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Non-parametric transformation regression with
non-stationary data

Oliver Linton* Qiying Wang!
University of Cambridge University of Sydney

April 22, 2013

Abstract

We examine a kernel regression smoother for time series that takes account of
the error correlation structure as proposed by Xiao et al. (2008). We show that this
method continues to improve estimation in the case where the regressor is a unit
root or near unit root process.

Key words and phrases: Dependence; Efficiency; Cointegration; Non-stationarity;
Non-parametric estimation.
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1 Introduction

This paper is concerned with estimation of a nonstationary nonparametric cointegrat-
ing regression. The theory of linear cointegration is extensive and originates with the
work of Engle and Granger (1987), see also Stock (1987), Phillips (1991), and Johanssen
(1988). Wang and Phillips (2009a, b, 2011) recently considered the nonparametric coin-
tegrating regression. They analyse the behaviour of the standard kernel estimator of
the cointegrating relation/nonparametric regression when the covariate is nonstationary.
They showed that the under self (random) normalization, the estimator is asymptotically
normal. See also Phillips and Park (1998), Karlsen and Tjostheim (2001), Karlsen, et
al.(2007), Schienle (2008) and Cai, et al.(2009).
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UK. Email: obl120@cam.ac.uk. I would like to thank the European Research Council for financial support.

TAddress: School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia.
E-mail: gqiying@maths.usyd.edu.au. This author thanks the Australian Research Council for financial
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We extend this work by investigating an improved estimator in the case where there
is autocorrelation in the error term. Standard kernel regression smoothers do not take
account of the correlation structure in the covariate x; or the error process u; and es-
timate the regression function in the same way as if these processes were independent.

Furthermore, the variance of such estimators is proportional to the short run variance

2

2 = var(u;) and does not depend on the regressor or error covariance functions

of uy, o
Y. (j) = cov(zy, xe—;), v,(J) = cov(u, u—j), j # 0. Although the time series properties
do not effect the asymptotic variance of the usual estimators, the error structure can be
used to construct a more efficient estimator. Xiao, Linton, Carroll, and Mammen (2003)
proposed a more efficient estimator of the regression function based on a prewhitening
transformation. The transform implicitly takes account of the autocorrelation structure.
They obtained an improvement in terms of variance over the usual kernel smoothers. Lin-
ton and Mammen (2006) proposed a type of iterated version of this procedure and showed
that it obtained higher efficiency. Both these contributions assumed that the covariate
process was stationary and weakly dependent. We consider here the case where z; is
nonstationary, of the unit root or close to unit root type. We allow the error process to
have some short term memory, which is certainly commonplace in the linear cointegration
literature. We show that the Xiao, Linton, Carroll, and Mammen (2003) procedure can
improve efficiency even in this case and one still obtains asymptotic normality for the self
normalized estimator, which allows standard inference methods to be applied. In order
to establish our results we require a new strong approximation result and use this to

establish the Ly convergence rate of the usual kernel estimator.

2 The model and main results
Consider a non-linear cointegrating regression model:
v =m(xy) +uy, t=1,2,...n, (2.1)

where u; = puy_1 + ¢ with |p| < 1 and z; is a non-stationary regressor. The conventional

kernel estimator of m(x) is defined as

2o Ys K(zs — ) /D]
2 Kl(ws —2)/h]

where K (z) is a nonnegative real function and the bandwidth parameter h = h,, — 0 as

m(zr) =

n — oQ.



On the other hand, we may write the model (2.1) as

Y1 = m(Tp1) + U1, (2.2)

Yr — pYi—1 + pm(xi_1) = m(zy) + €. (2.3)

It is expected that a two-step estimator of m(z) by using models (2.2) and (2.3) may
achieve efficiency improvements over the usual estimator m(z) by (2.1).

The strategy to provide the two-step estimator is as follows:

Step 1: Construct an estimator of m(x), say my(z), by using model (2.2). This can
be the conventional kernel estimator defined by

> ey Ys—1 K[(w5-1 — ) /1]
22:2 K((xs_1 —x)/h] 7

where K (z) is a nonnegative real function and the bandwidth parameter h = h,, — 0 as

ml(I) =

n — oQ.

Step 2: Construct an estimator of p by

/p\ _ Z:ZQ as/ds—l
D U3y

Note that p is a LS estimator from model:
Uy = ply—1 + €,

where u; = y; — my(zy).

Step 3: Construct an estimator of m(z), say msq(z), by using (2.3) and kernel method,
but instead of the left hand m(z) in model (2.3) by 7, ().

We now have a two-step estimator 1msy(x) of m(z), defined as follows:

Faa(z) = Z?:l [?Jt — Y1 +/P\m1($t—1)} K((zy — x)/h]
i >y Kl — a)/h) |

To establish our claim, that is, 7y(z) achieves efficiency improvements over the usual

estimator 7m(z), we make the following assumptions.

Assumption 2.1. x; = Az, + &, (g = 0), where A = 1+ 7/n with 7 being a
constant and {§;,j > 1} is a linear process defined by

§ = Z P Vi (2.4)
k=0



where ¢y # 0, ¢ = Y 1oy ¢ # 0 and > 7 || < 0o, and where {v;, —0o < j < oo} is
a sequence of iid random variables with Evy = 0, Ev2 = 1, E|ve|**® < oo for some § > 0

and characteristic function ¢(t) of vg satisfies [~ (1 + |t]) [(t)|dt < oc.

