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ARMAX(P,R,Q) PARAMETER IDENTIFIABILITY
WITHOUT COPRIMENESS

By Leon L. Wegge∗ ,

University of California, Davis

In the ARMAX(p, r, q) model given (p, r, q), the presence of mul-
tiple parameters is often ignored. In a coprime model Hannan has
shown that the unrestricted reduced form (URF) parameter is iden-
tifiable under the simple condition that the end parameter matrix
(Πp,Φr,Ψq) has full row rank. In applications it has been found con-
venient to assume, without test, that the model is coprime. But in
stable miniphase models, coprime or noncoprime, the incidence of
multiple parameters is very real whenever the tail end transfer (im-
pulse) coefficient matrix =URF has less than full row rank. This ma-
trix contains the transfer matrices at lags r and q and beyond. If the
timeseries process is significantly anchored in its past, =URF has full
row rank and the URF parameter is unique. This is testable in large
samples. The rank of =̂URF assists in deciding uniqueness of the URF
parameter, in quantifying the common factor that generates its mul-
tiplicity and in identifying a restricted reduced form (RRF) model.

∗Preliminary draft read at the Australian Econometric Society Meetings and at the
Australian National University (1986). Recent drafts presented to the Bob Shumway Con-
ference at Davis (2007) and to a Seminar at the Technische Universität Wien (2008). I am
grateful for comments made by the late E.J.Hannan, by Hugo Kuersteiner, Bob Shumway
and Manfred Deistler that have led to many clarifications in substance and style. All
remaining misconceptions and errors are mine.

AMS 2000 subject classifications: Primary 37M10, 91G70
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1. Introduction. With autocorrelated errors represented as a moving
average, Hannan E. (1969, 1971) derived the very simple result that in
m−variate coprime models the reduced form ARMA(p, q) parameter is
identifiable if and only if the end matrix Πp in the autoregression and Ψq in
the moving average jointly have rank m. The vast literature analyzing co-
primeness and extending Hannan’s core result is summarized in Hannan and
Deistler (1988). Coprimeness implies assuming a priori that any left com-
mon factor (LCF) is ”polynomial with a polynomial inverse”. A coprime-
ness test would require rank tests over an infinite domain and is possible
only if the parameter is given. As a LCF is a ratio of polynomial matrices,
a polynomial LCF with polynomial inverse must be exceptional. Typically,
either a LCF or its inverse or both are nonpolynomial and as shown below,
if Πp is nonsingular, any LCF6= Im must be an infinite power series.

Deistler M. (1976) asked if the assumption of coprimeness is a natural one
and doubted that it is for the econometrician (statistician) inspired by eco-
nomic (subject matter) theory. Clearly it is desirable to analyze parameter
identifiability without having to assume that the model is coprime. Glover
and Willems (1974) already obtained necessary and sufficient identifiability
conditions for minimal state-space models and Deistler and Schrader (1979)
derived sufficient identifiability conditions for a class of ARX(p, r, .) models,
both without assuming coprimeness.

In this paper the ARMAX(p, r, q) model, coprime or noncoprime alike,
is considered under standard stability and MA invertibility hypotheses. Its
essential result is that the unrestricted reduced form (URF) parameter is
identifiable if and only if a p− stacked tail end transfer coefficient submatrix
has full row rank pm. The intuition is that an identifiable process must have
full impact extending to and beyond period q. If the rank is less than pm
alternative parameters exist and these are derived.

The ARMA(p, q) model is introduced in Section 2 with its assumptions
and notations. Section 3 describes the properties that equivalent models
have in Lemma 1 and Lemma 2. It concludes with the equivalence existence
Theorem 1 and with Corollary 1 for the special model with commuting pa-
rameter. In Section 4 LCF properties are summarized and the conditions
under which they are polynomial or nonpolynomial are obtained. In Sec-
tion 5 the equivalence condition of Theorem 1 is contrasted to results of the
coprime literature. In Section 6 the ARMA(p, q) model is converted into a
state-space model. The Glover and Willems (1974) identifiability condition
is found to be identical to that of Theorem 1 when q = p, and is sufficient
but not necessary when q 6= p. The technical details are placed in an Ap-
pendix. A singular multivariate Sylvester matrix is shown to be a necessary
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condition for the existence of a polynomial or a nonpolynomial LCF in Sec-
tion 7. Extensions of the results to the URF, to the restricted reduced form
(RRF) and to the structural ARMAX(p, r, q) model follow in Theorem 2
and Theorem 3 of Sections 8 and 9. The recommendation that a rank test
of the stacked tail end transfer coefficient submatrix be made part of the
parameter estimation procedure, however imperfect, is a natural implication
of the analysis.

2. ARMA(p, q) Assumptions and Notation. The simplest time-
series model in which the essential result of the paper holds is the unre-
stricted reduced form URF ARMA(p, q) model. For known positive integers
p and q this is the stochastic process (yt)t∈T of endogenous variables in Rm
satisfying

p∑
i=0

Πiyt−i =

q∑
j=0

Ψjηt−j , t ∈ T , T = {1, . . . , T} ,(1)

where Π0 = Ψ0 = Im, Πi∈ Rm×m is the i − th AR parameter matrix and
Ψj∈ Rm×m the j − th MA parameter matrix. Both Πi and Ψj are bounded
and (ηt)t∈T are independent error variables on an underlying probability
space with state space Rm, mean E(ηt) = 0 and positive definite covariance
Ω=E(ηtη

′
t). The index is the set of natural numbers.

Let Π(z):=
∑p

i=0 Πiz
i, Ψ(z):=

∑q
i=0 Ψiz

i with z a complex scalar. The
matrix polynomial z−transforms (Π(z),Ψ(z)) will be called the model and

(Πa(z), Ψa(z)) = (

pa∑
i=0

Πa
i z
i,

qa∑
j=0

Ψa
j z
j), Πa

0 = Ψa
0 = Im,

is an alternative model. Among the stability and miniphase assumption, see
(e.g., Hannan and Deistler , 1988), the model assumptions are summarized
under the following.

Assumption 1. The (yt)t∈T process (1) is causal and for |z| ≤ 1, the
set of polynomials

(Im,Π(z),Πa(z),Ψ(z),Ψa(z),Π(z)−1,Πa(z)−1,Ψ(z)−1,Ψa(z)−1)(2)

is a ring of converging power series, with addition component-wise and mul-
tiplication given by the Cauchy product.

Under Assumption 1, Π(z) is invertible as a formal matrix power series
in the closed unit disk and the (yt)t∈T process is unique given (ηt)t∈T .
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The final form or transfer model is Tη(z) := Π(z)−1Ψ(z). Under As-
sumption 1 it is a converging series with unique transfer coefficient Tη,i at
lag i = 1, . . . . The vector (Tη,1, Tη,2, . . . ) constitutes the external identifiable
observational information of the model.

The model (Π(z),Ψ(z)) and the alternative (Πa(z),Ψa(z)) are observa-
tionally equivalent if they imply the same final form power series Tη(z) =
Π(z)−1Ψ(z) = Πa(z)−1Ψa(z). It follows that the model and the alterna-
tive are observationally equivalent if and only if there exists a power series
R(z) =

∑∞
i=0Riz

i , Ri∈ Rm×m such that (Πa(z),Ψa(z)) = R(z)(Π(z),Ψ(z))
with leading term R0 = Im. By construction R(z) = Πa(z)Π(z)−1 is a ra-
tional polynomial. The standard algebra and coprime literature deal mainly
with polynomial R(z) and here all rational R(z) with converging power series
are considered.

Observationally equivalent models (Π(z),Ψ(z)) and (Πa(z),Ψa(z)) are
said to be degree equivalent if Πa(z) has degree pa ≤ p and Ψa(z) has

degree qa ≤ q. Degree equivalence is the condition 0 =
(

Πa
p+i,Ψ

a
q+i

)
=∑∞

j=1Rj (Πp+i−j ,Ψq+i−j) ,∀i, 0 < i. Models are said to be equivalent if they
are observationally and degree equivalent. The matrix R(z) will be called a
left common factor (LCF) if both conditions are satisfied.

Identifiability conditions imply that equivalent models (Πa(z),Ψa(z)) 6=
(Π(z),Ψ(z)) do not exist. The contribution of this paper is the derivation of
necessary and sufficient conditions under which equivalent models satisfying
Assumption 1, do or do not exist.

