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NONPARAMETRIC ANALYSIS OF RANDOM UTILITY MODELS: TESTING

YUICHI KITAMURA∗ AND JÖRG STOYE∗∗

Abstract. This paper develops and implements a nonparametric test of Random Utility Models

(RUM) using only nonsatiation and the Strong Axiom of Revealed Preference (SARP) as restrictions

on individual level behavior, allowing for fully unrestricted unobserved heterogeneity. The main ap-

plication is the test of the null hypothesis that a sample of cross-sectional demand distributions was

generated by a population of rational consumers. Thus, the paper provides a finite sample counterpart

to the classic theoretical analysis of McFadden and Richter (1991). To do so, it overcomes challenges

in computation and in asymptotic theory and provides an empirical application to the U.K. Household

Expenditure Survey. An econometric result of independent interest is a test for inequality constraints

when they are represented in terms of the rays of a cone rather than its faces.

1. Introduction

This paper develops new tools for the analysis of Random Utility Models (RUM). The leading

application is stochastic revealed preference theory, that is, the modeling of aggregate choice behavior

in a population characterized by individual rationality and unobserved heterogeneity. We test the

null hypothesis that a repeated cross-section of demand data was generated by such a population,

without restricting unobserved heterogeneity in any form whatsoever. Equivalently, we empirically

test McFadden and Richter’s (1991) Axiom of Revealed Stochastic Preference (ARSP, to be defined

later), using only nonsatiation and the Strong Axiom of Revealed Preference (SARP) as restrictions on

individual level behavior. Doing this is computationally challenging. We provide various algorithms

that can be implemented with reasonable computational resources. Also, new tools for statistical

inference for inequality restrictions are introduced in order to deal with the high-dimensionality and

non-regularity of the problem at hand.
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2 KITAMURA AND STOYE

Let

u : RK
+ → R

denote a random utility function. In our preferred interpretation, randomness of u represents unob-

served heterogeneity across individuals.1 Each consumer faces an income level and a price vector in

RK
+ . Normalizing income to 1, the budget set for each consumer can be denoted as B(p), p ∈ RK

+ ,

and the consumer’s choice is determined as

y = arg max
y∈B(p)

u(y).

The econometrician observes a random sample of (y, p). In other words, she observes (a sample analog

of) choice probability

Pr(y ∈ Y | price is p)

for each Y ⊂ RK
+ . The question is whether (up to sampling uncertainty) these choice probabilities

can be rationalized as an outcome of RUM. Our approach can be briefly described by the following

steps:

• The first insight is that, although demand data are continuous, they can be discretized without

any loss of information as long as the set of budgets is finite. Thus, a random utility model of

demand on a finite set of budgets is really a model of discrete choice, though the number of

distinct choice objects can be large (up to 67 in our empirical application in Section 8). The

next steps of our approach immediately apply to choice problems that were discrete to begin

with.

• If there is a finite list of discrete choice problems, then there is a finite list of rational “choice

types.” Each such type is uniquely characterized by a rationalizable nonstochastic choice pat-

tern.2 In realistic problem sizes, there are many such types (up to 177352 in our application),

and obtaining the list is computationally challenging. Some techniques for efficiently comput-

ing the list are an important part of our contribution.

• Think of every rational choice type as defining a vector of degenerate choice probabilities over

discrete choice objects. Then a corresponding vector of nondegenerate choice probabilities is

1Random utility models were originally developed in mathematical psychology, and in principle, our results also apply

to stochastic choice behavior by an individual. However, in these settings it would frequently be natural to impose much

more structure than we do.
2Note that we do not restrict the distribution of the utility function u to be discrete. It is the fundamental nature of

our problem that enables us to convert it into a discrete problem, albeit a very high dimensional one.
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consistent with a random utility model iff it is a convex combination of the degenerate ones.

We collect the latter into columns of a matrix; choice probabilities are then rationalizable

iff they are in the column cone spanned by this matrix. The same insight informs our test

statistic, which will be weighted Euclidean distance of estimated choice probabilities from

this cone. In particular, it is computationally convenient to work with this cone and not the

polytope that is generated by explicitly imposing that choice probabilities must be proper

probabilities.

• The limiting distribution of the test statistic depends discontinuously on a high-dimensional

nuisance parameter. Such features have been studied extensively in the literature on moment

inequalities. However, our problem has characteristics which are not well studied in that

literature. In particular, we will effectively test moment inequalities that jointly define a

convex cone, and this cone will be represented in terms of its spanning rays rather than its

faces. Moving from one representation to the other is computationally infeasible. We therefore

use the representation of the cone that emerges naturally in our problem and “tighten” it for

the purpose of bootstrap simulations. The procedure is similar in spirit to approaches proposed

by Andrews and Soares (2010), Bugni (2010), Canay (2010), and others. However, it is easy

to implement in our application and, more generally, will have practical appeal whenever the

representation of inequalities through a cone’s spanning rays is natural.

In summary, the present paper contributes to the literature by (i) showing that McFadden and

Richter’s ARSP, and in particular stochastic rationality of a population, can be tested nonparametri-

cally, and developing computational tools to do so, and (ii) proposing a method based on “inequality

tightening” that works well for inequality testing in some settings where standard methods as in

Andrews and Soares (2010) or Bugni (2010) are hard to implement. We note that (ii) is also a con-

tribution to specification testing of partially identified moment inequalities models more generally,

namely in cases where the indirect moment inequalities as discussed here are the natural description

of a model. We will also briefly explain how to carry out counterfactual analysis and intend to flesh

out this part of the analysis in a companion paper.

2. Related Literature

In this section, we discuss the related literature on demand; related works in asymptotic theory

are more easily discussed after setting up the corresponding framework. We first and foremost build

on the classic literature on (deterministic and stochastic) revealed preference. Inspired by Samuelson’s
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(1938) statement of the revealed preference paradigm, Houthakker (1950), Afriat (1967; see also Varian

(1982)), and Richter (1966) delineated the precise content of utility maximization if one observes a

single consumer’s demand behavior. For our purposes, this content is embodied in the Strong Axiom of

Revealed Preference (SARP): The transitive closure of directly revealed preference must be acyclical.3

This approach was extended to random utility maximization by Block and Marschak (1960), Falmagne

(1978), McFadden and Richter (1991), and McFadden (2005). In particular, McFadden and Richter

show that the precise content of random utility maximization – or equivalently, of individual level

utility maximization in the presence of unrestricted, unobservable heterogeneity – is expressed by a

collection of inequalities collectively dubbed “Axiom of Revealed Stochastic Preference” (ARSP).

These findings resolve this paper’s questions “in the limit” when all identifiable quantities are

known. In this idealized setting, they allow one to decide with certainty whether a given demand

system or distribution of demands is rationalizable. In reality, estimators of these quantities might

fail to be rationalizable because of sampling variation, and one can merely test the hypothesis that

data might have been generated by a rational individual or population. For testing individual level

rationality, such a test was proposed by Epstein and Yatchew (1985).4 To the best of our knowledge,

we provide the first such test for ARSP.

Perhaps the closest paper to ours in spirit is Manski (2007). In a simple, very abstract discrete

choice problem (the universal set of options is a finite and, in practice, small list), he analyzes essen-

tially the same question as we do. In particular, he states the testing and extrapolation problems in the

abstract, solves them in simple examples, and outlines an approach to exact finite sample inference.

Further results for simple instances of the problem, including results on the degree of underidentifica-

tion of choice types, were provided by Sher et al. (2011). While we start from a continuous problem

3The aforecited papers subtly differ in their handling of indifference. SARP characterizes rationality in the absence

of indifference; else, it is sufficient but not necessary. Richter (1966) characterizes rationality if indifference is revealed

through set-valued choice. The Afriat inequalities, or equivalently Varian’s (1982) Generalized Axiom of Revealed

Preference (GARP), characterize rationality if indifference is permitted but cannot be revealed through set-valued choice.

These differences do not matter in our setting. Observed choice is always unique, hence Richter’s (1966) axiom

collapses to SARP. Because nonsatiation will be assumed, GARP differs from SARP only with respect to choice objects

that lie on the intersections of budget planes. With continuous demand on finitely many budgets, this case has zero

probability (and does not occur in our data). In cases where these subtleties do matter, it would be easy to adopt our

approach to any of these variations.
4See also the survey by Cherchye et al. (2009) and recent work by Dean and Martin (2013) or Echenique et al. (2011)

for other approaches to testing individual level rationality.
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and use asymptotic theory rather than exact inference, the settings become similar after our initial

discretization step. Our main contribution relative to these papers is to provide the computational

toolkit, as well as asymptotic theory, to handle problems of realistic size. Indeed, this toolkit was

recently employed for choice extrapolation by Manski (2013).

In a series of influential papers, Blundell, Browning, and Crawford (2003, 2008; BBC hence-

forth) develop a nonparametric approach to demand analysis based on Engel curves. They assume the

same observables as we do and apply their method to the British Family Expenditure Survey (FES),

to which we apply our method as well in Section 8. The core difference to our approach is that BBC

analyze one individual level demand system generated by nonparametric estimation of Engel curves.

This could be loosely characterized as revealed preference analysis of a representative consumer (and

in practice, given their specific estimation technique, of average demand). One possible foundation

for it was provided by Lewbel (2001), who gives conditions on the random part of a random utility

model that ensure integrability of expected demand. Lewbel’s (2001) assumptions therefore precisely

delineate one possible bridge between BBC’s assumptions and ours. Also, BBC exploit only the im-

plications of the Weak Axiom of Revealed Preference (WARP) and therefore test a necessary but

not sufficient condition for rationalizability of aggregate demand; see Blundell, Browning, Cherchye,

Crawford, de Rock, and Vermeulen (2012). In contrast, we consider the full implication of SARP. A

different test of necessary conditions is proposed by Hoderlein (2011), who shows that certain features

of rational individual demand, like adding up and standard properties of the Slutsky matrix, are

inherited by aggregate demand under weak conditions. The resulting test is passed by the FES data.

Hoderlein and Stoye (2013) again use the same assumptions and data but ask different ques-

tions. They bound from above and below the fraction of the population who violate WARP. As a

corollary (namely, by exhibiting the conditions under which the lower bound is zero), they show what

discipline is put on the data by WARP alone. In the very special case of two goods, their results are

formally connected to ARSP because WARP implies SARP (Rose (1958)), thus their corollary and

ARSP must have the same specialization. This specialization is developed, and some implications are

pointed out, in Stoye and Hoderlein (2013). The latter paper contains no asymptotic theory, and the

asymptotic theory in Hoderlein and Stoye (2013) is more closely related to the previous literature on

moment inequalities than to this paper’s innovation.

Finally, our approach can be usefully contrasted to the recently active literature on invertibility

of demand, that is, on conditions under which individual demand can be backed out from observation

of repeated cross-sections. See Beckert and Blundell (2007), Berry, Gandhi, and Haile (2013), and
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references therein. Unsurprisingly, invertibility requires substantial assumptions on structural param-

eters, i.e. utility functions and/or their distributions, which we avoid. The paper in this literature that

is perhaps closest to ours is Blundell, Kristensen, and Matzkin (2011), who investigate nonparametric

extrapolation of demand and, compared to our setting, essentially add only invertibility. Other than

by adding this assumption, their paper differs from ours by restricting attention to two goods. The

extension of their approach to more than two goods is challenging; however, in the case of two goods,

Stoye and Hoderlein (2013) show that their invertibility assumption is without loss of generality given

the data structure.