Assumption 2.2. u; = pu;—1 + € with [p| < 1 and ¢ = up = 0, where F,; =
(€0, €1, oy €1y T1y .oy T) and {e;, F 1 }7-, forms a martingale difference sequence satisfying,

as n — oo first and then m — oo,

zax |E(|Fni1) — 0| — 0, a.s.,

where o2 is a given constant, and supi<i<n E(|€]?|F, 1) < oo a.s. for some g > 2.
n>1

Assumption 2.3. (a) [* K(s)ds =1 and K(-) has a compact support; (b) For any
z,y € R, |K(x) — K(y)| < C|z — y|, where C is a positive constant; (c) For p > 2,

/ypK(y)dy # 0, /yiK(y)dy =0, i=12,..,p—1

Assumption 2.4. (a) There exist a 0 < § < 1 and a > 0 such that
m(z+y) —m(z)] < CQ+][z|") [yl

for any x € R and y sufficiently small, where C'is a positive constant; (b) For given fixed
x, m(z) has a continuous p + 1 derivatives in a small neighborhood of x, where p > 2 is

defined as in Assumption 2.3(c).

We have the following main results.

THEOREM 2.1. Under Assumptions 2.1-2.2, 2.8(a) and 2.4(a), we have
" 12 )
(" Kl —a)/n) " fina) = ml@)] —p N(0,03), (2.5)
t=1

for any h satisfying nh? — co and nh*** — 0, where 0 = (1 — p?)~to® [*0 K?(s)dt. If
in addition Assumptions 2.3(c) and 2.4(b), then

(32 =) i) = mte) - 2 [ picyga]

p! .-
—D N<07 U%)v (26)

for any h satisfying nh* — oo and nh*™ = 0(1).



THEOREM 2.2. Under Assumptions 2.1-2.2, 2.3(a)-(b), 2.4(a) and Y2, i|¢;| < oo,

we have
= p| = Op{n®/2h? + (nh?) "V}, (2.7)

and with 03 = o [ K?(s)dt,

Z K[(xe = 2)/h)) " [ia(z) = m(x)] —p N(0,03). (2.8)

for any h satisfying that nh*™% — 0, n®h?® — 0 and n'~“°h? — oo for some ¢y > 0. If
in addition Assumptions 2.3(c) and 2.4(b), then
" 121 hem(P) (g o0
(3 e —)/1) " [iato) = o) - “2 [ ppicgpay]
t=1 . —00
—D N(0,0‘%), (29)

for any h satisfying that nh?>t* = O(1), n®h?*® — 0 and n'~°h? — oo for some ¢y > 0.

Remark 1. Theorem 2.1 generalizes the related results in previous articles. See, for
instance, Wang and Phillips (2009a, 2011), where the authors investigated the asymptotics
under p = 0 and 7 = 0. As noticed in previous works, the conditions to establish
our results are quite weak, in particular, a wide range of regression function m(z) is
included in Assumption 2.4(a), like m(z) = 1/(1+ 0|z|?), m(z) = (a + be®)/(1 + €*) and
m(x) = 0 + 0oz + ... + Ozt L

Remark 2. As |p| < 1, Theorem 2.2 confirms the claim that 14 (x) achieves efficiency
improvements over the usual estimator 7 (z) under certain additional conditions on m(z)
and the bandwidth h. Among these additional conditions, the requirement on the band-
width A (that is, n®h?® — 0 and n'~h? — oo, where ¢, can be sufficiently small) imply
that 0 < o < 8, which in turn requires that the rate of m(z) divergence to oo on the tail
is not fast than |z['*#. In comparison to Theorem 2.1, this is a little bit restrictive but
it is reasonable, due to the fact that the consistency result (2.7) heavily depend on the

following convergence for the kernel estimator 7 (z):
I~ 2
- Z [m(mt) — m(mt)] (2.10)
t=1

as n — o0o. As x; ~ +/t under our model, it is natural for the restriction on the tail of
m(z) to enable (2.10). The result (2.10) is a consequence of Theorem 3.1 in next section,

which provides a strong approximation result on the convergence to a local time process.

5



3 Strong approximation to local time

This section investigates strong approximation to a local time process which essentially
provides a technical tool in the development of the uniform convergence such as (2.10)
for the kernel estimator 7 (z). As the condition imposed is different, this section can be
read separately.

Let 24,1 <k <mn,n >1 be a triangular array, constructed from some underlying
nonstationary time series and assume that there is a continuous limiting Gaussian process
G(t),0 <t <1, to which wp,y,, converges weakly, where [a] denotes the integer part of a.
In many applications, we let zy,, = d;lxk where 7 is a nonstationary time series, such
as a unit root or long memory process, and d,, is an appropriate standardization factor.

This section is concerned with the limit behaviour of the statistic S,,(¢), defined by

Sult) = - ;g[cn (Thn — )], £ €[0,1], (3.1)
where ¢, is a certain sequence of positive constants and ¢ is a real integrable function on
R. As noticed in last section and previous research [see, e.g., Wang and Phillips (2012)],
this kind of statistic appears in the inference for the unknown regression function m(x)
and its limit behaviour plays a key role in the related research fields.

The aim of this section is to provide a strong approximation result for the target

statistic. To achieve our aim, we make use of the following assumptions.

Assumption 3.1. sup, |z||g(z)] < oo for some v > 1, [ |g(z)|dz < oo and

lg(x) — g(y)| < C|x — y| whenever |z — y| is sufficiently small on R.