Notation 1. Block Toeplitz matrices
In what follows, when matrices are block matrices with either a m ×m

transfer coefficient matrix Tη,i, or an AR parameter matrix Πi, or an MA
parameter matrix Ψi as element, the noun block in naming a block row or
block column is dropped. In time series analysis many matrices are Toeplitz
matrices with the (i, j)− th element depending only on j− i. Such matrices
can be defined by the 4 corner elements. As used below, (Tη)

i;j
−k+i;−k+j is

the matrix having Tη,i, Tη,j , Tη,−k+i, Tη,−k+j in its corners. Its top row
(Tη)i;j = (Tη,i, . . . , Tη,j) has Tη,i as first and Tη,j as last element. Similarly its
bottom row (Tη)−k+i;−k+j has Tη,−k+i as first and Tη,−k+j as last element. In

the same way define Πi;j
−k+i;−k+j as the matrix having the AR autoregressive

parameter matrices Πi as elements and in Ψi;j
−k+i;−k+j the elements are the

MA parameter matrices Ψi. The superscripts (subscripts) name the corner
elements of the top (bottom) row. In a row subscripts are rising and in a
column they are falling. A matrix with a negative subscript is a null matrix.
If the matrix is a single vector only the bottom or the left hand indices are
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reported. For example, if R(z) has degree j and R1;j = (R1, . . . , Rj), the
condition that (Πa(z),Ψa(z)) and (Π(z),Ψ(z)) are equivalent is that

(Πa(z),Ψa(z)) = R(z)(Π(z),Ψ(z)), 0 = R1;j(Π
p;p+j−1
p−j+1;p,Ψ

q;q+j−1
q−j+1;q),(3)

as formulated for the ARMA(p, q)− model in Deistler, M. (1983).

With ρ(Z) denoting the rank of Z, the central result of the paper is this.

3. ARMA(p,q) Equivalence Condition.

Lemma 1. The observationally equivalent URF model (Πa(z),Ψa(z)) =
R(z)(Π(z),Ψ(z)), with R(z) =

∑∞
i=0Riz

i, R0 = Im, a converging power
series, is degree equivalent if and only if R1;∞ and

(
Πa

1 −Π1, . . . ,Π
a
p −Πp

)
satisfy the equations

0 = (Πa
1 −Π1, Πa

2 −Π2, . . . , Πa
p −Πp) =URF,η,(4)

R1;p = (Πa
1 −Π1, Πa

2 −Π2, . . . , Πa
p −Πp) (Π0;p−1

1−p;0)
−1(5)

and for t = (1, 2, . . . )(
(Rp+1;R2p), . . . , (Rtp+1;R(t+1)p), . . .

)
= R1;p

(
G, . . . , Gt, . . .

)
(6)

where G := −Πp;2p−1
1;p Π0;p−1

1−p;0)
−1 and

=URF,η := (Tη)
q;q+pm−1
q−p+1;q+pm−p =


Tη,q Tη,q+1 . . . Tη,q+pm−1
Tη,q−1 Tη,q . . . Tη,q+pm−2

...
... . . .

...
Tη,q−p+1 Tη,q−p+2 . . . Tη,q+pm−p

 .

The URF ARMA(p, q) parameter ((Πi)i=1,...,p, (Ψi)i=1,...,q,Ω) is identifiable
if and only if

ρ(=URF,η) = pm.(7)

Proof. Observational equivalence means Ψa(z) = Πa(z)Π(z)−1Ψ(z). Sub-
tracting Ψ(z) from both sides of the equation obtain

Ψa(z)−Ψ(z) = Πa(z)Π(z)−1Ψ(z)−Ψ(z) = (Πa(z)−Π(z))Tη(z).

After substituting Πa
i = Πi = 0, p < i, Ψa

j = Ψj = 0, q < j, and

Tη,k = 0, k < 0, the coefficients of zq+j , 0 < j on both sides are

Ψa
q+j −Ψq+j =

(
Πa

1 −Π1, . . . ,Π
a
p −Πp

) (
T ′η,q+j−1, . . . , T

′
η,q+j−p

)′
= 0
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and Ψa(z) degree equivalence over Ψa
q+j = 0, j = 1, . . . , J, requires

0 =
(
Πa

1 −Π1, . . . ,Π
a
p −Πp

)
(Tη)

q;q+J−1
q−p+1;q+J−p.

Since Π(z)Tη(z) = Ψ(z) implies (Tη)
q+t
q+t−p+1 = Jp(Tη)q+t−1q+t−p, t ≥ 1, where

pm× pm Jp :=


−Π1 . . . −Πp−1 −Πp

Im . . . 0 0
... . . .

...
...

0 . . . Im 0

 ,

the Caley-Hamilton theorem implies that at most pm conditions Ψa
q+j =

0, j = 1, . . . , pm, are independent and ρ
(

(Tη)
q;q+J−1
q−p+1;q+J−p

)
= ρ (=URF,η)

for pm ≤ J . Therefore, (4) is the Ψa(z) degree equivalence condition over
all Ψa

q+j = 0, j = 1, . . . , and ρ (=URF,η) = pm is the condition (7) that the
AR and thus the MA and positive definite Ω parameter is unique.

From Πa(z) = R(z)Π(z) for i ∈ {1, . . . , p}, the Πa
i coefficient satisfies

Πa
i − Πi = R1;pΠ

i−1
i−p, implying (Πa − Π)1;p = R1;pΠ

0;p−1
1−p;0 and (5). For i ∈

{p+ 1, . . . } ,Πa(z) = R(z)Π(z) implies 0 = R1;pΠ
i−1
i−p +Rp+1;iΠ

i−(p+1)
0 and

0 = (Πa −Π)p+1;i = R1;pΠ
p;i−1
1;i−p +Rp+1;iΠ

0;i−(p+1)
p+1−i;0 .

Setting i = tp, (6) is seen from the partition Πp;tp−1
1;tp−p = (Πp;2p−1

1;p ,O), with

O the pm× (t− 1)p null matrix, multiplying into the inverse of Π0;tp−p−1
1+p−tp;0.

This latter matrix is bidiagonal, having Π0;p−1
1−p;0 in the diagonal, Πp;2p−1

1;p in
the upper diagonal and the top row of its inverse is the geometric sequence
(Π0;p−1

1−p;0)
−1 (Ipm, G, . . . , Gt−1) , with G := −Πp;2p−1

1;p (Π0;p−1
1−p;0)

−1. �
The degree equivalence condition of observationally equivalent models is

composed of the Ψa(z) degree equivalence condition (4), the Πa(z) determin-
ing role of R(z) in condition (5) and the Πa(z) degree equivalence condition
(6). The latter condition reveals how the LCF R(z) is either a polynomial of
degree at most p or Ri, p < i, is a matric geometric converging power series.
For any given (Πa

1−Π1, . . . ,Π
a
p−Πp) solving (4), conditions (5) and (6) can

be solved uniquely and therefore condition (4) alone is the necessary and
sufficient degree equivalence condition in observationally equivalent models.

Lemma 2. The Ψa(z) degree equivalence condition (4) implies the URF
model (Πa(z),Ψa(z)) = R(z)(Π(z),Ψ(z)) is an equivalent model with

R(z) = Im +

 p∑
i=1

zi
i∑

j=1

RjΠi−j

Π(z)−1.(8)
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Proof. Given Πa
1 − Π1, . . . ,Π

a
p − Πp from (4), observe that the conjectured

relation (8) satisfies

R(z) = Im +R1;pΠ
0;p−1
1−p;0(zIm, z

2Im, . . . , z
pIm)′ Π(z)−1

= Im +
(
(Πa

1 −Π1)z + (Πa
2 −Π2)z

2 + · · ·+ (Πa
p −Πp)z

p
)

Π(z)−1

= Im + (Πa(z)−Π(z))Π(z)−1

and therefore,

(Πa(z),Ψa(z)) =
(
Im + (Πa(z)−Π(z))Π(z)−1

)
(Π(z),Ψ(z))

=

Πa(z),Ψ(z) +
∞∑
j=1

p∑
i=1

(Πa
i −Πi)z

iTη,j−iz
j−i


= (Πa(z),Ψ(z) +

q∑
j=1

p∑
i=1

((Πa
i −Πi)z

iTη,j−iz
j−i),

after substituting from (4) that
∑p

i=1(Π
a
i −Πi)z

iTη,j−iz
j−i = 0, for q+1 ≤ j.