3. Methodology

Following McFadden and Richter (1991) as well as many of the aforecited references, we presume

a finite number of budgets parameterized by p ∈ {p1, ..., pJ}.5 Indexing the corresponding budget

planes as Bj = B(pj) := {y ≥ 0 : p′jy = 1}, we can drop p from notation and write choice probability

functions as

π(y ∈ Y |Bj) := Pr(y ∈ Y |budget plane is Bj), Y ⊂ Y.

We only restrict individual consumers’ behavior by monotonicity (“more is better”) and SARP;

equivalently, we assume that each consumer maximizes some nondecreasing utility function.6 The only

implication of monotonicity in our setting is that choices must be on (and not below) budget planes.

Thus, we assume that demand distributions are supported on the corresponding budget planes; more

formally, π(y ∈ Bj |Bj) = 1. The only implication of SARP is to restrict, in possibly very intricate

ways, whether choice can simultaneously be above certain budgets and below others. In particular,

consider two consumers a and b whose choices yaj and ybj are different but fulfil
(
p′jy

a
k − 1

)
(p′jy

b
k−1) ≥ 0

for each (j, k) ∈ {1, ..., J}2. In words, it is true for any (j, k) that consumer a’s choice from budget j

lies above budget k iff consumer b́’s choice from budget j does. Then it must be the case that either

both consumers fulfil SARP or both violate it. For the purpose of testing our random utility model,

we can take the two consumers to form an equivalence class.

This insight means that, while the space of choices Y ⊂ RK
+ is generally unrestricted and is

continuous in our application, it can be discretized without loss of generality. Doing so requires some

5The theory was extended to the continuous case in McFadden (2005), and we discuss prospects for the corresponding

extension of our approach in the conclusion.
6In a setting characterized by choice from linear budgets, this is furthermore equivalent to assuming maximization of

strictly concave utility (Varian (1982)).
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definitions. For every budget Bj , let the Ij elements of
{
x1|j , . . . , xIj |j

}
form the coarsest partition of

Bj such that no budget plane other than Bj intersects the interior of any one element of the partition.

In other words,
{
x1|j , . . . , xIj |j

}
has the property that its elements are disjoint, that Bj =

Ij∪
i=1

xi|j

for every j, and also that for any k = 1, ..., J , any i = 1, ..., Ij , and any y1, y2 ∈ xi|j , one has

(p′ky1 − 1)(p′ky2 − 1) ≥ 0; furthermore,
{
x1|j , . . . , xIj |j

}
is the coarsest such partition. Henceforth, we

use the word “patch” to denote a generic element xi|j of X . For the simplest nontrivial example, let

there be J = 2 budgets that intersect, then there is a total of four patches: two on B1, where one is

above B2 and the other one is below it, and two patches on B2, where one is above B1 and one is below

it. Then the random utility model intricately restricts the probabilities of patches π(y ∈ xi|j |Bj), but

it does not at all restrict the conditional distributions of demand on patches.

We can, therefore, work with choice space X , effectively discretizing the choice problem to one

with a total of I :=
∑J

j=1 IJ choice objects and corresponding choice probabilities. This leaves us

with a large (in applications of practical interest) but finite set of distinct nonstochastic choice types.

We will now explain how to efficiently encode these. To do so, arrange X as a vector

X = (x1|1, x2|1, ..., xIJ |J)
′

and similarly write

πi|j := Pr(y ∈ xi|j |Bj),

πj := (π1|j , ..., πIj |j)
′

π := (π′
1, ..., π

′
J)

′ = (π1|1, π2|1, ..., πIJ |J)
′,

then the I-vector π contains all information that is relevant for testing RUM.

Any conceivable pattern of nonstochastic choice behavior can be identified with a binary I-

vector a = (a1|1, ..., aIJ |J)
′, where a component ai|j of a equals 1 iff the corresponding component

xi|j of X is chosen from budget Bj . We call a rationalizable if there exists u∗ ∈ U such that ai|j =

1{argmaxy∈Bj u
∗(x) ∈ xi|j} for all ai|j . Under our assumptions, this is the case iff behavior encoded in

a fulfills SARP, but we emphasize that the approach could be modified to impose more or less structure

on a and thereby on agents’ behavior. Every rationalizable vector a can be thought of as characterizing

a rational, nonstochastic choice type. Let the columns of the (I ×H)-matrix A := [a1, ..., aH ] collect

all rationalizable such vectors. Then a vector of choice probabilities π is stochastically rational iff

there exists ν ∈ ∆H−1 such that Aν = π. In words, π must be a convex combination of the columns

of A. The weights ν can be interpreted as implied population distribution over rational choice types;
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remember, though, that each of these choice types represents an equivalence class of observationally

distinct choice types.

To compare our assumptions with those inherent in other approaches, observe how invertibility

of demand fails on many levels. First, we consider finitely many budgets, so with unconstrained het-

erogeneity, any given demand pattern is rationalizable iff it is rationalizable by infinitely many utility

functions. Second, every column a represents a continuum of observationally distinct, rationalizable

demand patterns because of the lumping of continuous demand data into patches. Third, ν is not

identified: A is typically very far from full column rank, and a π that is rationalizable at all will

typically be rationalizable by many different vectors ν. We return to partial identification of ν in

section 9.1.

McFadden and Richter (1991; see also McFadden (2005, theorem 3.3)) anticipated the dis-

cretization of choice space and also also noted various equivalent statements for the empirical content

of RUM. For example, ν as required here exists iff the linear program minν≥0,s≥0 1
′
Is s.t. Aν + s ≥

π,1′Hν ≤ 1 has an optimal solution with s = 0. However, we employ the first statement verbalized

above, thus we directly test:

(HA): There exist a ν ∈ ∆H−1 such that Aν = π,

where ∆H−1 denotes the (H − 1)-dimensional unit simplex. To test this hypothesis, we transform it

as follows. First, note that 1′IA = [J, ..., J ] and 1′Iπ = J hold by definition. Therefore, Aν = π implies

1′Hν = 1. Thus (HA) is equivalent to

(HB): There exist ν ≥ 0 such that Aν = π.

It is easy to see that Hypothesis (HB) is, in turn, equivalent to

(HC): minη∈C [π − η]′Ω[π − η] = 0,

where Ω is a positive definite matrix (restricted to be diagonal in our inference procedure) and C :=

{Aν|ν ≥ 0}. Note that the constraint set C is a cone in RI . The solution η0 of (HC) is the projection

of π ∈ RI
+ onto C under the weighted norm ∥x∥Ω =

√
x′Ωx. The corresponding value of the objective

function is the squared length of the projection residual vector. The projection η0 is unique, but the
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corresponding ν is not. Stochastic rationality holds if and only if the length of the residual vector is

zero.

A natural sample counterpart of the objective function in (HC) would be minη∈C [π̂−η]′Ω[π̂−η],

where π̂ estimates π, for example by sample choice frequencies. It is useful to normalize this sample

counterpart by N to obtain an appropriate asymptotic distribution, so define

JN : = N min
η∈C

[π̂ − η]′Ω[π̂ − η](3.1)

= N min
ν∈RH

+

[π̂ −Aν]′Ω[π̂ −Aν].

Once again, ν is not unique at the optimum, but η = Aν is. Call its optimal value η̂, noting that

η̂ can also be thought of as rationality-constrained estimator of choice probabilities. Then η̂ = π̂,

and JN = 0, iff the estimated choice probabilities π̂ are stochastically rational; obviously, our null

hypothesis will be accepted in this case. To determine an appropriate critical value for our test, we

will have to estimate the distribution of JN . This estimation problem is intricate and will be handled

in section 5.

4. Computation

We now turn to computational implementation of the approach. The challenge is threefold:

First, how to encode the choice set X ; second, how to generate the matrix A; last, how to carry out

the constrained minimization in the definition of JN . We explain our response to these issues in this

order.

4.1. Encoding X . Geometrically, the patches xi|j are polyhedra with rather complex descriptions.

However, the only information that matters for computing A is how any given patch relates to the

different budgets. To implement this insight, we switch from the double index expression X =

{{xi|j}
Ij
i=1}Jj=1 to a a single index i = 1, ..., I and write X = {xi}Ii=1 in the remainder of this sec-

tion. Now, let

Xij :=


−1 if xi is below Bj

0 if xi is on Bj

+1 if xi is above Bj

j = 1, ..., J,

then we can represent each xi by the vector

Xi := [Xi1, ..., XiJ ], i = 1, ..., I.
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The choice set is represented by the (I × J)-matrix X= [X ′
1, ...,X

′
I ]
′ with typical cell Xij . Our algo-

rithm for generating X from budget data (p1, ..., pJ) is as follows: First, generate all J×2J−1 possible

vectors Xi of the form just described. Not all of these will encode patches that actually exist in the

given choice problem; in particular, some of them will define intersections of half-spaces that do not

occur in the positive quadrant. Thus, test the validity of each vector and append it to X only if the

test is passed. To illustrate this step, suppose that J = 5 with K goods and that we want to verify

whether the patch encoded by (0,−1, 1, 1, 1) exists. It is easy to see that this is the case iff the system

of (J + 1 +K) inequalities

p′1y ≤ 1, p′1y ≥ 1, p′2y ≤ 1, p′3y ≥ 1, p′4y ≥ 1, p′5y ≥ 1, y ≥ 0

has a solution. Several numerical solvers can quickly verify consistency of a set of linear inequality

constraints. Using the cvx optimization package (Grant and Boyd (2008, 2011)), we find that checking

the above inequalities is computationally inexpensive even for high dimensional commodity spaces.7

4.2. Computing A. To compute the matrix A, write

A = {aih},

where aih equals 1 if choice type h picks patch xi from budget Bj , where Bj contains xi. (As with

X , it is convenient for this section’s purpose to index rows of A by i = 1, ..., I instead of the double

index i|j.) The challenge is to ensure that a nonstochastic choice type is represented as a column of A

iff her choices are rationalizable, i.e. iff the (transitive closure of the) incomplete preference ordering

revealed by her choice behavior is acyclical. To do this, we first extract the preferences revealed by

a choice type, then check for acyclicity. The following fact is crucial for the first step: Choice of xi

from budget Bj reveals that xi ≻ xm for every patch xm ̸= xj s.t. Xmj ∈ {−1, 0} (the symbol ≻

signifies the revealed preference relation). Here, Xmj = 0 ⇒ xi ≻ xm follows directly because xi

and xm are on the same budget plane; Xmj = −1 ⇒ xi ≻ xm follows by additional uses of “more

is better” and transitivity because xi was chosen over some patch that dominates xm. In a second

step, acyclicity of a given set of revealed preferences can be checked by the Floyd-Warshall algorithm,

efficient implementations of which are readily available.

7If this computation were a bottleneck, it could be refined along the lines of the decision tree crawling algorithm

discussed in the next subsection. However, computation of A is the much harder step.
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We implemented three ways to generate A.8 First, a “brute force” approach initially creates

a

(
I ×

J∏
j=1

Ij

)
-matrix Amax that represents all possible choice combinations from J budgets. Every

column of Amax is then checked for rationality. This approach, which resembles our computation of X,

has the benefit of being straightforward and of also collecting irrational types, which can be handy for

simulations. However, the number of columns of Amax grows extremely rapidly as budgets are added,

and the brute force approach is not practical in realistic examples, including this paper’s empirical

application.

Our second approach is a “decision tree crawling” algorithm. Here, the core insight is that all

possible choice patterns can be associated with terminal nodes of a decision tree whose initial node

corresponds to choice from B1, the next set of nodes to choice from B2, and so on. The algorithm

exhaustively crawls this tree, checking for choice cycles at every node that is visited and abandoning

the entire branch whenever a cycle is detected. A column of A is discovered every time that a

terminal node is visited without detecting a cycle. The abandoning of branches means that most

nonrationalizable choice patterns are never visited. For example, if a cycle is detected after specifying

behavior on 4 out of 10 budgets, then none of the many possible completions of this choice pattern

are considered. The downside is more frequent (for any rational pattern that is detected) execution

of the Floyd-Warshall algorithm, but this algorithm is cheap (it terminates in polynomial time). The

net effect is to improve computation time by orders of magnitude in complicated problems. Indeed,

this is our most powerful algorithm that is directly applicable “off the shelf” in every application of

our approach.

