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Email: christian.hafner@uclouvain.be

Abstract

Predicting default probabilities is at the core of credit risk management and is becoming more
and more important for banks in order to measure their client’s degree of risk, and for firms to
operate successfully. The SVM with evolutionary feature selection is applied to the CreditRe-
form database. We use classical methods such as discriminan analysis (DA), logit and probit
models as benchmark On overall, GA-SVM is outperforms compared to the benchmark models
in both training and testing dataset.

Keywords: SVM, Genetic algorithm, global optmimum, default prediction
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1 Prediction methods for the probability of default

Default probability is defined as the probability that a borrower will fail to serve its obligation.
Bonds and other tradable debt instruments are the main source of default for most individual
and institutional investors. In contrast, loans are the largest and most obvious source of default
for banks (Sobehart and Stein, 2000).

Predicting default probabilities is at the core of credit risk management and is becoming more
and more important for banks in order to measure their client’s degree of risk, and for firms to
operate successfully. The Basel Committee on Banking Supervision established the borrower’s
rating as a crucial criterion for minimum capital requirements of banks to minimize their cost
of capital and mitigate their own bankruptcy risk (Härdle et al., 2009). Alterative methods to
generate ratings have been developed essentially over the last 15 years (Krahnen and Weber,
2001).

There are basically two approaches that deal with default risk analysis: The market-based
model, frequently denoted as structural model, and the statistical approach determined through
an empirical analysis of historical data, e.g. accounting data. The market-based approach uses
time series of the company data to predict the probability of default derived from an adapted
Black-Scholes model (Black and Scholes (1973) and Vassalou and Xing (2004)). However, the
most challenging requirement is the knowledge of market values of debt and equity. This
precondition is a severe obstacle to using the Merton model (Merton, 1974) adequately as it is
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only satisfied in a minority of cases (Härdle et al., 2009). The idea of Merton’s model is that
equity and debt could be considered as options on the value of the firm’s assets. Unfortunately,
long time series of market prices are not available for most companies. For companies that
are not listed, their market price is unknown. In that case, it is necessary to choose a model
which relies on cross-sectional data, financial statements or accounting data. Sobehart and
Stein (2000) developed a hybrid model where the output is based on the statistical relationship
to default of financial statement information, market information, ratings (when they exist)
and a variant of Merton’s contingent claims model expressed as distance to default.

The early studies about bankruptcy prediction attempted to identify the difference between
financial ratios of solvent and insolvent firms (Ramser and Foster (1931), Winakor and Smith
(1935) and Merwin (1942) ). Then, parametric statistical models were introduced by using
discriminant analysis (DA) for the univariate (Beaver, 1966) and multivariate case (Altman,
1968), also known as Z-score. DA was the dominant method in bankruptcy prediction up to the
1980s. The model separates defaulting from non-defaulting firms based on the discriminatory
power of linear combinations of financial ratios. The logit and probit approach replaced the
usage of DA during 1980s, see (Martin, 1977), (Ohlson, 1980), (Lo, 1986) and (Plat et al., 1994).
These approaches rely on a priori assumed dependence between predictors and risk default. The
assumption in DA and logit (or probit) models often fail to meet the reality of observed data.
Semiparametric logit models as in (Hwang et al., 2007) incorporate the conventional linear
model and a non-parametric approach.

If there is evidence that the separation mechanism is of a nonlinear kind, then the linear
separating hyperplane approach is not suitable. In that case, Artificial Neural Network (ANN) is
a non-parametric non-linear classification approach to solve the linear non-separability problem.
ANN was introduced to analyze bankruptcy in the 1990s, see (Tam and Kiang (1992),Wilson
and Sharda (1994) and Altman et al. (1994)) for details. ANN has often been criticized to be
vulnerable to the multiple minima problem. Common to the Ordinary Least Square (OLS)
and Maximum Likelihood Estimation (MLE) for linear models, ANN also uses the principle
of minimizing empirical risk, which usually leads to poor classification performance for out-of-
sample data (Haykin (1999), Gunn (1998) and Burges (1998)).

In contrast to the case of neural networks, where many local minima usually exist, Support
Vector Machines (SVM) training always finds a global solution (Burges, 1998). SVMs is a
state-of-the-art classification method and one of the most promising among recently developed
non-linear statistical techniques. The idea of SVMs can be said to have started in the late
1970s by Vapnik (1979), but it was receiving increasing attention after the work in statistical
learning theory (Boser et al. (1992), Vapnik (1995) and Vapnik (1998)). The SVM formulation
embodies the Structural Risk Minimisation (SRM) principle (Shawe-Taylor et al., 1996). At
the first stages, SVM has been successfully applied to classify (multivariate) observations, see
Blanz et al. (1996), Cortes and Vapnik (1995), Schölkopf et al. (1995), Schölkopf et al. (1996),
Burges and Schölkopf (1997) and Osuna et al. (1997a). Later, SVM has been used in regression
prediction and time series forecasting (Müller et al., 1997).

The SVM has been applied to bankruptcy prediction and typically outperformed the competing
models (Härdle and Simar (2012), Härdle et al. (2009), Zhang and Härdle (2010), Härdle et
al. (2011) and Chen et al. (2011)). One of the important issues in SVM is the parameter
optimization (feature selection). This chapter emphasizes the feature selection of SVM for
bankruptcy prediction applied to a credit database. The SVM parameters are optimized by
using an evolutionary algorithm, the so-called Genetic Algorithm (GA) introduced by Holland
(1975). Some recent papers that deal with GA are Michalewicz (1996), Gen and Cheng (2000),
Melanie (1999), Haupt and Haupt (2004), Sivanandam and Deepa (2008) and Baragona et al.
(2011).