The alternative model is thus observationally equivalent. �
Lemma 1 shows that observationally equivalent models are degree equiva-

lent under condition (4) and Lemma 2 shows that degree equivalent models
are observationally equivalent under condition (4). This may be summarized
in an existence theorem.

Theorem 1 (Equivalent Model Existence). (Πa(z),Ψa(z)) equivalent to
the unrestricted reduced form ARMA(p, q) model (Π(z),Ψ(z)) exists if and
only if condition (4) holds with (Πa

1−Π1, . . . ,Π
a
p−Πp) 6= 0, i.e., if and only

if ρ(=URF,η) < pm.

In (4) the AR parameter differences between equivalent models are de-
scribed bym vectors. Each vector is in the null space of =URF,η. Some vectors
may be null, but not all if there is any difference between the models. In the
top row of =URF,η stand the white noise transfer coefficient matrices at lags
q, q + 1, . . . . Going down the rows in each column the lag is reduced by one
period. If =URF,η has rank pm the alternative model is equal to the given
model. The effect of the random error process (ηt)t∈T on the evolution of
the time series process (yt)t∈T at lags q and/or beyond has a significant role
in identifying the parameter. If the effect at lags q and beyond is null the
parameter would not be unique. The contribution of the transfer coefficient
matrix Tη,q is important. On the other hand, when p > 1, it is neither neces-
sary nor sufficient for identifiability that Tη,q is nonsingular. In the extreme
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case that Tη,q = 0, the parameter still may be identifiable. For example in
the bivariate ARMA(2, 2) model Tη,1 = Ψ1 − Π1, Tη,2 = Ψ2 − Π2 − Π1Tη,1
and when Tη,2 = 0 the tail end transfer submatrix

=URF,η = (Tη)
2,5
1,4 =

(
0 −Π2Tη,1 Π1Π2Tη,1 (Π2

2 −Π2
1Π2)Tη,1

Tη,1 0 −Π2Tη,1 Π1Π2Tη,1

)
can have full row rank 4 and the parameter identifiable.

With consistent estimators T̂η,i, i = 1, . . . , q + pm − 1, of the white
noise transfer coefficient matrices, the identifiability condition (7) is testable
through a rank test. If the rank condition fails estimators of the dimension
of the null space are available as a guide for the researcher in considering
restricted reduced form (RRF) models.

Remark 1. The equivalence condition (4) is valid for any population,
coprime or not coprime, of size T ≥ (m+1)p+q, where mp+q observations
are needed to define transfer coefficients lagged up to mp+ q− 1 periods, in
addition to the p+ 1 initial observations needed in (1). This number is what
Tigelaar H. (1983) showed to be the second-order minimum informative
sample size in coprime models.

Remark 2. Deistler, M. (1983), in this notation, derives the equation

(Tη,q+1, Tη,q+2, . . . , Tη,q+mp) = − (Π1, Π2, . . . , Πp) =URF,η (D.10)

between transfer coefficients and AR coefficients. If (D.10)a is the equa-
tion (D.10) with the AR parameter vector replaced by Πa

1;p of an equiva-
lent model, this paper′s equivalence condition (4) is the equation (D.10) −
(D.10)a. Under Assumption 1, it is the unique equivalence condition in any
model, coprime or not coprime. If the AR and MA transforms commute
there is a simpler criterion.

Corollary 1. When Π(z) and Ψ(z) commute, the URF ARMA(p,q)
models (Π(z),Ψ(z)) and (Πa(z),Ψa(z)) are equivalent if and only if

0 = (Πa
1 −Π1, Πa

2 −Π2, . . . , Πa
p −Πp) (Tη)

q;q+p−1
q−p+1;q(9)

and the parameter is identifiable if and only if ρ
(

(Tη)
q;q+p−1
q−p+1;q

)
= pm.

Proof. With commuting z−transforms, Π(z)−1Ψ(z) = Ψ(z)Π(z)−1 = Tη(z)
imply Tη(z)Π(z) = Ψ(z) and Tη,q+t = − (Tη,q+t−pΠp + · · ·+ Tη,q+t−1Π1) .
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For t ≥ 1 we have Tη,q+t+p−1
...

Tη,q+t

 = −

 Tη,q+t−1 . . . Tη,q+t+p−2
... . . .

...
Tη,q+t−p . . . Tη,q+t−1


 Πp

...
Π1

 ,(10)

implying ρ (=URF,η) = ρ
(

(Tη)
q;q+p−1
q−p+1;q

)
. �

Corollary 1 implies that there does not exist a common root between
two scalar polynomials of degrees p and q if and only if (Tη)

q;q+p−1
q−p+1;q is non-

singular. Below this condition is seen to be identical to the condition that
the m−variate Sylvester matrix is nonsingular and a singular multivariate
Sylvester matrix is shown to be necessary for an equivalent model to exist.

4. Polynomial and Nonpolynomial LCF. Under the equivalence
existence condition ρ(=URF,η) < pm, there exists R(z) =

∑∞
i=0Riz

i 6= Im
satisfying 0 = R1;pΠ

0;p−1
1−p;0=URF,η, R1;p 6= 0, with these properties.

Property 1. ρ(R1;p) = pm− ρ(=URF,η) and Rp+1;∞ is linear in R1;p, as
follows from (5) and (6) of Lemma 1.

Property 2. There exists a continuous family of LCF R̄(z) = Im +∑∞
i=1 FRiz

i, with m ×m F an arbitrary matrix, generating corresponding
alternative equivalent models, as follows from first degree homogeneity of
R1;∞ in Πa

1 −Π1, . . . ,Π
a
p −Πp through (4), (5) and (6) of Lemma 1.

Property 3. The polynomial
∑p

i=0Riz
i is a LCF if and only if

0 = R1;p

(
Π0;p−1

1−p;0=URF,η, Πp;2p−1
1;p

)
(11)

= R1;p

(
Ψq;q+pm−1
q−p+1;q+pm−p −Πp;2p−1

1;p (Tη)
q−p;q−p+pm−1
q−2p+1;q−2p+pm, Πp;2p−1

1;p

)
.

This follows from equation (6). To derive the second equality in (11), the
relation Ψk = Tη,k +

∑p
i=1 ΠiTη,k−i, k ∈ {0, 1, . . . , } is used.

The distinction between polynomial and nonpolynomial LCF hinges on
whether the geometric power sequence in (6) is finite or not finite.

Definition 1. The mp×mp matrix N is nilpotent of degree g if Ng = 0.
N nilpotent implies |N | = 0, trN = 0, its characteristic polynomial is λmp

and g ≤ mp. The matrix N is not nilpotent if all its positive powers are not
null.

Conditions (4), (5), (6) and G = −Πp;2p−1
1;p (Π0;p−1

1−p;0)
−1 being a nilpotent

matrix imply:
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Corollary 2. The polynomial
∑gp

i=0Riz
i, 2 ≤ g ≤ mp, is a LCF if

and only if

i) 0 = R1;pΠ
0;p−1
1−p;0=URF,η,

ii) Rtp+1;(t+1)p = R1;p(−Πp;2p−1
1;p (Π0;p−1

1−p;0)
−1)t, t = 1, . . . , g − 1,

iii) 0 = (Πp;2p−1
1;p (Π0;p−1

1−p;0)
−1)g.

Condition i) repeats that the p leading terms in a LCF have a primary
role. An equivalent model (Πa(z),Ψa(z)) differs from (Π(z),Ψ(z)) if and only
if Πa(z) − Π(z) 6= 0 and this difference is described in (5) through at most
p matrices of R1;p. Condition ii) defines the secondary role of Rtp+1;(t+1)p.

It must contribute to Πa
tp+1;(t+1)p the matrix Rtp+1;(t+1)pΠ

0;p−1
1−p;0 to cancel

out the contribution R(t−1)p+1;tpΠ
p;2p−1
1;p made to it by its left neighbour.

This role requires that Rtp+1;(t+1)p follow the matricvariate geometric series
with ratio G. Finally, condition iii) sets Ri = 0, gp < i and completes the
required Πa(z) degree equivalence. Corollary 2 opens new insight in the LCF
structure.

