient result follows from the functional delta method for bootstrap of Hadamard

differentiable functionals.

In order to state the results formally, we follow the notation and definitions in van der Vaart

andWellner (1996). LetDn denote the data vector andMn be the vector of random variables used

to generate bootstrap draws or simulation draws given Dn (this may depend on the particular

resampling or simulation method). Consider the random element Z∗n = Zn(Dn,Mn) in a normed

17Similar non-pivotality issues arise in a variety of goodness-of-fit problems studied by Durbin and others, and

are referred to as the Durbin problem by Koenker and Xiao (2002).
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space D. We say that the bootstrap law of Z∗n consistently estimates the law of some tight random
element Z and write Z∗n  P Z in D if

suph∈BL1(D) |EMnh (Z∗n)− Eh(Z)| →P 0, (4.7)

where BL1(D) denotes the space of functions with Lipschitz norm at most 1 and EMn denotes

the conditional expectation with respect to Mn given the data Dn; →P denotes convergence in

(outer) probability.

Next, consider the processes ϑ̂(t) = (F̂Yj |Xj (y|x),
∫
fdF̂Xk) and ϑ(t) = (FYj |Xj (y|x),

∫
fdFXk),

indexed by t = (y, x, j, k, f) ∈ T = YXJKF , as elements of Eϑ = `∞(T )2. Condition D(a) can

be restated as
√
n(ϑ̂n − ϑ)  Zϑ in Eϑ, where Zϑ denotes the limit process in Condition D(a).

Let ϑ̂
∗
n be the bootstrap draw of ϑ̂n. Consider the functional of interest φ = φ(ϑ) in the normed

space Eφ, which can be either the counterfactual distribution and quantile functions considered
in Theorem 4.1, the distribution or quantile effects considered in Corollary 4.1, or any of the

functionals considered in Corollary 4.2. Denote the plug-in estimator of φ as φ̂ = φ(ϑ̂) and the

corresponding bootstrap draw as φ̂
∗

= φ(ϑ̂
∗
). Let Zφ denote the limit law of

√
n(φ̂ − φ), as

described in Theorem 4.1, Corollary 4.1, and Corollary 4.2.

Theorem 4.2 (Validity of resampling and other simulation methods for counterfactual analysis).
Assume that the conditions of Theorem 4.1 hold. If

√
n(ϑ̂

∗
n−ϑ̂) P Zϑ in Eϑ, then

√
n(φ̂

∗−φ̂) P

Zφ in Eφ. In words, if the exchangeable bootstrap or any other simulation method consistently
estimates the law of the limit stochastic process in Condition D, then this method also consistently

estimates the laws of the limit stochastic processes (4.2)—(4.6) for estimators of counterfactual

distributions, quantiles, distribution effects, quantile effects, and other functionals.

This is the second main and new result of the paper. Theorem 2 shows that any resampling

method is valid for estimating the limit laws of the estimators of the counterfactual effects,

provided this method is valid for estimating the limit laws of the (function-valued) estimators

of the conditional and covariate distributions. We verify the latter condition for our principal

estimators in Section 5, where we establish the validity of exchangeable bootstrap methods for

estimating the laws of function-valued estimators of the conditional distribution based on quantile

regression and distribution regression processes. As noted in Remark 3.2, this result also implies

the validity of the Kolmogorov-Smirnov type confidence bands for counterfactual effects under

non-degeneracy of the variance function of the limit processes for the estimators of these effects;

see Appendix A of the supplemental material for details.

5. Inference Theory for Counterfactual Analysis under Primitive Conditions

We verify that the high-level conditions of the previous section hold for the principal estimators

of the conditional distribution functions, and so the various conclusions on inference methods

also apply to this case. We also present new results on limit distribution theory for distribution

regression processes and exchangeable bootstrap validity for quantile and distribution regression
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processes, which may be of a substantial independent interest. Throughout this section, we re-

label P (X) to X to simplify the notation. This entails no loss of generality when P (X) includes

X as one of the components.

5.1. Preliminaries on sampling. We assume there are samples {(Yki, Xki) : i = 1, ..., nk}
composed of i.i.d. copies of (Yk, Xk) for all populations k ∈ K. The samples are independent
across k ∈ K0 ⊆ K. We assume that Yji is observable only for j ∈ J ⊆ K0. We shall call

the case with K = K0 the independent samples case. The independent samples case arises,

for example, in the wage decomposition application of Section 6. In addition, we may have

transformation samples indexed by k ∈ Kt created via transformation of some “originating"
samples l ∈ K0. For example, in the unconditional quantile regression mentioned in Section 2,

we create a transformation sample by shifting one of the covariates in the original sample up by

a unit.

We need to account for the dependence between the transformation and originating samples in

the limit theory for counterfactual estimators. In order to do so formally, we specify the relation of

each transformation sample, with index k ∈ Kt, to an originating sample, with index l(k) ∈ K0,

as follows: (Yki, Xki) = gl(k),k(Yl(k)i, Xl(k)i), i = 1, ..., nk, where gl(k),k is a known measurable

transformation map, and l : Kt → K0 is the indexing function that gives the index l(k) of

the sample from which the transformation sample k is originated. We also let K = Kt ∪ K0.

The main requirement on the map gl(k),k : Rdx+1 7→ Rdx+1 is that it preserves the Dudley-

Koltchinskii-Pollard’s (DKP) suffi cient condition for universal Donskerness: given a class F of

suitably measurable and bounded functions mapping a measurable subset of Rdx+1 to R that

obeys Pollard’s entropy condition, the class F ◦ gl(k),k continues to contain bounded and suitably

measurable functions, and obeys Pollard’s entropy condition.18 For example, this holds if gl(k),k

is an affi ne or a uniformly Lipschits map. The following condition states formally the sampling

requirements.

Condition SM. The samples Dk = {(Yki, Xki) : 1 ≤ i ≤ nk}, k ∈ K, are generated as
follows: (a) For each population k ∈ K0, Dk contains i.i.d. copies of the random vector (Yk, Xk)

that has probability law Pk, and Dk are independent across k ∈ K0. (b) For each population

k ∈ Kt, the samples Dk are created by transformation, Dk = {gl(k),k(Yl(k)i, Xl(k)i) : 1 ≤ i ≤ nl(k)}
for l(k) ∈ K0, where the maps gl(k),k preserve the DKP condition.

Lemma E.4 in Appendix D shows the following result under Condition SM: As n → ∞ the

empirical processes

Ĝk(f) :=
1
√
nk

nk∑
i=1

(
f(Yki, Xki)−

∫
fdPk

)
(5.1)

18The definitions of suitably measurable and Pollard’s entropy condition are recalled in Appendix A. Together

with boundedness, these are well-known suffi cient conditions for a function class to be universal Donsker (Dudley,

1987, Koltchinskii, 1981, and Pollard, 1982).
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converge weakly,

Ĝk(f) Gk(f), (5.2)

as stochastic processes indexed by (k, f) ∈ KF in `∞(KF). The limit processes Gk are tight
Pk-Brownian bridges, which are independent across k ∈ K0,19 and for k ∈ Kt are defined by:

Gk(f) = Gl(k)(f ◦ gl(k),k), ∀f ∈ F . (5.3)

5.2. Exchangeable bootstrap. The following condition specifies how we should draw the boot-
strap weights to mimic the dependence between the samples in the exchangeable bootstrap version

of the estimators of counterfactual functionals described in Section 3.

Condition EB. For each nk and k ∈ K0, (wk1, ..., wknk) is an exchangeable,20 nonnegative

random vector, which is independent of the data (Dk)k∈K, such that for some ε > 0

sup
nk

E[w2+ε
k1 ] <∞, nk

−1
nk∑
i=1

(wki − w̄k)2 →P 1, w̄k →P 1, (5.4)

where w̄k = nk
−1
∑nk

i=1wki. Moreover, the vectors (wk1, ..., wknk) are independent across k ∈ K0.

For each k ∈ Kt,
wki = wl(k)i, k ∈ Kt. (5.5)

Remark 5.1 (Common bootstrap schemes). As pointed out in van der Vaart and Wellner (1996),
by appropriately selecting the distribution of the weights, exchangeable bootstrap covers the most

common bootstrap schemes as special cases. The empirical bootstrap corresponds to the case

where (wk1, ..., wknk) is a multinomial vector with parameter nk and probabilities (1/nk, ..., 1/nk).

The weighted bootstrap corresponds to the case where wk1, ..., wknk are i.i.d. nonnegative ran-

dom variables with E[wk1] = V ar[wk1] = 1, e.g. standard exponential. The m out of n bootstrap

corresponds to letting (wk1, ..., wknk) be equal to
√
nk/mk times multinomial vectors with para-

meter mk and probabilities (1/nk, ..., 1/nk). The subsampling bootstrap corresponds to letting

(wk1, ..., wknk) be a row in which the number nk(nk − mk)
−1/2m

−1/2
k appears mk times and 0

appears nk −mk times ordered at random, independent of the data. �

5.3. Inference theory for counterfactual estimators based on quantile regression. We
proceed to impose the following conditions on (Yj , Xj) for each j ∈ J .

Condition QR. (a) The conditional quantile function takes the form QYj |Xj (u|x) = x′βj(u)

for all u ∈ U = [ε, 1 − ε] with 0 < ε < 1/2, and x ∈ Xj. (b) The conditional density function
fYj |Xj (y|x) exists, is uniformly continuous in (y, x) in the support of (Yj , Xj), and is uniformly

19A zero-mean Gaussian process Gk is a Pk-Brownian bridge if its covariance function takes the form

E[Gk(f)Gk(l)] =
∫
fldPk −

∫
fdPk

∫
ldPk, for any f and l in L2(FXk ); see van der Vaart (1998).

20A sequence of random variables X1, X2, ..., Xn is exchangeable if for any finite permutation σ of the indices

1, 2, ..., x the joint distribution of the permuted sequence Xσ(1), Xσ(2), ..., Xσ(n) is the same as the joint distribution

of the original sequence.
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bounded. (c) The minimal eigenvalue of Jj(u) = E[fYj |Xj (X
′
jβj(u)|Xj)XjX

′
j ] is bounded away

from zero uniformly over u ∈ U . (d) E‖Xj‖2+ε <∞ for some ε > 0.

In order to state the next result, let us define

`j,y,x(Yj , Xj) = −fYj |Xj (y|x)x′ψj,FYj |Xj (y|x)(Yj , Xj),

ψj,u(Yj , Xj) = −Jj(u)−1{1(Yj ≤ X ′jβj(u))− u}Xj ,

κjk,y(Yj , Xj , Xk) =
√
sj

∫
`j,y,x(Yj , Xj)dFXk(x) +

√
skFYj |Xj (y|Xk).

Theorem 5.1 (Validity of QR based counterfactual analysis). Suppose that for each j ∈ J ,
Conditions S, SM, and QR hold, the region of interest YjXj is a compact subset of R1+dx , and

Uj := {u : x′βj(u) ∈ Yj , for some x ∈ Xj} ⊆ U . Then, (1) Condition D holds for the quantile

regression estimator (3.7) of the conditional distribution and the empirical distribution estimator

(3.4) of the covariate distribution. The limit processes are given by

Zj(y, x) = Gj(`j,y,x), Gk(f) = Gk(f), (j, k) ∈ JK,

where Gk are the Pk-Brownian bridges defined in (5.2) and (5.3). In particular, {FYj |Xj (y|·) :

y ∈ Yj} is a universal Donsker class. (2) Exchangeable bootstrap consistently estimates the

limit law of these processes under Condition EB. (3) Therefore, all conclusions of Theorems 4.1-

4.2 and Corollaries 4.1 - 4.2 apply. In particular, the limit law for the estimated counterfac-

tual distribution is given by Z̄jk(y) := Gj(κjk,y), with covariance function E[Z̄jk(y)Z̄lm(ȳ)] =

E[κjk,yκlm,ȳ]− E[κjk,y]E[κlm,ȳ].

This is the third main and new result of the paper. It derives the joint functional central limit

theorem for the quantile regression estimator of the conditional distribution and the empirical

distribution function estimator of the covariate distribution. It also shows that exchangeable

bootstrap consistently estimates the limit law. Moreover, the result characterizes the limit law

of the estimator of the counterfactual distribution in Theorem 4.1, which in turn determines the

limit laws of the estimators of the counterfactual quantile functions and other functionals, via

Theorem 4.1 and Corollaries 4.1 and 4.2. Note that Uj ⊆ U is the condition that permits the use
of trimming in (3.7), since it says that the conditional distribution of Yj given Xj on the region

of interest YjXj is not determined by the tail conditional quantiles.

While proving Theorem 5.1, we establish the following corollaries that may be of independent

interest.

Corollary 5.1 (Validity of exchangeable bootstrap for QR coeffi cient process). Let {(Yji, Xji) :

1 ≤ i ≤ nj} be a sample of i.i.d. copies of the random vector (Yj , Xj) that has probability law Pj

and obeys Condition QR. (1) As nj →∞, the QR coeffi cient process possesses the following first
order approximation and limit law:

√
nj(β̂j(·)−βj(·)) = Ĝj(ψj,·) +oP(1) Gj(ψj,·) in `∞(U)dx,

where Gj is a Pj- Brownian Bridge. (2) The exchangeable bootstrap law is consistent for the
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limit law, namely, as nj →∞,
√
nj(β̂

∗
j (·)− β̂j(·)) P Gj(ψj,·) in `∞(U)dx .

The result (2) is new and shows that exchangeable bootstrap (which includes empirical boot-

strap, weighted bootstrap, m out of n bootstrap, and subsampling) is valid for estimating the

limit law of the entire QR coeffi cient process. Previously, such a result was available only for

pointwise cases (e.g. Hahn, 1995, 1997, and Feng, He, and Hu, 2011), and the process result was

available only for subsampling (Chernozhukov and Fernandez-Val, 2005, and Chernozhukov and

Hansen, 2006).

Let Q̂Yj |Xj (u|x) := x′β̂j(u) be the QR estimator of the conditional quantile function, and

u 7→ Q̂rYj |Xj (u|x) be the non-decreasing rearrangement of u 7→ Q̂Yj |Xj (u|x) over the region Uj .
Let F̂Yj |Xj (y|x) be the QR estimator of the conditional distribution function defined in (3.7).

Also, we use the star superscript to denote the bootstrap versions of all these estimators, and

define
¯̀
j,u,x(Yj , Xj) := x′ψj,u(Yj , Xj).

Corollary 5.2 (Limit law and exchangeable bootstrap for QR-based estimators of conditional
distribution and quantile functions). Suppose that the conditions of Theorem 5.1 hold. Then, (1)

As nj →∞, in `∞(UjXj),
√
nj(Q̂Yj |Xj (u|x)−QYj |Xj (u|x)) = Ĝj(¯̀

j,u,x) +oP(1) Gj(¯̀
j,u,x), and

√
nj(Q̂

r
Yj |Xj (u|x)−QYj |Xj (u|x)) = Ĝj(¯̀

j,u,x) + oP(1) Gj(¯̀
j,u,x), as stochastic processes indexed

by (u, x) ∈ UjXj. In `∞(YjXj),
√
nj(F̂Yj |Xj (y|x)−FYj |Xj (y|x)) = Ĝj(`j,y,x) + oP(1) Gj(`j,y,x),

as a stochastic process indexed by (y, x) ∈ YjXj. (2) The exchangeable bootstrap law is consis-
tent for the limit laws, namely, as nj → ∞, in `∞(UjXj),

√
nj(Q̂

∗
Yj |Xj (u|x) − Q̂Yj |Xj (u|x))  P

Gj(¯̀
j,u,x), and

√
nj(Q̂

r∗
Yj |Xj (u|x)− Q̂rYj |Xj (u|x)) P Gj(¯̀

j,u,x), as stochastic processes indexed by

(u, x) ∈ UjXj. In `∞(YjXj),
√
nj(F̂

∗
Yj |Xj (y|x)−F̂Yj |Xj (y|x)) P Gj(`j,y,x), as a stochastic process

indexed by (y, x) ∈ YjXj.

Corollary 5.2 establishes first order approximations, functional central limit theorems and

exchangeable bootstrap validity for QR-based estimators of the conditional distribution and

quantile functions. The two estimators of the conditional quantile function —Q̂Yj |Xj and Q̂
r
Yj |Xj

—are asymptotically equivalent. However, Q̂Yj |Xj is not necessarily monotone, while Q̂
r
Yj |Xj is

monotone and has better finite sample properties (Chernozhukov, Fernandez-Val, and Galichon,

2009).

5.4. Inference Theory for Counterfactual Estimators based on Distribution Regres-
sion. We shall impose the following conditions on (Yj , Xj) for each j ∈ J .

Condition DR. (a) The conditional distribution function takes the form FYj |Xj (y|x) =

Λ(x′βj(y)) for all y ∈ Yj and x ∈ Xj, where Λ is either the probit or logit link function. (b) The

region of interest Yj is either a compact interval in R or a finite subset of R. In the former case,
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the conditional density function fYj |Xj (y|x) exists, is uniformly bounded and uniformly continuous

in (y, x) in the support of (Yj , Xj). (c) E‖Xj‖2 <∞ and the minimum eigenvalue of

Jj(y) := E

[
λ(X ′jβj(y))2

Λ(X ′jβj(y))[1− Λ(X ′jβj(y))]
XjX

′
j

]
,

is bounded away from zero uniformly over y ∈ Yj, where λ is the derivative of Λ.

In order to state the next result, we define

`j,y,x(Yj , Xj) = λ(x′βj(y))x′ψj,y(Yj , Xj),

ψj,y(Yj , Xj) = −J−1
j (y)

Λ(X ′jβj(y))− 1{Yj ≤ y}
Λ(X ′jβj(y))(1− Λ(X ′jβj(y)))

λ(X ′jβj(y))Xj ,

κjk,y(Yj , Xj , Xk) =
√
sj

∫
`j,y,x(Yj , Xj)dFXk(x) +

√
skFYj |Xj (y|Xk).