In the case of a small portion of samples belonging to a certain class (label) compared to the
portion of other classes, this kind of data may tend to classify every sample as the class of the
majority. This is the case in default and non-default datasets, and such models would be useless
in practice. The fundamental issue with imbalanced learning problems is the property of imbal-
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sample (Y )
default (1) non-default (-1)

predicted (Ŷ )
(1) True Positive (TP ) False Positive (FP )
(-1) False Negative (FN) True Negative (TN)

total P N

Table 1: Contingency table for performance evaluation of two-class classification

anced data to significantly compromise the performance of most standard learning algorithms.
He and Garcia (2009) provide a comprehensive and critical review of the development research
in learning from imbalanced data.

Two of the methods to overcome this problem are the down-sampling and over-sampling strate-
gies (Härdle et al., 2009). Under-sampling works with bootstrap to select a set of majority class
examples such that both the majority and minority classes are balanced. Due to the ran-
dom sampling of bootstrap, the majority sample might cause the model to have the highest
variance. An over-sampling scheme could be applied to avoid this unstable model building
(Maalouf, 2011). The over-sampling method selects a set of samples from the minority class
and replicates the procedure such that both majority and minority classes are balanced.

At first glance, the down-sampling and over-sampling appear to be functionally equivalent since
they both alter the size of the original data set and can actually yield balanced classes. In the
case of under-sampling, removing examples from the majority class may cause the classifier
to miss important concepts pertaining to the majority class. With regards to over-sampling,
multiple instances of certain examples become ’tied’ which leads to overfitting (He and Garcia,
2009). Although sampling methods and cost-sensitive learning methods dominate the current
research in imbalanced learning, kernel-based learning, i.e. SVM, have also been pursued.
The representative SVMs can provide relatively robust classification results when applied to
imbalanced data set (Japkowicz and Stephen, 2002).

2 Quality of default prediction

In classification, one of the most important issues is the discriminative power of classification
methods. In credit scoring, for example, the classification methods are used for evaluating the
credit worthiness of a client. Any classification errors can create damages to the resources of a
credit institute. Therefore, assessing the discriminative power of rating systems is an important
topic for banks and regulators.

The most frequent assessment metrics are accuracy and misclassification rate. A representation
of two-class classification performances can be formulated by a contingency table (confusion
matrix) as illustrated in Table 1. The accuracy (Acc) and misclassification rate (MR) are
respectively defined as:

Acc = P (Ŷ = Y ) =
TP + TN

P +N
. (1)

MR = P (Ŷ 6= Y ) = 1−Acc. (2)

Acc and MR can be deceiving in certain situations and are highly sensitive to changes in data,
e.g., unbalanced two-class sample problems. Acc uses both columns of information in Table 1.
Therefore, as class performance varies, measures of the performance will change even though the
underlying fundamental performance of the classifier does not. In the presence of unbalanced
data, it becomes difficult to do a relative analysis when the Acc measure is sensitive to the data
distribution (He and Garcia, 2009).
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Other evaluation metrics are frequently used to provide comprehensive assessments, especially
for unbalanced data, namely, specificity, sensitivity and precision, which are defined as:

Spec = P (Ŷ = −1|Y = −1) =
TN

N
. (3)

Sens = P (Ŷ = 1|Y = 1) =
TP

P
. (4)

Prec =
P (Ŷ = 1|Y = 1)

P (Ŷ = 1|Y = 1) + P (Ŷ = 1|Y = −1)
=

TP

TP + FP
. (5)

Precision measures an exactness, but it can not assert how many default samples are predicted
incorrectly.

2.1 AR and ROC

Many rating methodologies and credit risk modelling approaches have been developped. The
question arises which of these methods are preferable to others. The most popular validation
techniques currently used in practice are Cumulative Accuracy Profile (CAP) and Receiver Op-
erating Characteristic (ROC) curve. Accuracy Ratio (AR) is the summary statistic of the CAP
curve (Sobehart et al., 2000). ROC has similar concept to CAP and has summary statistics,
the area below the ROC curve (called AUC) (Sobehart and Keenan, 2001). Engelmann (2003)
analyse the CAP and ROC from a statistical point of view.

Consider a method assign to each observed unit a score S as a function of the explanatory
variables. Scores from total samples, S, have cdf F and pdf f , scores from default samples,
S|Y = 1, have cdf F1 as well as scores from non-default samples, S|Y = −1, have cdf F−1.

The CAP curve is particularly useful as it simulataneously measures Type I and Type II errors.
In statistical terms, the CAP curve represents the cumulative probability of default events for
different percentiles of the risk score scale. The actual CAP curve is basically defined as the
graph of all points {F, F1} where the points are connected by linear interpolation. A perfect
CAP curve would assign the lowest scores to the defaulters, then increasing linearly and then
staying at one. For a random CAP curve without any discriminative power, the fraction x of
all events with the lowest rating scores will contain x% of all defaulters, Fi = F1,i.