Property 4. The power sequence
∑∞

i=0Riz
i is a nonpolynomial LCF if

and only if

i) 0 = R1;pΠ
0;p−1
1−p;0=URF,η,

ii) Rtp+1;(t+1)p = R1;p(−Πp;2p−1
1;p (Π0;p−1

1−p;0)
−1)t, t = 1, . . . ,

iii) 0 6= (Πp;2p−1
1;p (Π0;p−1

1−p;0)
−1)t, t = 1, . . . ,

where sufficient conditions for non-nilpotency iii) are∣∣∣Πp;2p−1
1;p

∣∣∣ 6= 0 or tr(Πp;2p−1
1;p ) 6= 0.(12)

In summary, the polynomial
∑d

i=0Riz
i of degree d is an LCF if and only

if it satisfies R1;pΠ
0;p−1
1−p;0=URF,η = 0 with R1;p 6= 0 and from (6) its degree d

i) is less than or equal to p if and only if R1;pΠ
p;2p−1
1;p = 0

ii) satisfies p+ 1 ≤ d ≤ gp, if and only if Πp;2p−1
1;p (Π0;p−1

1−p;0)
−1 is nilpotent of

degree g, 2 ≤ g, i.e., Π(z)−1 is polynomial
iii) converges to infinity as a nonpolynomial geometric power series if and

only if Πp;2p−1
1;p (Π0;p−1

1−p;0)
−1) is not nilpotent, i.e., Π(z)−1 is not polynomial.

Remark 3. In constructing examples of equivalent URF ARMA(p, q)
models with p > 1 and for a variety of R1;p, use Ψk =

∑p
i=0 ΠiTη,k−i to

rewrite the condition (4) in the form

0 = (R1, ..., Ri, ..., Rp) Π0;p−1
1−p;0=URF,η(13)
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where the i− th row of Π0;p−1
1−p;0=URF,η, i = 1, . . . , p, is the matrix  Ψq−i+1 −
p∑

j=p−i+1

ΠjTη,q−i+1−j

 . . .

 Ψq−i+pm −
p∑

j=p−i+1

ΠjTη,q−i+pm−j

  .

5. Identifiability in coprime models. It is convenient to assume that
coprime models are a subset in the ring of convergent power series listed at
(2).

Assumption 2. The URF (Π(z),Ψ(z)) model and all equivalent alter-
native URF models (Πa(z),Ψa(z)) satisfy Assumption 1 and for all z ∈ C,
the complex scalar domain, ρ(Π(z),Ψ(z)) = ρ(Πa(z),Ψa(z)) = m.

The algebraic theory surveyed by McDuffee C. (1933) and applied in
Kailath T. (1980), Hannan and Deistler (1988), provides the analysis.
Polynomial matrices are studied there in a coprime population. In this pop-
ulation, if coprime (Π(z),Ψ(z)) and coprime (Πa(z),Ψa(z)) are equivalent
satisfying (3), both R(z) and R(z)−1, are polynomial and thus unimod-
ular. The untested assumption of coprimeness together with the received
polynomial algebraic theory removes from consideration nonpolynomial and
nonunimodular LCF R(z) in the equivalence relation (3). Both are incom-
patible with the ’dual’ coprimeness assumption of the model population.

Hannan E. (1969) originated the application and derived the result that
the parameter of the coprime ARMA(p, q) model is identifiable if and only
if ρ(Πp,Ψq) = m. If R1(Πp,Ψq) = 0 with R1 6= 0, the first degree polynomial
Im +R1z is a LCF since condition (4)

0 = (R1, 0, . . . , 0)Π0;p−1
1−p;0(Tη)

q;q+pm−1
q−p+1;q+pm−p

= (R1, 0, . . . , 0)


Ψq −ΠpTη,q−p Ψq+1 −ΠpTη,q−p+1 . . .∑p−2
i=0 ΠiTη,q−1−i

∑p−2
i=0 ΠiTη,q−i . . .

. . . . . . . . .
Tη,q−p+1 Tη,q−p+2 . . .


is satisfied in the coprime population, as Hannan E. (1969) showed.

Deistler M. (1976, pg.37) derived that the degree of a polynomial LCF is
at most mp in coprime populations. Correspondingly, Deistler, M. (1983)
conceived of the polynomial LCF existence condition, here applied to the
URF coprime ARMA(p, q) model, as the condition (3) when j = mp.
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Deistler′s condition for the polynomial
∑mp

i=0Riz
i, Rmp 6= 0 with finite in-

teger m ≥ 1, to be a LCF is that the array R1;mp satisfies

0 = R1;mp(Π
p;p+mp−1
−mp+p+1;p,Ψ

q;q+mp−1
−mp+q+1;q) = (R1;p, Rp+1;mp)

(
Z1 Z2

Z3 Z4

)
.

To see how Deistler′s condition in coprime populations compares to the poly-
nomial LCF condition derived in the previous section, consider the partition

Z1 Z2

Z3 Z4

 =


∆ 0 . . . 0 0 Ξ1 0 . . . 0 0

Λ ∆ . . . 0 0 Ξ2 Ξ1 . . . 0 0
0 Λ . . . 0 0 Ξ3 Ξ2 . . . 0 0
...

...
...

...
...

...
...

...
...

...
0 0 . . . Λ ∆ Ξm Ξm−1 . . . Ξ2 Ξ1


∆ := Πp;2p−1

1;p , Λ := Π0;p−1
1−p;0 and Ξi := Ψ

q−(i−1)p;q−(i−2)p−1
q−ip+1;q−(i−1)p , i = 1, . . . ,m.

Deistler’s condition 0 = R(m−1)p+1;mp(Π
p;2p−1
1;p ,Ψq;q+p−1

q−p+1;q) implies Han-
nan’s condition 0 = Rmp(Πp,Ψq) = 0, Rmp 6= 0) and Im + zRmp is a LCF.

With Z3 bi-diagonal and G = −Πp;2p−1
1;p (Π0;p−1

1−p;0)
−1, the top row of Z−13 is

(Π0;p−1
1−p;0)

−1 (Imp, G, . . . , Gm−2) =
(
P 0;p−1
1−p;0 , P

p;2p−1
1;p , . . . , P

(m−2)p;(m−1)p−1
(m−3)p+1;(m−2)p

)
,

where Pi, i = 0, . . . , are the matrices in the power series
∑∞

i=0 Piz
i =

Π(z)−1. Deistler′s condition with q ≤ mp− 1 is equivalent to

Rp+1;mp = −R1;pZ1Z
−1
3 , implying R(j−1)p+1;jp = R1;pG

j−1, j = 1, . . . ,m,

0 = R1;p(Z2 − Z1Z
−1
3 Z4)

= R1;p

(
Gm−1∆, Gj

m−j∑
i=1

Gi−1Ξi, j = 0, . . . ,m− 1

)
.

After substitution of Gj = Π0;p−1
1−p;0P

jp;(j+1)p−1
(j−1)p+1;jp verify that

Gj
m−j∑
i=1

Gi−1Ξi = Π0;p−1
1−p;0

m−1∑
i=j

P
ip;(i+1)p−1
(i−1)p+1;ipΨ

q−(i−j)p;q−(i−j−1)p−1
q−(i−j)p+1;q−(i−j)p

 .