Finally, a modest amount of problem-specific adjustment can lead to further, dramatic im-

provement in many cases, including our empirical application. The key to this is contained in the

following proposition, which is established in appendix A.

Proposition 4.1. Suppose that for some M ≥ 1, none of (B1, ..., BM ) intersect BJ . Suppose also

that choices from (B1, ..., BJ−1) are jointly rationalizable. Then choices from (B1, ..., BJ) are jointly

rationalizable iff choices from (BM+1, ..., BJ) are.

This proposition is helpful whenever not all budgets mutually intersect. To exploit it in appli-

cations, one must manually check for such sets of budgets and possibly be willing to reorder budgets.

The benefit is that if the proposition applies, all rationalizable choice patterns can be discovered by

8Appendix B contains a more detailed description, including pseudo-code for some algorithms.
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checking for rationalizable choice patterns on smaller domains and then combining the results. In par-

ticular, Proposition 4.1 informs the following strategy: First collect all rationalizable choice patterns

on (BM+1, ..., BJ−1). Next, for each such pattern, find all rationalizable completions of it to choice on

(B1, ..., BJ−1) as well as all rationalizable completions to (BM+1, ..., BJ). (For the first of these steps,

one may further economize by computing all rationalizable patterns on (B1, ..., BM ) in a preliminary

step.) Every combination of two such completions is itself a rationalizable choice pattern. Note that

no step in this algorithm checks rationality on J budgets at once; furthermore, a Cartesian product

structure of the set of rationalizable choice patterns is exploited. The potential benefit is substantial

– in our application, the refinement sometimes improves computation times by orders of magnitude.

4.3. Computing JN . Computation of JN is a quadratic programming problem subject to a possibly

large number of linear inequality constraints. We have nothing to add to the theory of solving

such problems and rely on modern numerical solvers that can handle high-dimensional quadratic

programming problems. Our currently preferred implementation utilizes cvx. We also implemented

computation of JN with fmincon (using stepwise quadratic programming) and Knitro. All solvers

agree on those problems that they can handle, with fmincon being practical only for rather small

problem sizes.

4.4. Summary. As we will demonstrate in Section 8, the above algorithms for computation of X,

A, and JN can be executed for high-dimensional problems. However, we will now illustrate by very

briefly going over the simplest nontrivial example, i.e. two budgets which intersect. In this case J = 2

and I1 = I2 = 2, yielding I = 4 patches, and we have

X =


0 −1

0 1

−1 0

1 0

 , A =


1 0 0

0 1 1

0 0 1

1 1 0

 , π =


Pr(x1 is chosen|budget is B1)

Pr(x2 is chosen|budget is B1)

Pr(x3 is chosen|budget is B2)

Pr(x4 is chosen|budget is B2)

 .

Here, the first row of X represents the part of budget B1 that is below B2 and so on. Rows of A

corresponds to rows of X, whereas its columns correspond to types. Thus, the first column of A

indicates the rational choice type whose choice from B1 is below B2 but whose choice from B2 is

above B1. There are four logically possible choice types, but one of them, namely [1, 0, 1, 0]′, would

violate WARP and is therefore not represented in A. Given an estimator π̂ = (π̂1, π̂2, π̂3, π̂4)
′ for π

and setting Ω = I2, one can then verify that JN = N · (max{π̂1 + π̂3 − 1, 0})2. In particular, the
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test statistic JN is zero if π̂1 + π̂3 ≤ 1, and in that case we immediately conclude that the data are

consistent with the random utility model.

The example reproduces the known finding (Matzkin (2006), Hoderlein and Stoye (2013)) that

with two budgets, the content of stochastic rationality is exhausted by the restriction “π1 + π3 ≤ 1”

on population choice probabilities. However, the tools proposed here allow one to perform similar

computations for very complicated examples. Think of the size of A, that is, “number of patches ×

number of rational choice types,” as an indicator of problem complexity. Then the example just given

has size (4 × 3). For our empirical application, we successfully computed A, and computed JN 2000

times, in cases where A has size (67× 149570) respectively (64× 177352). The computational bottle-

necks in implementation are twofold: Computation of A took several hours in some cases (although

reduced to minutes using proposition 4.1), and computation of JN (which must be iterated over to

compute critical values) took up to a minute.

5. Inference

This section discusses inferential procedures to deal with the hypothesis (HA) or its equivalent

forms. We initially assume that choice probabilities were estimated by sample frequencies. For each

budget j, denote the choices of Nj individuals, indexed by n = 1, ..., Nj , from the budget set Bj , by

di|j,n =

 1 if individual n chooses xi|j

0 otherwise
n = 1, ..., NJ .

Assume that one observes J random samples {{di|j,n}
Ij
i=1}

Nj

n=1, j = 1, 2, ..., J . For later use, define

dj,n :=


d1|j,n
...

dIj |j,n

 , N =

J∑
j=1

NJ .

An obvious way to estimate the vector π is to use choice frequencies

(5.1) π̂i|j =

Nj∑
n=1

di|j,n/Nj , i = 1, ..., Ij , j = 1, ..., J.

Our main task is to estimate the sampling distribution of JN = N minν∈RH
+
[π̂−Aν]′Ω[π̂−Aν] under

the null hypothesis that the true π is rationalizable. This problem is closely related to the literature

on inequality testing, but with an important twist. Recall that {a1, a2, ..., aH} are the column vectors
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of A. Define

cone(A) = {ν1a1 + ...+ νHaH : νh ≥ 0},

then C = cone(A), and we test whether π ∈ C. We therefore work with what is called a V-

representation of the cone C in the literature on convex geometry (see, e.g., Ziegler (1995)). Un-

fortunately, a V-representation is not useful in detecting whether η̂ is close to an irregular point or

not. (Irregular points occur close to the spanning rays of the cone, but because many vectors ν corre-

spond to the same projection η̂, we may not be able to diagnose this from the ν that we discovered.)

Thus, an alternative description of C in terms of η has to be obtained. Weyl’s Theorem guarantees

that that is possible theoretically : If a set C in RJ is represented as cone(A), A ∈ RI×H , we can write

C = {t ∈ RI |Bt ≤ 0} for some B ∈ Rm×I .

The last line is called an H-representation of C.9 Applying Weyl to the definition of JN , one can

obtain

JN = min
t∈RI :Bt≤0

N [π̂ − t]′Ω[π̂ − t],

where the optimal t (:= t̂) is unique.

On a theoretical level, this connects our testing problem to tests of

H0 : Bθ ≥ 0 B ∈ Rp×q is known

based on test statistics of form

TN := min
η∈Rq

+

N [Bθ̂ − η]′S−1[Bθ̂ − η].

This type of problem has been studied by Gourieroux, Holly and Monfort (1982) and Wolak (1991).

See also Chernoff (1954), Kudo (1963), Perlman (1969), Shapiro (1988), Kuriki and Takemura (2000),

Andrews (2001), Rosen (2008), and Guggenberger, Hahn, and Kim (2008).10 A common way to

get a critical value for TN is to consider the least favorable case, which is θ = 0. This strategy is

9The converse is also true and known as Minkowski’s Theorem. See Gruber (2007), Grünbaum (2003) and Ziegler

(1995) for these results and other materials concerning convex polytopes used in this paper.
10More precisely, Guggenberger, Hahn and Kim (2008) consider specification testing of linear moment inequality

models of the form Cθ ≤ E[x], θ ∈ Rm where C is a known conformable matrix, and propose to test its equivalent form

RE[x] ≥ 0 where R is another known matrix. This equivalence follows from the Weyl-Minkowski Theorem, which we

use as well. Moving from C to R is not computationally feasible in our application, however, and we avoid it. Similarly,

Canay’s (2010) inequality tightening is related to our method, but applying it here would require the H-representation

of C, which is not in practice available.
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inappropriate in the present context for a number of reasons: Direct application to our problem is

not feasible because the H-representation of C cannot be computed in practice, and the suggested

least favorable distribution can lead to unnecessarily conservative inference. Alternatively, one might

consider a resampling method. However, some care is required in calculating a valid critical value

for JN in cases where more than one inequality is (almost) binding. The naive bootstrap and like

methods fail in these cases. (See, for example, Andrews and Soares (2010), Bugni (2010), Canay

(2010), Chernozhukov, Hong and Tamer (2007), Imbens and Manski (2004), Romano and Shaikh

(2010), and Stoye (2009).)

Three methods for inference that can be potentially used to calculate a critical value for the

statistic JN are: (1) Regularization, (2) moment selection, and (3) “inequality tightening.” We now

discuss them in turn. Suppose that
√
N(π̂ − π) →d N(0, S), where S is the asymptotic covari-

ance matrix. Let Ŝ denote a consistent estimator for S. Then regularization is easy to imple-

ment. Let η̃αN := η̂ +
√

αN
N N(0, Ŝ), where αN is a sequence that goes to infinity slowly. Re-

call that η̂ is the projection of the choice frequency vector π̂ onto the cone C. The random vari-

able η̃αN is essentially a subsampled or m-out-of-n bootstrapped version of η̂. The distribution of

J̃N (αN ) := N
αN

minν∈RH
+
[η̃αN − Aν]′Ω[η̃αN − Aν] can be evaluated by simulation. It provides a valid

approximation of the distribution of JN asymptotically, regardless of the position of η0, the popula-

tion analog of η̂, on the cone C. This is basically the idea behind subsampling and the m-out-of-n

bootstrap. It is convenient computationally, but Andrews and Guggenberger (2009, 2010) forcefully

argue that it can suffer from severe conservatism.

The second approach, i.e. inequality selection, is essentially the Generalized Moment Selection

procedure for moment inequality models (see, e.g., Andrews and Soares (2010), Bugni (2010)). Let

κN be a sequence that diverges slowly to infinity.11 Let b1, ..., bm be the row vectors of B. Suppose

(w.l.o.g.) that −
√
Nb1t̂ ≤ κN , ...,−

√
Nbf t̂ ≤ κN and −

√
Nbf+1t̂ ≥ κN , ...,−

√
Nbmt̂ ≥ κN . Let

B1 = [b′1, ..., b
′
f ]

′ and B2 = [b′f+1, ..., b
′
m]′. Redo the above minimization, but change the constraints to

min
t∈RI :B1t=0,B2t≤0

N [π̂ − t]′Ω[π̂ − t].

Let t̂select denote the minimizer and define η̃κN := t̂select +
1√
N
N(0, Ŝ). The distribution of

J̃n(κN ) = min
t∈RI :Bt≤0

N [η̃κN − t]′Ω[η̃κN − t].

11For example, Andrews and Soares (2010) suggest κN =
√
logN .
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offers a valid approximation to the distribution of JN . This is expected to work well in finite samples,

but is computationally infeasible in the present context. To our knowledge, implementing Weyl’s

Theorem to obtain an H-representation out of the V-representation is done by repeated application

of (some variation of) the Fourier-Motzkin elimination algorithm, which is notoriously difficult when

the dimension of ν is high. This is exactly the case for the problem considered in this subsection, even

for a small number of budgets.