Therefore, AR is defined as the ratio of the area between actual and random CAP curves to
the area between the perfect and random CAP curves (Figure 1). The classification method is
the better the higher is AR, or the closer it is to one. Formally, if y = {0, 1}, the AR value is
defined as:

AR =

∫ 1

0
yactual F dF − 1

2∫ 1

0
yperfect F dF − 1

2

(6)

If the number of defaulters and non-defaulters is equal, the AR becomes:

AR = 4

∫ 1

0

yactual F dF − 2 (7)

In classification, for example credit reating, assume future defaulters and non-defaulters will be
predicted by using rating scores. A decision maker would like to introduce a cut-off value τ ,
and an observed unit with rating score less than τ will be classified into potential defaulters.
A classified non-defaulter in an observed unit would have rating score greater than τ . Table 2
summarizes the possible decisions.
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Figure 1: Cumulative Accuracy Profile (CAP) curve (left) and Receiver Operating Character-
istic (ROC) curve (right).

sample (Y )
default (1) no default (-1)

predicted rating score

≤ τ correct prediction wrong prediction
(default) (hit) (false alarm)
> τ wrong prediction correct prediction

(no default) (mass) (correct rejection)

Table 2: Classification decision given cut-off value τ

If the rating score is less than the cut-off τ conditionally on a future default, the decision
was correct and it is called a hit. Otherwise, the decision wrongly classified non-defaulters
as defaulters (Type I error), called false alarm. The hit rate, HR(τ), and false alarm rate,
FAR(τ), are defined as ((Engelmann, 2003) and (Sobehart and Keenan, 2001)):

HR(τ) = P (S|Y = 1 ≤ τ) (8)

FAR(τ) = P (S|Y = −1 ≤ τ) (9)

Given a non-defaulter which has rating score greater than τ , the cassification is correct. Oth-
erwise, a defaulter is wrongly classified as a non-defaulter (Type II error).

The ROC curve is constructed by plotting FAR(τ) versus HR(τ) for all given values τ . In
other words, the ROC curve consists of all points {F−1, F1} connected by linear interpolation
(Figure 1). The area under the ROC curve (AUC) can be interpreted as the average power
of the test on default or non-default corresponding to all possible cut-off values τ . A larger
AUC characterized a better classification result. A perfect model has an AUC value of 1, and
a random model without discriminative power has an AUC value of 0.5. The AUC is between
0.5 and 1.0 for any reasonable rating model in practice. The ralationship between AUC and
AR is defined as (Engelmann, 2003):

AR = 2AUC − 1 (10)

Sing et al. (2005) developed package ROCR in R to calculate performance measures under the
ROC curve for classification analysis.

Similarly, the ROC curve is formed by plotting FPrate over TPrate, where

FPrate =
FP

N
, TPrate =

TP

P

5
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Figure 2: A Set of classification function in the case of linearly separable data (left) and linearly
non-separable case (right).

and any point in the ROC curve corresponds to the performance of a single classifier on a given
distribution. The ROC curve is useful because it provides a visual representation of the relative
trade-offs between the benefits (reflected by TP ) and cost (reflected by FP ) of classification
(He and Garcia, 2009).

3 SVM formulation

This section reviews the support vector machine methodology in classification. We first discuss
classicial linear classification, both for linearly separable and non-separable scenarios, and then
focus on non-linear classification.

SVM in the linearly separable case

Each observation consists of a pair of p predictors xi = (xi1, ..., xip) ∈ Rp, i = 1, . . . , n and the
associated yi ∈ Y = {−1, 1}. We have a sequence

Dn = {(x1, y1), . . . , (xn, yn)} ∈ X × {−1, 1} , (11)

of i.i.d pairs drawn from a probability distribution F (x, y) over X × Y . The domain X is some
non-empty set from which xi are drawn, and yi are targets or labels. The indices i, j = 1, . . . , n
are always understood to run over the training set.

Now we have a machine whose task is to learn the information in a training set, Dn, to predict
the label y for any new observation. In the following we will call this machine learning a
classifier. The label yi from training data is then called trainer or supervisor. A nonlinear
classifier function f may be described by a function class F which is fixed a priori, e.g. it can
be the class of linear classifiers (hyperplanes).

First we will describe the SVM in the linearly separable case. A key concept to define a linear
classifier is the dot product, also referred to as an inner product or scalar product, between two
vectors defined as x>w =

∑
i xiwi. The family F of classification functions in the data space

is given by:

F =
{
x>w + b, w ∈ Rp, b ∈ R

}
, (12)

where w is known as the weight vector and b is called bias.
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0

Margin ( d )

 

Figure 3: The separating hyperplane x>w + b = 0 and the margin in the linearly separable
case.

The set of points x such that f(x) = x>w = 0 are all points that are perpendicular to w and
go through the origin. The form of f(x) is a line in two dimension, a plane in three dimension,
and more generally, a hyperplane in the higher dimension. The bias b translates the hyperplane
away from the origin (Figure 3).

The following decision boundary (separating hyperplane)

f(x) = x>w + b = 0, (13)

divides the space into two regions as in Figure 3. The sign of f(x) determines in which regions
the points lie. The decision boundary defined by a hyperplane is said to be linear because
it is linear in the inputs xi. A so-called linear classifier is a classifier with a linear decision
boundary. Furthermore, a classifier is said to be a non-linear classifier when the decision
boundary depends on the data in a non-linear way.

In order to determine the support vectors we choose f ∈ F (or equivalently (w, b)) such that the
so called margin – the corridor between the separating hyperplanes – is maximal. The margin
is equal to d− + d+, where the signs (−) and (+) denote the two regions.

The classification function is a hyperplane plus the margin zone, where, in the separable case,
no observations can lie. It separates the points from both classes with the highest ‘safest’
distance (margin) between them. It can be shown that margin maximization corresponds to
the reduction of complexity as given by the VC-dimension (Vapnik, 1998) of the SVM classifier.