Finally using Tη,q+jp+` =
∑mp−1

i=0 Pjp+`+iΨq−i when ` = 0, p − 1 or 1 − p,
Deistler′s condition is found to be the requirement that R1;p satisfy

0 = R1;p

(
−Gm, Π0;p−1

1−p;0(Tη)
q+jp;q+(j+1)p−1
q+(j−1)p+1;q+jp, j = 0, . . . ,m− 1

)
= R1;p

(
−Gm, Π0;p−1

1−p;0(Tη)
q;q+mp−1
q−p+1;q+mp−p

)
.
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Deistler′s condition contains the polynomiality condition in the first term.
R1;pG

m = 0 could be satisfied by R1;pΠ
p;2p−1
1;p = 0, implying the LCF is of

degree ≤ p, or by Gm = 0 when the model’s Πp;2p−1
1;p (Π0;p−1

1−p;0)
−1 is nilpo-

tent of degree m and the LCF has degree between p and mp, which was
the desired result. When R1;pG

m 6= 0 Deistler′s condition implies a LCF of
degree mp does not exist. The second condition is the general equivalence
existence condition (4) which must be satisfied, even when the first condi-
tion holds under nilpotency of G. It confirms the primary role of R1;p in the
LCF, which is not apparent in his condition. If nonpolynomial R(z) are ad-
missible as LCF, the polynomiality condition can be ignored and Deistler′s
condition is equivalent to condition (4). From Property 2 it is obvious that
the search for unimodular R(z) is not advanced by imposing a polynomiality
condition. Every polynomial and nonpolynomial LCF R(z) generates a fam-
ily of LCF, containing both unimodular and nonunimodular members, with
the unimodular members occupying the set of measure zero where |R(z)| is
independent of z. There are no unimodular LCF existence theorems to be
discovered since they exist whenever a LCF R(z) exists. Similarly, tests for
unimodular LCF are not separable from tests for any LCF and these are
tests of condition (4).

Hannan E. (1971) and Deistler, M. (1983) consider restricted reduced
form (RRF) models by building column degree information into the param-
eter matrices, if the highest lag of some variable in some equation is known
to be less than p or q, respectively. Since column degree information de-
fines additional AR and MA exclusion restrictions, these can be added to
the conditions (4) that restrict the differences in the AR parameter to lie
in the null-space of =η,URF . Under this option, column degree restrictions
belong either to the minimum necessary restrictions for identifiability or
are testable over − identifying restrictions, when the URF parameter is
identifiable without them.

Remark 4. Under Assumpton 1 the observational equivalence condition
(Πa(z),Ψa(z)) = R(z)(Π(z),Ψ(z)) is identical to the condition that

(Π(z),Ψ(z))U(z) = (R(z)−1, 0)(14)

with

2m× 2m U(z) :=

(
Πa(z)−1 −Π(z)−1Ψ(z)Πa(z)

0 Πa(z)

)
.

Observe that U(z) is unimodular and (14) formally satisfies the construction
in Kailath T. (1980, pg.377). If the alternative also satisfies degree equiva-
lence, R(z) is a LCF and (Πa(z),Ψa(z)) an equivalent model. The equations
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(14) always have the solution R(z) = Im, implying Πa(z) = Π(z). Euclidean
methods such as Hermite form constructions are available if both R(z) and
its inverse are polynomial. To calculate equivalent solutions with R(z) 6= Im,
simple linear Euclidian pivotal methods do not generate equivalent models
unless guided by the unknown Πa(z).

6. Identifiability in minimal state-space models. The label mini-
mality as used in the state space literature is quite distinct from the coprime
assumption. The results of this paper and those contained in the Propo-
sition of Glover and Willems (1974) are easily compared since both are
stated in terms of the transfer coefficients. The concept of minimality as
defined in the Linear Systems literature is best illustrated after converting
the ARMA(p, q) model into state-space form. Whereas there is more than
one way to accomplish this, consider the following construction.

With M := Max(p, q), let zt+1 := E[(y′t+M , . . . , y
′
t+1)

′|t], zt ∈ RmM , be
the vector of conditional expectations of M future values of yt in period t.
Given Πp+i = Ψq+i = 0, 0 < i, model (1) implies

E[(

M∑
i=0

Πiyt+M−i =

M∑
i=0

Ψiηt+M−i)|t− 1] = 0 and

E(yt+i|t) = E(yt+i|t− 1) + Tη,iηt.

Its state-space prediction error form is the AR and observation equation

zt+1 = JM zt + (Tη)
M
1 ηt, yt = Czt + ηt,(15)

where m×mM C := (0, . . . , Im) and

JM :=


−Π1 . . . −ΠM−1 −ΠM

Im . . . 0 0
. . . . . . . . . . . .
0 . . . Im 0

 .

Solving the AR equation, the reachability condition requires that

mM = ρ( (Tη)
M
1 , JM (Tη)

M
1 , . . . , JT−1M (Tη)

M
1 ) = ρ((Tη)

M ;T+M−1
1;T )

= ρ

(
Ψq;2q−p−1
p+1;q 0

(Tη)
p;q−1
1;q−p (Tη)

q;T+p−1
q−p+1;T

)
when p < q = M, mM ≤ T,(16)

= ρ((Tη)
p;T+p−1
1;T ) when q ≤ p = M, mM ≤ T,(17)
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where (16) follows by replacing the element Tη,i in the top q − p rows of

(Tη)
q;T+q−1
1;T by the vector product Π0;p(Tη)

i
i−p = Ψi, beginning with the

top row and ending with the (q − p) − th row. With Tη,i the top element
of (Tη)

i
i−p and the other elements standing below it in the same column,

the rank equality follows. With (Tη)
q;2q−p−1
p+1;q a lower recursive matrix with

Ψq on the diagonal, (15) is reachable if and only if ρ((Tη)
q;qm+p−1
q−p+1;qm) = pm

and Ψq is nonsingular. Clearly ρ(C ′, J′MC ′, . . . , J
′mM−1
M C ′) = mM so that

observability holds and (15) is in minimal form if (16) and (17) hold.
The Glover-Willems Proposition holds under minimality. Their analy-

sis uses the property that alternative state-space parameters δa are linked
to the given assumed parameter δ through the transformation JM (δa) =
FJM (δ)F−1, (T aη )M ;M

1;1 = F (Tη)
M ;M
1;1 , Ca = CF−1 with a nonsingular ma-

trix F of order mM . The Glover-Willems identifiability conditions are full
column rank conditions on the matrix of derivatives of the alternative state-
space parameters with respect to the transformation matrix F and with
respect to the ARMA(p, q) parameter, at F = ImM . In the Appendix it is
shown that these full column rank conditions are satisfied so that the min-
imality conditions and the Glover-Willems URF parameter identifiability
conditions are identical. For easy comparison the latter and the identifiabil-
ity condition (7) of this paper are listed here.

Minimality and Glover- Condition (7) without
p, q Willems Identifiability Condition Minimality

p < q ρ((Tη)
q;qm+p−1
q−p+1;qm) = pm, |Ψq)| 6= 0 ρ((Tη)

q;q+pm−1
q−p+1;q+pm−p) = pm

q ≤ p ρ((Tη)
p;pm+p−1
1;pm ) = pm ρ((Tη)

q;q+pm−1
q−p+1;q+pm−p) = pm

When p < q the Glover-Willems condition on the tail end transfer co-
efficient matrix and condition (7) are identical, since ρ((Tη)

q;qm+p−1
q−p+1;qm) =

ρ((Tη)
q;q+pm−1
q−p+1;q+pm−p) when p < q, but the condition that the matrix Ψq

is nonsingular, as required for reachability, is not required for condition (7).
When q = p the Glover-Willems condition and condition (7) are identical.
When q < p the condition (7) requires that

pm = ρ((Tη)
q;q+pm−1
q−p+1;q+pm−p) = ρ((Tη)

q;p+pm−1
q−p+1;p+pm−p)

= ρ
(

(Tη)
q;p−1
q−p+1;0 (Tη)

p;pm+p−1
1;pm

)
,

implying Glover-Willems is sufficient but not necessary for condition (7).
The matrix (Tη)

q;p−1
q−p+1;0 contributes p− q, q < p, extra columns to condition
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(7), each column containing the identity matrix Tη,0 = Im in a different row,
in addition to the columns that determine the reachability condition.

In summary, the Glover-Willems condition is a sufficient identifiability
condition for the URF ARMA(p, q) parameter and identical to it if p = q.
When p 6= q the condition under minimality differs in some detail from the
conditions without minimality. In particular, condition (7) does not require
a nonsingular Ψq when p < q and an extra matrix (Tη)

q;p−1
q−p+1;0 contributes

to the required rank when q < p.