Theorem 5.2 (Validity of DR based counterfactual analysis). Suppose that for each j ∈ J ,
Conditions S, SM, and DR hold, and the region YjXj is a compact subset of R1+dx. Then, (1)

Condition D holds for the distribution regression estimator (3.5) of the conditional distribution

and the empirical distribution estimator (3.4) of the covariate distribution, with limit processes

given by

Zj(y, x) = Gj(`j,y,x), Gk(f) = Gk(f), (j, k) ∈ JK,

where Gk are the Pk-Brownian bridges defined in (5.2) and (5.3). In particular, {FYj |Xj (y|·) :

y ∈ Yj} is a universal Donsker class. (2) Exchangeable bootstrap consistently estimates the

limit law of these processes under Condition EB. (c) Therefore, all conclusions of Theorem 4.1

and 4.2, and of Corollaries 4.1 and 4.2 apply to this case. In particular, the limit law for the

estimated counterfactual distribution is given by Z̄jk(y) := Gj(κjk,y), with covariance function
E[Z̄jk(y)Z̄lm(ȳ)] = E[κjk,yκlm,ȳ]− E[κjk,y]E[κlm,ȳ].

This is the fourth main and new result of the paper. It derives the joint functional central

limit theorem for the distribution regression estimator of the conditional distribution and the

empirical distribution function estimator of the covariate distribution. It also shows that boot-

strap consistently estimates the limit law. Moreover, the result characterizes the limit law of the

estimator of the counterfactual distribution in Theorem 4.1, which in turn determines the limit

laws of the estimators of the counterfactual quantiles and other functionals, via Theorem 4.1 and

Corollaries 4.1 and 4.2.

While proving Theorem 5.2, we also establish the following corollaries that may be of inde-

pendent interest.

Corollary 5.3 (Limit law and exchangeable bootstrap for DR coeffi cient process). Let {(Yji, Xji) :

1 ≤ i ≤ nj} be a sample of i.i.d. copies of the random vector (Yj , Xj) that has probability law Pj

and obeys Condition DR. (1) As nj →∞, the DR coeffi cient process possesses the following first
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order approximation and limit law:

√
nj(β̂j(·)− βj(·)) = Ĝj(ψj,·) + oP(1) Gj(ψj,·) in `∞(Yj)dx ,

where Gj is a Pj- Brownian Bridge. (2) The exchangeable bootstrap law is consistent for the
limit law, namely, as nj →∞,

√
nj(β̂

∗
j (·)− β̂j(·)) P Gj(ψj,·) in `∞(Yj)dx .

Let F̂Yj |Xj (y|x) := Λ(x′β̂j(y)) be the DR estimator of the conditional distribution function,

and y 7→ F̂ rYj |Xj (y|x) be the non-decreasing rearrangement of y 7→ F̂Yj |Xj (y|x) over the region

Yj . Let Q̂Yj |Xj (u|x) = F̂ r←Yj |Xj (u|x) be the DR estimator of the conditional quantile function,

obtained by inverting the rearranged estimator of the distribution function over the region Uj .
Here, Uj ⊂ (0, 1) can be any compact interval of quantile indices such that an ε-expansion of the

region {QYj |Xj (u|x) : u ∈ Uj} is contained in Yj , for all x ∈ Xj . Also, we use the star superscript
to denote the bootstrap versions of all these estimators, and define

¯̀
j,u,x(Yj , Xj) := − 1

fYi|Xj (QYj |Xj (u|x)|x)
`j,QYj |Xj (u|x),x(Yj , Xj).

Corollary 5.4 (Limit law and exchangeable bootstrap for DR-based estimators of conditional
distribution and quantile functions). Suppose that the region of interest YjXj is a compact subset
of R1+dx, Yj is an interval, the conditions of Corollary 5.3 hold, and fYj |Xj (y|x) > 0 on YjXj.
Then, (1) As nj → ∞, in `∞(YjXj),

√
nj(F̂Yj |Xj (y|x) − FYj |Xj (y|x)) = Ĝj(`j,y,x) + oP(1)  

Gj(`j,y,x), and
√
nj(F̂

r
Yj |Xj (y|x) − FYj |Xj (y|x)) = Ĝj(`j,y,x) + oP(1)  Gj(`j,y,x), as stochastic

processes indexed by (y, x) ∈ YjXj. In `∞(UjXj),
√
nj(Q̂Yj |Xj (u|x)−QYj |Xj (u|x)) = Ĝj(¯̀

j,u,x) +

oP(1)  Gj(¯̀
j,u,x), as a stochastic process indexed by (u, x) ∈ UjXj. (2) The exchangeable boot-

strap law is consistent for the limit laws, namely, as nj → ∞, in `∞(YjXj),
√
nj(F̂

∗
Yj |Xj (y|x) −

F̂Yj |Xj (y|x))  P Gj(`j,y,x), and
√
nj(F̂

r∗
Yj |Xj (y|x) − F̂ rYj |Xj (y|x))  P Gj(`j,y,x), as stochastic

processes indexed by (y, x) ∈ YjXj. In `∞(UjXj),
√
nj(Q̂

∗
Yj |Xj (u|x)− Q̂Yj |Xj (u|x)) P Gj(¯̀

j,u,x),

as a stochastic process indexed by (u, x) ∈ UjXj.

Corollary 5.4 establishes first order approximations, functional central limit theorems and

exchangeable bootstrap validity for DR-based estimators of the conditional distribution and

quantile functions. The two estimators of the conditional distribution function — F̂Yj |Xj and

F̂ rYj |Xj — are asymptotically equivalent. However, F̂Yj |Xj is not necessarily monotone, while

F̂ rYj |Xj is monotone and has better finite sample properties (Chernozhukov, Fernandez-Val, and

Galichon, 2009).

The limit distribution and bootstrap consistency results in Corollaries 5.3 and 5.4 are new.

They have already been applied in several studies (Chernozhukov, Fernandez-Val and Kowalski,

2011, Rothe, 2012, and Rothe and Wied, 2012). Note that unlike Theorem 5.2 and Corollary

5.4, Corollary 5.3 does not rely on compactness of the region YjXj .
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6. Labor Market Institutions and the Distribution of Wages

In this section we apply our estimation and inference procedures to re-analyze the evolution of

the U.S. wage distribution between 1979 and 1988. The first goal here is to compare the methods

proposed in Section 3 and to discuss the various choices that practitioners need to make. The

second goal is to provide support for the findings of DiNardo, Fortin, and Lemieux (1996, DFL

hereafter) with a rigorous econometric analysis. Indeed, we provide confidence intervals for real-

valued and function-valued effects of the institutional and labor market factors driving changes

in the wage distribution, thereby quantifying their economic and statistical significance. We

also provide a variance decomposition of the covariate composition effect into within-group and

between-group components.

We use the same dataset and variables as in DFL, extracted from the outgoing rotation groups

of the Current Population Surveys (CPS) in 1979 and 1988. The outcome variable of interest is the

hourly log-wage in 1979 dollars. The regressors include a union status indicator, nine education

dummy variables interacted with experience, a quartic term in experience, two occupation dummy

variables, twenty industry dummy variables, and indicators for race, SMSA, marital status, and

part-time status. Following DFL we weigh the observations by the product of the CPS sampling

weights and the hours worked. We analyze the data only for men for the sake of brevity.21

The major factors suspected to have an important role in the evolution of the wage distribution

between 1979 and 1988 are the minimum wage, whose real value declined by 27 percent, the

level of unionization, whose level declined from 32 percent to 21 percent in our sample, and

the characteristics of the labor force, whose education levels and other characteristics changed

substantially during this period. Thus, following DFL, we decompose the total change in the US

wage distribution into the sum of four effects: (1) the effect of the change in minimum wage,

(2) the effect of de-unionization, (3) the effect of changes in the characteristics of the labor force

other than unionization, and (4) the wage structure effect. We stress that this decomposition

has a causal interpretation only under additional conditions analogous to the ones laid out in

Section 2.3.

We formally define these four effects as differences between appropriately chosen counterfactual
distributions. Let FY 〈(t,s)|(r,v)〉 denote the counterfactual distribution of log-wages Y when the
wage structure is as in year t, the minimum wage M is at the level observed in year s, the union
status U is distributed as in year r, and the other worker characteristics C are distributed as in
year v. We use two indexes to refer to the conditional and covariate distributions because we treat
the minimum wage as a feature of the conditional distribution and we want to separate union
status from the other covariates. Given these counterfactual distributions, we can decompose the
observed change in the distribution of wages between 1979 (year 0) and 1988 (year 1) into the

21Results for women can be found in Appendix C of the supplemental material.
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sum of the previous four effects:

FY 〈(1,1)|(1,1)〉 − FY 〈(0,0)|(0,0)〉 = [FY 〈(1,1)|(1,1)〉 − FY 〈(1,0)|(1,1)〉]
(1)

+ [FY 〈(1,0)|(1,1)〉 − FY 〈(1,0)|(0,1)〉]
(2)

+ [FY 〈(1,0)|(0,1)〉 − FY 〈(1,0)|(0,0)〉]
(3)

+ [FY 〈(1,0)|(0,0)〉 − FY 〈(0,0)|(0,0)〉]
(4)

.

(6.1)

In constructing the decompositions (6.1), we follow the same sequential order as in DFL.22

We next describe how to identify and estimate the various counterfactual distributions ap-

pearing in (6.1). The first counterfactual distribution is FY 〈(1,0)|(1,1)〉, the distribution of wages

that we would observe in 1988 if the real minimum wage was as high as in 1979. Identifying this

quantity requires additional assumptions.23 Following DFL, the first strategy we employ is to

assume the conditional wage density at or below the minimum wage depends only on the value

of the minimum wage, and the minimum wage has no employment effects and no spillover effects

on wages above its level. Under these conditions, DFL show that

FY(1,0)|X1(y|x) =

 FY(0,0)|X0 (y|x)
FY(1,1)|X1 (m0|x)

FY(0,0)|X0 (m0|x) , if y < m0;

FY(1,1)|X1 (y|x) , if y ≥ m0;
(6.2)

where FY(t,s)|Xt(y|x) denotes the conditional distribution of wages in year t given worker charac-

teristics Xt = (Ut, Ct) when the level of the minimum wage is as in year s, and ms denotes the

level of the minimum wage in year s. The second strategy we employ completely avoids model-

ing the conditional wage distribution below the minimal wage by simply censoring the observed

wages below the minimum wage to the value of the minimum wage, i.e.

FY(1,0)|X1(y|x) =

{
0, if y < m0;

FY(1,1)|X1 (y|x) , if y ≥ m0.
(6.3)

Given either (6.2) or (6.3) we identify the counterfactual distribution of wages using the rep-

resentation:

FY 〈(1,0)|(1,1)〉(y) =

∫
FY(1,0)|X1(y|x)dFX1(x), (6.4)

where FXt is the joint distribution of worker characteristics and union status in year t. The other

counterfactual marginal distributions we need are

FY 〈(1,0)|(0,1)〉(y) =

∫ ∫
FY(1,0)|X1 (y|x) dFU0|C0(u|c)dFC1(c) (6.5)

and

FY 〈(1,0)|(0,0)〉(y) =

∫
FY(1,0)|X1 (y|x) dFX0 (x) . (6.6)

22The order of the decomposition matters because it defines the counterfactual distributions and effects of

interest. We report some results for the reverse sequential order in Appendix C of the supplemental material. The

results are similar under the two alternative sequential orders.
23We cannot identify this quantity from random variation in minimum wage, since the same federal minimum

wage applies to all individuals and state level minimum wages varied little across states in the years considered.
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All the components of these distributions are identified and we estimate them using the plug-

in principle. In particular, we estimate the conditional distribution FU0|C0(u|c), u ∈ {0, 1}, by
logistic regression, and FX1 , FC1 and FX0 by the empirical distributions.

From a practical standpoint, the main implementation decision concerns the choice of the

estimator of the conditional distributions, FY(j,j)|Xj (y|x) , for j ∈ {0, 1}. We consider the use
of quantile regression, distribution regression, classical regression, and duration/transformation

regression. The classical regression and the duration regression models are parsimonious spe-

cial cases of the first two models. However, these models are not appropriate in this application

due to substantial conditional heteroskedasticity in log wages (Lemieux, 2006, and Angrist, Cher-

nozhukov, and Fernandez-Val, 2006). As the additional restrictions that these two models impose

are rejected by the data, we focus on the distribution and quantile regression approaches.

Distribution and quantile regressions impose different parametric restrictions on the data gen-

erating process. A linear model for the conditional quantile function may not provide a good

approximation to the conditional quantiles near the minimum wage, where the conditional quan-

tile function may be highly nonlinear. Indeed, under the assumptions of DFL the conditional

wage function has different determinants below and above the minimum wage. In contrast, the

distribution regression model may well capture this type of behavior, since it allows the model

coeffi cients to depend directly on the wage levels.

A second characteristic of our data set is the sizeable presence of mass points around the

minimum wage and at some other round-dollar amounts. For instance, 20% of the wages take

exactly 1 out of 6 values and 50% of the wages take exactly 1 out of 25 values. We compare

the distribution and quantile regression estimators in a simulation exercise calibrated to fit many

properties of the data set. The results presented in Appendix B of the supplemental material

show that quantile regression is more accurate when the dependent variable is continuous but

performs worse than distribution regression in the presence of realistic mass points. Based on

these simulations and on specification tests that reject the linear quantile regression model, we

employ the distribution regression approach to generate the main empirical results.24 Since most

of the problems for quantile regression take place in the region of the minimum wage, we also

check the robustness of our results with a censoring approach. We censor wages from below at

the value of the minimum wage and then apply censored quantile and distribution regressions to

the resulting data.

We present our empirical results in Table 1 and Figures 1—3. In Table 1, we report the

estimation and inference results for the decomposition (6.1) of the changes in various measures

of wage dispersion between 1979 and 1988 estimated using logit distribution regressions. Figures

1-3 refine these results by presenting estimates and 95% simultaneous confidence intervals for

several major counterfactual effects of interest, including quantile, distribution and Lorenz effects.

24Rothe and Wied (2012) propose new specification tests for conditional distribution models. Applying their

tests to a similar dataset, they reject the quantile regression model but not the distribution regression model.
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We construct the simultaneous confidence bands using 100 bootstrap replications and a grid of

quantile indices {0.02, 0.021, ..., 0.98}.

We see in the top panels of Figures 1-3 that the low end of the distribution is significantly

lower in 1988 while the upper end is significantly higher in 1988. This pattern reflects the well-

known increase in wage inequality during this period. Next we turn to the decomposition of the

total change into the sum of the four effects. For this decomposition we focus mostly on quantile

functions for comparability with recent studies and to facilitate interpretation.25 From Figure 1,

we see that the contribution of de-unionization to the total change is quantitatively small and

has a U-shaped effect across the quantile indexes. The magnitude and shape of this effect on

the marginal quantiles between the first and last decile sharply contrast with the quantitatively

large and monotonically decreasing shape of the effect of the union status on the conditional

quantile function for this range of indexes (Chamberlain, 1994).26 This comparison illustrates

the difference between conditional and unconditional effects. The unconditional effects depend

not only on the conditional effects but also on the characteristics of the workers who switched

their unionization status. Obviously, de-unionization cannot affect those who were not unionized

at the beginning of the period, which is 70 percent of the workers. In our data, the unionization

rate declines from 32 to 21 percent, thus affecting only 11 percent of the workers. Thus, even

though the conditional impact of switching from union to non-union status can be quantitatively

large, it has a quantitatively small effect on the marginal distribution.

From Figure 1, we also see that the change in the distribution of worker characteristics (other

than union status) is responsible for a large part of the increase in wage inequality. The impor-

tance of these composition effects has been recently stressed by Lemieux (2006) and Autor, Katz

and Kearney (2008). The composition effect, including the de-unionization and worker charac-

teristics effects, is realized through two channels: between-group and within-group inequality.

To understand the effect of these channels on wage dispersion it is useful to consider a linear

quantile model Y = X ′β(U), where X is independent of U . By the law of total variance, we can

decompose the variance of Y into:

Var[Y ] = E[β(U)]′Var[X]E[β(U)] + trace{E[XX ′]Var[β(U)]}, (6.7)

where between-group inequality corresponds to the first term and within-group inequality corre-

sponds to the second term.27 When we keep the coeffi cients fixed, a change in the distribution

of the covariates increases inequality through the first channel if the variance of the covariates

25Discreteness of wage data implies that the quantile functions have jumps. To avoid this erratic behavior in

the graphical representations of the results, we display smoothed quantile functions. The non-smoothed results

are available from the authors. The quantile functions were smoothed using a bandwidth of 0.015 and a Gaussian

kernel. The results in Table 1 have not been smoothed.
26We find similar estimates to Chamberlain (1994) for the effect of union status on the conditional quantile

function in our CPS data.
27See Aaberge, Bjerve, and Doksum (2005) for an analogous decomposition of the pseudo-Lorenz curve. Similar

within-between decompositions can also be constructed using distribution regression models.
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increases and through the second channel if the proportion of high-variance groups increases.

In our case, both components increased by about 10% between 1979 and 1988. The increase in

the proportion of college graduate from 19% to 23% is an example of the observed composition

changes. It raised between-group inequality because highly educated workers earn conditional

average wages well above the unconditional average, and within-group inequality because of the

higher wage volatility faced by these workers.28

We also include estimates of the wage structure effect, sometimes referred to as the price

effect, which captures changes in the conditional distribution of log hourly wages. It represents

the difference we would observe if the distribution of worker characteristics and union status, and

the minimum wage remained unchanged during this period. This effect has a U-shaped pattern,

which is similar to the pattern Autor, Katz and Kearney (2006a) find for the period between

1990 and 2000. They relate this pattern to a bi-polarization of employment into low and high

skill jobs. However, they do not find a U-shaped pattern for the period between 1980 and 1990.

A possible explanation for the apparent absence of this pattern in their analysis might be that

the declining minimum wage masks this phenomenon. In our analysis, once we control for this

temporary factor, we do uncover the U-shaped pattern for the price component in the 80s.

In Figure C1 of the supplemental material , we check the robustness of the results with respect

to the link function used to implement the DR estimator. The results previously analyzed were

obtained with a logistic link function. The differences between the estimates obtained with the

logistic, normal, uniform (linear probability model), Cauchy and complementary log-log link

functions are so modest that the lines are almost indistinguishable. As we mentioned above,

the assumptions about the minimum wage are also delicate, since the mechanism that generates

wages strictly below this level is not clear; it could be measurement error, non-coverage, or non-

compliance with the law. To check the robustness of the results to the DFL assumptions about the

minimum wage and to our semi-parametric model of the conditional distribution, we re-estimate

the decomposition using censored linear quantile regression and censored distribution regression

with a logit link, censoring the wage data below the minimum wage. For censored quantile

regression, we use Powell’s (1986) censored quantile regression estimated by Chernozhukov and

Hong’s (2002) algorithm. For censored distribution regression, we simply censor to zero the

distribution regression estimates of the conditional distributions below the minimum wage and

recompute the functionals of interest. We find the results in Figure C2 of the Supplemental

Material to be very similar for the quantile and distribution regressions, and they are not very

sensitive to the censoring.