The length of vector w is denoted by norm ‖w‖ =
√
w>w. A unit vector ŵ, where ‖ŵ‖ = 1, in

the direction of w is given by w
‖w‖ . Furthermore, the margin of a hyperplane f(x) with respect

to a dataset Dn can be seen as follows,

dD(f) =
1

2
ŵ>(x+ − x−), (14)

where the unit vector ŵ is in the direction of w. It is assumed that x+ and x− are equidistant
from the separating hyperplane

f(x+) = w>x+ + b = a,

f(x−) = w>x− + b = −a, (15)

with constant a > 0. Suppose to fix a = 1 in order to make the geometric margin meaningful
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and divide (14) by ‖w‖ to obtain

dD(f)

‖w‖ =
1

2
ŵ>(x+ − x−) =

1

‖w‖ . (16)

A bit of linear algebra shows that 1
‖w‖ (x

>
i w + b) is the signed distance of xi from the decision

boundary. Let x>w + b = 0 be a separating hyperplane and yi ∈ {−1,+1} codes a binary
response for the i -th observation. Then d+ and (d−) will be the shortest distance to the closest
objects from the classes +1 and (−1). Since the separation can be done without errors, all
observations i = 1, 2, ..., n must satisfy:

x>i w + b ≥ +1 for yi = +1,

x>i w + b ≤ −1 for yi = −1.

We can combine both constraints into one as follows:

yi(x
>
i w + b)− 1 ≥ 0 i = 1, . . . , n. (17)

Therefore the objective function of the linearly separable case would be maximizing (16) or
equivalently,

min
w

1

2
‖w‖2 , (18)

under the constraint (17). The Lagrangian for the primal problem in this case is:

min
w,b

LP (w, b) =
1

2
‖w‖2 −

n∑
i=1

αi{yi(x>i w + b)− 1}. (19)

The Karush-Kuhn-Tucker (KKT) (Gale et al., 1951) first order optimality conditions are:

∂LP

∂wk
= 0 : wk −

∑n
i=1 αiyixik = 0, k = 1, ..., d,

∂LP

∂b = 0 :
∑n
i=1 αiyi = 0,

yi(x
>
i w + b)− 1 ≥ 0, i = 1, . . . , n,

αi ≥ 0,
αi{yi(x>i w + b)− 1} = 0.

From these first order conditions, we can derive w =
∑n
i=1 αiyixi and therefore the summands

in (19) would be

1

2
‖w‖2 =

1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj

n∑
i=1

αi{yi(x>i w + b)− 1} =

n∑
i=1

αiyix
>
i

n∑
j=1

αjyjxj −
n∑
i=1

αi

=

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj −

n∑
i=1

αi

Substituting this into (19), we obtain the Lagrangian for the dual problem:

LD (α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj . (20)
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Figure 4: The separating hyperplane x>w+ b = 0 and the margin in the linearly non-separable
case.

Solving the primal and dual problems

min
w,b

LP (w, b)

max
α

LD (α) s.t. αi ≥ 0,

n∑
i=1

αiyi = 0.

give the same solution since the optimization problem is convex.

Those points i for which the equation yi(x
>
i w + b) = 1 holds are called support vectors. In

Figure 3 there are two support vectors that are marked in bold: one solid rectangle and one
solid circle. Apparently, the separating hyperplane is defined only by the support vectors that
hold the hyperplanes parallel to the separating one.

After “training the support vector machine”, i.e. solving the dual problem above and deriving
Lagrange multipliers (which are equal to 0 for non-support vectors) one can classify an object,
for example a company. One uses the classification rule

g(x) = sign
(
x>w + b

)
, (21)

where w =
∑n
i=1 αiyixi and b = − 1

2 (x+1 + x−1)w, with x+1 and x−1 are two support vectors
belonging to different classes for which y(x>w + b) = 1 hold. The value of the classification
function (the score of a company) can be computed as

f(x) = x>w + b. (22)

Each score f(x) uniquely corresponds to a probability of default (PD). The higher f(x), the
higher also the PD.

3.1 SVM in the linearly non-separable case

In the linearly non-separable case the situation is illustrated in Figure 4. The slack variables
ξi represent the violation of strict separation that allow a point to be in the margin error,
0 ≤ ξi ≤ 1, or to be misclassified, ξ > 1. In this case the following inequalities can be induced
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(from Figure 4):

w + b ≥ 1− ξi for yi = 1,

w + b ≤ −(1− ξi) for yi = −1,

ξi ≥ 0,

which could be combined into two constraints as follows:

yi(x
>
i w + b) ≥ 1− ξi (23a)

ξi ≥ 0. (23b)

SVM classification again maximizes the margin given a family of classification functions F .

The penalty for misclassification is related to the distance of a misclassified point xi from the
canonical hyperplane bounding its class. If ξi > 0, an error in separating the two sets occurs.
The objective function corresponding to penalized margin maximization is then formulated as:

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi, (24)

with constraints as in equation (23). This formulation is called soft-margin SVM introduced
by Cortes and Vapnik (1995).

The parameter C characterizes the weight given to the classification errors. The minimization
of the objective function with constraints (23a) and (23b) provides the highest possible mar-
gin in the case when classification errors are inevitable due to the linearity of the separating
hyperplane. Under such a formulation the problem is convex.

Non-negative slack variables ξi allow points to be on the wrong side of their soft margin (x>i w+
b = ±1), as well as the separating hyperplane. Parameter C is cost parameter that controls the
amount of overlap. If the data are linearly separable, then for sufficiently large C the solution
(18) and (24) coincide. If the data are linearly non-separable as C increases the solution
approaches the minimum overlap solution with largest margin, which is attained for some finite
value of C (Hastie et al., 2004).