7. Matricvariate Sylvester matrix and Identifiability. The iden-
tifiability results and the common factor properties are implications of the
tail end transfer coefficient matrix to have or not to have full row rank. This
result can be more informative about the model when it is stated in terms
of the AR Πi and MA Ψi parameter matrices. Ultimately the failure of the
rank condition is rooted in a feature of the parameter matrices and there are
many causes. Sylvester calculated that two scalar polynomials have no com-
mon root (factor) if and only if, in today′s language, the Sylvester matrix is
nonsingular [Sylvester 1840], where the elements of the Sylvester matrix are
the coefficients of the two scalar polynomials. If in the Sylvester matrix the
scalar coefficients are replaced by the AR and the MA parameter matrices,
it is shown now that the ARMA(p, q) parameter is identifiable if the matric-
variate Sylvester matrix is nonsingular and a necessary, but not sufficient,
condition for the existence of a common factor is that the matricvariate
Sylvester matrix is singular. If the (Π(z),Ψ(z)) transforms commute this
condition is also sufficient. Sylvester′s scalar common root existence condi-
tion is thereby generalized to the matrix common factor existence condition.

Definition 2 (Multivariate Sylvester Matrix). Them−variate Sylvester
matrix in partitioned form is the (p+ q)m× (q + p)m matrix

S(p, q) := (Πp;p+q−1
1−q;0 ,Ψq;q+p−1

1−p;0 ) =

(
Πp;p+q−1

1;q Ψq;q+p−1
q−p+1;q

Π0;q−1
1−q;0 Ψq−p;q−1

1−p;0

)
(18)

=



Πp . . . Πp+q−1 Ψq . . . Ψq+p−1
. . . . . . . . . . . . . . . . . .
Π1 . . . Πq Ψq−p+1 . . . Ψq

Π0 . . . Πq−1 Ψq−p . . . Ψq−1
. . . . . . . . . . . . . . . . . .

Π1−q . . . Π0 Ψ1−p . . . Ψ0

 .
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Corollary 3 (Sylvester Identifiability). The URF ARMA(p, q) pa-
rameter is identifiable if the matric-variate Sylvester matrix (18) is nonsin-
gular. When (Π(z),Ψ(z)) commute a nonsingular matric-variate Sylvester
matrix is also a necessary identifiability condition.

Proof. Π0;q−1
1−q;0 a unitary upper recursive matrix of order qm implies

ρ(S(p, q)) = qm+ ρ(Ψq;q+p−1
q−p+1;q −Πp;p+q−1

1;q (Π0;q−1
1−q;0)

−1Ψq−p;q−1
1−p;0 ).(19)

Equating the coefficients of zi, i = k, . . . , k−p−q+1, in Π(z)Tη(z) = Ψ(z),
one obtains the equations

Π0;p+q−1
−p−q+1;0(Tη)

k
−p−q+k+1 = Ψk

−p−q+k+1.

These equations for k = q, . . . , p+ q − 1, constitute the system

Π0;p+q−1
−p−q+1;0(Tη)

q;p+q−1
1−p;0 = Ψq;p+q−1

1−p;0 .(20)

Define the partitions

Π0;p+q−1
−p−q+1;0 =

(
Π0;p−1

1−p;0 Πp;p+q−1
1;q

0 Π0;q−1
1−q;0

)
, Ψq;p+q−1

1−p;0 =

(
Ψq;p+q−1
q−p+1;q

Ψq−p;q−1
1−p;0

)
.

From (20) the solution of (Tη)
q;p+q−1
1−p;0 , conformably partitioned, is(

(Tη)
q;p+q−1
q−p+1;q

(Tη)
q−p;q−1
1−p;0

)
=

(
Π0;p−1

1−p;0 Πp;p+q−1
1;q

0 Π0;q+1
1−q;0

)−1(
Ψq;p+q−1
q−p+1;q

Ψq−p;q−1
1−p;0

)

=

(
(Π0;p−1

1−p;0)
−1 −(Π0;p−1

1−p;0)
−1Πp;p+q−1

1;q (Π0;q−1
1−q;0)

−1

0 (Π0;q−1
1−q;0)

−1

)(
Ψq;p+q−1
q−p+1;q

Ψq−p;q−1
1−p;0

)

and

Π0;p−1
1−p;0(Tη)

q;p+q−1
q−p+1;q = (Ψq;p+q−1

q−p+1;q −Πp;p+q−1
1;q (Π0;q−1

1−q;0)
−1Ψq−p;q−1

1−p;0 ).(21)

With nonsingular Π0;p−1
1−p;0 of order pm, (19) and (21) imply

ρ(S(p, q)) = qm+ ρ((Tη)
q;p+q−1
q−p+1;q)(22)

and S(p, q) is nonsingular if and only if ρ((Tη)
q;p+q−1
q−p+1;q) = pm. If Tη)

q;p+q−1
q−p+1;q

has rank pm, the tail end transfer coefficient matrix =URF,η also has rank pm,
the former being a submatrix of the latter, and the identifiability condition
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(7) of Lemma 1 is satisfied if S(p, q) is nonsingular. Corollary 1 then implies
that, if Π(z) and Ψ(z) commute, a nonsingular m−variate Sylvester matrix
is necessary and sufficient for identifiability. �

Corollary 3 shows that any of the many roots of the m−variate Sylvester
matrix may be the root cause for the tail end transfer coefficient matrix to
have less than full row rank. From its top row it is seen that ρ(Πp,Ψq) <
m implies that the m−variate Sylvester matrix is singular and a common
factor exists. Most other roots are hidden and not discernable algebraically,
especially those implying nonpolynomial LCF. However, not every cause of
singularity of S(p, q) implies that a common factor exists.

Remark 5 (Identifiable, yet singular m−variate Sylvester matrix). It
is possible that the m−variate Sylvester matrix is singular but the given
parameter is identifiable. For example in the m−variate ARMA(1, 2) model
with the parameter matrices (Π1,Ψ1,Ψ2), the 3m⊗ 3m Sylvester matrix

S(1, 2) = (Π1;2
−1;0,Ψ

2
0) =

 Π1 0 Ψ2

Im Π1 Ψ1

0 Im Im


has rank 2m+ ρ(Tη,2) and the determinant |S(1, 2)| = |Ψ2 −Π1Ψ1 + Π2

1| =
|Tη,2|, as seen from Tη(z) = Π(z)−1Ψ(z). The identifiability condition (7) is

ρ((Tη)2;m+1) = ρ
(
Tη,2, (−Π1)Tη,2, . . . , (−Π1)

m−1Tη,2
)

= m.

|S(1, 2)| = 0 if R1(Π1,Ψ2) = 0 with R1 6= 0 implying Im + zR1 is a LCF.
It could also be zero with |Π1| 6= 0 and with R1Π

i−1
1 Tη,2 = 0, i = 1, . . . ,m,

implying Im + zR1(Im + zΠ1)
−1 is a LCF. A bivariate example is

Π1 =

(
π11 π12
0 π22

)
, Tη,2 =

(
0 a
0 0

)
, R1 =

(
0 b
0 c

)
,

where a, b and c are real numbers. A third case is that |S(1, 2)| = 0 with
|Π1| 6= 0 and ρ((Tη)2;m+1) = m implying R1 = 0 and an identifiable pa-
rameter. Changing the position of a to the (2,2) position in Tη,2 above with
π12 6= 0 is an example. This last case is not possible when parameter matrices
commute, since Π1Tη,2 = Tη,2Π1 implies ρ((Tη)2;m+1) ≤ ρ(Tη,2).

In the remaining pages the URF ARMA(p, q) equivalence conditions are
extended to the URF, the RRF and the structural ARMAX(p, r, q) models.
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8. The URF ARMAX(p,r,q). For known positive integers p, r and q
the unrestricted reduced form ARMAX(p, r, q) historical timeseries process
is of the form

p∑
i=0

Πiyt−i =
r∑
i=0

Φixt−i +

q∑
i=0

Ψiηt−i t ∈ T .(23)

The parameter matrix Φi ∈ Rm×k and (xt)t∈T with xt ∈ Rk are bounded ex-
ogenous variables independent of the error variables (ηt)t∈T . The exogenous
variable z−transform Φ(z) :=

∑r
i=0 Φiz

i is added to the list of transforms
satisfying Assumption 1. With zt = ((xt)

′, . . . , (xt−r)
′)′t∈T , the exogenous

data matrix (r+ 1)k×T Z
′
T = (z1, . . . , zT )/

√
T has full row rank over the

sample. Variables such as a constant or time trend will have to be added to
(23) as separate exogenous variables and are not explicitly presented here.
Given these assumptions, the exogenous variable transfer (final form) power
series Tx(z) := Π(z)−1Φ(z) is identifiable.