Assumption 3.2. On a rich probability space, there exist a continuous local martin-
gale G(t) having a local time Lq(t, s) and a sequence of stochastic processes G, (t) such
that {G,,(t);0 <t <1} =p {G(t);0 <t <1} for each n > 1 and

SUP [Ty — Go(t)] = oa,s,(n_‘so). (3.2)
0<t<1

for some 0 < §y < 1.

Assumption 3.3. For all 0 < j < k < n,n > 1, there exist a sequence of o-fields
Fin (define Fo,, = o{¢, 2}, the trivial o-field) such that,

(i) z;, are adapted to F;, and, conditional on F;,, [n/(k — j)]*(®k, — zj,) where
0 < d < 1, has a density hy;,(x) satisfying that hy ;,(z) is uniformly bounded by a

constant K and



(ii) SuPyep | Ak gn (utt) —hijp(w)| < C min{Jt|, 1}, whenever n and k—j are sufficiently
large and t € R.

Assumption 3.4. There is a ¢y > 0 such that ¢, — oo and n='T%¢, — 0.

The following is our main result.

THEOREM 3.1. Suppose Assumptions 3.1-3.4 hold. On the same probability space as
in Assumption 3.2, for any | > 0, we have

sup |Sn(t) =7 Ly| = op(log™'n) (3.3)

0<t<1
where T = [7°_g(t)dt and Ly, = lim._o 5 fol I(|Gn(s) — Gu(t)] < €)ds.

Due to technical difficulty, the rates in (3.3) may not be optimal, which, in our guess,
should have the form n~%t, where §; > 0 is related to §; > 0 given in Assumption 3.2.
However, by noting {L,,;;0 <t <1} =p {Lg(1,G(t));0 <t < 1} ! due to {G,(¢);0 <t <
1} =p {G(t);0 <t < 1}, the result (3.3) is enough in many applications. To illustrate,
we have the following theorem which provides the lower bound of S,,(t) over ¢t € [0,1]. As

a consequence, we establish the result (2.10) when z; satisfies Assumption 2.1.

THEOREM 3.2. Let x; be defined as in Assumption 2.1 with Y > k|¢,| < oco. Let
Assumptions 2.3(a)—(b) hold. Then, for any n > 0 and fixed My > 0, there exist My > 0
and ng > 0 such that

P(_int 3" Kl(w—a)/h) = vah/M) > 1-n, (3.4

s=1,2,...,

for all n > ng and h satisfying that h — 0 and n*~°h? — oo for some ¢y > 0. Conse-
quently, we have

n

v, - %Z () — m(z)]? = Op{n®h? + (nh?)~12), (3.5)

t=1

that is, (2.10) holds true if in addition n®h?** — 0.

'Here and belew, we define Lg(1,z) = lime_o o= fol I(|G(s) — x| < €)ds, a local time process of the
G(s) whenever it exists.



4 Extension

We next propose another estimator that potentially can improve the efficiency even more.

Following Linton and Mammen (2008), we obtain

me) = ooz B ()l = 2) = pB(Z (Pl = )]
= 7 Jrlp2E [Z (p) = 2 (p)]x = ]

Zo(p) = w— pyi—1+ pm(zeq)
ZH(p) = yi— pyr—1 — m(xy).

Z;(p) = Yr— pyr—1 + pm(ze_1)
Z;F(P) = Y — pYr—1 — m(xy).

Then let

1 ~Ta . A =
——E\Z7 (D) = pZ{1(D)|we = x| .
1+p

We claim that the following result holds. The proof is similar to earlier results and is

Mesr(x) =

ommitted.

THEOREM 4.1. If in addition to Assumptions 2.1-2.4, > i|¢;| < co. Then, for any

h satisfying nh?log™*n — oo and nh**** — 0, we have

(Y Kl(z, — 2) /1)) [ina(x) — m(z)] —p N(0,02)

2 _ 2N—1 [ f2
where 05 = (1 + p*)~' [ K?(s)dt.
We have 03 < 03 < o7, and so Mess(z) is more efficient (according to asymptotic

variance) than msy(z), which itself is more efficient than m(z).

5 Monte Carlo Simulation

We investigate the performance of our procedure on simulated data. We chose a similar
design to Wang and Phillips (2009b) except we focus on error autocorrelation rather than

contemporaneous endogeneity. We suppose that
Yy = m(xy) + oug, up = poty—1 + &4

8



with m(z) = x and m(z) = sin(x), where z; = x;_1 + n,, with n, ~ N(0,1), 0 = 0.2, and
g; ~ N(0,1). We used the Epanechnikov kernel for estimation with the bandwidth n .
We examine a range of values of p, and the bandwidth constant bc, which are given below.

We consider n = 500, 1000 and take ns = 1000 replications. We report the performance

measure
T
~ 2
7 > i) = mla),
k=1
where K = 101 and 2 = {—1,—0.98,....,1}. The results for the linear case are given

below in Tables 1-2. The results show that there is an improvement when going from
n = 500 to n = 1000 and when going from m; to ms. In the linear case, the bigger the
bandwidth the better. In the cubic case (not shown), smaller bandwidths do better as

the bias issue is much more severe in this case.
*** Tables 1-2 here ***

We show in Tables 3 and 4 the performance of the estimator of p for n = 500 and
n = 1000. This varies with bandwidth and is generally quite poor, although improves
with sample size. Finally, we give some indication of the distributional approximation.
In Figure 1 we show the QQ plot for our (standardized) estimator ms in the case where

m(x) = sin(x), p = 0.95, n = 1000, and bc = 1/10.