28This is an empirical fact in our data set and not a theoretical fact. Increasing the proportion of educated

workers can in principle either increase or decrease either component. To compute these effects, we kept the coef-

ficients constant at their values obtained from estimating FY (1,0)|X and changed the distribution of the covariates

from FX0 to FX1 . See Appendix D of the supplemental material for more details on the computation of the

variance decomposition.
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Overall, our estimates and confidence intervals reinforce the findings of DFL, giving them a

rigorous econometric foundation. Even though the sample size is large, the precision of some

of the estimates was unclear to us a priori. For instance, only a relatively small proportion

of workers are affected by unions. We provide standard errors and confidence intervals, which

demonstrate the statistical and economic significance of the results. Moreover, we validate the

results with a wide array of estimation methods. The similarity of the estimates may come as

a surprise because the estimators make different parametric assumptions. However, in a fully

saturated model all the estimators we have applied would give numerically the same results. The

similarity of the results can be explained by the flexibility of our parametric model. Finally, we

give a variance decomposition of the composition effect that shows that the increase in wage

inequality is due to both between-group and within-group inequality components.

7. Conclusion and directions for future work

This paper develops methods for performing inference about the effect on an outcome of interest

of a change in either the distribution of covariates or the relationship of the outcome with these

covariates. The validity of the proposed inference procedures in large samples relies only on the

applicability of a functional central limit theorem and the consistency of the bootstrap for the

estimators of the covariate and conditional distributions. These conditions hold for the empirical

distribution function estimator of the covariate distribution and for the most common regression

estimators of the conditional distribution, such as classical, quantile, duration/transformation,

and distribution regressions. Thus, we offer valid inference procedures for several popular existing

estimators and introduce distribution regression to estimate counterfactual distributions.

We focus on functionals of the marginal counterfactual distributions but we do not consider

their joint distribution. This joint distribution is required to compute other economically inter-

esting quantities such as the distribution of the counterfactual effects. Abbring and Heckman

(2007) discuss various ways to identify the distribution of these effects. The working paper version

of this article provides inference procedures under a rank invariance assumption.

We focus on semi-parametric estimators of the conditional distribution due to their dominant

role in empirical work (Angrist and Pischke, 2008). We hope to extend the analysis to nonpara-

metric estimators in future work. Fully nonparametric estimators are in principle attractive but

their implementation in samples of moderate size might be problematic. Rothe (2010) makes

first steps in this direction and highlights some of the diffi culties.

As mentioned in Foonote 1, our general results do not require the observability of the outcome

of interest. If FYj |Xj (y|x) is redefined as the conditional distribution of a latent outcome and an

estimator F̂Yj |Xj (y|x) that satisfies Condition D is available, then the inference results in Section

4 apply. An interesting example is given by the policy relevant treatment effects of Heckman

and Vytlacil (2005). They consider a class of policies that affect the probability of participation

in a program but do not affect directly the structural function of the outcome in a model with
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endogeneity. For instance, one may be interested in the effect of decreasing college tuition on

wages. In their model, the policy relevant treatment effect is the conditional marginal treatment

effect integrated over the covariate distribution and the error term in the participation equation.

This type of policy effects is outside of the scope of this paper but is certainly worth pursuing in

future research.

Appendix A. Notation

Given a weakly increasing function F : Y ⊆ R 7→ T ⊆ [0, 1], we define the left-inverse of F as

the function F← : T 7→ Y, where Y is the closure of Y, such that

F←(τ) =

inf{y ∈ Y : F (y) ≥ τ} if supy∈Y F (y) > τ,

sup{y ∈ Y} otherwise.

Each sample from the population k is defined on a probability space (Ωk,Ak, Pk), and there is
an underlying common probability space (Ω,A,P) that contains the product ×k∈K(Ωk,Ak, Pk).
We write Zn  Z in E to denote the weak convergence of a stochastic process Zn to a random
element Z in a normed space E, as defined in van der Vaart and Wellner (1996) (VW). We write
→P to denote convergence in outer probability. We write  P to denote the weak convergence of

the bootstrap law in outer probability, as formally defined in Section 4. Given the sequences of

stochastic processes Zm1, ..., Zmn, m ∈M for some finite setM, taking values in normed spaces

Em, we say that Zmn  Zm jointly in m ∈ M, if (Zmn : m ∈ M)  (Zm : m ∈ M) in E =

×m∈MEm, where the product space E is endowed with the norm ‖·‖E = ∨m∈M‖·‖Em , see Section
1.4 in VW. The space `∞(F) represents the space of real-valued bounded functions defined on

the index set equipped with the supremum norm ‖ · ‖`∞(F). Following VW, we use the simplified

notation ‖ · ‖F to denote the supremum norm. Given a measurable subset X of Rk, a class F
of measurable functions f : X → R is called a universal Donsker class if for every probability
measure P on X ,

√
n(Pn − P )  G in `∞(F), where Pn is the empirical measure and G is

a P -Brownian bridge (Dudley, 1987). By Dudley (1987) a suffi cient condition for a uniformly

bounded class of measurable functions F to be universal Donsker is the Koltchinskii-Pollard’s

entropy condition, which requires the uniform covering entropy integral for F to be finite, and

suitable measurability, namely that F is an image admissible Suslin class (Dudley, 1987). We call
these conditions the Dudley-Koltchinskii-Pollard condition, and call a class of functions F that
obeys them a Dudley-Koltchinskii-Pollard (DKP) class. The measurability condition, developed

by Dudley (1987), is mild and holds in most applications, including in our analysis. We do not

explicitly discuss this condition in what follows. Finally, by a rectangle in Rd, we mean any region
of the form ×dk=1Rk, where Rk is an interval of the form (ak, bk), [ak, bk], (ak, bk], or [bk, ak), for

ak, bk ∈ R.
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Appendix B. Tools

We shall use the functional delta method, as formulated in VW. Let D0, D, and E be normed
spaces, with D0 ⊂ D. A map φ : Dφ ⊂ D 7→ E is called Hadamard-differentiable at θ ∈ Dφ
tangentially to D0 if there is a continuous linear map φ′θ : D0 7→ E such that

φ(θ + tnhn)− φ(θ)

tn
→ φ′θ(h), n→∞,

for all sequences tn → 0 and hn → h ∈ D0 such that θ + tnhn ∈ Dφ for every n.

Lemma B.1 (Functional delta-method). Let D0, D, and E be normed spaces. Let φ : Dφ ⊂ D 7→
E be Hadamard-differentiable at θ tangentially to D0. Let Xn be a sequence of stochastic processes

taking values in Dφ such that rn(Xn − θ)  X in D, where X is separable and takes its values

in D0, for some sequence of constants rn →∞. Then rn (φ(Xn)− φ(θ)) φ′θ(X) in E. If φ′θ is
defined and continuous on the whole of D, then the sequence rn (φ(Xn)− φ(θ))−φ′θ (rn(Xn − θ))
converges to zero in outer probability.

The applicability of the method is greatly enhanced by the fact that Hadamard differentiation

obeys the chain rule, for a formal statement of which we refer to VW. We also use the following

simple “stacking rule" in the proofs.

Lemma B.2 (Stacking rule). If φ1 : Dφ1 ⊂ D1 7→ E1 is Hadamard-differentiable at θ1 ∈ Dφ1
tangentially to D10 with derivative φ′1θ1 and φ2 : Dφ2 ⊂ D2 7→ E2 is Hadamard-differentiable at

θ2 ∈ Dφ2 tangentially to D20 with derivative φ′2θ2, then φ = (φ1, φ2) : Dφ1 × Dφ2 ⊂ D1 × D2 7→
E1 × E2 is Hadamard-differentiable at θ = (θ1, θ2) tangentially to D01 × D02 with derivative

φ′θ = (φ′1θ1 , φ
′
2θ2).

Let Dn denote the data vector and Mn be a vector of random variables, used to generate

bootstrap draws or simulation draws (this may depend on particular method). Consider sequences

of random elements Vn = Vn(Dn) andG∗n = Gn(Dn,Mn) in a normed space D, where the sequence
Gn =

√
n(Vn − V ) weakly converges unconditionally to the tight random element G, and G∗n

converges conditionally given Dn in distribution to G, in probability, denoted as Gn  G and

G∗n  P G, respectively.29 Let V ∗n = Vn +G∗n/
√
n denote the bootstrap or simulation draw of Vn.

Lemma B.3 (Delta-method for bootstrap and other simulation methods). Let D0, D, and E be
normed spaces, with D0 ⊂ D. Let φ : Dφ ⊂ D 7→ E be Hadamard-differentiable at V tangentially

to D0, with the derivative map φ′V . Let Vn and V
∗
n be maps as indicated previously with values

in Dφ such that
√
n(Vn − V ) G and

√
n(V ∗n − Vn) P G in D, where G is separable and takes

its values in D0. Then
√
n(φ(V ∗n )− φ(Vn)) P φ

′
V (G) in E.

Another technical result that we use in the sequel concerns the equivalence of continuous and

uniform convergence.

29This standard concept is recalled in Section 4; see also VW, Chap. 3.6.
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Lemma B.4 (Uniform convergence via continuous convergence). Let D and E be complete sep-
arable metric spaces, with D compact. Suppose f : D 7→ E is continuous. Then a sequence of
functions fn : D 7→ E converges to f uniformly on D if and only if for any convergent sequence
xn → x in D we have that fn(xn)→ f(x).

For the proofs of Lemmas B.1 and B.3, see VW, Chap. 3.9. Lemma B.2 follows from the

definition of Hadamard derivative and product space. For the proof of Lemma B.4, see, for

example, Resnick (1987), page 2.

Appendix C. Proof of Lemma 2.1

First, note that Y =
∑

j∈J 1(J = j)Y ∗j , so that

FY |J,X(y | j, x) = FY ∗j |J,X(y | j, x).

Also, Yj ≡ Y | J = j and Xk ≡ X | J = k, so that FY |J,X(y | j, x) ≡ FYj |Xj (y | x) and

FX|J(x | k) ≡ FXk(x) (by definition). Hence, by iterating expectations

FY ∗j |J(y | k) =

∫
Xk
FY ∗j |J,X(y | k, x)dFX|J(x | k) =

∫
Xk
FY ∗j |J,X(y | j, x)dFX|J(x | k)

=

∫
Xk
FYj |Xj (y | x)dFXk(x),

where the second equality follows by conditional exogeneity (2.8), and the last uses the facts

stated above. �

Appendix D. Proof of Theorems 4.1—4.2 and Corollaries 4.1—4.2.

D.1. Key ingredient: Hadamard differentiability of counterfactual operator. It suffi ces
to consider a single pair (j, k) ∈ JK. In order to keep the notation simple, we drop the indices
(j, k) wherever possible.

We need some setup and preliminary observations. Let `∞m (YX ) denote the set of all bounded

and measurable mappings YX 7→ R. Let F , Z, and G be specified as in Condition D, with the

indices (j, k) omitted from the subscripts. We consider YX as a subset of R1+dx , with relative

topology. Let ρ denote a standard metric on R1+dx . The closure of YX under ρ, denoted YX ,
is compact in R1+dx . By Condition D, a.s. Z takes values in UC(YX , ρ), the set of functions

mapping YX to the real line that are uniformly continuous with respect to metric ρ , and can be
continuously extended to YX , so that UC(YX , ρ) ⊂ `∞m (YX ). By Condition D, G ∈ UC(F , λ)

a.s., where λ(f, f̃) = [P (f − f̃)2]1/2 is a (semi) metric on F , under which F is totally bounded.

Lemma D.1 (Hadamard differentiability of counterfactual operator). Let YX ⊆ R1+dx, and F
be the class of bounded functions, mapping Rdx to R, that contains {FY |X(y|·) : y ∈ Y} as well
as the indicators of all the rectangles in Rdx, such that F is totally bounded under λ. Let Dφ be
the product of the space of measurable functions Γ : YX 7→ [0, 1] defined by (y, x) 7→ Γ(y, x) and
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the bounded maps Π : F 7→ R defined by f 7→
∫
fdΠ, where Π is restricted to be a probability

measure on X . Consider the map φ : Dφ ⊂ D = `∞m (YX )× `∞(F) 7→ E = `∞(Y), defined by

(Γ,Π) 7→ φ(Γ,Π) :=

∫
Γ(·, x)dΠ(x).

Then the map φ is well defined. Moreover, the map φ is Hadamard-differentiable at (Γ,Π) =

(FY |X , FX), tangentially to the subset D0 = UC(YX , ρ) × UC(F , λ), with the derivative map

(γ, π) 7→ φ′FY |X ,FX (γ, π) mapping D to E defined by

φ′FY |X ,FX (γ, π)(y) :=

∫
γ(y, x)dFX(x) + π(FY |X(y|·)),

where the derivative is defined and is continuous on D.

Proof of Lemma D.1. First we show that the map is well defined. Any probability measure

Π on X is determined by the values
∫
fdΠ for f ∈ F , since F contains all the indicators of the

rectangles in Rdx . By Caratheodory’s extension theorem Π(A) = Π1A is well defined on all Borel

subsets A of Rdx . Since x 7→ Γ(y, x) is Borel measurable and takes values in [0, 1], it follows that∫
Γ(y, x)dΠ(x) is well defined as a Lebesgue integral, and

∫
Γ(·, x)dΠ(x) ∈ `∞(Y).

Next we show the main claim. Consider any sequence (Γt,Πt) ∈ Dφ such that for γt :=

(Γt − FY |X)/t, and πt(f) :=
∫
fd(Πt − FX)/t,

(γt, πt)→ (γ, π), in `∞m (YX )× `∞(F), where (γ, π) ∈ D0.

We want to show that as t↘ 0

φ(Γt,Πt)− φ(FY |X , FX)

t
− φ′FY |X ,FX (γ, π)→ 0 in `∞(Y).

Write the difference above as∫
(γt(y, x)− γ(y, x))dFX(x) + (πt − π)(FY |X(y|·)) + tπt(γ(y|·)) + tπt(γt(y|·)− γ(y|·))

=: i(y) + ii(y) + iii(y) + iv(y).

Since γt → γ in `∞m (YX ), we have that ‖i‖Y ≤ ‖γt − γ‖YX
∫
dFX → 0, where ‖ · ‖YX is the

supremum norm in `∞m (YX ) and ‖ · ‖Y is the supremum norm in `∞(Y). Moreover, since πt → π

in `∞(F) and {FY |X(y|·) : y ∈ Y} ⊂ F by assumption, we have ‖ii‖Y ≤ ‖πt − π‖F → 0, where

‖ · ‖F is the supremum norm in `∞(F). Further,

‖iv‖Y =

∥∥∥∥∫ (γt − γ)(·, x)dtπt(x)

∥∥∥∥
Y
≤ ‖γt − γ‖YX

∫
|d(Πt − FX)| ≤ ‖γt − γ‖YX 2→ 0,

since tdπt = d(Πt − FX) and
∫
|d(Πt − FX)| ≤

∫
dΠt +

∫
dFX ≤ 2, where

∫
|dµ| indicates the

total variation of a signed measure µ.

Since γ is continuous on the compact semi-metric space (YX , ρ), there exists a finite partition

of R1+dx into non-overlapping rectangular regions (Rim : 1 ≤ i ≤ m) (rectangles are allowed not

to include their sides to make them non-overlapping) such that γ varies at most ε on YX ∩Rim.
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Let pm(y, x) := (yim, xim) if (y, x) ∈ YX ∩ Rim, where (yim, xim) is an arbitrarily chosen point

within YX ∩Rim for each i; also let χimy(x) := 1{(y, x) ∈ Rim}. Then, as t→ 0,

‖iii‖Y =

∥∥∥∥∫ γ(·, x)tdπt(x)

∥∥∥∥
Y
≤
∥∥∥∥∫ (γ − γ ◦ pm)(·, x)tdπt(x)

∥∥∥∥
Y

+

∥∥∥∥∫ (γ ◦ pm)(·, x)tdπt(x)

∥∥∥∥
Y

≤ ‖γ − γ ◦ pm‖YX
∫
|tdπt|+

m∑
i=1

|γ(yim, xim)|t
∥∥πt(χim·)∥∥Y

≤ ‖γ − γ ◦ pm‖YX 2 + tm‖γ‖YX max
1≤i≤m

∥∥πt(χim·)∥∥Y ≤ 2ε+ tm‖γ‖YX
∥∥πt∥∥F

≤ 2ε+ tm [‖γ‖YX ‖π‖F + o(1)] ≤ 2ε+O(t)→ 2ε,

since {χimy : 1 ≤ i ≤ m, y ∈ Y} ⊂ F , so that maxi ‖πt(χim·)‖Y ≤ ‖πt‖F → ‖π‖F < ∞.30 The
constant ε is arbitrary, so ‖iii‖Y → 0 as t→ 0.

Note that the derivative is well-defined over the entire D and is in fact continuous with respect
to the norm on D given by ‖·‖YX ∨‖·‖F . The second component of the derivative map is trivially
continuous with respect to ‖ · ‖F . The first component is continuous with respect to ‖ · ‖YX since∥∥∥∥∫ (γ(·, x)− γ̃(·, x))dFX(x)

∥∥∥∥
Y
≤ ‖γ − γ̃‖YX

∫
dFX(x).

Hence the derivative map is continuous. �

D.2. Proof of Theorems 4.1 and 4.2. In the notation of Lemma D.1, F̂Y 〈j|k〉(·) = φ(F̂Yj |Xj ,

F̂Xk)(·) =
∫
F̂Yj |Xj (·|x)dF̂Xk(x) and FY 〈j|k〉(·) = φ(FYj |Xj , FXk)(·) =

∫
FYj |Xj (·|x)dFXk(x). The

main result needed to prove the theorem is provided by Lemma D.1 , which established that the

map φ is Hadamard differentiable. This result holds uniformly in (j, k) ∈ JK, since JK is a
finite set. Moreover, under condition S, condition D can be restated as:(√

n(F̂Yj |Xj (y|x)− FYj |Xj (y|x)),
√
n

∫
fd(F̂Xk − FXk)

)
 
(√
sjZj(y, x),

√
skGk(f)

)
,

as stochastic processes indexed by (y, x, j, k, f) ∈ YXJKF in the metric space `∞(YXJKF)2.