We therefore propose an “inequality tightening” approach that sidesteps the need for an H-

representation of C, making it simple to implement and applicable to problems of a realistic size. The

idea is to tighten the constraint by replacing

ν ≥ 0

with

ν ≥ τN1H

for some positive scalar τN that declines to zero slowly. (In principle, the vector 1H could be any

strictly positive H-vector, though a data based choice of such a vector is beyond the scope of the

paper.) Now solve

JN (τN ) : = min
η∈CτN

N [π̂ − η]′Ω[π̂ − η]

= min
[ν−τN1H ]∈RH

+

N [π̂ −Aν]′Ω[π̂ −Aν]

where CτN := {Aν|ν ≥ τN1H}, and let η̂τN denote the solution. Our proof establishes that constraints

that are almost binding at the original problem’s solution (i.e., their slack is difficult to be distinguished

from zero at the sample size) will be binding with zero slack after tightening. Let η̃τN := η̂τN +

1√
N
N(0, Ŝ). Notice that, as in the inequality selection procedure, no regularization (or subsampling/m-

out-of-n bootstrapping) is necessary at this stage. Finally, define

J̃N (τN ) : = min
η∈CτN

N [η̃τN − η]′Ω[η̃τN − η](5.2)

= min
[ν−τN1H ]∈RH

+

N [η̃τN −Aν]′Ω[η̃τN −Aν],

and use its distribution to approximate that of JN . This has the same theoretical justification as the

inequality selection procedure. Unlike the latter, however, it avoids the use of an H-representation,

thus offering a computationally feasible empirical testing procedure for stochastic rationality. We now

turn to providing a detailed justification for the method.
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First, recall that we tighten the constraint set C using its V-representation. The next lemma,

among other things, shows that this corresponds to a strict tightening of its H-representation, even

though direct computation of the latter is infeasible. For a matrix B, let col(B) denote its column

space.

Lemma 5.1. For a τ > 0 and a matrix A ∈ RI×H , define

Cτ := {Aν|ν ≥ τ1H}.

Then Cτ can be alternatively written as

Cτ = {t : Bt ≤ −τϕ},

where B ∈ Rm×I , ϕ ∈ Rm
++ and ϕ ∈ col(B).

This is different from the Minkowski-Weyl theorem for polyhedra, which would provide an

expression of Cτ as the Minkowski sum of a convex hull and a non-negative hull. Lemma 5.1 is useful

for proving the asymptotic validity of our procedure.

The following assumption is used for our asymptotic theory.

Assumption 5.1. For all j = 1, ..., J ,
Nj

N → ρj as N → ∞, where ρj ∈ (0, 1).

Let bk,i, k = 1, ...,m, i = 1, ..., I denote the (k, i) element of B, then define

bk(j) = [bk,N1+···Nj−1+1, bk,N1+···Nj−1+2, ..., bk,N1+···Nj
]′

for 1 ≤ j ≤ J and 1 ≤ k ≤ m. Consider the following requirement:

Condition 5.1. For some ϵ > 0 and some j = 1, ..., J , var(bk(j)
′dj,n) ≥ ϵ holds for all 1 ≤ k ≤ m.

Note that the distribution of observations is uniquely characterized by the vector π. Let P denote the

set of all π’s that satisfy Condition 5.1 for some (common) value of ϵ.

Theorem 5.1. Choose τN so that τN ↓ 0 and
√
NτN ↑ ∞. Also, let Ω be diagonal, where all the

diagonal elements are positive. Then under Assumption 5.1

lim inf
N→∞

inf
π∈P∩C

Pr{JN ≤ ĉ1−α} = 1− α

where ĉ1−α is the 1− α quantile of J̃N (τN ), 0 ≤ α ≤ 1
2 .
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Proof : See Appendix A.

Technically, the boundedness of our observations dj,n — each element of di|j,n is a Bernoulli(πi|j)

random variable — and the above condition guarantee that the Lindeberg condition holds for b′kπ̂, k =

1, ...,m, which is important for the uniform size control result in the following theorem as it relies

on a triangular array CLT. It is known that a triangular array XiN , i = 1, ..., N ∼iid Bernoulli(pN ),

N = 1, 2, ... obeys CLT iff NpN (1 − pN ) → ∞. Since the size control here is defined against a fixed

class of distribution F ∩C as N → ∞, it seems natural to impose a fixed lower bound ϵ in Condition

5.1. See the proof of Theorem 5.1 in Appendix A for more on this point.

Finally, we note that the method works because tightening the cone can only turn non-binding

inequalities from the H-representation into binding ones but not vice versa. This feature is not

universal to cones. Our proof establishes that it generally obtains if Ω is the identity matrix and all

corners of the cone are acute. In this paper’s application, we can further exploit the cone’s geometry

to extend the result to any diagonal Ω. Our method immediately applies to other V-representations

if analogous features can be verified.

6. Bootstrap Algorithm with Tightening

This section details how to simulate the distribution of JN with a bootstrap procedure that

employs Theorem 5.1. First, we apply the standard nonparametric bootstrap to obtain resampled

unrestricted choice probability vector estimates π̂∗(r), r = 1, ..., R, where R denotes the number of

bootstrap replications. This provides the bootstrap distribution estimate as the distribution of π̂∗(r)−

π̂, r = 1, ..., R, where, as before, π̂ denotes the unrestricted choice probability vector. We need to

generate the bootstrap samples under the null, however. A naive way to achieve this would be to

center it around the restricted estimator η̂, that is

π̂
∗(r)
naive = π̂∗(r) − π̂ + η̂, r = 1, ..., R.

Recall that η̂ is the solution to

JN := N min
η∈C

[π̂ − η]′Ω[π̂ − η]

= N min
ν∈RH

+

[π̂ −Aν]′Ω[π̂ −Aν].

But π̂∗
naive is invalid due to standard results about the failure of the bootstrap in discontinuous models

(e.g., Andrews (2000)). The “tightening” remedy is to center it instead around the tightened restricted

estimator. More precisely, our procedure is as follows:
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(i) Obtain the τN -tightened restricted estimator η̂τn , which solves

JN := min
η∈CτN

N [π̂ − η]′Ω[π̂ − η]

= min
[ν−τN1H ]∈RH

+

N [π̂ −Aν]′Ω[π̂ −Aν]

(ii) Calculate the bootstrap estimators under the restriction, using the recentering factor η̂τn

obtained in (i):

π̂∗(r)
τn := π̂∗(r) − π̂ + η̂τn , r = 1, ..., R.

(iii) Calculate the bootstrap test statistic by solving the following problem:

J
∗(r)
N (τN ) := min

η∈CτN

N [π̂∗(r)
τn − η]′Ω[π̂∗(r)

τn − η]

= min
[ν−τN1H ]∈RH

+

N [π̂∗(r)
τn −Aν]′Ω[π̂∗(r)

τn −Aν],

for r = 1, ..., R.

(iv) Use the empirical distribution of J
∗(r)
N (τN ), r = 1, ..., R to obtain the critical value for JN .

This method relies on a tuning parameter τN which plays the role of a similar tuning parameter

in the moment selection approach (namely, the parameter labeled κN in Andrews and Soares (2010)).

In a simplified procedure in which the unrestricted choice probability estimate is obtained by simple

sample frequencies, one reasonable choice would be

τN =

√
logN

N

where N is the minimum of the ‘sample size’ across budgets: N = minj Nj (Nj is the number

of observations on Budget Bj : see (5.1)). The logarithmic penalization corresponds to the Bayes

Information Criterion. The use of N can probably be improved upon, but suffices to ensure validity

of our inference.

7. Test statistic with smoothing

In our empirical analysis in Section 8, the estimator π̂ is a standard kernel estimator, so the

above formula needs to be modified. Let hN (j) be the bandwidth applied to Budget Bj . Then an
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appropriate choice of τN is obtained by replacing Nj in the definition above with the “effective sample

size” NjhN (j). That is:

τN =

√
logNh

Nh

where Nh = minj NjhN (j). Strictly speaking, asymptotics with nonparametric smoothing involve

bias, and the bootstrap does not solve the problem. A standard procedure is to claim that one used

undersmoothing and can hence ignore the bias. We follow this convention.

To formally state the asymptotic theory behind our procedure with smoothing, let x(j) denote

the median (log) income levels for year j. We observe J random samples
{(

{di|j}
Ij
i=1, xn(j)

)}Nj

n=1
, j =

1, ..., J . Instead of sample frequency estimators, we use

π̂i|j =

∑Nj

n=1K(xn(j)−x(j)
hN (j) )di|j,n∑Nj

n=1K(xn(j)−x(j)
hN (j) )

,

π̂j = (π̂1|j , ..., π̂Ij |j)
′,

π̂ = (π̂′
1, ..., π̂

′
J)

′,

(note the index j in di|j,n now refers to year), where xn(j) is the log income of person n, 1 ≤ n ≤ Nj

observed in year j. The kernel function K is assumed to be symmetric about zero, to integrate to

1, and to satisfy
∫
|K(z)|dz < ∞ and

∫
z2K(z)dz < ∞. Needless to say, π̂i|j is a standard kernel

regression estimator for

πi|j := pi|j(x(j))

where

pi|j(x) := Pr(di|j,n = 1|xn(j) = x).

As before, we write πj := (π1|j , ..., πIj |j)
′ and π := (π′

1, ..., π
′
J)

′ = (π1|1, π2|1, ..., πIJ |J)
′. The smoothed

version of JN is computed using the above kernel estimator for π̂ in (3.1). We also replace the

normalizing factor N with N minj hN (j), which is convenient for asymptotic analysis. Likewise,

J̃N (τN ) is obtained applying the same replacements to the formula (5.2), although generating η̃τN

requires a slight modification. Let η̂τN (j) be the j-th block of the vector η̂τN , and Ŝj be a consistent

estimator for the asymptotic variance of
√

NjhN (j)(π̂j − πj). We use η̃τN = (η̃τN (1)
′, ..., η̃τN (J)

′) for

the smoothed version of J̃N (τN ), where η̃τN (j) := η̂τN (j) +
1√

NjhN (j)
N(0, Ŝj), j = 1, ..., J .

Let ḣ (ḧ) denote the first (second) derivative of a function h. Recall that the modulus of

continuity of h defined on R at x0 is given by

ω(h, t, x0) := sup |h(x)− h(x0)| s.t. |x− x0| ≤ t
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for t > 0.

Condition 7.1. Let ϵ > 0 and K < ∞ be some constants, and ρ : [0,∞] → [0,∞] some function such

that ρ(t) ↓ 0 as t ↓ 0. The following holds:

(i) π ∈ C;

(ii) var(bk(j)
′dj,n|xn(j) = x(j)) ≥ ϵ holds for all 1 ≤ k ≤ m for some j = 1, ..., J ;

(iii) xn(j) is continuously distributed with density fj, and fj(x(j)) ≥ ϵ for every 1 ≤ j ≤ J ;

(iv) pi|j is twice differentiable and ω
(
p̈i|j , t,x(j)

)
≤ ρ(t), t ≥ 0, sup |ṗi|j | ≤ K and sup | ¨pi|j | ≤ K

for every 1 ≤ i ≤ Ij and 1 ≤ j ≤ J ;

(v) fj is twice differentiable and ω
(
f̈j , t,x(j)

)
≤ ρ(t), t ≥ 0, sup fj ≤ K, sup |ḟj | ≤ K and

sup |f̈j | ≤ K for every 1 ≤ j ≤ J .

In what follows, Fj signifies the joint distribution of (di|j,n, xn(j)). Let F be the set of all

(F1, ..., FJ) that satisfy Condition 7.1 for some (ϵ,K, ρ(·)).

Corollary 7.1. Choose τN and hN (j), j = 1, ..., J so that τN ↓ 0, hN (j) = o(N− 1
5 ) and

√
N minj hN (j)τN ↑

∞. Also let Ω be diagonal where all the diagonal elements are positive. Then under Assumption 5.1

lim inf
N→∞

inf
(F1,...,FJ )∈F

Pr{JN ≤ ĉ1−α} = 1− α

where ĉ1−α is the 1− α quantile of J̃N (τN ), 0 ≤ α ≤ 1
2 .