6 Proofs

Section 6.1 provides several preliminary lemmas. Some of them are are of independent

interests. The proofs of main theorems will be given in Sections 6.2-6.4.

6.1 Preliminary lemmas

First note that

t t

T, = Z pa 53‘ — Z A7 i Vi¢j—i

j=1 j=1 1=—00
t s t J
= NTak ) XNT ) v+ DN Y oy
j=s+1 i=—00 Jj=s+1 =541
= N a4+ Ay + 7, (6.1)



where

t t—1
St_Z)\t] Szyz+s¢j » leiz/\t—j—iqs]

i=s+1  j=0

Write d?, = >°i_; M (X020 A7 ¢,)? = E(2,)% Recall limy, oo A" = €7 and lim,, o A™ =

1=s+1
1 for any fixed m. The routine calculations show that, whenever n is sufficiently large,

e"T‘/Z < Ne<2ell forall —-n<k<n (6.2)

and there exist 74,7, > 0 such that

inf Z)\ 6, <71, (6.3)

n>k>m

whenever n, m are sufficiently large. By virtue of (6.2)-(6.3), it is readily seen that d,; # 0
for all 0 < s <t < n because ¢ = > 2 ¢, # 0 and Ci(t —s) < dZ, < Coft — s).

Consequently,
\/%a:;t has a density hs:(x), (6.4)

which is uniformly bounded by a constant Cy and [ (14 |ul)|¢, ,(u)|du < co uniformly
for 0 < s <t < n, where ¢, ,(u) = Ee™+/VI= due to [(1 + |u])|Be™°|dt < co. See
the proof of Corollary 2.2 in Wang and Phillips (2009a) and/or (7.14) and Proposition
7.2 (page 1934 there) of Wang and Phillips (2009b) with a minor modification. Hence,

conditional on Fj, = o(v;, —0o < j < k),
(z¢ — x,) /vt — s has a density h},(z) = hey(z — 2}, /VE - 5) (6.5)
where x7, = (\'° — 1) 2, + A, satisfying, for any u € R,
sup Wi y(z+u) — hiy(z)] < sup |hsi(x+u) — hs ()]
< o‘ / = (e o) () dv‘
< Cuinflul 1} [ @+l o)l < O minflul. 1), (6.6)

where in the last second inequality of (6.6), we have used the inverse formula of the

characteristic function.

10



We also have the following presentation for the x;:

t t j—1 [e%S)
D S TR ST 3D
j—l j=1 1:0 =7
—1
SPOIE WIS AT DR IR o wANE
j=t—i+1
= ‘rt - ‘Tt + x:f/lu say, (67)
where a; = Y1 o, A7 1) = Z;Zl ANy, and
2| + |2}’ < Cot'/*H) as. (6.8)

for some constant Cy > 0. Indeed, using (6.2) and strong law, we obtain that, for some

constant Cy > 0,

t—1 t t—1
2] < 2" ST 0al 3 vl < 267 max | Y ilo]
=0 Jj=t—i+1 =0
t
1
< OV (ZZ|VJ'|2+5)1/(2+6)SC'otl/(2+6), a.s., (6.9)

j=1

since E|v1 [>T < oo and Y2, i]¢;| < oo . Note that

Z jTHEHE Z Gipiv—il < Z jHEE) ( Z ;) 2
j=1 i=0 j=1 i=j
< C Zj_l_l/(2+§)(zi|¢i|)l/2 <
= P

which yields that »°2 ) j=V/CH)| 3726, v | < 00,a.s. It follows from (6.2) again and

the Kronecker lemma that

t 00
)| < C Z |Zq§i+ju,i‘ = o(tYCH) g, (6.10)

j=1 =0

This proves (6.8).
We are now ready to provide several preliminary lemmas.

LEMMA 6.1. Suppose that p(x) satisfies [ |p(z)|dz < oo and Assumption 2.1 holds.
Then, for any h — 0 and all 0 < s <t < n, we have

E(lp(ze/D)]|Fs) < \/(;OT}LS _oo Ip(z + xs/h)|dx
Coh Oo\p(w)\dx, a.s., (6.11)

Vi—s

where Fs = o{vs, Vs 1, ...}

11



Proof. Recall (6.1), (6.5) and the independence of vy. The result (6.11) follows from

a routine calculation and hence the details are omitted. O

LEMMA 6.2. Suppose that p(x) satisfies [[|p(x)| + p*(x)|dz < oo and [ p(x)dx # 0.
Suppose Assumption 2.1 holds. Then, for any h — 0 and nh? — oo,

¢ i x
——> p[(@—2)/h] —bp p(z)dz Ls(1,0), (6.12)
Vnh oo
where G(t) = W(t) + K fg e"t=3)W (s)ds with W (s) being a standard Brownian motion

and Lg(r,x) is a local time of the Gaussian process G(t).

Proof. This is a corollary of Theorem 3.1 of Wang and Phillips (2009a). The
inspection on the conditions is similar to Proposition 7.2 of Wang and Phillips (2009b).
We omit the details. O

LEMMA 6.3. Suppose Assumptions 2.1-2.2 and 2.3(a) hold. Then, for any h — 0 and
nh? — oo,

> wZy —p N(0,03), (6.13)
t=1

where Zyy = K|(w — 2) /B (X0, K[(z, — 2)/h]) " and 02 = (1= p2) 102 [ K2(2)dx.