By the Functional Delta Method quoted in Lemma B.1, it follows that

√
n(F̂Y 〈j|k〉 − FY 〈j|k〉)(y) =

∫ √
n[F̂Yj |Xj (y|x)− FYj |Xj (y|x)]dFXk(x)

+

∫
FYj |Xj (y|x)

√
nd[F̂Xk(x)− FXk(x)] + oP(1) (D.1)

 Z̄jk(y) :=
√
sj

∫
Zj(y, x)dFXk(x) +

√
skGk(FYj |Xj (y|·)),

jointly in (j, k) ∈ JK. The first order expansion given after the equality in (D.1) above is not
needed to prove the theorem, but it can be useful for other applications. The a.s. uniform

ρ-continuity of the sample paths of Z̄jk follows from the a.s. uniform ρ-continuity of the sample

paths of Zj(y, x) with respect to (y, x) and from the a.s. uniform continuity of the sample paths

30The set F is allowed to include zero, the indicator of an empty rectangle.
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of Gk(f) with respect to f under the metric λk, by Condition D. Indeed, the uniform continuity

of FYj |Xj (y|·) with respect to y under the metric λk, as stated in Condition D(b), implies a.s.
uniform continuity of the sample paths of y 7→ Gk(FYj |Xj (y|·)). The first claim thus is proven.

In order to show the second claim, we first examine in detail the simple case where y 7→
F̂Y 〈j|k〉(y) is weakly increasing in y. (For example, qr-based estimators are necessarily weakly

increasing, while dr-based estimators need not be.) In this case Q̂Y 〈j|k〉 = F̂←Y 〈j|k〉 and Hadamard

differentiability of the quantile (left inverse) operator (Doss and Gill, 1992, VW) implies by the

functional delta method:

√
n
(
Q̂Y 〈j|k〉(τ)−QY 〈j|k〉(τ)

)
= −
√
n(F̂Y 〈j|k〉 − FY 〈j|k〉)

fY 〈j|k〉
(QY 〈j|k〉(τ)) + oP(1) (D.2)

 − Z̄jk
fY 〈j|k〉

(QY 〈j|k〉(τ)), (D.3)

as a stochastic process indexed by (τ , j, k) ∈ T JK in the metric space `∞(T JK).

When y 7→ F̂Y 〈j|k〉(y) is not weakly increasing, the previous argument does not apply because

the references cited above require F̂Y 〈j|k〉 to be a proper distribution function. In this case, with

probability converging to one we have that Q̂Y 〈j|k〉 := F̂ r←Y 〈j|k〉, where F̂
r
Y 〈j|k〉 is the monotone

rearrangement of F̂Y 〈j|k〉 on the interval [a, b] defined in the statement of Theorem 4.1. In order

to establish the properties of this estimator, we first recall the relevant result on Hadamard

differentiability of the monotone rearrangement operator derived by Chernozhukov, Fernandez-

Val, and Galichon (2010). Let F be a continuously differentiable function on the interval [a, b]

with strictly positive derivative f . Consider the rearrangement map G 7→ Gr, which maps

bounded measurable functions G on the domain [a, b] and produces cadlag functions Gr on the

same domain. This map, considered as a map `∞m ([a, b]) 7→ `∞m ([a, b]), is Hadamard differentiable

at F tangentially to C([a, b]), with the derivative map given by the identity g 7→ g which is

defined and continuous on the whole `∞m ([a, b]). Therefore, we conclude by the functional delta

method that for all (j, k) ∈ JK,
√
n(F̂ rY 〈j|k〉−FY 〈j|k〉)(·) =

√
n(F̂Y 〈j|k〉−FY 〈j|k〉)(·)+oP(1). Hence

the rearranged estimator is first order equivalent to the original estimator and thus inherits the

limit distribution. Now apply the differentiability of the quantile operator and the delta method

again to reach the same final conclusions (D.2)- (D.3) as above.

A.s. uniform continuity of the sample paths of Vjk follows from the continuity and positivity

assumption on the density function, giving continuity of the quantile function τ 7→ QY 〈j|k〉(τ),

and from the a.s. uniform continuity of sample paths of Z̄jk established in the first part of the

theorem.

Theorem 4.2 follows from the application of the functional delta method for the (generalized)

bootstrap quoted in Lemma B.3 and the chain rule for the Hadamard derivative. �

D.3. Proof of Corollaries 4.1—4.2. Corollary 4.1 follows from Theorem 4.1 by the extended

continuous mapping theorem. Corollary 4.2 follows by the functional delta method. �
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Appendix E. Proof of Theorem 5.1 and 5.2

It is convenient to organize the proof in several steps. The task is complex: We need to show

convergence and bootstrap convergence simultaneously for estimators of conditional distributions

based on QR or DR and for estimators of covariate distributions based on empirical measures.

Since both distribution and quantile regression processes are Z-processes, we can complete the

task effi ciently by showing the Hadamard differentiability of the so called Z-maps. Hence in

Section E.1 we present a functional delta method for Z-maps (Lemma E.2) and show how to apply

it to a generic Z-problem (Lemma E.3). The results of this section are of independent interest.

In Section E.2 we present the proofs for Section E.1. In Section E.3 we present the results on

convergence of empirical measures, which take into account dependencies across samples in the

presence of transformation samples. Finally, with all these ingredients, we prove Theorems 5.1

and 5.2 and their corollaries in Sections E.4 and E.5.

E.1. Main ingredient: functional delta method for Z-processes. In our leading examples,
we have a functional parameter u 7→ θ(u) where u ∈ U and θ(u) ∈ Θ ⊆ Rp, and, for each u ∈ U ,
the true value θ0(u) solves the p-vector of moment equations Ψ(θ, u) = 0. For estimation purposes

we have an empirical analog of the above moment functions Ψ̂(θ, u). For each u ∈ U , the estimator
θ̂(u) satisfies

‖Ψ̂(θ̂(u), u)‖2 ≤ inf
θ∈Θ
‖Ψ̂(θ, u)‖2 + r̂(u)2,

with ‖r̂‖U = oP(n−1/2). Similarly suppose that a bootstrap or simulation method is available

that produces a pair (Ψ̂∗, r̂∗) and the corresponding estimator θ̂
∗
(u) that obeys ‖Ψ̂∗(θ̂∗(u), u)‖2 ≤

infθ∈Θ ‖Ψ̂∗(θ, u)‖2 + r̂∗(u)2, with ‖r̂∗‖U = oP(n−1/2).

We can represent the above estimator and estimand as

θ̂(·) = φ(Ψ̂(·, ·), r̂(·)) and θ0(·) = φ(Ψ(·, ·), 0)

where φ is a Z-map formally defined as follows. Consider a p-vector ψ(θ, u) indexed by (θ, u) as

a generic value of Ψ. An element θ ∈ Θ is an r(u)-approximate zero of the map θ 7→ ψ(θ, u) if

‖ψ(θ, u)‖2 ≤ inf
θ′∈Θ
‖ψ(θ′, u)‖2 + r(u)2,

where r(u) ∈ R is a numerical tolerance parameter. Let (ψ(·, u), r(u)) 7→ φ(ψ(·, u), r(u)) be a

deterministic map from `∞(Θ)p×R to Θ that assigns one of its r(u)-approximate zeroes to each

element ψ(·, u) ∈ `∞(Θ)p. Further, in our case ψ(·, u)’s are all indexed by u, and so we can

think of ψ = (ψ(·, u) : u ∈ U) as an element of `∞(Θ × U)p, and of r = (r(u) : u ∈ U) as

an element of `∞(U). Then we can define the Z-map (ψ, r) 7→ φ(ψ, r) as a map that assigns

a function u 7→ φ(ψ(·, u), r(u)) to each element (ψ, r). This map is from the metric space

`∞(Θ × U)p × `∞(U) to the metric space `∞(U)p. The properties of the Z-processes therefore

rely on Hadamard differentiability of the Z-map

(ψ, r) 7→ φ(ψ, r)
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at (ψ, r) = (Ψ, 0), i.e. differentiability with respect to the underlying vector of moments function

and with respect to numerical tolerance parameter r.

We make the following assumption about the vector of moment functions. Let Bδ(θ) denote a

closed ball of radius δ centered at θ.

Condition Z. Let U be a compact set of some metric space, and Θ be an arbitrary sub-

set of Rp. Assume (i) for each u ∈ U , Ψ(·, u) : Θ 7→ Rp possesses a unique zero at θ0(u),

and, for some δ > 0, N := ∪u∈UBδ(θ0(u)) is a compact subset of Rp contained in Θ, (ii)

The inverse of Ψ(·, u) defined as Ψ−1(x, u) := {θ ∈ Θ : Ψ(θ, u) = x} is continuous at x = 0

uniformly in u ∈ U with respect to the Hausdorff distance, (iii) there exists Ψ̇θ0(u),u such that

limt↘0 supu∈U ,‖h‖=1 |t−1[Ψ(θ0(u) + th, u) − Ψ(θ0(u), u)] − Ψ̇θ0(u),uh| = 0, where infu∈U inf‖h‖=1

‖Ψ̇θ0(u),uh‖ > 0, and (iv) the maps u 7→ θ0(u) and u 7→ Ψ̇θ0(u),u are continuous.

The following lemma is useful for verifying Condition Z.

Lemma E.1 (Simple suffi cient condition for Z). Suppose that Θ = Rp, and U is a compact

interval in R. Let I be an open set containing U . Suppose that (a) Ψ : Θ×I 7→ Rp is continuous,
and θ 7→ Ψ(θ, u) is the gradient of a convex function in θ for each u ∈ U , (b) for each u ∈ U ,
Ψ(θ0(u), u) = 0, (c) ∂

∂(θ′,u)
Ψ(θ, u) exists at (θ0(u), u) and is continuous at (θ0(u), u) for each u ∈

U , and Ψ̇θ0(u),u := ∂
∂θ′

Ψ(θ, u)|θ0(u) obeys infu∈U inf‖h‖=1 ‖Ψ̇θ0(u),uh‖ > c0 > 0. Then Condition Z

holds and u 7→ θ0(u) is continuously differentiable.

Lemma E.2 (Hadamard differentiability of approximate Z-maps). Suppose that Condition Z(i)-
(iii) holds. Then, the map (ψ, r) 7→ φ(ψ, r) is Hadamard differentiable at (ψ, r) = (Ψ, 0) as a

map φ : D = `∞(Θ×U)p × `∞(U) 7→ E = `∞(U)p tangentially to D0 := C(N ×U)p × {0}, where
C(N × U)p denotes the subset of functions in `∞(Θ × U)p that are continuous on N × U . The
derivative map (z, 0) 7→ φ′Ψ,0(z, 0) is defined by

φ′Ψ,0(z, 0) = −Ψ̇−1
θ0(·),·z(θ0(·), ·),

where (z, 0) 7→ φ′Ψ,0(z, 0) is defined and continuous over z ∈ `∞(Θ×U)p. If in addition Condition

Z(iv) holds, then u 7→ −Ψ̇−1
θ0(u),uz(θ0(u), u) is continuous.

This lemma is an alternative to Lemma 3.9.34 in VW on Hadamard differentiability of Z-maps

in general normed spaces, which we found diffi cult to use in our case.31 (The paths of quantile

regression processes θ̂(·) in the non-univariate case are somewhat irregular and it is not apparent
how to place them in an entropically simple parameter space.) Moreover, our lemma applies

to approximate Z-estimators. This allows us to cover quantile regression processes, where exact

Z-estimators do not exist for any sample size. The following lemma shows how to apply Lemma

E.2 to a generic Z-problem.

31We also found diffi cult to use the version of Lemma 3.9.34 of VW given in Theorem 13.5 of Kosorok (2008,

Chap. 13.3).
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Lemma E.3 (Limit distribution for approximate Z-estimators). Suppose condition Z(i)-(iii)
holds. If

√
n(Ψ̂ − Ψ)  Z in `∞(Θ × U)p, where Z is a Gaussian process with a.s. uniformly

continuous paths on N × U , and ‖n1/2r̂‖U →P 0, then
√
n(θ̂(·)− θ0(·)) = −Ψ̇−1

θ0(·),·
√
n(Ψ̂−Ψ)(θ0(·), ·) + oP(1) −Ψ̇−1

θ0(·),· [Z(θ0(·), ·)] in `∞(U)p.

If Condition Z(iv) also holds, then the paths u 7→ −Ψ̇−1
θ0(u),u [Z(θ0(u), u)] are uniformly continuous,

a.s. Moreover, if
√
n(Ψ̂∗ − Ψ̂) P Z in `∞(Θ× U)p, and ‖n1/2r̂∗‖U →P 0, then
√
n(θ̂
∗
(·)− θ̂(·)) P −Ψ̇−1

θ0(·),· [Z(θ0(·), ·)] in `∞(U)p.

Remark E.1. (Central limit theorem for exchangeable bootstrap) Primitive conditions for
√
n(Ψ̂∗ − Ψ̂) P Z in `∞(Θ× U)p are given in VW for the case of exchangeable bootstrap.

E.2. Proofs of Lemma E.1-E.3. Proof of Lemma E.1. To show Condition Z(i), note

that for each u ∈ U , Ψ(·, u) : Θ 7→ Rp possesses a unique zero at θ0(u) by conditions (a) -

(c). By the Implicit Function Theorem, ∂θ0(u)/∂u = −Ψ̇−1
θ0(u),u × [∂Ψ(θ0(u), u)/∂u], which is

uniformly bounded and continuous in u ∈ U by condition (c) and compactness of U . Hence
N = ∪u∈UBδ(θ0(u)) is a compact subset of Θ for any δ > 0. This verifies Condition Z(i) and

also implies condition Z(iv) in view of condition (c) and continuous differentiability (and hence

continuity) of u 7→ θ0(u).

To show Condition Z(iii), take any sequence (ut, ht) → (u, h) with u ∈ U , h ∈ Rp and then
note that, for some t∗ ∈ [0, t], ∆(ut, ht) = t−1{Ψ(θ0(ut) + tht, ut)−Ψ(θ0(ut), ut)} = ∂Ψ

∂θ′
(θ0(ut) +

t∗ht, ut)ht→ ∂Ψ
∂θ′

(θ0(u), u)h = Ψ̇θ0(u),uh using the continuity characterizations of the derivative

∂Ψ/∂θ and the continuity of u 7→ θ0(u) established in the first paragraph. Hence by Lemma B.4,

we conclude that supu∈U ,‖h‖=1 |∆(u, h)− Ψ̇θ0(u),uh| → 0 as t↘ 0.

To show Condition Z(ii), we need to verify that for any xt → 0 such that xt ∈ Ψ(Θ, u),

dH(Ψ−1(xt, u),Ψ−1(0, u))→ 0, where dH is the Hausdorff distance, uniformly in u ∈ U . Suppose
by contradiction that this is not true, then there is (xt, ut) with xt → 0 and ut ∈ U such

that dH(Ψ−1(xt, ut),Ψ
−1(0, ut)) 6→ 0. By compactness of U , we can select a further subsequence

(xk, uk) such that uk → u, where u ∈ U . We have that Ψ−1(0, u) = θ0(u) is continuous in u ∈ U ,
so we must have dH(Ψ−1(xk, uk),Ψ

−1(0, u)) 6→ 0. Hence there is a further subsequence yl ∈
Ψ−1(xl, ul) with yl → y in Rp, such that y 6= Ψ−1(0, u) = θ0(u), and such that xl = Ψ(yl, ul)→ 0.

If y ∈ Rp, by continuity Ψ(yl, ul) → Ψ(y, u) 6= 0 since y 6= Ψ−1(0, u), yielding a contradiction.

If y ∈ Rp \ Rp, we need to show that ‖Ψ(yl, ul)‖ 6→ 0 to obtain a contradiction. Note that for

h ∈ Rp : ‖h‖ = 1, u ∈ U , and scalar δ ∈ R, the map δ 7→ Ψ(θ0(u) + δh, u)′h is non-decreasing

by θ 7→ Ψ(θ, u) being the gradient of a convex function. Since Ψ(θ0(u), u) = 0, conclude that

|Ψ(θ0(u)+δh, u)′h| is non-decreasing in |δ|. Moreover, ‖Ψ(θ0(u)+δh, u)‖ ≥ |Ψ(θ0(u)+δh, u)′h| for
any (h, u, δ). Hence to get contradiction it suffi ces to show that infu∈U ,‖h‖=1 |Ψ(θ0(u)+δh, u)′h| >
0 for some δ > 0. Indeed, for small enough δ > 0, by computation similar to that above and

condition (c), this quantity is bounded below by (1/2)δ infu∈U inf‖h‖=1 |h′Ψ̇θ0(u),uh| ≥ c0δ/2 >

0. �.
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Proof of Lemma E.2. Consider ψt = Ψ+ tzt and rt = 0+ tqt with zt → z in `∞(Θ×U)p where

z ∈ C(N ×U)p and qt → 0 in `∞(U). Then, for θt(·) = φ(ψt, rt) we need to prove that uniformly

in u ∈ U ,
θt(u)− θ0(u)

t
→ φ′Ψ,0(z, 0)(u) = −Ψ̇−1

θ0(u),u[z(θ0(u), u)].

We have that Ψ(θ0(u), u) = 0 for all u ∈ U . By definition, θt(u) satisfies

‖Ψ(θt(u), u)−Ψ(θ0(u), u)+tzt(θt(u), u)‖2 ≤ inf
θ∈Θ
‖Ψ(θ, u)+tzt(θ, u)‖2+t2q2

t (u) =: t2λ2
t (u)+t2q2

t (u),

uniformly in u ∈ U . The rest of the proof has three steps. In Step 1, we establish a rate of
convergence of θt(·) to θ0(·). In Step 2, we verify the main claim of the lemma concerning the

linear representation for t−1(θt(·)− θ0(·)), assuming that λt(·) = o(1). In Step 3, we verify that

λt(·) = o(1).