The proof of Corollary 7.1 resembles the proof of Theorem 5.1, except that the asymptotic

normality proof in Bierens (1987, Section 2.2) and Condition 7.1 are used to obtain triangular array

CLT’s and uniform consistency results.

8. Empirical Application

We apply our methods to data from the U.K. Family Expenditure Survey, the same data used

by Blundell, Browning, and Crawford (2008, BBC henceforth). To facilitate comparison of results,

we use the same subset of these data as they do, namely the time periods from 1975 through 1999,

households with a car and at least one child, and also the same composite goods, namely food,

nondurable consumption goods, and services (with total expenditure on the three standing in for

income).

For each year, we extract the budget corresponding to that year’s median expenditure. We

estimate the distribution of demand on that budget by kernel density estimation applied to budget

shares, where the kernel is normal, the bandwidth is chosen according to Silverman’s rule of thumb,
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and the underlying distance metric is log(income). Like BBC, we assume that all consumers in one

year face the same prices, and we use their price data. While budgets have a tendency to move outward

over time, we find that there is substantial overlap of budgets. Thus, our analysis is not subject to

the frequently reported problem that revealed preference tests are near vacuous because income gains

dominate relative price changes. At the same time, the tendency of budgets to move outward means

that budgets which are more than a few years apart rarely overlap, making the refinement of our

crawling algorithm via Proposition 4.1 very powerful in this application.

It is computationally prohibitive to test stochastic rationality on 25 periods at once. We

work with all possible sets of eight consecutive periods, a problem size that can be very comfortably

computed. This leads to a collection of 18 matrices (X,A). Testing problems were of vastly different

complexity, with the size of the matrix A ranging from (14× 21) to (67× 149570) and (64× 177352);

thus, there were up to 67 patches and up to 177352 rational choice types. Over this range of problem

sizes, time required to compute A varied from negligible to several hours with the crawling algorithm.

Time required to compute the larger matrices improves by a factor of about 100 using Proposition

4.1. Time required to compute JN varied from negligible to about one minute, with problem size

(67× 149570) being the hardest. Thus, our informal assessment is that for computation of JN ,

increasing I (and therefore the dimensionality of the quadratic programming problem’s objective

function) is more costly than increasing H (and therefore the number of linear constraints).

Figures 1 and 2 provide a visual illustration using the 1975-82 periods. Figure 1 visualizes

the relevant budget sets; Figure 2 illustrates patches on the 1982 budget set. There is substantial

overlap across budgets, with the 1975-1982 periods generating 50 distinct “patches” and a total of

42625 choice types. The reason is that due to the 1970’s recession, budgets initially contract and then

recover over this time period, generating an intricate pattern of mutual overlaps.

For each testing problem, we computed X, A, JN , as well as critical values and p-values using

the tightened bootstrap algorithm with R = 2000 resamples. Results are summarized in Table 1. We

find that JN = 0 in only one case; that is, only in one case are the estimated choice probabilities

rationalizable. However, violations of stochastic rationality are by and large not significant. We get

one p-value below 10%, illustrating that in principle our test has some power, though this p-value

must of course be seen in the context of the multiple hypothesis tests reported in table 1.12 Also, the

p-values seem to exhibit strong serial dependence. This is as expected – recall that any two consecutive

12An increase of the bootstrap size to 10000 (not reported) confirms a p-value of under 10% for this test statistic seen

in isolation. Of course, a single rejection at the 10% level is well within expectations for joint testing of 18 hypotheses.
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periods I H N JN p-value 10% c.v. 5% c.v.

75-82 50 42625 1229 .23 96% 3.1 4.0

76-83 67 149570 1209 .25 95% 2.5 3.3

77-84 55 97378 1160 .22 94% 2.0 2.5

78-85 49 61460 1108 .22 93% 1.7 2.3

79-86 43 38521 1033 .24 69% .76 .94

80-87 35 7067 1033 .16 77% 2.1 3.4

81-88 27 615 995 .16 62% .67 .82

82-89 14 21 987 0 100% .24 .34

83-90 14 21 869 .00015 50% 2.1 3.5

84-91 16 63 852 .15 71% 2.6 3.8

85-92 27 1131 852 1.75 22% 3.1 4.3

86-93 43 10088 828 2.15 17% 2.9 3.8

87-94 49 55965 828 2.59 18% 3.5 4.6

88-95 52 75318 828 2.23 15% 2.8 3.6

89-96 64 177352 795 1.61 23% 2.7 3.6

90-97 46 22365 715 1.74 9.1% 1.69 2.2

91-98 39 9400 715 2.17 16% 2.8 3.5

92-99 21 225 715 2.58 10.2% 2.6 3.4

Table 1. Numerical Results of Testing Rationality Using FES data.

p-values were computed from two subsets of data that overlap in seven of eight periods. Our overall

conclusion is that observed choice probabilities differ from rationalizable ones but not significantly so.

9. Further Applications and Extensions

9.1. Partial Identification of ν. Our setting gives rise to an identified set Hν for weights ν over

rational choice types

Hν = {ν ∈ ∆H−1 : Aν = π},

and our main test could be interpreted as a specification test for the null hypothesis H0 : Hν ̸= ∅.

Estimation of Hν is, therefore, a natural issue. We focus on it somewhat less because the identified

set is a collection of distributions over lists of choice behaviors and, at least in our application, is not
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Figure 1. Visualization of 1975-1982 budgets

Figure 2. Visualization of ”patches” on the 1982 budget

immediately interpretable in terms of structural parameters of interest. This caveat might not apply

to other applications, however.
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If our model is misspecified, then Hν is empty. To generate an estimand that is nonempty by

construction, define

Hν(Ω) = arg min
ν∈∆H−1

{(Aν − π)′Ω(Aν − π)},

This set is independent of the choice of the weighting matrix Ω (as long as Ω is positive definite),

and then coincides with Hν as previously defined, iff the latter is nonempty. But it also defines a

coherent notion of “pseudo-true (partially identified) distribution of rational types” if the data are

not rationalizable.

Hν is a singleton iff ν is point identified, which will rarely be the case in interesting applications

of our framework. Indeed, in our application, Hν(Ω) is a high-dimensional, convex polyhedron even in

cases where π is not rationalizable. That is, unlike in many other applications of moment inequalities,

failure of the sample criterion function to attain a minimal value of zero does not make the sample

analog of the identified set a singleton.

Explicit computation of Hν(Ω) is demanding. Our suggestion is to write

Hν(Ω) =

{
ν ∈ ∆H−1 : (Aν − π)′Ω(Aν − π)− min

v∈∆H−1
{(Av − π)′Ω(Av − π)} = 0

}
and compute a plug-in estimator that replaces π with π̂. Noting that we showed how to compute

the inner minimum, computation of these estimators could utilize methods based on support vector

machines as developed in current work by Bar and Molinari (2012). An appropriately modified version

of the method described in Sections 5 and 6 can be applied to inference on Hν or elements of Hν ,

though we leave its detailed analysis for future research.

9.2. Partial Identification of Counterfactual Choices. The toolkit developed in this paper is

also useful for counterfactual analysis. At the most general level, to bound the value of any function

f(ν) subject to the constraint that ν rationalizes the observed data, solve the program

min
ν∈RH

+

/ max
ν∈RH

+

f(ν) s.t. Aν = η̂,

recalling that η̂ = π̂ whenever π̂ is rationalizable.13 Some interesting applications emerge by restricting

attention to linear functions f(ν) = e′ν, in which case the bounds are furthermore relatively easy to

compute because the program is linear. We briefly discuss bounding demand under a counterfactual

13Equivalently, one could use the previous subsection’s notation to write

min /max f(v) s.t. v ∈ Hν(Ω),

which is more similar to the way that similar problems are stated by Manski (e.g., Manski (2007)).
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budget, e.g. in order to measure the impact of policy intervention. This is close in spirit to bounds

reported by Blundell et al. (2008; see also Cherchye et al. (2009) and references therein) as well as

Manski (2007, 2013).

In this subsection only, assume that demand on budget BJ is not observed but is to be bounded.

Write

A =

 A−J

AJ

 , π =

 π−J

πJ

 , πJ =


π1|J
...

πIJ |J


and let ei signify the i-th unit vector. We will begin by bounding components of the vector πJ .

Corollary 9.1. πi|J is bounded by

πi|J ≤ πi|J ≤ πi|J

where

πi|J = min
{
e′iAJν

}
s.t. A−Jν = π−J , ν ≥ 0

πi|J = max
{
e′iAJν

}
s.t. A−Jν = π−J , ν ≥ 0.

In this paper’s application, the patches xi|J , and hence the probabilities πi|J , are not of intrinsic

interest. However, they might be the object of interest in applications where the choice problem was

discrete to begin with. Indeed, the above is the bounding problem further analyzed in Sher at al.

(2011).

Next, let δ(J) = E[argmaxy∈BJ
u(y)], thus the vector δ(J) with typical component δk(J)

denotes expected demand in choice problem BJ . Define the vectors

dk(J) : = [dk(1|J), ..., dk(IJ |J)]

dk(J) : = [dk(1|J), ..., dk(IJ |J)]

with components

dk(i|J) : = min{yk : y ∈ xi|J}, 1 ≤ i ≤ IJ

dk(i|J) : = max{yk : y ∈ xi|J}, 1 ≤ i ≤ IJ ,

thus these vectors list minimal respectively maximal consumption of good k on the different patches

within BJ . Computing (dk(i|J), dk(i|J)) is a linear programming exercise. Then we have:
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Corollary 9.2. Expected demand for good k on budget BJ is bounded by

δk(J) ≤ δk(J) ≤ δk(J),

where

δk(J) : = min dk(J)AJν s.t. A−Jν = πJ , ν ≥ 0

δk(J) : = max dk(J)AJν s.t. A−Jν = πJ , ν ≥ 0.

Finally, consider bounding the c.d.f. Fk(z) = Pr(yk ≤ z). This quantity must be bounded in

two steps. The event (yk ≤ z) will in general not correspond to a precise set of patches, that is, it is

not measurable with respect to (the algebra generated by) {x1|J , ..., xIJ |J}. An upper bound on Fk(z)

will derive from an upper bound on the joint probability of all patches xi|J s.t. yk ≤ z holds for some

y ∈ xi|J . Similarly, a lower bound will derive from bounding the joint probability of all patches xi|J

s.t. yk ≤ z holds for all y ∈ xi|J .
14 We thus have:

Corollary 9.3. For k = 1, ...,K and z ≥ 0, Fk(z) is bounded from below by

min
ν∈RH

+

∑
i∈{1,...,IJ}:
dk(i|J)≤z

e′iAJν

s.t. A−Jν = π−J

and from above by

max
ν∈RH

+

∑
i∈{1,...,IJ}:
dk(i|J)≤z

e′iAJν

s.t. A−Jν = π−J ,

where
(
dk(i|J), dk(i|J)

)
are defined as before.

While both the lower and the upper bound, seen as functions of z, will themselves be proper

c.d.f.’s, they are not in general feasible distributions of demand for yk. That is, the bounds are sharp

pointwise but not uniformly. Also, bounds on a wide range of parameters such as the variance of

demand follow from the above bounds on the c.d.f. through results in Stoye (2010). However, because

the bounds on the c.d.f. are not uniform, these derived bounds will be valid but not necessarily sharp.