The model (Π(z),Φ(z),Ψ(z)) and the alternative (Πa(z),Φa(z),Ψa(z))
are equivalent if and only if there exists a converging power series R(z) =∑∞

i=0Riz
i such that

(Πa(z), Φa(z), Ψa(z)) = R(z)(Π(z), Φ(z), Ψ(z))

and for ∀i, 0 < i,

(
Πa
p+i, Φa

r+i, Ψa
q+i

)
=

∞∑
j=1

Rj (Πp+i−j ,Φr+i−j ,Ψq+i−j) = 0.

The extension of Theorem 1 to the URF ARMAX(p, r, q) model is this.

Theorem 2 (Identifiability). The URF ARMAX(p, r, q) parameter

Θ :=
(
(Πi)i=(1,...,p), (Φi)i=(0,...,r), (Ψi)i=(1,...,q),Ω

)
,

the exogenous matrix Z ′T having rank (r + 1)k, is identifiable if and only if

ρ(=URF ) = pm, =URF := (=URF,x , =URF,η),(24)

with

=URF,x := (Tx)r;r+mp−1r−p+1;r+mp−p, =URF,η := (Tη)
q;q+mp−1
q−p+1;q+mp−p.
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Proof. The exogenous variable contribution to equivalence follows verbatim
from (4) and Lemma 1, in its proof replacing Ψ(z) by Φ(z), q by r and Tη(z)
by Tx(z). Equivalence through the exogenous variable process requires that
for r + pm− 1 ≤ T we have

0 =
(

Πa
1 −Π1, Πa

2 −Π2, . . . ,Πa
p −Πp

)
(Tx)r;Tr−p+1;T−p+1.

(24) is the joint contribution of both the exogenous and the random error
process to identifiability of the URF parameter. �

Remark 6. Deistler and Schrader (1979) were the first to consider the
ARX(p, r, .) model, i.e., the model with correlated errors not necessarily
following a MA(q) process. Without assuming coprimeness they derived a
set of sufficient identifiability conditions. The condition ρ(=URF,x) = pm
is both a necessary and sufficient condition for their ARX(p, r, .) model.
Condition (24) is useful in testing hypotheses about the order q for a given
r or the order r for a given q, given p.

Corollary 4 (Sylvester identifiability). The URF ARMAX(p, r, q) pa-
rameter with the exogenous data matrix Z ′T having rank (r + 1)k, is identi-
fiable if the conjoined Sylvester matrix

S(p, r, q) := (Πp;p+N−1
1−N ;0 ,Φr;r+p−1

−p+1+r−N ;r−N ,Ψ
q;q+p−1
q−p+1−N ;q−N )

has rank m(p + N), where N = Max(r, q). When the parameter matrices
commute this rank condition is also necessary.

Proof.

S(p, r, q) =

(
(Πp;p+N−1

1;N Φr;r+p−1
r−p+1;r Ψq;q+p−1

q−p+1;q

Π0;N−1
1−N ;0 Φr−p;r−1

r−p+1−N ;r−N Ψq−p;q−1
q−p+1−N ;q−N )

)

implies

ρ(S(p, r, q)) = mN + ρ
(
Φr;r+p−1
r−p+1;r −Πp;p+N−1

1;N (Π0;N−1
1−N ;0)

−1Φr−p;r−1
r−p+1−N ;r−N ,

Ψq;q+p−1
q−p+1;q −Πp;p+N−1

1;N (Π0;N−1
1−N ;0)

−1Ψq−p;q−1
q−p+1−N ;q−N

)
.

Writing the partitions Πp;p+N−1
1;N =

(
Πp;p+q−1

1;q Πp+q;p+N−1
q+1;N

)
,

Π0;N−1
1−N ;0 =

(
Π0;q−1

1−q;0 Πq;N−1
1;N−q

0 Π0;N−q−1
−N+q+1;0,

)
, Ψq−p;q−1

q−p+1−N ;q−N =

(
Ψq−p;q−1
−p+1;0

0

)
,
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where Πi;j
k;k+j−i is an empty matrix if j < i. When q ≤ r it is seen that

Ψq;q+p−1
q−p+1;q −Πp;p+N−1

1;N (Π0;N−1
1−N ;0)

−1Ψq−p;q−1
q−p+1−N ;q−N

= Ψq;q+p−1
q−p+1;q −Πp;p+q−1

1;q (Π0;q−1
1−q;0)

−1Ψq−p;q−1
1−p;0 = Π0;p−1

1−p;0(Tη)
q;q+p−1
q−p+1;q,

with the last equality shown at (21). Similarly it follows that

Φr;r+p−1
r−p+1;r −Πp;p+N−1

1;N (Π0;N−1
1−N ;0)

−1Φr−p;r−1
r−p+1−N ;r−N = Π0;p−1

1−p;0(Tx)r;r+p−1r−p+1;r.

With Π0;p−1
1−p;0 a unitary upper recursive matrix of order pm, we have

ρ(S(p, r, q)) = mN + ρ((Tx)r;r+p−1r−p+1;r, (Tη)
q;q+p−1
q−p+1;q)

and S(p, r, q) having full row rank m(p+N) implies

ρ((Tx)r;r+p−1r−p+1;r, (Tη)
q;q+p−1
q−p+1;q) = mp.

The case r ≤ q is shown in the same way. �

Remark 7. Restricted Reduced Form (RRF) Identifiability
If ρ(=URF ) < pm the URF parameter is not identifiable, let θ be the

vector of the RF parameter Θ. With a list rR(θ) = 0 of RF parameter
restrictions, such as column degree restrictions that specify the highest lag
of some variable in some equation to be less than p, r, q, respectively, or of
RF restrictions implied by the scalar component model structure of Tiao and
Tsay [1989], the RRF parameter, satisfying rR(θ) = 0, may be identifiable.
From observational equivalence we have

(Φa
1 − Φ1, . . . ,Φ

a
r − Φr) = (Πa

1 −Π1, . . . ,Π
a
p −Πp)(Tx)0;r−11−p;r−p,

(Ψa
1 −Ψ1, . . . ,Ψ

a
q −Ψq) = (Πa

1 −Π1, . . . ,Π
a
p −Πp)(Tη)

0,q−1
1−p,q−p

and these relations imply that linear RF parameter restrictions are linear
equations in (Πa

1 − Π1, . . . ,Π
a
p − Πp). If =RRFi is the matrix =URF , aug-

mented by the coefficients of pm− ρ(=URF ) restrictions involving the i− th
RF equation, not counting (Φa

0−Φ0)i−restrictions, the i− th RRF equation
parameter ((Πa

j )j=1,...,p, (Φ
a
j )j=0,...,r, (Ψ

a
j )j=1,...,q)i is equivalent when

0 =
(
Πa

1 −Π1, . . . ,Π
a
k1 −Πk1 , . . . ,Π

a
p −Πp

)
i
=RRFi(25)
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and identifiable if and only if ρ(=RRFi) = pm.
For example, if ((Πa

k1
− Πk1)ij1 , (Φ

a
k2
− Φk2)ij2 , (Ψ

a
k3
− Ψk3)ij3) = 0 are

the restrictions holding in the population with pm − ρ(=URF ) = 3, the
i − th row of AR differences

(
Πa

1 −Π1, . . . ,Π
a
p −Πp

)
i

= 0, if and only if
ρ(=RRFi) = pm, where

=RRFi :=


(=URF,x =URF,η)1 0 (Tx,k2−1)

j2 (Tη,k3−1)
j3

...
...

...
...

...
(=URF,x =URF,η)k1 (Im)j1 (Tx,k2−k1)j2 (Tη,k3−k1)j3

...
...

...
...

...
(=URF,x =URF,η)p 0 (Tx,k2−p)

j2 (Tη,k3−p)
j3

 ,

with Zi the i− th row, Zj the j − th column and Zij the (i, j)− th
element of the matrix Z.

The RRF parameter is identifiable if and only if ρ(=RRFi) = pm, i =
1, ...,m, each row having a list of pm−ρ(=URF ) RF coefficient restrictions.
These have the effect of augmenting the =URF matrix by unit columns for
AR restrictions or by columns of the ((Tx)0,r−11−p;r−p, (Tη)

0;q−1
1−p;q−p) matrices for

EX and MA restrictions. These columns are not part of the matrix =URF .