Step 1. Here we show that uniformly in u ∈ U , ‖θt(u) − θ0(u)‖ = O(t). First observe that

sup(θ,u)∈Θ×U ‖zt(θ, u)‖ = O(1) by zt → z and sup(θ,u)∈Θ×U ‖z(θ, u)‖ < ∞. Then note that

λt(u) ≤ ‖t−1Ψ(θ0(u), u) + zt(θ0(u), u)‖ = ‖z(θ0(u), u) + o(1)‖ = O(1) uniformly in u ∈ U . We
conclude that uniformly in u ∈ U , as t ↘ 0: t−1(Ψ(θt(u), u) − Ψ(θ0(u), u)) = −zt(θt(u), u) +

O(λt(u) + qt(u)) = O(1) and ‖Ψ(θt(u), u) − Ψ(θ0(u), u)‖ = O(t). By assumption Ψ(·, u) has a

unique zero at θ0(u) and has an inverse that is continuous at zero uniformly in u ∈ U ; hence
it follows that uniformly in u ∈ U , ‖θt(u) − θ0(u)‖ ≤ dH(Ψ−1(Ψ(θt(u), u), u),Ψ−1(0, u)) → 0,

where dH is the Hausdorff distance. By condition Z(iii) uniformly in u ∈ U

lim inf
t↘0

‖Ψ(θt(u), u)−Ψ(θ0(u), u)‖
‖θt(u)− θ0(u)‖ ≥ lim inf

t↘0

‖Ψ̇θ0(u),u[θt(u)− θ0(u)]‖
‖θt(u)− θ0(u)‖

≥ inf
‖h‖=1

‖Ψ̇θ0(u),uh‖ = c > 0,

where h ranges over Rp, and c > 0 by assumption. The claim of the step follows.

Step 2. (Main) Here we verify the main claim of the lemma. Using Condition Z(iii) again,

conclude ‖Ψ(θt(u), u)−Ψ(θ0(u), u)−Ψ̇θ0(u),u[θt(u)−θ0(u)]‖ = o(t) uniformly in u ∈ U . Below we
show that λt(u) = o(1) and we also have qt(u) = o(1) uniformly in u ∈ U by assumption. Thus,
we can conclude that uniformly in u ∈ U , t−1(Ψ(θt(u), u)−Ψ(θ0(u), u)) = −zt(θt(u), u) + o(1) =

−z(θ0(u), u) + o(1) and

t−1[θt(u)− θ0(u)] = Ψ̇−1
θ0(u),u

[
t−1(Ψ(θt(u), u)−Ψ(θ0(u), u)) + o(1)

]
= −Ψ̇−1

θ0(u),u [z(θ0(u), u)] + o(1).

Step 3. In this step we show that λt(u) = o(1) uniformly in u ∈ U . Note that for θ̄t(u) :=

θ0(u)− tΨ̇−1
θ0(u),u [z(θ0(u), u)] = θ0(u) +O(t), we have that θ̄t(u) ∈ N = ∪u∈UBδ(θ0(u)), for small

enough t, uniformly in u ∈ U ; moreover, λt(u) ≤ ‖t−1Ψ(θ̄t(u), u) + zt(θ̄t(u), u)‖ which is equal to
‖ − Ψ̇θ0(u),u{Ψ̇−1

θ0(u),u[z(θ0(u), u)]}+ z(θ0(u), u) + o(1)‖ = o(1), as t↘ 0. �
Proof of Lemma E.3. We shall omit the dependence on u, previously signified by (·), in

what follows. Then, in the notation of Lemma E.2, θ̂ = φ(Ψ̂, r̂) is an estimator of θ0 = φ(Ψ, 0).
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By the Hadamard differentiability of the φ-map shown in Lemma E.2, the weak convergence

conclusion follows. The first order expansion follows by noting that the linear map ψ 7→ −Ψ̇−1
θ0
ψ is

trivially Hadamard differentiable at ψ = Ψ, and so by stacking, (−
√
n(θ̂−θ0), Ψ̇−1

θ0

√
n(Ψ̂−Ψ)) 

(Ψ̇−1
θ0
Z, Ψ̇−1

θ0
Z) in `∞(U)2p, and so the difference between the terms converges in outer probability

to zero. The validity of bootstrap follows from the delta method for the bootstrap. �

E.3. Limits of empirical measures. The following result is useful to organize thoughts for
the case of transformation sampling. Let

Ĝk(f) :=
1
√
nk

n∑
i=1

(
f(Yki, Xki)−

∫
fdPk

)
and Ĝ∗k(f) :=

1
√
nk

n∑
i=1

(wki − w̄k)f(Yki, Xki)

be the empirical and exchangeable bootstrap processes for the sample from population k.

Lemma E.4. Suppose Conditions S, SM, and EB hold. Let F : X 7→ R be a DKP class (as

defined in Appendix A), where X ⊇ ∪k∈KXk. (1) Then Ĝk(f) Gk(f) and Ĝ∗k(f) P Gk(f) in

`∞(K0F), as stochastic processes indexed by (k, f) ∈ K0F . (2) Moreover, Ĝk(f)  Gk(f) and

Ĝ∗k(f)  P Gk(f) in `∞(KF), as stochastic processes indexed by (k, f) ∈ KF , where Gk(f) =

Gl(k)(f ◦ gl(k),k), provided that F ◦ gl(k),k continues to be a DKP class for all k ∈ Kt.

Proof of Lemma E.4. Note that F is a universal Donsker class by Dudley (1987). Statement
(1) then follows from the independence of samples across k ∈ K0, so that joint convergence

follows from the marginal convergence for each k ∈ K0, and from the results on exchangeable

bootstrap given in Chapter 3.6 of VW. Let F be a DKP class. To show Statement (2) we note
that Ĝk(f) = Ĝm(f ◦ gm,k) for m = l(k) ∈ K0. Recall that l(·) denotes the indexing function
that indicates the population l(k) from which the k-th population is created by transformation,

in particular l(k) = k if k ∈ K0. Thus, l−1(m) = {k ∈ K : l(k) = m} is the set of all populations
created from the m-th population that includes m itself. Let F ′ consist of F and F ◦ gm,k for all
k ∈ l−1(m) = {m, ...} ⊂ K and all m ∈ K0. Then F ′ is a DKP class, since it is a finite union of
DKP classes (K is finite), so statement (2) follows from statement (1). In fact, this shows that

the convergence analysis is reducible to the independent case by suitably enriching F into the

class F ′. �.

E.4. Proof of Theorem 5.1. (Validity of QR based Counterfactual Analysis) The proof of

Lemma E.4 shows that by suitably enlarging the class F , it suffi ces to consider only the inde-
pendent samples, i.e. those with population indices k ∈ K0. Moreover, by independence across

k, the joint convergence result follows from the marginal convergence for each k separately. It

remains to examine each case with k ∈ J separately, since otherwise for a given k 6∈ J , the
convergence of empirical measures and associated bootstrap result are already shown in Lemma

E.4. In what follows, since the proof can be done for each k marginally, we shall omit the index

k to simplify the notation.
42



Step 1.(Results for coeffi cients and empirical measures). Let F be a DKP class, as defined

in Appendix A. We use the Z-process framework described in Appendix E.1, where we let

θ(u) = β(u), p = dx, and Θ = Rdx . Lemma E.3 above illustrates the use of the delta method
for a single Z-estimation problem, which the reader may find helpful before reading this proof.

Let ϕu,β(Y,X) = (1{Y ≤ X ′β} − u)X, Ψ(β, u) = P[ϕu,β], and Ψ̂(β, u) = Pn[ϕu,β], where Pn
is the empirical measure and P is the corresponding probability measure. From the subgra-

dient characterization, we know that the QR estimator obeys β̂(u) = φ(Ψ̂(·, u), r̂(u)), r̂(u) =

max1≤i≤n ‖Xi‖dx/n, for each u ∈ U , with n1/2‖r̂‖U →P 0, where φ is an approximate Z-map

as defined in Appendix E.1. The random vector β̂(u) and
∫
fdF̂X = Pn(f) are estimators of

β(u) = φ(Ψ(·, u), 0) and
∫
fdFX = P (f). Then, by Step 3 below

(
√
n(Ψ̂ −Ψ), Ĝ) (W,G) in `∞(Rdx × U)dx × `∞(F), W(β, u) = Gϕu,β,

where W has continuous paths a.s. Step 4 verifies the conditions of Lemma E.1 for Ψ̇θ0(u),u =

J(u), thereby also implying continuous differentiability of u 7→ β(u). Then, by Lemma E.2, the

map φ is Hadamard-differentiable with derivative map (w, 0) 7→ −J−1w at (Ψ, 0) (tangentially

to C(N ×U)dx × {0}, where N = ∪u∈UBδ(β(u))). Therefore, we can conclude by the functional

delta method that (
√
n(β̂(·) − β(·)), Ĝ)  (−J−1(·)W(β(·), ·),G) in `∞(U)dx × `∞(F). The

process −J−1(·)W(β(·), ·) has continuous paths a.s.

Similarly, for the bootstrap version, we have from the subgradient characterization of the

QR estimator that β̂
∗
(u) = φ(Ψ̂∗(·, u), r̂∗(u)), r̂∗(u) = max1≤i≤n zidx/n, where zi = wi‖Xi‖.

Moreover, n1/2r̂∗n →P 0, since for some p = 2 + ε with ε > 0,

n−1/2E[ max
1≤i≤n

zi] ≤ n−1/2+1/pE[(n−1
n∑
i=1

zpi )1/p] ≤ n−1/2+1/p[n−1
n∑
i=1

E[zpi ]]1/p = o(1),

where maxiE[zpi ] = maxiE‖wiXi‖p = maxiE|wi|pE‖Xi‖p is bounded uniformly in n; the latter
holds by the moment assumptions in Conditions QR and EB as well as independence of the

bootstrap weights (wi)
n
i=1 from the data (Xi)

n
i=1. By Step 3 below and Theorem 3.6.13 of VW,

(
√
n(Ψ̂∗ − Ψ̂), Ĝ∗)  P (W,G) in `∞(Rdx × U)dx × `∞(F). Therefore by the functional delta

method for bootstrap (
√
n(β̂

∗
(·)− β̂(·)), Ĝ∗) P (−J−1(·)W(β(·), ·),G) in `∞(U)dx × `∞(F).

Step 2.(Main: Results for conditional cdfs). Here we shall rely on compactness of YX. In
order to verify Condition D, we first note that F0 = {FY|X(y|·) : y ∈ Y} is a uniformly bounded
“parametric" family indexed by y ∈ Y that obeys |FY|X(y|·) − FY|X(y′|·)| ≤ L|y − y′|, given the
assumption that the density function fY|X is uniformly bounded by some constant L. Given

compactness of Y, the uniform ε-covering numbers for this class can be bounded independently

of FX by const/ε, and so the Pollard’s entropy integral is finite. Hence we can construct a class of

functions F containing the union of all the families F0 for the populations in J and the indicators
of all the rectangles in Rdx . Note that these indicators form a VC class. The final set F therefore
is a DKP class.
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Next consider the mapping ν : Dν ⊂ `∞(U)dx 7→ `∞(YX), defined as b 7→ ν(b), ν(b)(y, x) = ε+∫ 1−ε
ε 1{x′b(u) ≤ y}du. It follows from the results of Chernozhukov, Fernandez-Val, and Galichon

(2010) that this map is Hadamard differentiable at b(·) = β(·) tangentially to C(U)dx , with

the derivative map given by: α 7→ ν ′β(·)(α), ν ′β(·)(α)(y, x) = −fY|X(y|x)x′α(FY|X(y|x)). Since

F̂Y|X = ν(β̂(·)) and
∫
fdF̂X =

∫
fdPn are estimators of FY|X = ν(β(·)) and

∫
fdFX =

∫
fdP, by

the delta method

(
√
n(F̂Y|X − FY|X), Ĝ) (−ν ′β(·)J

−1(·)W(β(·), ·),G) in `∞(YX)× `∞(F), (E.1)

(
√
n(F̂ ∗Y|X − F̂Y|X), Ĝ∗) P (−ν ′β(·)J

−1(·)W(β(·), ·),G) in `∞(YX)× `∞(F). (E.2)

Step 3. (Auxiliary: Donskerness). First, we note that {ϕu,β(Y,X) : (u, β) ∈ U × Rdx}
is P-Donsker. This follows by a standard argument, which is omitted. Second, we note that

(u, β) 7→ ϕu,β(Y,X) is L2(P) continuous by the dominated convergence theorem, and the fact

that (β, u) 7→ (1(Y ≤ X ′β)−u)X is continuous at each (β, u) ∈ Rdx ×U with probability one by
the absolute continuity of FY|X , and its norm is bounded by a square integrable function 2‖X‖
under P. Hence G(ϕu,β) has continuous paths in (u, β) and the convergence results follow from

the convergence results in Lemma E.4.

Step 4. (Auxiliary: Verification of Conditions of Lemma E.1).We verify conditions (a)-(c) of

Lemma E.1. Conditions (a) and (b) are immediate by the assumptions. To verify (c), we can

compute ∂
∂(b′,u)Ψ(b, u) = [E[fY |X(X ′b|X)XX ′],−EX] for (b, u) in the neighborhood of (β(u), u),

where the right side is continuous at (b, u) = (β(u), u) for each u ∈ U . This computation

and continuity follows from using the dominated convergence theorem, the a.s. continuity and

uniform boundedness of the mapping y 7→ fY |X(y|X), as well as E‖X‖2 < ∞. By assumption,
the minimum eigenvalue of J(u) = E[fY |X(X ′β(u)|X)XX ′] is bounded away from zero uniformly

in u ∈ U . �

E.5. Proof of Corollaries 5.1 and 5.2. Corollary 5.1 is derived in Step 1 of the proof of The-
orem 5.1, where the first-order expansion of the conclusion (1) follows by an argument similar

to the proof of Lemma E.3. The results for the estimators of the conditional quantile function

in Corollary 5.2 follow from Corollary 5.1 by the functional delta method, and the Hadamard

differentiability of the rearrangement operator (uniformly with respect to an index) derived in

Chernozhukov, Fernandez-Val, and Galichon (2010). The results for the estimator of the con-

ditional distribution function in Corollary 5.2 are derived in Step 2 of the proof of Theorem

5.1. �

E.6. Proof of Theorem 5.2. (Validity of DR based Counterfactual Analysis). As in the proof
of Theorem 5.1, it suffi ces to show the result for each k ∈ J separately. In what follows, since the
proof can be done for each k marginally, we shall omit the index k to simplify the notation. We

only consider the case where Y is a compact interval of R. The case where Y is finite is simpler
and follows similarly.
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Step 1.(Results for coeffi cients and empirical measures). We use the Z-process framework

described in Appendix E.1, where we let u = y, θ(u) = β(y), p = dx, Θ = Rdx , and U = Y.
Lemma E.3 illustrates the use of the delta method for a single Z-estimation problem, which the

reader may find helpful before reading this proof. Let

ϕy,β(Y,X) = [Λ(X ′β)− 1(Y ≤ y)]H(X ′β)X,

where H(z) = λ(z)/{Λ(z)[1 − Λ(z)]} and λ is the derivative of Λ. Let Ψ(θ, y) = P[ϕy,β] and

Ψ̂(θ, y) = Pn[ϕy,β], where Pn is the empirical measure and P is the corresponding probability

measure. From the first order conditions, the DR estimator obeys β̂(y) = φ(Ψ̂(·, y), 0), for

each y ∈ Y, where φ is the Z-map defined in Appendix E.1. The random vector β̂(y) and∫
fdF̂X = Pn(f) are estimators of β(y) = φ(Ψ(·, y), 0) and

∫
fdFX = P (f). Then, by Step 3

below

(
√
n(Ψ̂ −Ψ), Ĝ) (W,G) in `∞(Rdx × Y)dx × `∞(F), W(y, β) = Gϕy,β,

whereW has continuous paths a.s. Step 4 verifies the conditions of Lemma E.1 for Ψ̇θ0(u),u = J(y),

which also implies that y 7→ β(y) is continuously differentiable on the interval Y. Then, by Lemma
E.2, the map φ is Hadamard-differentiable with the derivative map (w, 0) 7→ −J−1w at (Ψ, 0)

(tangentially to C(N × U)dx × {0}, where N = ∪y∈YBδ(β(y))). Therefore, we can conclude by

the Functional Delta Method that

(
√
n(β̂(·)− β(·)), Ĝ) (−J−1(·)W(β(·), ·),G) in `∞(Y)dx × `∞(F),

where −J−1(·)W(β(·), ·) has continuous paths a.s.

Similarly, for the bootstrap version, we have from the first order conditions of the DR estimator

that β̂
∗
(y) = φ(Ψ̂∗(·, y), 0), and (

√
n(Ψ̂∗− Ψ̂), Ĝ∗) P (W,G) in `∞(Rdx ×Y)dx × `∞(F) by Step

3 below and Theorem 3.6.13 of VW. Therefore by the Functional Delta method for Bootstrap

(
√
n(β̂

∗
(·)− β̂(·)), Ĝ∗) P (−J−1(·)W(·, β(·)),G) in `∞(Y)dx × `∞(F).

Step 2.(Main: Results for conditional cdfs). Here we shall rely on compactness of YX. Then, Y
is a closed interval of R. In order to verify Condition D, we first note that F0 = {FY|X(y|·) : y ∈ Y}
is a uniformly bounded “parametric" family indexed by y ∈ Y that obeys |FY|X(y|·)−FY|X(y′|·)| ≤
L|y − y′|, given the assumption that the density function fY|X is uniformly bounded by some

constant L. Given compactness of Y, the uniform ε-covering numbers for this class can be

bounded independently of FX by const/ε, and so the Pollard’s entropy integral is finite. Hence

we can construct a class of functions F containing the union of all the families F0 for the

populations in J and the indicators of all rectangles in Rdx . Note that these indicators form a

VC class. The final set F therefore is a DKP class.

Next consider the mapping ν : Dν ⊂ `∞(Y)dx 7→ `∞(YX), defined as b 7→ ν(b), ν(b)(x, y) =

Λ(x′b(y)). It is straightforward to deduce that this map is Hadamard differentiable at b(·) =

β(·) tangentially to C(Y)dx with the derivative map given by: α 7→ ν ′β(·)(α), ν′β(·)(α)(y, x) =
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λ(x′β(y))x′α(y). Since F̂Y|X = ν(β̂(·)) and
∫
fdF̂X =

∫
fdPn are estimators of FY|X = ν(β(·))

and
∫
fdFX =

∫
fdP, by the functional delta method

(
√
n(F̂Y|X − FY|X), Ĝ) (−ν ′β(·)J

−1(·)W(β(·), ·),G) in `∞(YX)× `∞(F), (E.3)

(
√
n(F̂ ∗Y|X − F̂Y|X), Ĝ∗) P (−ν ′β(·)J

−1(·)W(β(·), ·),G) in `∞(YX)× `∞(F). (E.4)

Step 3. (Auxiliary: Donskerness). We verify that {ϕy,β(Y,X) : (y, β) ∈ Y×Rdx} is P-Donsker
with a square integrable envelope. The function classes F1 = {X ′β : β ∈ Rdx}, F2 = {1(Y ≤
y) : y ∈ Y}, and {Xq : q = 1, ..., dx}, where q indexes elements of vector X, are VC classes of
functions. The final class G = {(Λ(F1)−F2)H(F1)Xq : q = 1, ..., dx} is a Lipschitz transformation
of VC classes with Lipschitz coeffi cient bounded by const‖X‖ and envelope function const‖X‖,
which is square-integrable. Hence G is Donsker by Example 19.9 in van der Vaart (1998). Finally,
the map (β, y) 7→ (Λ(X ′β) − 1{Y ≤ y})H(X ′β)X is continuous at each (β, y) ∈ Rdx × Y with
probability one by the absolute continuity of the conditional distribution of Y (when Y is not
finite).