Proof. For the notation convenience, we assume o2 = 1 in the following proof. Note
that u; = 22:1 p'Fe,. We have D1 wiZy = Y g, €k 2y, where Z%, =S ptFZ,,.
We first claim that

S22, / K2(x)dx, (6.14)
k=1 %

n

SNozzo—p -7 /_oo K2(z)da. (6.15)

k=1

The proof of (6.14) is simple by applying Lemma 6.2. To see (6.15), note that

Stzzo= A (OO0 K (@ - w)/h)?

k=1 t=k
AN PP K (- 2) /A + AL T,
k=1 t=k
= (1=p)" ) Zh + A, (T —Ta)  [by (6.14)]
k=1

_ - / " K@)z + AL (T — Do) +0p(1),  (6.16)

12



where A, = >0 | K[(z; — x)/h],

T o= 2 > p "o " K, — 2)/h] K[(x; — x) /],

k=1 k<s<t<n
Ty = (1=p")7" Y K*[(x—x)/h] p*
t=1

Note that A,/(y/nh) —p ¢~ ' Lg(1,0) by Lemma 6.2. The result (6.15) will follow if we

prove
Iy, + Do = op[(nh?)Y?]. (6.17)

Recall K(r) < C and |p| < 1. It is readily seen that I'y, < C' = op[(nh?)'/?], due to
nh? — 0o. On the other hand, by applying Lemma 6.1, for any t > s, we have

E{K((z, — 2)/h] K[(x, = 2)/1]} < E|K[(@, - x)/h] B{K[(x — 2)/n] | .}
Ch h

Vi—sy/s

<

It follows that

BTy, < CR*Y y  ppt tl_s

k=1 k<s<t<n

S

< (th?Z— < Ch*/n

which implies that I'y, = Op(h?y/n) = op[(nh?)'/?]. This proves (6.17) and hence the
claim (6.15).
We now turn to the proof of (6.13). Since, given {x1, xs, ..., x, }, the sequence (Z}, €, k =

1,2,...,n) still forms a martingale difference by Assumption 2.2, it follows from Theorem

3.9 [(3.75) there] in Hall and Heyde (1980) with 6 = ¢/2 — 1 that

sup ’P(ZEtZ:Lt < zoy | xy, X9, ,xn) — @(x)’ < A(S) LY+ qs.,

t=1

where A(J) is a constant depending only on ¢ > 2 and

n

J 1 . q/2
Lo= g D12 Bl [ a1, a) + E{‘U—% S ZRBEEF) -] )
k=1 —
Recall that K (z) is uniformly bounded and
- B /2
lrgggcn| e 1213§n|2"k| <C/ (;K[(xt z)/h]) """ = op(1),
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by Assumption 2.3 and Lemma 6.2. Routine calculations, together with (6.15), show that
‘Cn = OP(l),

since ¢ > 2. Therefore the dominate convergence theorem yields that

sup |P(ZUth: < xal) — @(x)‘
z t=1

< E[sup |P(Z€tZ;t < zoq | 951,552,---,9%) - q)(m)” — 0.

t=1

This completes the proof of Lemma 6.3. O

LEMMA 6.4. Under Assumptions 2.3(a) and 2.4(a), for any x € R, we have

|Ap(z) —m(z)| < C 1+ |z|*)h”, (6.18)

where A, (z) = Z%nm(az)[(ft[f’z)f/ﬁ/ " If in addition Assumption 2.4(b), we have
t=1

P () (¢ o0
[Aata) = (o) = D [ )y = opl(un) (6.19)

o0

whenever nh? — oo and nh?>T™ = O(1), for any fived x.

Proof. By Assumption 2.4(a) and the compactness of K (z), the result (6.18) is simple.
The proof of (6.19) is the same as in the proof of Theorem 2.2 in Wang and Phillips (2011).
We omit the details. O

LEMMA 6.5. For any s,t € R and £ > 0, there exists a constant C such that
|La(1,8) — Lo(1,t)| < Cls — "> as., (6.20)
where G(x) is a continuous local martingale.

Proof. See Corollary 1.8 of Revuz and Yor (1994, p. 226). O
LEMMA 6.6. Suppose that Assumptions 3.1-8.4 hold. Then, for any [ > 0, we have

c n
En Z ft,s (Ik,n)
k=1

I, :=sup sup
teR s:|s—t|<en

= Ogs.(log™ n) (6.21)

where €, < c,n~"" for some l; > 0 and f;4(x) = g(cpr +t) — g(cpr + 5).
Proof. See Lemma 3.5 of Liu, Chan and Wang (2013). O
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6.2 Proofs of Theorem 2.1 and 2.2

We only prove Theorem 2.2. Using Lemmas 6.3 and 6.4, the proof of Theorem 2.1 is
standard [see, e.g., Wang and Phillips (2011)], and hence the details are omitted.
Start with (2.7). Recall that 4, = y; — ma(z:) = w + m(z) — Mma(x). Simple

calculations show that

p—p = Zi;z(ﬁs — Pls_1)Us_1
ZZ:Q uz_y

D ap €s s 1 N Sy Uy [m(ws) — i (zs) + p{rin(zs-1) — m(zs-1)}]
PP T PR T

= Rln + Rgn. (622)

AsV, = 2570 [ (ay) — m(:vt)]2 = Op{n®h* + (nh*)~'/?} by (3.5) of Theorem 3.2, it
follows from 31" u? — (1—p?)to? a.s., that = 3" , 0%, —p (1—p?)'o?, whenever

n®h? — 0 and nh? — oo. This, together with Holder’s inequality, yields that

n

Rou| < 201+ pA)V2V2)(N @)% = Op{n®21P + (nh?) 714},
s=2
On the other hand, by recalling Assumption 2.2, it is readily seen that R, = Op(n~%/2).
Taking these facts into (6.22), we obtain (2.7).