The Lagrange function for the primal problem is:

LP (w, b, ξ) =
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑
i=1

αi{yi
(
x>i w + b

)
− 1 + ξi} −

n∑
i=1

µiξi, (25)

where αi ≥ 0 and µi ≥ 0 are Lagrange multipliers. The primal problem is formulated as:

min
w,b,ξ

LP (w, b, ξ) . (26)

The first order conditions of the primal problem are given by

∂LP
∂wk

= 0 : wk −
n∑
i=1

αiyixik = 0, (27a)

∂LP
∂b

= 0 :

n∑
i=1

αiyi = 0, (27b)

∂LP
∂ξi

= 0 : C − αi − µi = 0. (27c)

with the following conditions for the Lagrange multipliers:

αi ≥ 0, (28a)

µi ≥ 0, (28b)

αi{yi(x>i w + b)− 1 + ξi} = 0, (28c)

µiξi = 0. (28d)
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Note that
∑n
i=1 αiyib = 0, similar to the linear separable case. The primal problem translates

into the dual problem as follows:

LD (α) =
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj −

n∑
i=1

αiyix
>
i

n∑
j=1

αjyjxj

+C

n∑
i=1

ξi +

n∑
i=1

αi −
n∑
i=1

αiξi −
n∑
i=1

µiξi

=

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj +

n∑
i=1

ξi (C − αi − µi) .

Since the last term is equal to zero, we derive the dual problem as:

LD (α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj , (29)

and the dual problem is posed as:

max
α

LD (α) , (30)

subject to:

0 ≤ αi ≤ C,
n∑
i=1

αiyi = 0. (31)

The sample xi for which α > 0 (support vectors) are those points that are on the margin, or
within the margin when a soft-margin is used. The support vector is often sparse and the level of
sparsity (fraction of data serving as support vector) is an upper bound for the misclassification
rate (Schölkopf and Smola, 2002).

3.2 Non linear classification

We have not made any assumptions on the domain X other than being a set. We need additional
structure in order to study machine learning to being able to generalize to unobserved data
points. Given some new point x ∈ X , we want to predict the corresponding y ∈ Y = {−1, 1}.
By this we mean that we choose y such that (x, y) is in some sense similar to the training
examples. To this end, we need similarity measures in X and in {−1, 1}. The latter is easy, as
two target values can only be identical or different (Chen et al., 2005).

For the former, we require a similarity measure, i.e. a so called kernel function k, given two
examples xi and xj , which returns a real number characterizing their similarity.

k ∈ K : X × X → R, (32)

(xi, xj) 7−→ k(xi, xj). (33)

A type of similarity measure that is of particular mathematical appeal is the dot product. The
dot product of two vectors xi, xj ∈ Rn is defined as

xi · xj = x>i xj :=

n∑
`=1

(xi)` (xj)` . (34)

In order to be able to use a dot product as a similarity measure, we need to transform them
into some dot product space, so called feature space H ∈ H, which need not be identical to Rn.

ψ : X → H. (35)

11



Data Space Feature Space

Figure 5: Mapping into a three dimensional feature space from a two dimensional data space
R2 7→ R3. The transformation ψ(x1, x2) = (x21,

√
2x1x2, x

2
2)> corresponds to the kernel function

K(xi, xj) = (x>i xj)
2.

The SVMs can also be generalized to the nonlinear case. In order to obtain non-linear classifiers
as in Figure 5 one maps the data with a non-linear structure via a function ψ : Rp 7→ H into
a high dimensional space H where the classification rule is (almost) linear. Note that all the
training vectors xi appear in LD (29) only as scalar products of the form x>i xj . In the nonlinear

SVM situations this transforms to ψ (xi)
>
ψ (xj).

The learning then takes place in the feature space, provided the learning algorithm can be
expressed so that the data points only appear inside dot products with other points. This is
often referred to as the kernel trick (Schölkopf and Smola, 2002). The kernel trick is to compute
this scalar product via a kernel function. More precisely, the projection ψ : Rp 7→ H ensures
that the inner product ψ (xi)

>
ψ (xj) can be represented by kernel function

k(xi, xj) = ψ(xi)
>ψ(xj). (36)

If a kernel function k exists such that (36) holds, then it can be used without knowing the
transformation ψ explicitly.

Given a kernel k and any data set x1, ..., xn ∈ X then the n× n matrix

K = k((xi, xj))ij , (37)

is called the kernel or Gram matrix of k with respect to x1, ..., xn. A necessary and sufficient
condition for a symmetric matrix K, with Kij = K(xi, xj) = K(xj , xi) = Kji, to be a kernel
is, by Mercer’s theorem (Mercer, 1909), that K is positive definite:

n∑
i=1

n∑
j=1

λiλjK(xi, xj) ≥ 0. (38)

The following is a simple example of a kernel trick. To obtain the discriminant function f(x) =
w>ψ(x) + b, consider the case of a two-dimensional input space with mapping function given
by a vector in terms of all degree-2 monomials,

ψ(x1, x2) = (x21,
√

2x1x2, x
2
2)>,

such that

w>ψ(x) = w1x
2
1 +
√

2w2x1x2 + w3x
2
2.