Step 4. (Auxiliary: Verification of Conditions of Lemma E.1). We verify conditions (a)-

(c) of Lemma E.1. Conditions (a) and (b) are immediate by the assumptions. To verify (c), a

straightforward computation gives that for (b, y) in the neighborhood of (β(y), y), ∂
∂(b′,y)Ψ(b, y) =

[J(b, y), R(b, y)], where, for H(z) = λ(z)/{Λ(z)[1− Λ(z)]} and h(z) = dH(z)/dz,

J(b, y) := E
[
{h(X ′b)[Λ(X ′b)− 1(Y ≤ y)] +H(X ′b)λ(X ′b)}XX ′

]
,

and R(b, y) = −E
[
H(X ′b)fY |X(y|X)X

]
. Both terms are continuous in (b, y) at (β(y), y) for

each y ∈ Y. The computation above as well as the verification of continuity follows from using

the dominated convergence theorem, and the following ingredients: (1) a.s. continuity of the

map (b, y) 7→ ∂
∂b′ϕb,y(Y,X), (2) domination of ‖ ∂

∂b′ϕb,y(X,Y )‖ by a square-integrable function
const‖X‖, (3) a.s. continuity and uniform boundedness of the conditional density function y 7→
fY |X(y|X), and (4) H(X ′b) being bounded uniformly on b ∈ Rdx , a.s. By assumption J(y) =

J(β(y), y) is positive-definite uniformly in y ∈ Y. �

E.7. Proof of Corollaries 5.3 and 5.4. Corollary 5.3 is derived in Step 1 of the proof of
Theorem 5.2, where the first-order expansion of the conclusion (1) follows by an argument similar

to the proof of Lemma E.3. The results for F̂Yj |Xj and its bootstrap version F̂
∗
Yj |Xj in Corollary

5.4 are derived in Step 2 of the proof of Theorem 5.2. The rest of the results in Corollary 5.4 follow

from the functional delta method, and the Hadamard differentiability of the rearrangement and

inverse operators (uniformly with respect to an index) derived in Chernozhukov, Fernandez-Val,

and Galichon (2010). �
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Figure 1. Observed quantile functions, observed differences between the quantile functions and 
their decomposition into four quantile effects. The 95% simultaneous confidence bands were 
obtained by empirical bootstrap with 100 repetitions. 
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Figure 2. Observed distribution functions, observed differences between the distribution functions 
and their decomposition into four distribution effects. The 95% simultaneous confidence bands 
were obtained by empirical bootstrap with 100 repetitions. 
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Figure 3. Observed Lorenz curves, observed differences between the Lorenz curves and their 
decomposition into four Lorenz effects. The 95% simultaneous confidence bands were obtained 
by empirical bootstrap with 100 repetitions. 
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Table 1: Decomposing changes in measures of wage dispersion 
 

  Effect of: 

Statistic Total change 
Minimum 
wage Unions Composition 

Wage 
structure 

Standard 
Deviation 

 

8.0 (0.3) 

 
 

2.8 (0.1) 0.7 (0.0) 1.8 (0.2) 2.7 (0.3) 
35.4 (1.4) 8.5 (0.6) 22.9 (1.9) 33.1 (2.4) 

 

90-10 
 

 

21.5 (1.0) 
 

 

11.2 (0.1) 0.0 (0.0) 9.2 (0.8) 1.1 (1.3) 
52.1 (2.4) 0.0 (0.1) 42.6 (4.4) 5.3 (5.9) 

 

50-10 
 

 

11.3 (1.4) 11.2 (0.1) -2.0 (1.0) 5.1 (0.4) -3.1 (1.1) 
 99.6 (14.1) -17.9 (11.2) 45.5 (8.3) -27.2 (14.0) 

 

90-50 
 

 

10.2 (1.2) 0.0 (0.0) 2.0 (1.0) 4.0 (0.8) 4.2 (1.1) 
 0.0 (0.0) 19.7 (8.4) 39.3 (8.8) 41.0 (9.8) 

 

75-25 
 

 

15.4 (1.1) 0.0 (0.0) 4.1 (1.0) 0.3 (1.3) 11.1 (1.2) 
 0.0 (0.0) 26.5 (6.2) 1.7 (8.6) 71.8 (8.7) 

 

95-5 
 

 

33.0 (2.1) 23.0 (0.7) 0.0 (0.6) 8.5 (1.1) 1.4 (1.5) 
 69.9 (4.1) 0.0 (1.7) 25.8 (2.6) 4.3 (4.4) 

 

Gini 
coefficient 

 

4.1 (0.1) 1.3 (0.0) 0.5 (0.0) 0.3 (0.1) 2.0 (0.1) 
 32.1 (1.2) 11.7 (0.6) 6.8 (1.8) 49.4 (1.8) 

 

Notes: The logit distribution regression model has been applied. All numbers are in %. Bootstrapped 
standard errors with 100 repetitions are given in parenthesis. The second line in each cell indicates the 
percentage of total variation.  
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Appendix A. Validity of Bootstrap Confidence Bands and Uniform Consistency

of Boostrap Variance Estimators

We consider a general counterfactual functional

∆(w) = φ(FY 〈j|k〉 : (j, k) ∈ JK)(w),

and its plug-in estimator

∆̂(w) = φ(F̂Y 〈j|k〉 : (j, k) ∈ JK)(w),

for w ∈ W. In Sections 4 and 5 of Chernozhukov, Fernández-Val and Melly (2013, CFM in the

following), we established conditions for the functional central limit theorem:

Ẑ :=
√
n(∆̂−∆) Z in `∞(W),

where Z is a zero-mean Gaussian process with a.s. continuous sample paths, and pointwise

variance function Σ(w) = E[Z2(w)]. Let

∆̂∗(w) = φ(F̂ ∗Y 〈j|k〉 : (j, k) ∈ JK)(w),

be the bootstrap version of ∆̂(w). We also gave conditions for the bootstrap functional central

limit theorem:

Ẑ∗ :=
√
n(∆̂∗ − ∆̂) P Z in `∞(W).

Let t̂∗1−α be the 1− α quantile of the bootstrap version of the Kolmogorov-Smirnov maximal
t-statistic:

t̂∗ = sup
w∈W

Σ̂∗(w)−1/2|Ẑ∗(w)|,

conditional on the data. As a robust estimator of Σ(w), we consider the rescaled squared boot-

strap quantile spread,

Σ̂∗(w) := [Ẑ∗τ1(w)− Ẑ∗τ2(w)]2/[Zτ1 − Zτ2 ]2, (A.1)

where Ẑ∗τ (w) is the τ quantile of Ẑ∗(w) conditional of the data, Zτ is the τ quantile of the N(0, 1),

and 0 < τ2 < τ1 < 1. The bootstrap versions of the end-point functions of the 1− α confidence
band are

∆̂±∗(w) = ∆̂(w)± t̂∗1−αΣ̂∗(w)1/2/
√
n.

The following lemma establishes that the bootstrap confidence band [∆̂−∗(w), ∆̂+∗(w)] covers

∆(w) uniformly over w ∈ W with asymptotic probability 1− α. It is based on Theorems 1 and
2, and Lemma 1 in Chernozhukov and Fernandez-Val (2005), adapted to our setting.

Lemma A.1 (Consistency of Bootstrap Confidence Bands). Suppose that Ẑ  Z and Ẑ∗  P Z

in `∞(W), where Z is a tight zero-mean Gaussian process with continuos paths inW and variance
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function Σ(w) that is bounded away from zero and from above uniformly over w ∈ W. Then, (a)
the variance estimator specified in (A.1) is uniformly consistent:

sup
w∈W

|Σ̂∗(w)− Σ(w)| →P 0;

and (b)

lim
n→∞

P
{

∆(w) ∈ [∆̂−∗(w), ∆̂+∗(w)] for all w ∈ W
}

= 1− α.

In order to state the proof formally, we follow the notation and definitions in van der Vaart and

Wellner (1996). Let Dn denote the data vector and Mn be the vector of random variables used

to generate bootstrap draws or simulation draws given Dn (this may depend on the particular

resampling or simulation method). Consider the random element Z∗n = Zn(Dn,Mn) in a normed

space D. We say that the bootstrap law of Z∗n consistently estimates the law of some tight random
element Z and write Z∗n  P Z in D if

dBL(Z∗n,Z) := suph∈BL1(D) |EMnh (Z∗n)− Eh(Z)| →P 0, (A.2)

where BL1(D) denotes the space of functions mapping D to the real line with Lipschitz norm at

most 1 and EMn denotes the conditional expectation with respect to Mn given the data Dn.

Proof of Lemma A.1 Step (1). Here we establish claim (a). Note that for each w ∈ W,

Z(w) ∼ N(0,Σ(w)), so that the τ quantile of Z(w) is Zτ (w) = Σ(w)1/2Zτ , and Σ(w) = [Zτ1(w)−
Zτ2(w)]2/[Zτ1 − Zτ2 ]2. Let

F (ν, w) := P [Z(w) ≤ ν] = Φ(Σ−1/2(w)ν),

where Φ is the cdf of the N(0, 1). Note that w 7→ Σ(w)1/2 is continuous in w ∈ W by Gaussianity

of Z and a.s. continuity of its sample paths with respect to w ∈ W. Moreover, w 7→ Σ−1/2(w)

is uniformly continuous on W due to continuity of w 7→ Σ1/2(w) and Σ1/2(w) being bounded

away from zero uniformly over W. This implies that (ν, w) 7→ F (ν, w) is uniformly continuous

on (ν, w) ∈ R ×W, and that Zτ (w) = infν∈R{F (ν, w) ≥ τ} is uniformly continuous in (τ , w) ∈
T ×W, where T is a compact subinterval of (0, 1). In the paragraph below we shall deduce that

F̂ (ν, w) := EMn1{Ẑ∗(w) ≤ ν} obeys

F̂ (ν, w)→P F (ν, w), uniformly in (ν, w) ∈ R×W. (A.3)

By Lemma 1 in Chernozhukov and Fernandez-Val (2005), these properties imply that

Ẑ∗τ (w)→P Zτ (w), uniformly in (τ , w) ∈ T ×W. (A.4)

Therefore uniformly in w ∈ W, by the continuous mapping theorem,

Σ̂∗(w) =
[Ẑ∗τ1(w)− Ẑ∗τ2(w)]2

[Zτ1 − Zτ2 ]2
→P

[Zτ1(w)− Zτ2(w)]2

[Zτ1 − Zτ2 ]2
= Σ(w).
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The argument to show (A.3) is based in part on the proof of Theorem 2 in Chernozhukov

and Fernandez-Val (2005). Let u 7→ Kδ,ν(u) := 1(u ≤ ν) + 1(ν < u ≤ ν + δ)(ν + δ − u)/δ

denote a smoothed approximation to the indicator function u 7→ 1(u ≤ ν), with δ > 0 denoting

the smoothing parameter. Then, the collection of maps mapping z ∈ `∞(W) to R, defined as:
Gδ = {z 7→ Kδ,ν(z(w)) : ν ∈ R, w ∈ W}, is a subset of δ−1BL1(`∞(W)). By Ẑ∗  P Z in `∞(W),

supg∈Gδ |EMng(Ẑ∗)−Eg(Z)| ≤ δ−1dBL(Ẑ∗, Z)→P 0. Therefore, uniformly in w ∈ W and ν ∈ R,

F̂ (ν, w) = EMn1{Ẑ∗(w) ≤ ν} ≤ EMnKδ,ν [Ẑ∗(w)]→P EKδ,ν [Z(w)]. (A.5)

We have that F (ν, w) ≤ EKδ,ν [Z(w)] ≤ F (ν + δ, w). By uniform continuity of F (·, ·), as δ ↘ 0,

EKδ,ν [Z(w)] → F (ν, w), uniformly in (ν, w) ∈ R ×W. Therefore, we conclude that F̂ (ν, w) ≤
F (ν, w) + oP(1), uniformly in (ν, w) ∈ R × W. Arguing similarly, we can also deduce that

F̂ (ν, w) ≥ F (ν, w) + oP(1), uniformly in (ν, w) ∈ R×W.

Step (2). Here we establish that

t̂∗  P sup
w∈W

Σ(w)−1/2|Z(w)| =: t,

in R. Let t̃∗ = supw∈W Σ(w)−1/2|Ẑ∗(w)|. The collection of functions mapping elements z ∈
`∞(W) to the real line, defined as G = {z 7→ gm(z) := m(‖Σ−1/2(·)|z(·)|‖W) : m ∈ BL1(R)},
is a subset of M · BL1(`

∞(W)), where M = sup{Σ−1/2(w) : w ∈ W}, since |gm(z) − gm(z̃)| ≤
M(|z − z̃|W ∧ 1). Therefore, dBL(t̃∗, t) ≤ MdBL(Ẑ∗, Z) →P 0, where the latter holds by the

definition of Ẑ∗  P Z. Moreover, t̂∗ = t̃∗ + oP(1), since uniformly over W, Σ̂∗(w)−1/2|Ẑ∗(w)| =
Σ(w)−1/2|Ẑ∗(w)|+ [Σ̂∗(w)−1/2−Σ(w)−1/2]|Ẑ∗(w)| = Σ(w)−1/2|Ẑ∗(w)|+ oP(1) by part (a) of the

lemma. Hence t̂∗  P t follows from

dBL(t̂∗, t) ≤ dBL(t̃∗, t) + EMn [|t̃∗ − t̂∗| ∧ 1]→P 0,

where EMn [|t̃∗− t̂∗|∧1]→P 0, by Markov inequality and E[EMn [|t̃∗− t̂∗|∧1] ≤ E[|oP(1)|∧1]→ 0.

Step (3). Here we show that the limit t is a continuous random variable and t̂∗1−α →P t1−α,

where t1−α is the 1−α quantile of t. The continuity of the distribution of t follows from Theorem
11.1 of Davydov, Lifshits, and Smordina (1998) using that Σ(w) is non-degenerate over W. The

claim t̂∗1−α →P t1−α follows from Step (2), because by the same argument as in Step (1), t̂∗  P t

in R and t having a continuous distribution function implies convergence of quantiles, namely
t̂∗1−α →P t1−α. We also remark that this part of the proof is standard, see e.g. Beran (1984).

Step (4). Here we show claim (b) of the lemma. The argument is standard (e.g., Beran, 1984).

Let t̂ = supw∈W Σ̂∗(w)−1/2|Ẑ(w)|. By the continuous mapping theorem t̂ t in R. The event{
∆(w) ∈ [∆̂−∗(w), ∆̂+∗(w)] for all w ∈ W

}
is equivalent to the event {t̂ ≤ t̂∗1−α}. By t̂∗1−α →P t1−α in part (3), for any ε > 0 and all

suffi ciently large n, t1−α − ε < t̂∗1−α < t1−α + ε. Consequently, P{t̂ ≤ t1−α − ε} + o(1) ≤ P{t̂ ≤
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t̂∗1−α} ≤ P{t̂ ≤ t1−α + ε}+ o(1). Taking limits as n→∞

P{t ≤ t1−α − ε} ≤ lim inf
n→∞

P{t̂ ≤ t̂∗1−α} ≤ lim sup
n→∞

P{t̂ ≤ t̂∗1−α} ≤ P{t ≤ t1−α + ε},

where we use that t̂ t in R and continuity of the distribution function of t. The result follows
from taking ε→ 0, using the continuity of the distribution of t, and P{t ≤ t1−α} = 1− α. �

Appendix B. Comparison of Quantile and Distribution Regression: a Simulation

Exercise

In this appendix we compare quantile and distribution regression as estimators of the condi-

tional and counterfactual distribution functions.

B.1. Data generating processes. We calibrate the data generating processes to fit several

characteristics of the CPS data sets used in the application in Section 6 of CFM. In particular,

we draw the covariate vector X88 from the empirical distribution in 1988 (containing 74,661

observations). We consider a model with 8 covariates: a dummy variable for living in metropolitan

areas, a dummy variable for part-time work, a dummy variable for not being white, experience,

experience square, a union indicator, education and education squared. These covariates are only

a subset of the covariates that we include in the application because we want also to consider

samples of moderate sizes, which would lead to frequent multicollinearity problems with the 45

covariates used in the application. In order to estimate a counterfactual distribution, we also

draw independent samples of the covariate vector X79 from the empirical distribution in 1979

(containing 21,483 observations).

We consider three different data generating processes (DGP) for the conditional distribution of

the outcome Y88 given X88. We start with a very simple DGP and then show that the conclusions

do not change with more realistic models. The first DGP is the linear location shift model:

Yi = X ′iβ + ui, i = 1, ..., n

where the errors ui are iid logistically distributed. The coeffi cient vector β is calibrated to the

OLS estimate of the log hourly wage on the covariate vector using the whole 1988 CPS sample.

Similarly, the variance of ui is calibrated to the OLS residual variance.

The second DGP is the same as the first one except that the errors ui are drawn iid from the

empirical distribution of the OLS residuals in the whole sample.

The third DGP is the linear location-scale shift model:

Yi = X ′iβ +
(
X ′iδ

)
· ui, i = 1, ..., n

where the errors ui are randomly drawn from the empirical distribution of the OLS residuals in

the whole sample re-scaled to have variance one. The coeffi cient vector β is the same as in the
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first two DGPs. The coeffi cient vector δ is calibrated to its OLS estimate obtained by regressing

the squared OLS residuals on X88. (We checked that X ′iδ > 0 for i = 1, ..., n.)

Our analysis of the wage distribution in Section 6 reveals a considerable amount of discreteness

in the data. A natural mass point is found at the level of the minimum wage but other mass

points are observed at different levels. Rounded hourly wages are natural focal points in wage

negociation, which could explain the presence of mass points. In order to analyze the effect of

rounding on the quality of the estimation, we consider a version of the three DGPs where wages

are rounded to the next dollar with probability 1/3.