When trained on this paper’s empirical application, these bounds are uncomfortably wide,

motivating the search for nonparametric refinements that lead to narrower bounds without tightly

14These definitions correspond to inner and outer measure, as well as to hitting and containment probability.
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constraining heterogeneity. This search, as well as the development of inference procedures for the

bounds, are the subject of ongoing research. We also note that in his recent analysis of optimal

taxation of labor, Manski (2013) uses our computational tools to find informative bounds.

9.3. Choice from Binary Sets. The methods developed in this paper, including the two extensions

just discussed, immediately apply to nonparametric analysis of random discrete choice. Indeed, the

initial discretization step that characterizes our analysis of a demand system is superfluous in this

case. We briefly elaborate on one salient application that has received attention in the literature,

namely the case where choice probabilities for pairs of options,

πab := Pr(a is chosen from {a, b})

are observed for all pairs of choice objects {a, b} drawn from some finite, universal set A.

Finding abstract conditions under which a set of choice probabilities {πab : a, b ∈ A} is rational-

izable has been the objective of two large, disjoint literatures, one in economics and one in operations

research. See Fishburn (1992) for a survey of these literatures and Manski (2007) for a recent dis-

cussion of the substantive problem. There exists a plethora of necessary conditions, most famously

Marschak’s (1960) triangle condition, which can be written as

πab + πbc + πca ≤ 2, ∀a, b, c ∈ A.

This condition is also sufficient for rationalizability if A contains at most 5 elements (Dridi (1980)).

Conditions that are both necessary and sufficient in general have proved elusive. We do not discover

abstract such conditions either, but provide the toolkit to numerically resolve the question in compli-

cated cases, including a statistical test that applies whenever probabilities are estimated rather than

perfectly observed. To see this, define J = (#A)(#A − 1)/2 “budgets” that correspond to distinct

pairs a, b ∈ A, and let the vector X (of length I = 2J) stack these budgets, where the ordering of

budgets is arbitrary and options within a budget are ordered according to a preassigned ordering on

A. Each rational type (and thus, column of the matrix A) then corresponds to an ordering of the

elements of A and can be characterized by a binary I-vector with just the same interpretation as

before. As before, an I-vector of choice probabilities π whose components correspond to components

of X is rationalizable iff Aν = π for some ν ∈ ∆H−1. All methods developed in this paper apply

immediately.
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To illustrate, let A = {a, b, c}, then one can write

X =



a

b

b

c

c

a


, π =



πab

πba

πbc

πcb

πca

πac


, A =



1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 1 0

0 1 1 0 0 1

0 1 0 1 0 1

1 0 1 0 1 0


,

and it is readily verified that Aν = π for some ν ∈ ∆5 iff both πab+πbc+πca ≤ 2 and πcb+πba+πac ≤ 2,

confirming sufficiency of the triangle condition. More generally, the matrix A has H = (#A)! columns.

This limits computational feasibility of our approach, but note that the set of orderings of elements

of A is easily characterized, so that computation time per column of A will be low.

10. Conclusion

This paper presented asymptotic theory and computational tools for nonparametric testing of

Random Utility Models. Again, the null to be tested was that data were generated by a RUM, inter-

preted as describing a heterogeneous population, where the only restrictions imposed on individuals’

behavior were “more is better” and SARP. In particular, we allowed for unrestricted, unobserved

heterogeneity and stopped far short of assumptions that would recover invertibility of demand. As

a result, the distribution over utility functions in the population is left (very) underidentified. We

showed that testing the model is nonetheless possible. The method is easily adapted to choice prob-

lems that are discrete to begin with, and one can easily impose more, or also fewer, restrictions at the

individual level.

Possibilities for extensions and refinements abound. We close by mentioning some salient issues.

(1) The methods discussed in this section are computationally intensive. The proposed algorithms

work for a reasonably sized problem, though it is important to make further improvements in the

algorithms if one wishes to deal with a problem that is large, say in terms of the number of budgets.

(2) We restricted attention to finite sets of budgets. The extension to infinitely many budgets would

be of obvious interest. Theoretically, it can be handled by considering an appropriate discretization

argument (McFadden (2005)). For the proposed projection-based econometric methodology, such an

extension requires evaluating choice probabilities locally over points in the space of p via nonparametric

smoothing, then use the choice probability estimators in the calculation of the JN statistic. The
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asymptotic theory then needs to be modified. Another approach that can mitigate the computational

constraint is to consider a partition of the space of p such that RK
+ = P1 ∪ P2 · · · ∪ PM . Suppose we

calculate the JN statistic for each of these partitions. Given the resultingM statistics, say J1
N , · · · , JM

N ,

we can consider Jmax
N := max1≤m≤M Jm

N or a weighted average of them. These extensions and their

formal statistical analysis are of practical interest.

(3) It might frequently be desirable to control for observable covariates to guarantee the homogeneity

of the distribution of unobserved heterogeneity. Once again, this requires incorporating nonparametric

smoothing in estimating choice probabilities, then averaging the corresponding JN statistics over the

covariates. This extension will be pursued.

(4) The econometric techniques outlined here can be potentially useful in much broader contexts.

Again, our proposed hypothesis test can be regarded as specification test for a moment inequali-

ties model. The proposed statistic JN is an inequality analogue of goodness-of-fit statistics such as

Hansen’s (1982) overidentifying restrictions test statistic. Existing proposals for specification test-

ing in moment inequality models (Andrews and Guggenberger (2009), Andrews and Soares (2010),

Bugni, Canay, and Shi (2013), Romano and Shaikh (2008)) use a similar test statistic but work with

H-representations. In settings in which theoretical restrictions inform a V-representation of a cone,

the H-representation will typically not be available in practice. We expect that our method can be

used in many such cases.

11. Appendix A: Proofs

Proof of Proposition 4.1. We begin with some preliminary observations. Throughout this proof,

c(Bi) denotes the object actually chosen from budget Bi.

(i) If there is a choice cycle of any finite length, then there is a cycle of length 2 or 3 (where

a cycle of length 2 is a WARP violation). To see this, assume there exists a length N choice cycle

c(Bi) ≻ c(Bj) ≻ c(Bk) ≻ ... ≻ c(Bi). If c(Bk) ≻ c(Bi), then a length 3 cycle has been discovered.

Else, there exists a length N − 1 choice cycle c(Bi) ≻ c(Bk) ≻ ... ≻ c(Bi). The argument can be

iterated until N = 4.

(ii) Call a length 3 choice cycle irreducible if it does not contain a length 2 cycle. Then a choice

pattern is rationalizable iff it contains no length 2 cycles and also no irreducible length 3 cycles. (In

particular, one can ignore reducible length 3 cycles.) This follows trivially from (i).
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(iii) Let J = 3 and M = 1, i.e. assume there are three budgets but two of them fail to

intersect. Then any length 3 cycle is reducible. To see this, assume w.l.o.g. that B1 is below B3,

thus c(B3) ≻ c(B1) by monotonicity. If there is a choice cycle, we must have c(B1) ≻ c(B2) ≻ c(B3).

c(B1) ≻ c(B2) implies that c(B2) is below B1, thus it is below B3. c(B2) ≻ c(B3) implies that c(B3)

is below B2. Thus,choice from (B2, B3) violates WARP.

We are now ready to prove the main result. The nontrivial direction is “only if,” thus it suffices

to show the following: If choice from (B1, ..., BJ−1) is rationalizable but choice from (B1, ..., BJ) is

not, then choice from (BM+1, ..., BJ) cannot be rationalizable. By observation (ii), if (B1, ..., BJ)

is not rationalizable, it contains either a 2-cycle or an irreducible 3-cycle. Because choice from all

triplets within (B1, ..., BJ−1) is rationalizable by assumption, it is either the case that some (Bi, BJ)

constitutes a 2-cycle or that some triplet (Bi, Bk, BJ), where i < k w.l.o.g., reveals an irreducible

choice cycle. In the former case, Bi must intersect BJ , hence i > M , hence the conclusion. In the

latter case, if k ≤ M , the choice cycle must be a 2-cycle in (Bi, Bk), contradicting rationalizability of

(B1, ..., BJ−1). If i ≤ M , the choice cycle is reducible by (iii). Thus, i > M , hence the conclusion. �

Proof of Lemma 5.1. By the Minkowski-Weyl theorem

C = {t ∈ RI : Bt ≤ 0}.

Letting ντ = ν − τ1H , we have

Cτ = {Aν|ντ ≥ 0}

= {A[ντ + τ1H ]|ντ ≥ 0}

= C ⊕ τA1H

= {t : t− τA1H ∈ C}

where ⊕ signifies Minkowski sum. Define

ϕ = −BA1H .

Using the H-representation of C,

Cτ = {t : B(t− τA1H) ≤ 0}

= {t : Bt ≤ −τϕ}.
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Note that the above definition of ϕ implies ϕ ∈ col(B). Also define

Φ := −BA

= −


b′1
...

b′m

 [a1, · · · , aH ]

= {Φkh}

where Φkh = b′kah, 1 ≤ k ≤ m, 1 ≤ h ≤ H and let eh be the h-th standard unit vector in RH . Since

eh ≥ 0, the V-representation of C implies that Aeh ∈ C, and thus

BAeh ≤ 0

by its H-representation. Therefore

(11.1) Φkh = −e′kBAeh ≥ 0, 1 ≤ k ≤ m, 1 ≤ h ≤ H.

Write ϕ = (ϕ1, ..., ϕm)′. We now show that ϕk ̸= 0 for all 1 ≤ k ≤ m. To see it, note

ϕ = Φ1H

=


∑H

h=1Φ1h

...∑H
h=1Φmh


But unless we have the case of rank(B) = 1 (in which case the proof is trivial) it cannot be that

aj ∈ {x : b′kx = 0} for all j

Therefore for each k, Φkh = b′kah is nonzero at least for one h, 1 ≤ h ≤ H. Since (11.1) implies that

all of {Φkh}Hh=1 are non-negative, we conclude that

ϕk =

H∑
h=1

Φkh > 0

for all k. We now have

Cτ = {t : Bt ≤ −τϕ}, ϕ > 0

where the strict vector inequality is meant to hold element-by-element. �
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Proof of Theorem 5.1. By applying the Minkowski-Weyl theorem and Lemma 5.1 to JN and J̃N (τN ),

we see that our procedure is equivalent to comparing

JN = min
t∈RI :Bt≤0

N [π̂ − t]′Ω[π̂ − t]

to the 1− α quantile of the distribution of

J̃N (τN ) = min
t∈RI :Bt≤−τNϕ

N [η̃τN − t]′Ω[η̃τN − t]

with ϕ ∈ Rm
++, where

η̃τN = η̂τN +
1√
N

N(0, Ŝ),

η̂τN = argmin
t∈RI :Bt≤−τNϕ

N [π̂ − t]′Ω[π̂ − t].

Suppose B has m rows and rank(B) = ℓ. Define an ℓ×m matrix K such that KB is a matrix whose

rows consist of a basis of the row space row(B). Also let M be an (I − ℓ)× I matrix whose rows form

an orthonormal basis of kerB = ker(KB), and define P =
(
KB
M

)
. Finally, let ĝ = Bπ̂ and ĥ = Mπ̂.

Then

JN = min
Bt≤0

N

[(
KB

M

)
(π̂ − t)

]′
P−1′ΩP−1

[(
KB

M

)
(π̂ − t)

]
= min

Bt≤0
N

(
K[ĝ −Bt]

ĥ−Mt

)′
P−1′ΩP−1

(
K[ĝ −Bt]

ĥ−Mt

)
.

Let

U1 =

{(
Kγ

h

)
: γ = Bt, h = Mt,Bt ≤ 0, t ∈ RI

}
then writing α = KBt and h = Mt,

JN = min
(αh)∈U1

N

(
Kĝ − α

ĥ− h

)′
P−1′ΩP−1

(
Kĝ − α

ĥ− h

)
.