We next prove (2.8). We may write

P 2oy [a(@io1) — m(xes)] K((x — 2)/h]
2 iy Kl(ze — )/ 1]
(0 =7) Dy s K(wy — ) /1]
2oy Kl(w — 2)/]
APy () — m(x)] K[(w: — x)/h] L 2 € K = 2) /]
2 i1 Kl(w — ) /D] 2 iy Kl(we — ) /h]

= /p\lln + (p _75) ]2n + IBn + I4n~

+

Furthermore we may divide [y, into

) | S [l )~ mle )] Kl —a)/H
b = ZLIKm—x)/h]{;K[“ )/h S, Kl(tes — 21 /]

- nfz Us—1 K|(T5—1 — 14-1) /I
+3 Ko=) ZSEZ2K[(x[S(_1 — /QL]/ 3!

= Iip1 + Line.

Using Lemma 6.3 and (2.7), we have
B 1/2
(0= 9) (3 Kl(w: = 2)/h))" Lo =5 0
t=1

15



and (with p = 0 in Lemma 6.3)
- 1/2 2
( E K{(z; — z)/h])"" I, —p N(0,03).

Using (6.18) and ﬁ S, K[(x: —x)/h] —p ¢ ' La(1,0), we have

n

(Z K[(w: — 2)/h)""* | 5]

< C( h2+4,3 1/4 \/—hZK xt—x/h])lp (1)

Similarly, by recalling K has a compact support, we obtain

(Y Kl(w—a)/0) " [T

t=1

< OW (3 Kl(we —2) /)21 + |2|) K[(2, — ) /B

t=1 t=1
< C(nh*™P) 1/4 Z K[(z; — x) /h])1/2 p(1).
Combining all above facts, to prove (2.8), it suffices to show that
Ilng = OP[(nhz)_l/ﬂ. (623)

To this end, for each fixed x, write
Q, = {w: ZK s — x)/h] > \/nhé, },

Do, = {w: inf Zszl +)/h] > v/nhs,}

t=1,2,...,

where §,, | 0 is chosen later and w denotes the sample points. As P(€y, U Qy,) — 0 by
(3.4) and Lemma 6.2, the result (6.23) will follow if we prove

I(an an) ]1n2 = Op[(nhQ)_1/4]. (624)

Recall us = > 7 _, p° *ep. 102 can be rewritten as

Iln2 = Z;nzl th—flf /h Zus IJns
= Z?:l —l‘/h Zek Z ps - kJnsa

s=k+1
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where

~ K(ws-1 — 21) /D K[(ze — x) /1]
; Yo Ky —za) /0]

It follows easily from the the conditional arguments and Holder’s inequality that

E[I(an92n>j2n2]2 < (s, 2ZE( Z P kJ*)

s=k+1
s—1—k s—1—k *2
o S e Y e
k=1 s=k+1 s=k+1
TLC *2
S nzay 2 B (6.25)

where

Tog = ) Kl(we1 = 2-1)/B K(x; — ) /h].

Simple calculations show that, by letting Z{C:Z =0if j <1,

B12 = B(Y Kl — ) /W Kl —2)/])

IN
[\
S
=
vl
L
ey
L
N
~
=
g
|
8
~
~
=
——

3

+ 2K

r—’H
H
0;
,_.
|
35
:/
~
S
§
|
&
~
~
=
——
no

+ 2EK2[($8 1 — 75 2)/h] K [(ws—l —x)/h]
= Tln + Tgn + Tgn.

Assume t; < ty < s — 2. Recall K(x) has a compact support. It follows from Lemma 6.1
with p(z) = K(x — x4, —1/h)K(x — 2,1 /h) that

E{K[(xs-1 — z4,1) /W K[(x5-1 — z4,-1) /D] | '7:752}

< % / " Ky + (21, — w) /WKy + (21 — wp2) /W] dy

m / Ky)Kly + (x4, 1 — x4,-1) /b dy, a.s.

This, together with the repeatedly similar utilization of Lemma 6.1, yields that, for ¢; <

17



tQSS—Q,

o = B{K[(we1 = 20, 1) WK [0 s = 2y 1) WK (w0, = 2) /B [(2, — ) /] }
Ch o
< o [ B{Kb+ @ ) K @ — ) WK e, =0/} )y
Cch? [

< e | Kl G = ) WG /0 )y

Ch* 1 1
Vs —tata —t Vi

Similarly, for t; = t5 < s — 2,

2 2 1
Voner = BUCHs = wu) K = 2) I} < e e

We now obtain, for any 1 < s < n,

s—2
Ty, = Z Wit +2 Z W b to

t1=1 1<t1<to<s—2
s—2

Z Ch? L—i— Z Ch* 1 1
tl:lvs—h\/a 1Stl<t2gs_2\/3—t2\/t2—t1\/ﬂ
< CRY(L+ v/nh?).