Figure B1 compares the amount of rounding present in the wage data in 1988 and the amount

of rounding implied by our data generating process.1 It appears that the simulated data matches

very well the probability that the wage takes exactly one of the 10 most frequent values. For

instance, the observed wages take one of the two most frequent values with probability 8.7%

while this probability is 8.6% for the simulated data. Our data generating process does not

round enough the dependent variable when we consider the values that are not among the ten

most frequent values. In this sense, the discreteness implied by our DGPs is more modest than

that observed in the data.

B.2. Estimands of interest and estimators. The first estimand of interest is the conditional

distribution function of Y88 given X88:

FY88|X88 (y|x) for (y, x) ∈ YX ,

where YX is the joint support of Y88 and X88. We are interested in the conditional distribution

because this quantity is often of direct economic interest and it is the first step in the estimation of

the counterfactual distributions. Our second and main estimand is the counterfactual distribution

obtain by integrating this distribution over the empirical marginal distribution of X in 1979:

FY 〈88|79〉 (y) =

∫
X
FY88|X88 (y|x) dFX79(x).

We implement the distribution regression estimator using the logistic link function. For 500

different cutoff values y located at equidistant marginal quantiles of Y88, we regress 1(Y88 ≤ y)

on X88 using a linear logit regression. The estimated conditional distribution is obtained as

F̂DRY88|X88 (y|x) = Λ(x′β̂ (y)),

where Λ (·) is the logistic distribution function. Since this estimated conditional distribution
function may be non-monotonic in y, we also apply the monotonization method of Chernozhukov,

1We plot these probabilities for the first DGP. The probabilities are very similar for the two other DGPs.
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Fernandez-Val and Galichon (2010) based on rearrangement. The rearranged cdf is2

F̂ ∗Y88|X88 (y|x) = inf

{
u :

∫ ∞
0

1
(
F̂DRY88|X88 (t|x) ≤ u

)
dt ≥ y

}
.

To implement the quantile estimator, we estimate 500 linear quantile regressions of Y88 on X88
(Koenker and Bassett, 1978) and obtain

Q̂Y88|X88(τ |x) = x′β̂(τ), for τ = 0.001, ..., 0.999.

We invert this estimated quantile function to obtain the cdf using

F̂QRY88|X88 (y|x) =
1

1000
+

∫ 999/1000

1/1000
1
(
Q̂Y88|X88(u|x) ≤ y

)
du.

The counterfactual distribution of interest, FY 〈88|79〉 (y), is estimated by averaging the estima-

tor of the conditional distribution in 1988 over the covariate distribution in 1979, i.e.,

F̂Y 〈88|79〉 (y) =
1

n

n∑
i=1

F̂Y88|X88 (y|X79,i)

where F̂Y88|X88 is F̂
DR
Y88|X88 , F̂

∗
Y88|X88 or F̂

QR
Y88|X88 . Thus, two independent samples of size n are

used to estimate this counterfactual distribution: n observations drawn from (X88, Y88) to obtain

F̂Y88|X88 and n observations drawn from X79 to obtain (X79,1, . . . , X79,n)

B.3. Results. We measure the performance of the estimators by the integrated mean squared er-

ror (MSE) and the integrated Anderson-Darling weighted MSE. The MSEs for the counterfactual

and conditional distributions are∫
Y

(
F̂Y 〈88|79〉 (y)− FY 〈88|79〉 (y)

)2
dFY 〈88|79〉 (y) ,∫

X

∫
Y

(
F̂Y88|X88 (y|x)− FY88|X88 (y|x)

)2
dFY88|X88 (y|x) dFX88 (x) .

Similarly, the Anderson-Darling weighted MSEs are∫
Y

(
F̂Y 〈88|79〉 (y)− FY 〈88|79〉 (y)

)2
FY 〈88|79〉 (y)

(
1− FY 〈88|79〉 (y)

)dFY 〈88|79〉 (y) ,

∫
X

∫
Y

(
F̂Y88|X88 (y|x)− FY88|X88 (y|x)

)2
FY88|X88 (y|x)

(
1− FY88|X88 (y|x)

)dFY88|X88 (y|x) dFX88 (x) .

These integrals are approximated numerically by averages over 1000 points of x drawn randomly

from the distribution of X88 and over 100 points of y corresponding to 100 quantiles of Y88 on a

uniform grid between 0 and 1.

Table B1 to B6 report the results. Since the relative effi ciency of the estimators does not vary

when we consider the MSE or the weighted MSE, we will comment in detail the MSE results

2This expression is simplified by the fact that Y is non-negative.
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only. This similarity means that the relative performance of the estimators does not change much

when we move from the center of the distribution to the tails.

Tables B1 and B2 provide the detailed results for the first DGP in the absence and in the

presence of rounding for 100, 1,000 and 10,000 observations. When the dependent variable is

continuous, the quantile regression estimator produces the most accurate estimates for both the

counterfactual and conditional distributions and for all sample sizes considered. In this DGP, all

estimators are correctly specified. The distribution regression estimator performs worse because

it binarizes the information contained in the value of the dependent variable. Rearranging the

estimates always improves the performance of the distribution regression estimator, although this

improvement vanishes when the sample size increases.

The right panels of Tables B1 and B2 provide the results in the presence of discrete mass

points in the wage distribution. Rounding one third of the wages to the next dollar is enough

to revert the order between the MSE of the quantile and distribution regression estimators,

when the number of observations is above 100 for the counterfactual distribution and when the

number of observations is above 1,000 for the conditional distribution. The rounding introduces

a misspecification of the linear quantile regression model while it does not affect the validity of

the logit model for the conditional distribution. Thus, the linear quantile regression estimator is

a better estimator when the dependent variable is continuous but a realistic amount of rounding

is enough to revert the results.

One may argue that this first DGP favors the distribution regresion estimator because the

error terms are logistically distributed. The results for the second DGP reported in Tables B3

and B4 show that this ingredient is not crucial. Replacing the logistic distribution with the

empirical distribution of the OLS residuals in the whole population does not change qualitatively

the results.

The third DGP relaxes the independence assumption between regressors and errors by intro-

ducing linear multiplicative heteroscedasticity. In the absence of rounding, the linear quantile

regression estimator is still correctly specified while the logit regression is doubly misspecified

(non-logistic error terms and heteroscedasticity). In this sense, the third DGP favors the quan-

tile regression estimator. Despite of that, the results for the counterfactual distribution in Table

B5 and B6 show again that the distribution regression estimator performs better than quantile

regression in the presence of rounding and at least 1,000 observations. The difference is that now

quantile regression is a better estimator of the conditional distribution even in the presence of

rounding. In our application, the main objects of interest are counterfactual distributions, we

have more than 20,000 observations in one period and more than 70,000 in the other, and the

amount of rounding is at least as high as in the simulations. Therefore, even if the true DGP

corresponded to this third one, we would prefer the distribution regression approach.
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Since the presence of mass-points in the distribution of the dependent variable penalizes the

relative performance of the quantile regression estimator, we considered applying a small random

noise to the dependent variable (also called dithering or jitering). This noise artificially restores

the continuity of the distribution. The results, however, showed no improvement (even a small

detorioration) in the MSE of the quantile regression estimator. On the other hand, it may be a

way to restore the validity of the inference procedures.

B.4. Conclusion. We draw two main lessons from this section. First, the quantile regression

estimator is more accurate than the distribution regression estimator for data generating processes

that satisfy the assumptions of both models. Our results agree with the recent simulations of

Koenker (2010). Second, introducing a realistic amount of discreteness of the dependent variable

is enough to revert the results. The distribution regression approach is naturally robust to such

an ubiquitous phenomenon while quantile regression is not.

Quantile and distribution regression make different parametric assumptions. It is therefore

easy to find data generating processes for which one estimator dominates the other because

of misspecification. This was not the goal of this simulation exercise but this is an empirical

question, the response to which changes from one case to the other. In our application, for

instance, we think that it is important to allow for different coeffi cients below and above the

minimum wage. Moreover, the misspecification tests reported in Rothe and Wied (2012) reject

the quantile regression but not the distribution regression estimator for a similar dataset.

On the bright side, both distribution regression (independently of the link function) and quan-

tile regression give numerically identical results in saturated models. Therefore, the choice be-

tween distribution or quantile regression becomes immaterial if we have a flexible enough specifi-

cation. In our application, while the results are significantly different statistically, their economic

interpretation remains extremely similar.

Appendix C. Additional Empirical Results

Table C1 contains descriptive statistics for the data sets used in CFM and in this appendix.

Between 1979 and 1988 the average real wage decreased for men while it increased for women.

The level of potential experience decreased because of the entry of the baby-boom generation

into the labor market and because of longer education. Educational attainment increased clearly

over the period. As it is well known, de-unionization was important with a 11% fall in union

members for men and 5% for women. The rise of the service sector is another remarkable change

that took place during this period.

Figure C1 presents robustness checks with respect to the link functions used for the distribution

regression estimation. The differences between the estimates obtained with the logistic, normal,
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uniform (linear probability model), Cauchy and complementary log-log link functions are so

modest that the lines are almost indistinguishable.

Table C2 and Figure C2 present robustness checks with respect to the wage mechanism below

the minimum wage. The assumptions about the minimum wage are particularly delicate, since

the mechanism that generates wages strictly below this level is not clear; it could be measurement

error, non-coverage, or non-compliance with the law. To check the robustness of the results to

the DFL assumptions about the minimum wage and to our semi-parametric model of the con-

ditional distribution, we re-estimate the decomposition using censored linear quantile regression

and censored distribution regression with a logit link, censoring the wage data at the level of

the minimum wage. For censored quantile regression, we use Powell’s (1986) censored quantile

regression estimated using Chernozhukov and Hong’s (2002) algorithm. For censored distribu-

tion regression, we simply censor to zero the distribution regression estimates of the conditional

distributions below the minimum wage and recompute the functionals of interest. Overall, we

find that the results are very similar for the quantile and distribution regressions, and they are

not very sensitive to the censoring. Table C3 shows that reversing the order of the factors to:

(1) labor force composition, (2) de-unionization, (4) minimum wage, and (4) wage structure, has

little qualitative effect.

We present our results for female workers in Tables C4 and C5 as well as Figures C3 to

C7. Table C4 reports the decomposition of the changes in various measures of wage dispersion

between 1979 and 1988 estimated using logit distribution regressions. Table C5 reports the results

of the same decomposition estimated using the censored distribution regression and the censored

quantile regression estimators. Figures C3 to C5 refine these results by presenting estimates and

95% simultaneous confidence bands for quantile, distribution and Lorenz effects. The procedures

used are exactly the same that were used to produce the tables and figures for men. Figures C6

and C7 show that this results are not sensitive to the choice of the estimator of the conditional

distribution.

Most of the patterns for women are similar to men although there are a few interesting differ-

ences in the strength of the effects that explain the changes in inequality. First, de-unionization

is virtually irrelevant for women. This is due to the fact that the proportion of unionized female

workers has always been small. The decline in the unionization rate is smaller for females than

for males in absolute value. In addition, unions do not compress the conditional female wage

distribution while they reduce the conditional variance of the male wage distribution. Second,

the decrease in the real value of the minimum wage explains a larger increase in wage inequality

for women than for men. The reason is that the proportion of workers at or below the minimum

wage is higher for female than for male workers. Thus, mechanically, women will be more af-

fected by a decrease in the value of the minimum wage. Third, changes in individual attributes
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generally have a more important effect than changes in the wage structure, which is not true for

men. The robustness checks using the censored distribution and quantile models as well as the

different link functions for the distribution regression estimators confirm these results.

Appendix D. Variance Decomposition into Between-Group and Within-Group

Components

By the law of total variance we can decompose the variance as

Var (Y ) = Var [E (Y |X)] + E [Var (Y |X)] ,

where the first term is the between-group variance and the second term the within-group variance.

The regression models for conditional distributions considered in CFM naturally lead to models

for the conditional mean and variance of Y given X. By definition,

E (Y |X = x) =

∫
ydFY |X (y|x) and

Var (Y |X = x) =

∫
(y − E (Y |X = x))2 dFY |X (y|x) .

For conditional quantile models, the direct expressions are

E (Y |X = x) =

∫ 1

0
QY |X (u|x) du and

Var (Y |X = x) =

∫ 1

0

(
QY |X (u|x)− E (Y |X = x)

)2
du.

For linear quantile regression models, this simplifies to

E (Y |X = x) = x′E [β (u)] and

Var (Y |X = x) = x′Var [β (u)]x,

such that the variance decomposition take the following simple form (equation (6.7) in CFM):

Var[Y ] = E[β(U)]′Var[X]E[β(U)] + trace{E[XX ′]Var[β(U)]}.

Both the between and the within components are functions of the conditional distribution

FY |X (that determines E (Y |X = x) and V ar (Y |X = x)) and the covariate distribution FX .

Our counterfactual changes consists of changing FX while keeping FY |X fixed. In general, the

between and within components of the variance of the counterfactual outcome Y 〈j, k〉 are

Var [E (Y 〈j, k〉 |X)] =

∫
[E (Yj |Xj = x)− E (Y 〈j, k〉)]2 dFXk (x) and

E [Var (Y 〈j, k〉 |X)] =

∫
V ar (Yj |Xj = x) dFXk (x) .

In Section 6 of CFM, the whole composition effect (i.e. the effect of changing the distribution

of both union status and other individual characteristics) is defined as the difference between
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FY 〈(1,0)|(1,1)〉 and FY 〈(1,0)|(0,0)〉. Therefore, the composition effects on between-group and within-

group inequality are

Var [E (Y 〈(1, 0)|(1, 1)〉|X)]−Var [E (Y 〈(1, 0)|(0, 0)〉|X)] and

E [Var (Y 〈(1, 0)|(1, 1)〉|X)]− E [Var (Y 〈(1, 0)|(0, 0)〉|X)] .

When we use the logit distribution regression model to estimate the conditional distribution

FY(1,0)|X1 , we find that between-group inequality increased from 0.147 to 0.163 as a consequence

of the composition changes, which represents an increase of 10.6%. Similarly, within-group

inequality increased from 0.125 to 0.136, which represents an increase of 9.1%. Note that the

dependent variable is the hourly log-wage.

When we use the censored quantile regression model to estimate the conditional distribution

censoring wages below the minimum wage, we obtain increases in between-group and within-

group inequality from 0.135 to 0.145 (7.5%) and from 0.120 to 0.131 (9.1%), respectively. If

we do not censor wages below the minimum wage, then we can use directly the expressions in

equation (6.7). In this case we obtain increases in for between-group and within-group inequality

from 0.201 to 0.217 (7.9%) and from 0.152 to 0.164 (8.4%), respectively.
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Figure B1: Amount of discreteness in the real and simulated data 
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Figure C1. Comparison of the distribution regression estimates of the quantile effects based on five 
different link functions: logistic, normal, uniform, Cauchy and complementary log-log. 
  

-.3
-.2

-.1
0

.1
Q

E

0 .2 .4 .6 .8 1

Minimum wage

-.3
-.2

-.1
0

.1

0 .2 .4 .6 .8 1

De-unionization
-.3

-.2
-.1

0
.1

Q
E

0 .2 .4 .6 .8 1
Quantile

Logit
Linear probability model
Complementary log-log

Composition

-.3
-.2

-.1
0

.1

0 .2 .4 .6 .8 1
Quantile

Probit
Cauchit
 

Wage structure



 
Figure C2. Comparison of the distribution regression, censored distribution regression and 
censored quantile regression estimates of the quantile effects. 
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Figure C3. Observed quantile functions, observed differences between the quantile functions and 
their decomposition into four quantile effects. The 95% simultaneous confidence bands were 
obtained by empirical bootstrap with 100 repetitions. Results for women.  
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Figure C4: Observed distribution functions, observed differences between the distribution 
functions and their decomposition into four distribution effects. The 95% simultaneous confidence 
bands were obtained by empirical bootstrap with 100 repetitions. Results for women. 
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Figure C5. Observed Lorenz curves, observed differences between the Lorenz curves and their 
decomposition into four Lorenz effects. The 95% simultaneous confidence bands were obtained by 
empirical bootstrap with 100 repetitions. Results for women. 
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Figure C6. Comparison of the distribution regression estimates of the quantile effects based on five 
different link functions: logistic, normal, uniform, Cauchy and complementary log-log. Results for 
women. 
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Figure C7. Comparison of the distribution regression, censored distribution regression and 
censored quantile regression estimates of the quantile effects. Results for women. 
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Table B1: Square root MSE of the distribution and quantile estimators for the DGP 1 
 

Estimand # of 
obs. 

No rounding Rounding with Pr=1/3 

DR
YF̂  *

YF̂  QR
YF̂  DR

YF̂  *
YF̂  QR

YF̂  

Counterfactual 
distribution  

100 5.09 4.73 3.96 5.53 5.16 4.50 

1000 1.42 1.41 1.19 1.54 1.54 1.86 

10000 0.46 0.46 0.39 0.50 0.50 1.40 

Conditional 
distribution  

100 18.76 16.11 12.41 20.35 17.56 13.68 

1000 5.11 4.94 3.86 5.55 5.38 4.66 

10000 1.57 1.57 1.23 1.72 1.71 2.44 
Note: All numbers are multiplied by 1000 
 
 
 
Table B2: Square root Anderson-Darling weighted MSE of the distribution and quantile 
estimators for the DGP 1 
 

Estimand # of 
obs. 

No rounding Rounding with Pr=1/3 

DR
YF̂  *

YF̂  QR
YF̂  DR

YF̂  *
YF̂  QR

YF̂  

Counterfactual 
distribution  

100 14.80 11.55 9.64 16.35 12.60 10.95 

1000 3.48 3.44 2.86 3.78 3.75 4.36 

10000 1.12 1.12 0.93 1.22 1.22 3.22 

Conditional 
distribution  

100 54.51 38.40 30.39 59.87 42.03 33.58 

1000 12.85 11.85 9.46 14.05 12.95 11.28 

10000 3.78 3.76 3.03 4.14 4.12 5.64 
Note: All numbers are multiplied by 1000 
 
  



Table B3: Square root MSE of the distribution and quantile estimators for the DGP 2 
 

Estimand # of 
obs. 