12



The dimensionality of the feature space F is of quadratic order of the dimensionality of the
original space. This quadratic complexity is feasible for low dimensional data. Kernel methods
avoid the step of explicitly mapping the data into a high dimensional feature-space by the
following steps

f(x) = w>x+ b

=

n∑
i=1

αix
>
i x+ b

=

n∑
i=1

αiψ(xi)
>ψ(x) + b in feature space F

=

n∑
i=1

αik(xi, x) + b

where the kernel associated with this mapping

ψ(x)>ψ(z) = (x21,
√

2x1x2, x
2
2)(z21 ,

√
2z1z2, z

2
2)>

= x21z
2
1 + 2x1x2z1z2 + x22z

2
2

= (x>z)2

= k(x, z)

This example shows that the kernel can be computed without computing explicitly the mapping
function ψ.

Furthermore, to obtain non-linear classifying functions in the data space, a more general form
is obtained by applying the kernel trick to (29) as follows:

max
α

LD (α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj), (39)

subject to:

0 ≤ αi ≤ C, i = 1, . . . , n, (40a)
n∑
i=1

αiyi = 0. (40b)

One of the most popular kernels used in SVM is the Radial Basis Function (RBF) kernel given
by

K(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
. (41)

The benefits of transforming the data into the feature space H (Chen et al., 2005) summarize:

1. It lets us define a similarity measure from the dot product in H,

k(xi, xj) := x>i xj = ψ(xi)
>ψ(xj). (42)

2. It allows us to deal with the patterns geometrically, and thus lets us study learning
algorithms using linear algebra and analytical geometry.

3. The freedom to choose the mapping ψ will enable us to design a large set of learning
algorithms. Consider a situation where the input already lives in a dot product space, in
which case we could directly define a similarity measure as the dot product. However, we
might still choose to first apply a non-linear mapping ψ to change the representation into
one that is more suitable for a given problem and learning algorithm.
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The resulting optimisation problems (39), which is a typical quadratic problem (QP), are de-
pendent upon the number of training examples. The problem can easily be solved in a standard
QP solver, i.e. package quadprog in R (Weingessel, 2004) or an optimizer of the interior point
family ((Vanderbei, 1999) and (Schölkopf and Smola, 2002)) implemented to ipop in package
kernlab in R (Karatzoglou et al., 2005).

Osuna et al. (1997b) proposed exact methods by presenting a decomposition algorithm that is
guaranteed to solve QP problem and that does not make assumptions on the expected number of
support vectors. Platt (1998) proposed a new algorithm called Sequential Minimal Optimization
(SMO) which decomposes the QP in SVM without using any numerical QP optimization steps.
Some work on decomposition methods for QP in SVM was done by, for example, Joachims
(1999), Keerthi et al. (2001), Hsu and Lin (2002). Subsequent developments were achieved by
Fan et al. (2005) as well as Glasmachers and Igel (2006).

Due to the fast development and wide applicability, the existence of many SVM software rou-
tines is not surprising. The SVM software which is written in C or C++ are SVMTorch (Collobert et
al., 2002), SVMlight (Joachims, 1999), Royal Holloway Support Vector Machines (Gammerman
et al., 2001), libsvm (Chang and Lin, 2001) which provides interfaces to MATLAB, mySVM

(Rüping, 2004) and M-SVM (Guermeur, 2004). The SVM is also available in MATLAB (Gunn
(1998), Canu et al. (2003) and Schwaighofer (2005)). Several packages in R dealing with SVM
are e1071 (Dimitriadou et al., 1995), kernlab (Karatzoglou et al., 2004), svmpath (Hastie et
al., 2004) and klaR (Roever et al., 2005).

SVM recently has been developed by many researchers in various fields of application, i.e. Least
Squares SVM (Suykens and Vandewalle, 1999), Smooth SVM or SSVM (Lee and Mangasarian,
2001), 1-norm SVM (Zhu et al., 2004), Reduced SVM (Lee and Huang, 2007) and ν-SVM
(Schölkopf et al. (2000) and Chen et al. (2005)). Hastie et al. (2004) viewed SVM as a regularised
optimisation problem.

4 Evolutionary feature selection

During the learning process (training), an SVM finds the large margin hyperplane by estimating
sets of parameters αi and b. The SVM performance is also determined by another set of
paramaters, the so-called hypermarameters: These are the soft margin constant C and the
parameters of the kernel, σ, as in (41). The value of C determines the size of the margin errors.
The kernel parameters control the flexibility of the classifier. If this complexity parameter is
too large, then overfitting will occur.

Hastie et al. (2004) argue that the choice of the cost parameter (C) can be critical. They derive
an algorithm, so-called SvmPath, that can fit the entire path of SVM solutions for every value
of the cost parameter, with essentially the same computational cost as fitting one SVM model.
The SvmPath has been implemented in the R computing environment via the library svmpath.
Chen et al. (2011) use grid search methods to optimize SVM hyperparamaters to obtain the
optimal classifier for a credit dataset. This chapter employs a Genetic Algorithm (GA) as an
evolutionary algorithm to optimise the SVM parameters.

GA is an iterative procedure which follows the evolution of a population of individuals through
successive generations. The idea of GA is based on the principle of survival of the fittest. Living
beings are constituted by cells, with specialized tasks, which carry the genetic information of
the whole individual. Each cell contains a fixed number of chromosomes composed by several
genes. A gene is a piece of elementary information which may be conceptualized as a binary
code. All information carried by genes of all chromosomes (the genotype) determines all char-
acteristics of an individual (the phenotype). Each individual is evaluated to give measures of
its fitness. Some individual undergo stochastic transformations by means of genetic operations
to form a new individual. There are two types of transformation: mutation and crossover or
recombination. Mutation creates a new individual by making changes in a single chromosome.
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Figure 6: Generating binary encoding chromosomes to obtain the global optimum solution
through GA.
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Figure 7: GA convergency: solutions at 1− st generation (left) and g − th generation (right).