Also define

U2 =

{(
Kγ

h

)
: γ ≤ 0, γ ∈ col(B), h ∈ RI−ℓ

}
where col(B) denotes the column space of B. Obviously U1 ⊂ U2. Moreover, U2 ⊂ U1 holds. To see

this, let
(
Kγ∗

h∗

)
be an arbitrary element of U2. We can always find t∗ ∈ RI such that Kγ∗ = KBt∗.

Define

t∗∗ := t∗ +M ′h∗ −M ′Mt∗

then Bt∗∗ = Bt∗ = γ∗ ≤ 0 and Mt∗∗ = Mt∗+MM ′h∗−MM ′Mt∗ = h∗, therefore
(
Kγ∗

h∗

)
is an element

of U1 as well. Consequently,

U1 = U2.
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We now have

JN = min
(αh)∈U2

N

(
Kĝ − α

ĥ− h

)′
P−1′ΩP−1

(
Kĝ − α

ĥ− h

)

= N min
(αy)∈U2

(
Kĝ − α

y

)′
P−1′ΩP−1

(
Kĝ − α

y

)
.

Define

T (x, y) =

(
x

y

)′
P−1′ΩP−1

(
x

y

)
, x ∈ Rℓ, y ∈ RI−ℓ,

and

t(x) := min
y∈RI−ℓ

T (x, y), s(g) := min
γ≤0,γ∈col(B)

t(K[g − γ]).

It is easy to see that t : Rℓ → R+ is a positive definite quadratic form. We can write

JN = N min
γ≤0,γ∈col(B)

t(K[ĝ − γ])

= Ns(ĝ)

= s(
√
Nĝ).

We now show that tightening can turn non-binding inequality constraints into binding ones but not

vice versa. Note that, as will be seen below, this observation uses diagonality of Ω and the specific

geometry of the cone C. Let γ̂kτN , ĝk and ϕk denote the k-th elements of γ̂τN = Bη̂τN , ĝ and ϕ.

Moreover, define γτ (g) = [γ1(g), ..., γm(g)]′ = argminγ≤−τϕ,γ∈col(B) t(K[g − γ]) for g ∈ col(B). Then

γ̂τN = γτN (ĝ). Finally, define βτ (g) = γτ (g)+ τϕ for τ > 0 and let βk
τ (g) denote its k-th element. Now

we show that for each k and for some δ > 0,

βk
τ (g) = 0

if |gk| ≤ τδ and gj ≤ τδ, 1 ≤ j ≤ m. In what follows we first show this for the case with Ω = II , where

II denotes the I-dimensional identity matrix, then generalize the result to the case where Ω can have

arbitrary positive diagonal elements.

For τ > 0 define hyperplanes

Hτ
k = {x : b′kx = −τϕk}, 1 ≤ k ≤ m, τ > 0,

and half spaces

Hτ
∠k(δ) = {x : b′kx ≤ τδ}, 1 ≤ k ≤ m, τ > 0,

and also let

Sk(δ) = {x ∈ C : |b′kx| ≤ τδ}
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for 1 ≤ k ≤ m, δ > 0. In what follows we show that for small enough δ > 0, every element x∗ ∈ RI

such that

(11.2) x∗ ∈ S1(δ) ∩ · · · ∩ Sq(δ) ∩Hτ
∠q+1(δ) ∩ · · ·Hτ

∠m(δ) for some q ∈ {1, ...,m}

satisfies

(11.3) x∗|Cτ ∈ Hτ
1 ∩ · · · ∩Hτ

q

where x∗|Cτ denotes the orthogonal projection of x∗ on Cτ . Let g∗k = b′kx
∗, k = 1, ...,m. Note that

an element x∗ fulfils (11.2) iff |g∗k| ≤ τδ, 1 ≤ k ≤ q and g∗j ≤ τδ, q + 1 ≤ j ≤ m. Likewise, (11.3)

holds iff βτ
k (g

∗) = 0, 1 ≤ k ≤ c. Thus in order to establish the desired property of the function βτ (·),

we show that (11.2) implies (11.3). Suppose it does not hold; then without loss of generality, for an

element x∗ that satisfies (11.2) for an arbitrary small δ > 0, we have

(11.4) x∗|Cτ ∈ Hτ
1 ∩ · · · ∩Hτ

r and x∗|Cτ /∈ Hτ
j , r + 1 ≤ j ≤ q

for some 1 ≤ r ≤ q − 1. Define halfspaces

Hτ
∠k = {x : b′kx ≤ −τϕk}, 1 ≤ k ≤ m, τ > 0,

hyperplanes

Hk = {x : b′kx = 0}, 1 ≤ k ≤ m,

and also let

F = H1 ∩ · · · ∩Hr ∩ C,

then for (11.4) to hold for some x∗ ∈ RI satisfying (11.2) for an arbitrary small δ > 0 we must have

F | (Hτ
1 ∩ · · · ∩Hτ

r ) ⊂ int(Hτ
∠r+1 ∩ · · · ∩Hτ

∠q)

(Recall the notation | signifies orthogonal projection. Also note that if dim(F) = 1, then F = ∩q
j=1H

τ
j ,

and (11.4) does not occur.) Therefore if we let

∆(J) = {x ∈ RI : 1′Ix = J, x ≥ 0},

i.e. the simplex with vertices (J, 0, · · · , 0), · · · , (0, · · · , 0, J), we have

(11.5) (F ∩∆(J)) | (Hτ
1 ∩ · · · ∩Hτ

r ) ⊂ int(Hτ
∠r+1 ∩ · · · ∩Hτ

∠q).
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Let {a1, ..., aH} = A denote the collection of the column vectors of A. Then {the vertices of F ∩

∆(J)} ∈ A. Let ā, ¯̄a ∈ F ∩∆(J). Let B(ε, x) denote the ε-(open) ball with center x ∈ RI . By (11.5),

B
(
ε,
(
ā| ∩r

j=1 H
τ
j

))
⊂ int(Hτ

∠r+1 ∩ · · · ∩Hτ
∠q) ∩H∠1 ∩ · · · ∩H∠r

holds for small enough ε > 0. Let āτ := ā+ τ , ¯̄aτ := ¯̄a+ τ , then((
ā| ∩r

j=1 H
τ
j

)
− ā
)′
(¯̄a− ā) =

((
ā| ∩r

j=1 H
τ
j

)
− ā
)′
(¯̄aτ − āτ )

= 0

since āτ , ¯̄aτ ∈ ∩r
j=1H

τ
j . We can then take z ∈ B

(
ε,
(
ā| ∩r

j=1 H
τ
j

))
such that (z − ā)′(¯̄a− ā) < 0. By

construction z ∈ C, which implies the existence of a triplet (a, ā, ¯̄a) of distinct elements in A such

that (a− ā)′(¯̄a− ā) < 0. In what follows we show that this cannot happen, then the desired property

of βτ is established.

So let us now show that

(11.6) (a1 − a0)
′(a2 − a0) ≥ 0 for every triplet (a0, a1, a2) of distinct elements in A.

Noting that a′iaj just counts the number of budgets on which i and j agree, define

ϕ(ai, aj) = J − a′iaj ,

the number of disagreements. Importantly, note that ϕ(ai, aj) = ϕ(aj , ai) and that ϕ is a distance (it

is the taxicab distance between elements in A, which are all 0-1 vectors). Now

(a1 − a0)
′(a2 − a0)

= a′1a2 − a′0a2 − a′1a0 + a′0a0

= J − ϕ(a1, a2)− (J − ϕ(a0, a2))− (J − ϕ(a0, a1)) + J

= ϕ(a0, a2) + ϕ(a0, a1)− ϕ(a1, a2) ≥ 0

by the triangle inequality.

Next we treat the case where Ω is not necessarily II . Write

Ω =


ω2
1 0 . . . 0

0 ω2
2 . . . 0

. . .

0 . . . 0 ω2
I

 .
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The statistic JN in (3.1) can be rewritten, using the square-root matrix Ω1/2,

JN = min
η∗=Ω1/2η:η∈C

[π̂∗ − η∗]′[π̂∗ − η∗]

or

JN = min
η∗∈C∗

[π̂∗ − η∗]′[π̂∗ − η∗]

where

C∗ = {Ω1/2Aν|ν ≥ 0}

= {A∗ν|ν ≥ 0}

with

A∗ = [a∗1, ..., a
∗
H ], a∗h = Ω1/2ah, 1 ≤ h ≤ H.

Then we can follow our previous argument replacing a’s with a∗’s, and using

∆∗(J) = conv([0, ..., ωi, ....0]
′ ∈ RI , i = 1, ..., I).

instead of the simplex ∆(J). Finally, we need to verify that the acuteness condition (11.6) holds for

A∗ = {a∗1, ..., a∗H}.

For two I-vectors a and b, define a weighted taxicab metric

ϕΩ(a, b) :=

I∑
i=1

ωi|ai − bi|,

then the standard taxicab metric ϕ used above is ϕΩ with Ω = II . Moreover, letting a∗ = Ω1/2a and

b∗ = Ω1/2b, where each of a and b is an I-dimensional 0-1 vector, we have

a∗′b∗ =
I∑

i=1

ωi[1− |ai − bi|] = ω̄ − ϕΩ(a, b)

with ω̄ =
∑I

i=1 ωi. Then for every triplet (a∗0, a
∗
1, a

∗
2) of distinct elements in A∗

(a∗1 − a∗0)
′(a∗2 − a∗0) = ω̄ − ϕΩ(a1, a2)− ω̄ + ϕΩ(a0, a2)− ω̄ + ϕΩ(a0, a1) + ω̄ − ϕΩ(a0, a0)

= ϕΩ(a1, a2)− ϕΩ(a0, a2)− ϕΩ(a0, a1)

≥ 0,

which is the desired acuteness condition. Since JN can be written as the minimum of the quadratic

form with identity-matrix weighting subject to the cone generated by a∗’s, all the previous arguments

developed for the case with Ω = II remain valid.
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Defining ξ ∼ N(0, Ŝ) and ζ = Bξ,

J̃N (τN ) ∼ min
Bt≤−τNϕ

N

[(
KB

M

)
(η̂τN +N−1/2ξ − t)

]′
P−1′ΩP−1

[(
KB

M

)
(η̂τN +N−1/2ξ − t)

]
= N min

γ≤−τNϕ,γ∈col(B)
t
(
K
[
γ̂τN +N−1/2ζ − γ

])
.

Moreover, defining γτ = γ + τNϕ in the above, and using the definitions of βτ (·) and s(·)

J̃N (τN ) ∼ N min
γτ≤0,γτ∈col(B)

t
(
K
[
γ̂τN + τNϕ+N−1/2ζ − γτ

])
= N min

γτ≤0,γτ∈col(B)
t
(
K
[
γτN (ĝ) + τNϕ+N−1/2ζ − γτ

])
= N min

γτ≤0,γτ∈col(B)
t
(
K
[
βτN (ĝ) +N−1/2ζ − γτ

])
= s

(
N1/2βτN (ĝ) + ζ

)
Let φN (ξ) := N1/2βτN (τNξ) for ξ = (ξ1, ..., ξm)′ ∈ col(B), then from the property of βτ shown above,

its k-th element φk
N satisfies

φk
N (ξ) = 0

if |ξk| ≤ δ and ξj ≤ δ, 1 ≤ j ≤ m for large enough N . Define ξ̂ := ĝ/τN and using the definition of

φN , we write

(11.7) J̃N (τN ) ∼ s
(
φτN (ξ̂) + ζ

)
.