IN

Similarly we may prove
Ton + T3, < Ch*(14 /nh?).
Combining all these estimates, it follows from (6.25) that
E[I(04, Q) Ia]” < C82[(nh?) ™" +n7Y?] = of(nh?) ™17,

by choosing §,, = min{(nh?)"/®, h=1/4} — oo, whenever h — 0 and nh? — oco. This proves

(6.23) and also completes the proof of Theorem 2.2. O

6.3 Proof of Theorem 3.1.

The idea for the proof of (3.3) is similar to that of Liu, Chan and Wang (2013), but there
are some essential difference in details. We restate here for the convenience of reading.
Without loss of generality, we assume 7 = [ g(x)dz = 1. Define g(z) = g(x)I{|z| <
n¢/2}, where 0 < ( < 1 — §y/v is small enough such that n¢/c, < n=%, where v and dg

18



are given in Assumption 3.1 and 3.2 respectively. Further let e = n~* with 0 < a < §¢/2

and define a triangular function

07 |y_€‘ > €
ge(y) = y:;87 —€ S Yy S 07
=, 0<y<e

It suffices to show that

Cn - _ _
¢mﬁzg%,gighmm%m—xmn—m%@m—wmmﬂ=owﬂ%ln» (6.26)
j:

Cn, - B 1 — _
%ﬁ%ﬂZmmew2wwmb%m%,mw
]:
®s, := sup de Tjn — Tpntn) — Lnt| = 0p(10g_l n). (6.28)

0<t<1

The proof of (6.26) is simple. Indeed, by recalling sup, |z|” |g(x)| < oo, it follows that

@y, < ¢ sup |g(@)|I{]z] > n¢/2} < Cn ¢, = o(log™'n).
|z|>nT /2

as n¢/c, <n~% and v > §o/(1 — ¢).
We next prove (6.28). Recalling [*° ge(y)dy = 1, it follows from the definition of

occupation time and Lemma 6.5 that

\/% GH)ds — La(1,G(1))]
z‘/;%w—wade@—LdLGwﬂ

/mgﬂdeLy+G@D—LdLG@MQ/

< CeYPE g

IN

for any £ > 0, uniformly for ¢ € [0,1]. Hence, by taking £ = 1/4 and noting
[ 9606) - Gt ~ Lo =0 [ 016(5) - Golds - L601,Gl0),
due to {Gn(t);0 <t <1} =p {G(£);0 <t <1},n > 1, we have
P | / 1 9elG(s) = G(B)]ds — Lpy| > log_l_1n>
y/% G1))ds — L(L.O(0)] = log ' n) =o(1),  (6:20)
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as n — oo. This, together with Assumption 3.2 and the fact that |g.(y) — g(2)] <

72|y — z|, implies that

1 n
‘E de<xj,n - x[nt],n) - Lnt
7j=1

1
< ’/ ge(m[ns],n_
0

= Oa.s(g_Qn_(so) + 2/(8’@) + Op(log_l_l

. 9e[Gn(s) — Gyu(t)lds —

Lnt

n)

< Op(n** ™ +log™"'n) = op(log™ n),

uniformly for ¢ € [0,1], as o < §p/2. This yields (6.28 ).

s = [ 0Gu(s) = Gu(t)ds| + 2/ en)

We finally prove (6.27), let g.,(2) be the step function which takes the value g.(mn¢/c,)

for z € [mn¢/c,, (m+1)n/c,), m € Z. It suffices to show that, uniformly for all 1 < k < n,

(letting g;(y) = glcn(Tjn — Trn) — V),

Aln : ‘ de xjn l‘kn - _Zgan xj?’b Ikn)/ g] dy‘

= Og.s. (log n)
1

n

Aoy (k) = (5 > Gen(Tjm — Thm) /_Z 9i(y)dy — /_Z % ige(y/cn)gj(y)dy’

= oa,s,(log*l n),

Az (k) == (/_oo %de(y/cn)gg )dy — —Zg n(Tjn — Thn)]

= 045, (log_l n),

In fact, by noting that |g.(y) — g.(2)| < e 2|y — 2| and

|gen(y)_96(z)| < |§sn(y)_

9-(y)| + 19:(y)

< Ce(nffen +ly — 21),

(6.30) follows from that, uniformly for all 1 < j, k < n,

gE(xj,n - xk,n) - g€n<xj,n - xk,n) /

S ge(xj,n - xk,n) - gsn(-xj,n - xk,n)

o

o0

+ ’gen(xj,n

§j(y)dy‘

< Ce™nb/ep + Cretn=0"Y = o, . (log™' n).

20

- xk,n)|

= 9¢(2)]

1- /_: Qj(y)dy‘

(6.30)

(6.31)

(6.32)

(6.33)



where we have used the fact that (recalling [ g(y)dy = 1),

‘1 _/ gj(y)dy‘ = ‘/ g I{ly| > nS/2} dy| < € n<0-D

due to sup, |y|"[g(y)| < oo and v > 1.
By the definition of g;(y) and (6.33) again, (6.31) follows from that, uniformly for all
1<j,k<n,

/ T Genl@i0 — 1) T5(0) — /)5 (9) |y

oo

< (" atortn) (510 gz = 10) = s20/en)| HleaCas =) =l < n/2})

S CSU.p [6—2(77/(/6” + |ajj,n — Tkn — y/cn‘) [{ }xj,n — Tk — y/cn| S nC/(an)}]
Y

< Ce’Q(nC/cn) = oa.s,(logfl n).