Figure 8: Chromosome.

Crossover creates new individuals by combining parts from two individuals represented by their
chromosomes. Chromosomes are ordered in pairs, and when sexual reproduction takes place,
children (new chromosome) or offspring receive, for each pair, one chromosome from each of
their parents (old chromosomes). The children are then evaluated. A new population is formed
by selecting fitter individuals from the parent population and the children population. After
several generations (iteration), the algorithm converges to the best individual, which hopefully
represents a (globally) optimal solution to the problem (Baragona et al. (2011) and Gen and
Cheng (2000)).

A binary string chromosome is composed of several genes. Each gene has a binary value (allele)
and its position (locus) in a chromosome as shown in Figure 8. The binary string is decoded
to the real number in a certain interval by the following equation

θ = θlower + (θupper − θlower)
∑l−1
i=0 ai2

i

2l
(43)

where θ is the solution (i.e. parameter C or σ), a is binary value (allele) and l is the chromosome
length. In the encoding issue, according to what kind of symbol is used as the alleles of a gene,
the encoding methods can be classified as follows: binary encoding, real-number encoding,
integer or literal permutation encoding and general data structure encoding.
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2.2 Simple Genetic Algorithm 21

Generally, we will assign the probability of crossover pc, called the crossover
rate, to control the possibility of performing a crossover.26

For two individuals selected to cross over, we assign a point between 1 and l −1
randomly, where l is the length of the chromosome. This means generating a random
integer in the range [1, l−1]. The genes after the point are changed between parents
and the resulting chromosomes are offspring. We call this operator a single-point
crossover. Figure 2.6 illustrates this.
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Fig. 2.6 Single-point crossover

As can be seen from Fig. 2.6, two new individuals are generated by crossover,
which is generally seen as the major exploration mechanism of SGA.

If two parents do not perform a crossover according to probability pc, their off-
spring are themselves.

Now we discuss mutation. There are also two ways to implement mutation. One
way is to open another memory with size popsize to store the results of crossover,
and mutation is carried out in that memory. The other way is to mutate the offspring
of crossover directly. We use the latter way.

For every gene in an individual, we mutate it with probability pm, called the
mutation rate.27 Provided gene j needs to be mutated, we make a bit-flip change
for gene j, i.e., 1 to 0 or 0 to 1. We call this operator a bit-flip mutation. Figure 2.7
illustrates the bit-flip mutation. The individual after mutation is called the mutant.
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Fig. 2.7 Bit-flip mutation for gene j of the offspring

26 How do we implement the statement “Individual i and individual j cross over with probability
pc”?
27 How do we implement the statement “Gene j mutates with probability pm”?
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Figure 9: One-point crossover (top) and bit-flip mutation (bottom).
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Fig. 2.5 Roulette wheel selection

been done to minimize the selection bias, and we will introduce some of them in
later chapters.

Another consideration about RWS is that the problem needs to be maximum and
all the objective values need to be greater than zero so that we can use objective
values as fitness values and take RWS as the selection process directly.24

2.2.5 Variation Operators

There are many variation operators to change information in individuals in the mat-
ing pool. If information exchange, i.e., gene exchange, is done between two or more
individuals25, this variation operator is called crossover or recombination. If the
genes of one individual changes on its own, this variation operator is called muta-
tion. We will introduce single-point crossover and bit-flip mutation here.

There are two ways to select two individuals in the mating pool to determine
whether or not to cross over them. One is to shuffle the mating pool randomly
and assign individuals 1 and 2 without replacement to be a crossover pair, 3 and
4 without replacement to be another pair, etc. The other is to generate a random
integer permutation, per, between [1, popsize]. per(i) = j means the ith element in
the permutation is the jth individual in the mating pool. Then we assign indper(1)
and indper(2) without replacement as the first crossover pair, indper(3) and indper(4)
without replacement as the second crossover pair, etc.

24 Why do we need two such requirements for RWS to handle objective values directly?
25 We will give examples of multiparent crossover in Chap. 3.

Figure 10: Probability of i-th chromosome to be selected in the next iteration (generation)

The current solution is evaluated to measure the fitness performance based on discriminatory
power (AR or AUC), f∗(C, σ). The next generation results from the reproduction process
articulated in three stages of selection, crossover and mutation (Fig. 9). The selection step is
choosing which chromosomes of the current population are going to reproduce. The most fitted
chromosome should reproduce more frequently than the less fitted one.

If f∗i is the fitness of i-th chromosome, then its probability of being selected (relative fitness) is

pi =
f∗i∑popsize

i=1 f∗i
, (44)

where popsize is the number of chromosomes in the population or population size. The roulette
wheel method selects a chromosome with probability proportional to its fitness, see Fig. 10.
To select the new chromosome, generate a random number u ∼ U(0, 1), then select i-th chro-

mosome if
∑t
i=1 pi < u <

∑t+1
i=1 pi, where t = 1, . . . , (popsize − 1). Repeat popsize times to

get new population. The other popular selection operators are stochastic universal sampling,
tournament selection, steady-state reproduction, sharing, ranking and scaling.

The selection stage produces candidates for reproduction (iteration). Randomly chosen pairs
of chromosomes mate and produce a pair of offspring that may share genes of both parents.
This process is called crossover (with fixed probability). One-point crossover can be extended
to two-point or more crossover. Afterwards, the offspring is subject to the mutation operator
(with small probability). Mutation introduces innovations into the population that cause the
trapped local solutions to move out. The relationship of GA with evolution in nature is given
in Table 3. Figure 11 shows how GA is applied to SVM optimization.