No rounding Rounding with Pr=1/3 

DR
YF̂  *

YF̂  QR
YF̂  DR

YF̂  *
YF̂  QR

YF̂  

Counterfactual 
distribution  

100 5.04 4.69 3.99 5.46 5.09 4.5 

1000 1.44 1.43 1.19 1.56 1.55 1.8 

10000 0.46 0.46 0.39 0.5 0.5 1.33 

Conditional 
distribution  

100 18.62 15.9 12.29 20.24 17.38 13.54 

1000 5.11 4.93 3.87 5.56 5.38 4.62 

10000 1.62 1.61 1.23 1.77 1.76 2.32 
Note: All numbers are multiplied by 1000 
 
 
 
Table B4: Square root Anderson-Darling weighted MSE of the distribution and quantile 
estimators for the DGP 2 
 

Estimand # of 
obs. 

No rounding Rounding with Pr=1/3 

DR
YF̂  *

YF̂  QR
YF̂  DR

YF̂  *
YF̂  QR

YF̂  

Counterfactual 
distribution  

100 14.51 11.45 9.66 16.02 12.48 10.95 

1000 3.51 3.47 2.87 3.83 3.79 4.28 

10000 1.12 1.12 0.94 1.23 1.23 3.11 

Conditional 
distribution  

100 54.05 38.00 30.20 59.67 41.73 33.37 

1000 12.84 11.87 9.49 14.11 13.01 11.23 

10000 3.88 3.87 3.04 4.28 4.26 5.43 
Note: All numbers are multiplied by 1000 
 
  



Table B5: Square root MSE of the distribution and quantile estimators for the DGP 3 
 

Estimand # of 
obs. 

No rounding Rounding with Pr=1/3 

DR
YF̂  *

YF̂  QR
YF̂  DR

YF̂  *
YF̂  QR

YF̂  

Counterfactual 
distribution  

100 4.98 4.63 3.98 5.43 5.06 4.52 

1000 1.43 1.42 1.18 1.55 1.54 1.86 

10000 0.5 0.5 0.39 0.55 0.55 1.42 

Conditional 
distribution  

100 18.94 16.16 12.27 20.62 17.68 13.56 

1000 5.75 5.58 3.9 6.19 6.03 4.74 

10000 3.02 3.02 1.29 3.17 3.17 2.54 
Note: All numbers are multiplied by 1000 
 
 
 
Table B6: Square root Anderson-Darling weighted MSE of the distribution and quantile 
estimators for the DGP 3 
 

Estimand # of 
obs. 

No rounding Rounding with Pr=1/3 

DR
YF̂  *

YF̂  QR
YF̂  DR

YF̂  *
YF̂  QR

YF̂  

Counterfactual 
distribution  

100 14.35 11.27 9.63 15.77 12.33 10.96 

1000 3.46 3.42 2.85 3.76 3.73 4.40 

10000 1.19 1.19 0.93 1.29 1.29 3.30 

Conditional 
distribution  

100 54.95 39.01 30.54 60.41 42.80 33.76 

1000 14.64 13.74 9.67 15.76 14.81 11.58 

10000 7.66 7.65 3.31 7.98 7.97 6.00 
Note: All numbers are multiplied by 1000 
 
 
  



Table C1: Summary statistics 

 

 
Males  Females  

Variable 1979 1988 1979 1988 

Number of obs. 21,483 74,661 16,911 70,089 

Wage 7.24 (3.71) 7.01 (4.32) 4.75 (2.39) 5.05 (2.99) 

Education 12.44 (2.98) 12.95 (2.80) 12.47 (2.48) 13.02 (2.44) 

Experience 18.69 (13.55) 18.02 (12.25) 18.28 (13.66) 17.81 (12.39) 

Union 31.77 (46.56) 20.58 (40.43) 17.21 (37.75) 12.65 (33.24) 

Primary sector 4.59 (20.93) 3.81 (19.14) 1.20 (10.89) 1.06 (10.22) 

Secondary 
sector 39.99 (48.99) 34.90 (47.67) 19.06 (39.28) 15.20 (35.90) 

Tertiary sector 55.42 (49.71) 61.29 (48.71) 79.74 (40.19) 83.74 (36.90) 

Part-time 6.93 (25.39) 10.55 (30.73) 22.20 (41.56) 25.30 (43.47) 

Non-white 9.79 (29.72) 11.30 (31.66) 13.09 (33.73) 13.68 (34.37) 

SMSA 59.17 (49.15) 73.09 (44.35) 60.84 (48.81) 73.72 (44.02) 

Notes: Mean of selected variables. The standard deviations are reported in parenthesis. When the variable is bi-
nary, the results are reported in percentage. 



Table C2: Decomposing changes in measures of wage dispersion: men, censored models 
 
  Effect of: 

Statistic Total change 
Minimum 
wage Unions 

Individual 
attributes Coefficients 

CDR:      

Standard 
Deviation 

 

8.2 (0.3) 

 
 

3.3 (0.0) 0.6 (0.0) 1.9 (0.2) 2.4 (0.2) 
40.7 (1.4) 7.9 (0.5) 22.5 (1.8) 28.9 (2.4) 

 

90-10 
 

 

21.5 (1.0) 
 

 

11.2 (0.1) 0.0 (0.0) 9.2 (0.8) 1.1 (1.3) 
52.1 (2.4) 0.0 (0.1) 42.6 (4.4) 5.3 (5.9) 

 

50-10 
 

 

11.3 (1.4) 11.2 (0.1) -2.0 (1.0) 5.1 (0.4) -3.1 (1.1) 
 99.6 (14.1) -17.9 (11.2) 45.5 (8.3) -27.2 (14.0) 

 

90-50 
 

 

10.2 (1.2) 0.0 (0.0) 2.0 (1.0) 4.0 (0.8) 4.2 (1.1) 
 0.0 (0.0) 19.7 (8.4) 39.3 (8.8) 41.0 (9.8) 

 

75-25 
 

 

15.4 (1.1) 0.0 (0.0) 4.1 (1.0) 0.3 (1.3) 11.1 (1.2) 
 0.0 (0.0) 26.5 (6.2) 1.7 (8.6) 71.8 (8.7) 

 

95-5 
 

 

36.4 (2.1) 26.4 (0.7) 0.0 (0.6) 8.5 (1.1) 1.4 (1.5) 
 72.7 (3.8) 0.0 (1.5) 23.4 (2.7) 3.9 (4.0) 

 

Gini 
coefficient 

 

4.2 (0.1) 1.6 (0.0) 0.4 (0.0) 0.3 (0.1) 1.8 (0.1) 
 37.9 (1.1) 10.7 (0.5) 7.1 (1.6) 44.2 (1.6) 

 

CQR:      

Standard 
Deviation 

 

9.0 (0.3) 4.1 (0.0) 0.3 (0.0) 1.8 (0.1) 2.8 (0.2) 
 45.3 (1.5) 3.2 (0.5) 20.0 (1.6) 31.4 (2.2) 

 

90-10 

 
 

22.3 (1.1) 14.2 (0.4) -0.5 (0.1) 7.2 (0.4) 1.4 (1.1) 
 63.6 (3.4) -2.2 (0.6) 32.3 (2.8) 6.2 (5.1) 

 

50-10 

 
 

9.5 (0.9) 14.2 (0.4) -1.8 (0.1) 4.6 (0.4) -7.5 (0.9) 
 149.2 (16.7) -18.7 (3.0) 48 (9.0) -78.5 (21.6) 

 

90-50 

 
 

12.7 (0.7) 0.0 (0.0) 1.3 (0.1) 2.6 (0.3) 8.8 (0.5) 
 0.0 (0.0) 10.1 (1.0) 20.6 (2.4) 69.3 (2.5) 

 

75-25 

 
 

12.7 (0.6) 0.0 (0.0) 1.7 (0.1) 2.0 (0.4) 9.1 (0.5) 
 0.0 (0.0) 13 (1.2) 15.5 (3.0) 71.4 (3.1) 

 

95-5 

 
 

39.2 (0.8) 30.6 (0.0) -0.5 (0.1) 7.4 (0.5) 1.6 (0.8) 
 78.1 (1.8) -1.2 (0.3) 18.9 (1.2) 4.2 (2.1) 

 

Gini 
coefficient 

 

4.5 (0.1) 1.9 (0.0) 0.3 (0.0) 0.3 (0.1) 2.1 (0.1) 
 42.2 (1.1) 5.9 (0.4) 6.1 (1.4) 45.8 (1.4) 

 

Notes: The censored logit distribution regression and the censored linear quantile regression estimators 
have been applied. All numbers are in %. Bootstrapped standard errors with 100 repetitions are given in 
parenthesis. The second line in each cell indicates the percentage of total variation. 
  



Table C3: Reversing the order of the decomposition 
 
  Effect of: 

Statistic Total change 
Individual 
attributes Unions 

Minimum 
wage Coefficients 

Men:      

Standard 
Deviation 

 

8.0 (0.3) 

 
 

0.9 (0.2) 1.5 (0.1) 2.8 (0.1) 2.7 (0.3) 
11.4 (2.3) 19.2 (1.0) 35.3 (1.5) 34.1 (2.5) 

 

90-10 
 

 

21.5 (1.1) 
 

 

0.4 (1.2) 8.8 (1.2) 11.2 (0.3) 1.1 (1.3) 
1.8 (5.7) 40.7 (5.7) 52.1 (3.1) 5.3 (5.9) 

 

50-10 
 

 

11.3 (1.4) 2.5 (1.5) 0.7 (1.2) 11.2 (0.3) -3.1 (1.1) 
 21.8 (12.6) 5.8 (11.6) 99.6 (15.1) -27.1 (15.2) 

 

90-50 
 

 

10.2 (1.2) -2.1 (1.1) 8.1 (0.8) 0.0 (0.0) 4.2 (1.3) 
 -20.1 (11.9) 79.1 (10.6) 0.0 (0.0) 41.0 (10.3) 

 

75-25 
 

 

15.4 (1.0) 6.4 (1.2) -2.1 (1.3) 0.0 (0.0) 11.1 (1.1) 
 41.6 (6.6) -13.4 (9.0) 0.0 (0.0) 71.8 (8.3) 

 

95-5 
 

 

33.0 (2.0) 2.6 (1.5) 5.9 (1.1) 23.0 (0.8) 1.4 (1.3) 
 7.9 (4.1) 17.9 (3.5) 69.9 (4.0) 4.3 (4.0) 

 

Gini 
coefficient 

 

4.1 (0.1) -0.3 (0.1) 1.0 (0.0) 1.3 (0.0) 2.0 (0.1) 
 -6.8 (2.4) 24.1 (1.0) 32.4 (1.4) 50.4 (2.0) 

 

Women:      

Standard 
Deviation 

 

10.9 (0.4) 4.5 (0.2) 0.0 (0.0) 4.0 (0.2) 2.5 (0.3) 
 41.1 (1.9) -0.2 (0.2) 36.5 (1.7) 22.6 (2.6) 

 

90-10 

 
 

39.8 (1.4) 11.2 (0.7) 0.0 (0.4) 27.2 (0.3) 1.3 (1.2) 
 28.2 (1.6) 0.0 (1.0) 68.4 (2.4) 3.4 (2.8) 

 

50-10 

 
 

33.0 (0.7) 7.9 (0.9) -0.8 (0.5) 27.2 (0.3) -1.4 (0.8) 
 24.1 (2.5) -2.4 (1.7) 82.6 (2.2) -4.3 (2.4) 

 

90-50 

 
 

6.8 (1.4) 3.3 (0.8) 0.8 (0.5) 0.0 (0.0) 2.8 (1.4) 
 47.9 (13.3) 11.7 (7.0) 0.0 (0.0) 40.3 (10.1) 

 

75-25 

 
 

12.8 (0.9) 2.8 (0.8) 0.0 (0.5) 5.5 (0.1) 4.5 (0.8) 
 22.0 (5.4) 0.0 (3.8) 43.0 (3.1) 35.0 (5.1) 

 

95-5 

 
 

38.8 (1.7) 17.4 (0.9) 0.0 (0.3) 9 (2.7) 12.4 (2.4) 
 44.8 (2.7) 0.0 (0.9) 23.3 (6.4) 31.9 (6.1) 

 

Gini 
coefficient 

 

5.1 (0.2) 0.7 (0.1) 0.1 (0.0) 2.8 (0.1) 1.5 (0.2) 
 13.9 (1.9) 1.1 (0.3) 55.9 (2.4) 29.1 (2.5) 

 

Notes: The logit distribution regression model has been applied. All numbers are in %. Bootstrapped 
standard errors with 100 repetitions are given in parenthesis. The second line in each cell indicates the 
percentage of total variation. 



Table C4: Decomposing changes in measures of wage dispersion: women, distribution 
regression 
 

  Effect of: 

Statistic Total change 
Minimum 
wage Unions 

Individual 
attributes Coefficients 

Standard 
Deviation 

 

10.9 (0.4) 3.8 (0.1) 0.4 (0.0) 4.7 (0.2) 2.1 (0.3) 
 34.9 (1.6) 3.2 (0.4) 42.8 (1.6) 19.1 (2.5) 

 

90-10 

 
 

39.8 (1.1) 23.0 (0.3) 0.9 (0.5) 14.5 (0.7) 1.3 (0.9) 
 57.9 (1.5) 2.3 (1.2) 36.4 (1.6) 3.4 (2.1) 

 

50-10 

 
 

33.0 (0.8) 23.0 (0.3) 0.0 (0.1) 11.3 (0.4) -1.4 (0.8) 
 69.9 (1.9) 0.0 (0.4) 34.4 (1.4) -4.3 (2.8) 

 

90-50 

 
 

6.8 (1.3) 0.0 (0.0) 0.9 (0.5) 3.1 (0.7) 2.8 (1.3) 
 0.0 (0.0) 13.6 (7.0) 46.0 (11.6) 40.3 (9.7) 

 

75-25 

 
 

12.8 (0.9) 0.0 (0.0) 0.0 (0.5) 8.3 (0.2) 4.5 (0.8) 
 0.0 (0.0) 0.0 (3.5) 65.0 (5.1) 35.0 (4.3) 

 

95-5 

 
 

38.8 (1.6) 16.8 (0.6) 0.7 (0.7) 16.4 (2.0) 5.0 (2.0) 
 43.2 (2.4) 1.9 (2.0) 42.1 (4.9) 12.8 (5.1) 

 

Gini 
coefficient 

 

5.1 (0.2) 2.4 (0.1) 0.2 (0.0) 1.3 (0.1) 1.2 (0.1) 
 47.3 (2.0) 3.5 (0.4) 24.9 (1.2) 24.2 (2.3) 

 

Notes: The logit distribution regression model has been applied. All numbers are in %. Bootstrapped 
standard errors with 100 repetitions are given in parenthesis. The second line in each cell indicates 
the percentage of total variation. 

 
  



Table C5: Decomposing changes in measures of wage dispersion: women, censored models 
  Effect of: 

Statistic Total change 
Minimum 
wage Unions 

Individual 
attributes Coefficients 

CDR:      

Standard 
Deviation 

 

12.7 (0.4) 

 
 

5.6 (0.0) 0.3 (0.0) 5.1 (0.2) 1.7 (0.3) 
44.1 (1.2) 2.2 (0.3) 39.9 (1.4) 13.8 (2.2) 

 

90-10 
 

 

43.2 (1.1) 
 

 

26.4 (0.3) 0.9 (0.5) 14.5 (0.7) 1.3 (0.9) 
61.2 (1.5) 2.2 (1.1) 33.5 (1.5) 3.1 (1.9) 

 

50-10 
 

 

36.4 (0.8) 26.4 (0.3) 0.0 (0.1) 11.3 (0.4) -1.4 (0.8) 
 72.7 (1.8) 0.0 (0.4) 31.2 (1.2) -3.9 (2.5) 

 

90-50 
 

 

6.8 (1.3) 0.0 (0.0) 0.9 (0.5) 3.1 (0.7) 2.8 (1.3) 
 0.0 (0.0) 13.6 (7.0) 46.0 (11.6) 40.3 (9.7) 

 

75-25 
 

 

12.8 (0.9) 0.0 (0.0) 0.0 (0.5) 8.3 (0.2) 4.5 (0.8) 
 0.0 (0.0) 0.0 (3.5) 65.0 (5.1) 35.0 (4.3) 

 

95-5 
 

 

52.7 (1.2) 30.6 (0.0) 0.7 (0.3) 16.7 (0.8) 4.7 (1.1) 
 58.1 (1.5) 1.4 (0.6) 31.6 (1.4) 8.8 (0.2) 

 

Gini 
coefficient 

 

6.4 (0.1) 3.6 (0.0) 0.1 (0.0) 1.7 (0.1) 0.9 (0.1) 
 57.1 (1.3) 2.0 (0.2) 27.1 (1.0) 13.8 (1.8) 

 

CQR:      

Standard 
Deviation 

 

12.9 (0.3) 6.2 (0.0) 0.3 (0.1) 4.5 (0.2) 1.8 (0.3) 
 48.2 (1.3) 2.6 (0.4) 35.2 (1.5) 13.9 (2.2) 

 

90-10 

 
 

48.5 (0.9) 30.6 (0.0) 0.7 (0.2) 14.6 (0.6) 2.5 (0.9) 
 63.2 (1.2) 1.5 (0.3) 30.2 (1.1) 5.1 (1.7) 

 

50-10 

 
 

37.2 (0.6) 30.6 (0.0) -0.3 (0.1) 10.9 (0.5) -4.1 (0.5) 
 82.3 (1.3) -0.7 (0.2) 29.4 (1.3) -10.9 (1.6) 

 

90-50 

 
 

11.3 (0.8) 0.0 (0.0) 1.0 (0.1) 3.7 (0.4) 6.5 (0.8) 
 0.0 (0.0) 9.1 (1.1) 32.8 (3.8) 58.1 (4.0) 

 

75-25 

 
 

15.2 (0.8) 0.0 (0.0) 0.8 (0.1) 11.9 (0.6) 2.5 (0.8) 
 0.0 (0.0) 5.6 (0.7) 78.1 (4.9) 16.4 (4.9) 

 

95-5 

 
 

50.1 (1.2) 30.6 (0.0) 1.0 (0.2) 15.1 (0.7) 3.4 (1.1) 
 61.1 (1.4) 2.0 (0.4) 30.2 (1.2) 6.7 (2.0) 

 

Gini 
coefficient 

 

6.5 (0.1) 4.0 (0.0) 0.1 (0.0) 1.5 (0.1) 0.9 (0.1) 
 60.9 (1.3) 2.1 (0.3) 23.1 (1.2) 13.9 (1.8) 

 

Notes: All numbers are in %. Bootstrapped standard errors with 100 repetitions are given in parenthesis. The 
second line in each cell indicates the percentage of total variation. The censored distribution regression 
estimator with logistic link and the censored linear quantile regression estimator have been applied. 
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