Now we invoke Theorem 1 of AS10. As noted before, the function t is a positive definite quadratic

form on Rℓ, and so is its restriction on col(B). Then Assumptions 1-3 of AS10 hold for the function

s defined above if signs are adjusted appropriately as our formulae deal with negativity constraints

whereas AS10 is formulated for positivity constraints (note that Assumption 1(b) does not apply here

since we use a fixed weighting matrix). The function φN in (11.7) satisfies the properties of φ in AS10

used in their proof of Theorem 1. AS10 imposes a set of restrictions on the parameter space (see their

Equation (2.2) on page 124). Their condition (2.2) (vii) is a Lyapunov condition for a triangular array

CLT. Following AS10, consider a sequence of distributions πN = [π′
1N , ..., π′

JN ]′, N = 1, 2, ... in P ∩ C

such that (1)
√
NBπN → h for a non-positive h as N → ∞ and (2) CovπN (

√
NBπ̂) → Σ as N → ∞

where Σ is positive semidefinite. As πN ∈ P, Condition 5.1 demands that varπjN (bk(j)
′dj,n) ≥ ϵ holds

for some j for each N . Therefore we have limN→∞ varπjN (bk(j)
′dj,n) ≥ ϵ for some j. For such j,

the Lindeberg condition for CLT holds for
√

N(j)[b1(j)
′[π̂j − πjN(j)], ..., bm(j)′[π̂j − πjN(j)]]

′ where

π̂j = [π̂1|j , ..., π̂Ij |j ]
′, and we have

√
NB(π̂ − πN )

πN
; N(0,Σ). The other conditions (2.2)(i)-(vi) hold
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trivially. Finally, Assumptions GMS 2 and GMS 4 of AS10 are concerned with their thresholding

parameter κN for the k-th moment inequality, and by letting κN = N1/2τNϕk, the former holds by

the condition
√
NτN ↑ ∞ and the latter by τN ↓ 0. Therefore we conclude

lim inf
N→∞

inf
π∈P∩C

Pr{JN ≤ ĉ1−α} = 1− α.

�

Before stating the proof of Corollary 7.1, let us introduce some notation.

Notation. Let B(j) := [b1(j), ..., bk(j)]
′ ∈ Rk×Ij . For F ∈ F and 1 ≤ j ≤ J , define

p
(j)
F (x) := EF [dj,n|xn(j) = x], π

(j)
F = p

(j)
F (x(j)), πF = [π

(1)
F

′
, ..., π

(J)
F

′
]′

and

Σ
(j)
F (x) := CovF [dj,n|xn(j) = x].

Also let f
(j)
F denote the density of xn(j) under F .

Note that Σ
(j)
F (x) = diag

(
p
(j)
F (x)

)
− p

(j)
F (x)p

(j)
F (x)′. The following is used in the proof of

Corollary 7.1:

Proposition 11.1. If Conditions 7.1(iv) and (v) hold for some K < ∞ and ρ such that ρ(t) → 0 as

t → 0, then {p(j)F∈F}, {ṗ
(j)
F∈F}, {p̈

(j)
F∈F}, {f

(j)
F∈F}, {ḟ

(j)
F∈F}, and {f̈ (j)

F∈F} are equicontinuous at x(j) for

all 1 ≤ j ≤ J .

The proof is straightforward and thus omitted.

Proof of Corollary 7.1. The proof follows the same steps as those in the proof of Theorem 5.1,

except for the treatment of π̂. Therefore, instead of the sequence πN , N = 1, 2, ... in P ∩ C, consider

a sequence of distributions FN = [F1N , ..., FJN ], N = 1, 2, ... in F such that (1)
√
NhNBπFN

→ h for

a non-positive h as N → ∞; (2) Σ
(j)
FN

(x(j)) → Σ(j)(x(j)) as N → ∞, 1 ≤ j ≤ J where Σ(j) is positive

semidefinite; and (3) f
(j)
FN

(x(j)) → f (j)(x(j)) as N → ∞, 1 ≤ j ≤ J .

Define

vN,n(j) =
1√
hN

K

(
xn(j)− x(j)

hN

)
B(j)[dj,n − p

(j)
FN

(xn(j))],

then

(11.8) EFN
[vN,n(j)] = 0, 1 ≤ j ≤ J.
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By the standard change of variable argument

CovFN
(vN,n(j)) =

∫
B(j)Σ

(j)
FN

(x(j) + hNz)B(j)′f
(j)
FN

(x(j) + hNz)K2(z)dz

for 1 ≤ j ≤ J . Let ∆ := CovFN
(vN,n(j))−B(j)Σ(j)(x(j))B(j)′(j)(x(j))

∫
K2(z)dz, then

∆ =

∫
B(j)

[
Σ
(j)
FN

(x(j) + hNz)− Σ(j)(x(j))
]
B(j)′f

(j)
FN

(x(j) + hNz)K2(z)dz

+B(j)Σ
(j)
FN

(x(j))B(j)′
∫ [

f
(j)
FN

(x(j) + hNz)− f (j)(x(j))
]
K2(z)dz,

but as N → ∞ ∥∥∥Σ(j)
FN

(x(j) + hNz)− Σ(j)(x(j))
∥∥∥

≤
∥∥∥Σ(j)

FN
(x(j) + hNz)− Σ

(j)
FN

(x(j))
∥∥∥+ ∥∥∥Σ(j)

FN
(x(j))− Σ(j)(x(j))

∥∥∥
≤ sup

F∈F

∥∥∥Σ(j)
F (x(j) + hNz)− Σ

(j)
F (x(j))

∥∥∥+ ∥∥∥Σ(j)
FN

(x(j))− Σ(j)(x(j))
∥∥∥

→ 0 for every z

where the convergence holds by Proposition 11.1. Similarly, as N → ∞∣∣∣f (j)
FN

(x(j) + hNz)− f (j)(x(j))
∣∣∣→ 0 for every z.

By the Bounded Convergence Theorem conclude that

(11.9) ∆ → 0.

This means that a version of equation (2.2.10) in Bierens (1987) still holds even under the sequence

of distributions {FN}∞N=1 as specified above.

We next verify the Lyapunov condition. As FN ∈ F , Condition 7.1(ii) demands that

varFjN
(bk(j)

′dj,n|xn = x(j)) ≥ ϵ

holds for some j for each N . Thus we have limN→∞ varFjN
(bk(j)

′dj,n|xn = x(j)) ≥ ϵ for some j.

Define s2N := CovFN

(∑N
n=1 vN,n(i|j)

)
for such j where vN,n(i|j) denotes the i-th element of the Ij

random vector vN,n(j). Note that sN ≍ Nj , and therefore proceeding as in the derivation of (11.9),

then using Equation (2.2.10) in Bierens (1987) we obtain

(11.10)
1

s2+δ
Nj

Nj∑
n=1

EFN
[|vN,n(i|j)|2+δ] → 0
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for 1 ≤ i ≤ Ij . By (11.8), (11.9) and (11.10), we have

1√
Nj

Nj∑
n=1

vNj ,n(j)
FN
; N(0,Ω1), Ω1 = B(j)Σ(j)(x(j))B(j)′f (j)(x(j))

∫
K2(z)dz.

Finally, the convergence results corresponding (2.2.4) and (2.2.5) in Bierens (1987) hold under the

sequence of distributions {FN}∞N=1 as specified above, once again by proceeding as in the derivation

of (11.9). It follows that√
NjhNB(j)[π̂j − πFN

]
FN
; N(0,Ω2), Ω2 =

1

f (j)(x(j))
B(j)Σ(j)(x(j))B(j)′

∫
K2(z)dz.

The rest is the same as the proof of Theorem 5.1. �

12. Appendix B: Algorithms for Computing A

This appendix algorithms for computation of A. The first algorithm is a brute-force approach

that generates all possible choice patterns and then verifies which of these are rationalizable. The

second one avoids the construction of the vast majority of possible choice patterns because it checks

for rationality along the way as choice patterns are constructed. The third algorithm uses proposition

1. To give a sense of the algorithms’ performance, the matrix A corresponding to the 1975-1982

data, which is of size [50 × 42625] and cannot be computed with our implementation of algorithm

1, computes in about 2 hours with our implementation of algorithm 2, and (after suitable rearrange-

ment of budgets) in about 2 minutes with our implementation of algorithm 3. All implementa-

tions are in MATLAB and are available from the authors. The instruction to FW-test a sequence

refers to use of the Floyd-Warshall algorithm to detect choice cycles. We use the FastFloyd im-

plementation due to Dustin Arendt (http://www.mathworks.com/matlabcentral/fileexchange/25776-

vectorized-floyd-warshall/content/FastFloyd.m).

Algorithm 1: Brute Force

This algorithm is easiest described verbally. First generate a matrix Amax that contains all

logically possible choice patterns. To do so, let Ei denote the set of unit vectors in Ri and observe

that a stacked vector (a′1, ..., a
′
J)

′ is a column of Amax iff (a1, ..., aJ) ∈ EI1 × ...×EIJ . It is then easy

to construct Amax by looping. Next, generate A by FM-testing every column of Amax and retaining

only columns that pass.

Algorithm 2: Decision Tree Crawling
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An intuition for this algorithm is as follows. All possible choice patterns can be arranged on

one decision tree, where the first node refers to choice from B1 and so forth. The tree is systematically

crawled. Exploration of any branch is stopped as soon as a choice cycle is detected. Completion of a

rationalizable choice pattern is detected when a terminal node has been reached.

Pseudo-code for this algorithm follows.

1. Initialize m1 = ... = mJ = 1.

2. Initialize l = 2.

3. Set c(B1) = m1, ..., c(Bl) = ml. FW-test (c(B1), ..., c(Bl)).

4. If no cycle is detected, move to step 5. Else:

4a. If ml < Il, set ml = ml + 1 and return to step 3.

4b. If ml = Il and ml−1 < Il−1, set ml = 1, ml−1 = ml−1 + 1, l = l − 1, and return

to step 3.

4c. If ml = Il, ml−1 = Il−1, and ml−2 < Il−2, set ml = ml−1 = 1, ml−2 = ml−2 + 1,

l = l − 2, and return to step 3.

(...)

4z. Terminate.

5. If l < J, set l = l + 1, ml = 1, and return to step 3.

6. Extend A by the column [m1, ...,mJ ]
′. Also:

6a. If mJ < IJ, set mJ = mJ + 1 and return to step 3.

6b. If mJ = IJ and mJ−1 < IJ−1, set mJ = 1, mJ−1 = mJ−1 + 1, l = J − 1, and

return to step 3.

6c. If ml = Il, ml−1 = Il−1, and ml−2 < Il−2, set ml = ml−1 = 1, ml−2 = ml−2 + 1,

l = l − 2, and return to step 3.

(...)

6z. Terminate.

Algorithm 3: Refinement using Proposition 4.1

Let budgets be arranged s.t. (B1, ..., BM ) do not intersect BJ ; for exposition of the algorithm,

assume BJ is above these budgets. Then pseudo-code for an algorithm that exploits proposition 1

(calling either of the preceding algorithms for intermediate steps) is as follows.
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1. Use brute force or crawling to compute a matrix AM+1→J−1 corresponding to

budgets (BM+1, ..., BJ), though using the full X corresponding to budgets (B1, ..., BJ).
15

2. For each column aM+1→J−1 of AM+1→J−1, go through the following steps:

2.1 Compute (by brute force or crawling) all vectors a1→M s.t.

(a1→M , aM+1,J−1) is rationalizable.

2.2 Compute (by brute force or crawling) all vectors

aJ s.t. (aM+1,J−1, aJ) is rationalizable.

2.3 All stacked vectors (a′1→M , a′M+1,J−1, a
′
J)

′ are valid columns of A.
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