A too high crossover rate may lead to premature convergence of the GA as well as a too high
mutation rate may lead to the loss of good solutions unless there is elitist selection. In elitism,
the best solution in each iteration is maintained in another memory. When the new population
will replace the old one, check whether best solution exists in the new population. If not, replace
any chromosomes in the new population with the best solution we saved in another memory.
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Nature GA-SVM
Population Set of parameters
Individual (phenotype) Parameters
Fitness Discriminatory power
Chromosome (genotype) Encoding of parameter
Gene Binary encoding
Reproduction Crossover
Generation Iteration

Table 3: Nature to GA-SVM mapping.

mating poolpopulation

Generating Evaluation
(fitness)

SVM

SVM

SVM

MODEL

Learning

Learning

Learning

DATA

selectioncrossover

mutation

Figure 11: Iteration (generation) procedure in GA-SVM.

It is natural to expect that the adaptation of GA is not only for finding solutions, but also
for tuning GA to the particular problem. The adaptation of GA is to obtain an effective
implemetation of GA to real-world problems. In general, there are two types of adaptations:
Adaptation to problems and adaptation to evolutionary processes (see Gen and Cheng (2000)
for details).

5 Application

The SVM with evolutionary feature selection is applied to the CreditReform database consisting
of 20, 000 solvent and 1, 000 insolvent German companies in the period from 1996 to 2002.
Approximately 50% of the data are from the years 2001 and 2002. Table 4 describes the
composition of the CreditReform database in terms of industry sectors. In our study, we only
used the observations from the following industry sectors: manufacturing, wholesale and retail,
construction, and real estate.

We excluded the observations of solvent companies in 1996 because of missing insolvencies in
this year. The observations with zero values in those variables which were used as denominator
to compute the financial ratios were also deleted. We also excluded the companies whose total
assets were not in the range EUR 105−107. We replace the extreme financial ratio values by the
following rule: if xij > q0.95(xj) then xij = q0.95(xj) and if xij < q0.05(xj) then xij = q0.05(xj),
where q is quartile. Table 5 describes the filtered data used in this study.

We predict the default based on 28 financial ratio variables as used in Chen et al. (2011) and
Härdle et al. (2009). The GA was employed as an evolutionary feature selection of SVM.
The population size is 20 chromosomes. We used a fixed number of iterations (generations)
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type solvent (%) insolvent (%) total (%)
Manufacturing 26.06 1.22 27.29
Construction 13.22 1.89 15.11
Wholesale and retail 23.60 0.96 24.56
Real estate 16.46 0.45 16.90
total 79.34 4.52 83.86
others 15.90 0.24 16.14

Table 4: Credit reform data based on industry sector.

year solvent insolvent total
number (%) number (%) number (%)

1997 872 ( 9.08) 86 (0.90) 958 ( 9.98)
1998 928 ( 9.66) 92 (0.96) 1020 (10.62)
1999 1005 (10.47) 112 (1.17) 1117 (11.63)
2000 1379 (14.36) 102 (1.06) 1481 (15.42)
2001 1989 (20.71) 111 (1.16) 2100 (21.87)
2002 2791 (29.07) 135 (1.41) 2926 (30.47)
total 8964 (93.36) 638 (6.64) 9602 (100)

Table 5: Filtered credit reform data.

Training
Training error (%)

Testing
Testing error (%)

DA Logit Probit DA Logit Probit
1997 10.01 0 0 1998 9.13 9.00 8.88
1998 9.25 0 0 1999 11.08 10.82 10.82
1999 10.43 0 0 2000 9.20 9.31 9.31
2000 8.62 0 0 2001 6.86 7.78 7.78
2001 6.64 0 0 2002 7.95 7.16 7.16

Table 6: Percentage of training error and testing error from discriminant analysis, logit and
probit model.

as a termination criterion. The number of generations is fixed at 100 with crossover rate 0.5,
mutation rate 0.1 and elitism rate 0.2 of the population size. The obtained optimal parameters
of GA-SVM are given by σ = 1/178.75 and C = 63.44.

We use classical methods such as discriminan analysis (DA), logit and probit models as bench-
mark (Table 6). Discriminant analysis shows a poor performance in both training and testing
dataset. The financial ratios variables are collinear such that the assumptions in DA are vi-
olated. Logit and probit model show a perfect classification in training dataset with several
variables are not significant. The best models of logit and probit, by excluding the nonsignificant
variables, still show not significant different from as if we use the whole variables.

The GA-SVM yields also a perfect classification in the training dataset as in Table 7 which
shows an overfitting. Overfitting means that the classification boundary is too curved, there-
fore has less ability to classify the unobserved data (i.e. testing data) correctly. The mis-
classification is zero for all training data such that the other discriminatory power measures,
Acc, Spec, Sens, Prec,AR and AUC, attain one. A 5-fold cross-validation was used to measure
the performance of GA-SVM in default prediction by omitting the overfitting effect. On over-
all, GA-SVM is outperforms compared to the benchmark models in both training and testing
dataset.
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Training
Training Acc, Spec, Sens Cross

Testing
Testing

error (%) Prec,AR,AUC validation error (%)
1997 0 1 9.29 1998 9.02
1998 0 1 9.22 1999 10.38
1999 0 1 10.03 2000 6.89
2000 0 1 8.57 2001 5.29
2001 0 1 4.55 2002 4.75

Table 7: Percentage of training error, discriminatory power, cross validation (5-fold) and testing
error.
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