As for (6.32), the result follows from that, by using Lemma 6.6,

Az, (k) = ‘ /_Z % i {g[cn<xj,n — Tgn) — Y] — g[cn(xj,n - xk,n)]} ge(y/cn)dy‘

S sup sup % Z {g(cnxj,n + S) - g(cnxj,n + t)}‘
t |s—t|<cne =1
1 e.0)
X (C— 9(y/ cn)dy)
= 04.5.(log™' n). (6.34)

uniformly for 1 < k < n.
The proof of Theorem 3.1 is complete. O

6.4 Proof of Theorem 3.2.

To prove (3.4), we make use of Theorem 3.1. First note that K (z) satisfies Assumption
3.1 as it has a compact support. Let zj, = %, 1 < k < n, where z;, satisfies Assumption
2.1 with } 2%, i|¢;| < oo. As shown in Chan and Wang (2012), x, satisfies Assumption
3.3. wy, also satisfies Assumption 3.2. Explicitly we will show later that {v;,j € Z}
can be redefined on a richer probability space which also contains a standard Brownian
motion Wi(t) and a sequence of stochastic processes G1,(t) such that {G1,(t),0 < ¢ <
1} =p {G1(t),0 <t < 1} for each n > 1 and

SUP [T — Gin(t)] = 0o(n™), a.s., (6.35)
0<t<1
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for some &9 > 0, where G(t) = Wi(t) + K f (=11, (s)ds. We remark that G(t) is a
continuous local martingale having a local time.

Due to these fact, it follows from Theorem 3.1 that

= op(log™'n), (6.36)

0<t<1

\/_hZK x[nt])/\/ﬁﬁﬂ -

for any [ > 0, h — 0 and n'~“°h? — oo where ¢, > 0 can be taken arbitrary small and

11
Ly = lim2—/ I(|Gn(s) — Gun(t)| < €)ds
0

e—0 2€

Note that, for each n > 1, {L,;,0 <t <1} =p {L;,0 <t < 1} due to {G1,(t),0 <t <
1} =p {G41(t),0 <t < 1}, where L; = lim,_q 5 fo (|G1(s) — G1(t)| < €)ds. The result
(3.4) now follow from (6.36) and the well-know fact that P(lnfogtgl L; =0) =0, due to
the continuity of the process G(s).

To end the proof of (3.4), it remains to show (6.35). In fact, the classical strong

approximation theorem implies that, on a richer probability space,

[nt]

su v, — Wi(nt)| = o[nV/E] a.s. 6.37
e, | 2 v = M| = efn /7). 63m)
See, e.g., Csorgd and Révész (1981). Taking this result into consideration, the same
technique as in the proof of Phillips (1987) [see also Chan and Wei (1987)] yields

[nt]

sup ‘Z/\["t] Ty, — G ( | = o[nl/(2+5)], a.s., (6.38)
0<t<1
where G},(t) = Wi(nt) + & [} e"=Wi(ns)ds. Let G1,(t) = Gf,(t)//n. It is readily
seen that {G1,(¢),0 <t <1} =p {G1(t),0 <t < 1} due to {Wi(nt)/\/n,0 <t <1} =p
{W1(t),0 <t < 1}. Now, by virtue of (6.7)-(6.8), the result (6.35) follows from that

Ant] Tppy SUPp<i<1 ’wﬁn] + x/[fr;t]’
o2 o = G0l = P m OO T
[nt] [nt}
< — su AT — A=,
- TL0<tI<)1| ZZ_:(b (b) ; d

[nt]

— sup ‘ Z A=y, “{n(t)’ + Ogs.(n 02210

n 0<t<1

= o(n™%), a.s.,
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for some 6y > 0, where we have used the fact: due to max;<;<, |A\™" — 1| < Cn~/? and
maxj<g<n | Zle NIy, = o(y/nlogn), a.s., it follows from Y 2 i|¢;| < co that
[nt] [n1]
su AT Alrt=iy,.
Sl §¢ 9) 2 A
< C v+ O(y/nl AT —
< C\m Z O s 130
< Op(n"/*V/logn) + O(y/nlogn) (| Z@(A—i )
=0 i=y/n
= O(nY*\/logn), a.s.
We finally prove (3.5). Simple calculations show that
2 n
Vi < =) (Ji+J; 6.39
< LU+, (6.39)
where
5 g [m) = mw)) Kl =2/l S 1 Kl(res = )/
t — n ) t n .
2oy Kl(251 = 20) /1] 2oy Kl(zoy = 20) /1]
Assumption 2.4(a) implies that, when |z, 1 — ;| < M h and h is sufficiently small,
m(zs1) = m(z)] < Clasoy =2 (14 |2]%),
uniformly on s,t. Using this fact and K has a compact support, it follows that
Ch?
- Z B < =D (U fal) = Op(n 1), (6.40)

t=1
As for Jy, by recalling us = > "7 _; 0° e, we have

154 < (e Somte o) L
t=1 1 t=1

,,,,,

where
5y~ Tim e S 0 Kl — 20)/h]
(Z” K [(x — ) /h)Y?

It follows from Assumption 2.2 that, for 1 <t < n,

n—1 2 n—1 sk 2
_ S Bl | w){ Sk o K — w) /R |
B S Kl — x0) /R

C ZZ;} Zs p P kK2[($s — x1)/h] ZZ ;PS i
Soos) Kl(ws — z4)/h]

E(J32 | 21, ..., 1)

IA

017
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where we have used the fact that > 7> ) p* = 1/(1 — p) < co. Hence £ 371" | J52 = Op(1).
Due to this fact and (3.4), we get

%Zn: JZ = Op|(nh?)~1/2. (6.41)

Combining (6.39)—(6.41), we prove (3.5) and hence complete the proof of Theorem 3.2. O
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Figure 1. Shows the QQ plot of the standardized estimator s
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