9. The structural form ARMAX(p,r,q) . The structural form (SF)
ARMAX(p, r, q) model is the timeseries process

p∑
i=0

Biyt−i +

r∑
i=0

Γixt−i =

q∑
i=0

∆iεt−i, t ∈ T ,(26)

with B0 nonsingular, ∆0 = Im, E(εt) = 0, E(εtε
′
t′) = δtt′Σ. Its RF is the

model (23) by setting (Πi = B−10 Bi)i=0,...,p,

(Φi = −B−10 Γi)i=0,...,r, (Ψi = B−10 ∆iB0)0=1,...,q, ηt = B−10 εt,(27)

implying Ω = B−10 ΣB′−10 given the RF covariance E(ηtη
′
t) = Ω.

The identifiability analysis of the SF ARMAX(p, 0, 0) parameter given
an identifiable RF parameter is the work of the Cowles commission [Koop-
mans ed., 1950]. Their analysis is transferable to the SF ARMAX(p, r, q)
parameter provided either the RF identifiability conditions of Theorem 2 or
the RRF identifiability conditions of Remark 7, are satisfied.

In defining parameter coefficient restrictions it is necessary to write the
URF and the unrestricted structural form (USF) parameter as a vector of
vectors.
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Notation 2. Vector operations
Let κ = vecK denote the row vector of the row of rows of the matrix

K. The vec operator satisfies vecUVW = vecV (U ′ ⊗ W ). Also κ∗ =
vecK∗ denotes the row of rows of K∗, where K∗ is the symmetrix matrix K
after omitting the elements above its diagonal. We have κ∗ = κ∂κ

∗

∂κ′ , setting
∂(K∗)ij
∂(Kij)

=
∂(K∗)ij
∂(Kji)

= 1
2 and κ = κ∗ ∂κ

∂κ′∗ , setting
∂(Kij)
∂(K∗)ij

=
∂(Kji)
∂(K∗)ij

= 1, i ≥ j.

For nonsingular K one obtains ∂(vecK−1)′

∂vecK = −(K−1 ⊗ (K ′)−1) and UVW
symmetric implies vecV (U ′ ⊗W ) = vecV ′(W ⊗ U ′).

Definition 3. Parameter vectors
The URF parameter θ has the pm2 + (r + 1)km + qm2 + m(m + 1)/2

components

θ := (π, φ, ψ, ω∗) := ((πi)i=1,...,p, (φi)i=0,...,r, (ψi)i=1,...,q, ω
∗).(28)

The USF parameter α has the (p+1)m2 +(r+1)km+ qm2 +m(m+1)/2
components

α := (β, γ, δ, σ∗) := ((βi)i=0,...,p, (γi)i=0,...,r, (δi)i=1,...,q, σ
∗).(29)

The USF parameter α(θ) having the URF parameter θ is the vector

α(θ) =
(
β0(Im ⊗Πi)i=0,...,p, −β0(Im ⊗ Φi)i=0,...,r,(30)

β0(Ψ
′
iB
′−1
0 ⊗ Im)i=1,...,q, ω∗ ∂κ

∂κ′∗ (B
′
0 ⊗B′0)∂κ

∗

∂κ′

)
since m×m symmetric matrix K implies

σ∗(θ) = vec(B0ΩB
′
0)
∗

= vec(B0ΩB
′
0)
∂κ∗

∂κ′
= ω(B′0 ⊗B′0)

∂κ∗

∂κ′
= ω∗

∂κ

∂κ′∗
(B′0 ⊗B′0)

∂κ∗

∂κ′
.

Definition 4. Regular restrictions
Given the transfer matrices =URF at (24), the column list of RF rR(θ) = 0
and SF rS(α(θ)) = 0 parameter restrictions is regular if

i) rR(θ) has ρ(∂rR(θ)∂θ ) = m(pm− ρ(=URF )) and contains pm− ρ(=URF )
restrictions linear in (Π1, . . . ,Πp,Φ1, . . . ,Φr,Ψ1, . . . ,Ψq)i such that the aug-
mented matrix =RRFi, at (25) of Remark 7 has rank pm, i = 1, . . . ,m,

ii) rS(α(θ)) is differentiable with m2 ≤ ρ(∂rS∂α ) = ]rS , ρ(∂rS(α(θ))∂α(θ)
∂α(θ)′

∂β0
) =

m2 and these ranks are constant in the parameter space.
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Theorem 3 (Structural Parameter Local Identifiability). With the ex-
ogenous datamatrix Z ′T having rank (r+1)k, under Assumption 1 and under
a regular column list of RF rR(θ) = 0 and SF rS(α) = 0 parameter restric-
tions, the restricted SF parameter α(θ) having the RRF θ parameter, is
locally identifiable if and only if

ρ(=SF ) = m2, where =SF :=
∂rS(α(θ))

∂α(θ)

∂α(θ)′

∂β0
(31)

is the matrix of derivatives of the SF restrictions rS(α(θ)) = 0 with respect
to β0. Written in the order of the structural parameter components

=SF =

p∑
i=0

∂rS
∂βi

(Im ⊗Π′i)−
r∑
i=0

∂rS
∂γi

(Im ⊗ Φ′i)

+

q∑
i=1

∂rS
∂δi

(Im ⊗B′−10 Ψ′i −B0ΨiB
−1
0 ⊗B

′−1
0 ) + 2

∂rS
∂σ∗

∂κ∗
′

∂κ
(Im ⊗B0Ω)

=
[ p∑
i=0

∂rS
∂βi

(Im ⊗B′i) +

r∑
i=0

∂rS
∂γi

(Im ⊗ Γ′i)

+

q∑
i=1

∂rS
∂δi

(Im ⊗∆′i −∆i ⊗ Im) + 2
∂rS
∂σ∗

∂κ∗′

∂κ
(Im ⊗ Σ)

][
Im ⊗B′−10 )

]
.

P roof.Under a regular list rR(θ) of restrictions, from Remark 7 and (25), the
URF or RRF parameter θ is identifiable. =SF is the matrix of derivatives of
the structural restrictions with respect to β0, calculated from the links in (30)
between the components of the structural parameter α(θ) to β0, given the
identifiable parameter θ. In particular, ∆i = B0ΨiB

−1
0 and Σ = B0ΩB

′−1
0

imply

∂(vec∆i)
′

∂β0
= (Im ⊗B′−10 Ψ′i)

∂β′0
∂β0

+ (B0Ψi ⊗ Im)
∂(vecB−10 )′

∂β0

= Im ⊗B′−10 Ψ′i − (B0Ψi ⊗ Im)(B−10 ⊗B
′−1
0 )

∂σ∗′

∂β0
=

∂

∂β0
(vec(B0ΩB

′
0)
∂κ∗

∂κ′
)′ = 2

∂κ∗′

∂κ
(Im ⊗B0Ω)

∂β′0
∂β0

.

Local uniqueness of β0 given θ, thus of α, is implied by the implicit function
theorem. �
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In the ARMAX(p, 0, 0) model the RF parameter is identifiable if the
k × T exogenous data matrix has full rank k and the errors have a positive
definite covariance. Starting from an identifiable RF the contribution to
the SF parameter identifiability by the first two terms of =SF is analyzed
by the Cowles Commission in Koopmans et. al. (1950) and Koopmans
and Reiersol (1950). Global identifiability conclusions are obtained if the
restrictions in those two first terms are linear. The contribution of general
whole system and Σ restrictions to SF local identifiability is stated in Wegge
L. (1965), with global identifiability results if the restrictions are recursive.
MA parameter restrictions contribute the third term of =SF to the rank
identifiability criterion. With MA restrictions (31) is nonlinear in β0 and
identifiability is local.

As in the work of the Cowles Commission it is held useful to distinguish
RF from SF identifiability and to assert that, if the RF parameter θ is iden-
tifiable, if the restrictions rS(α) are regular, i.e., independent and adequate,
and if the rank at (31) is constant Fisher F. (1966), then the structural
parameter is identifiable locally generically. The SF parameter restrictions
rS(α) = 0 are adequate if the list rS contains at least m2 restrictions in
total, with at least m components of the list rS(α) = 0 involving at least m
coefficients of the i− th row

((Bj)j=0,...,p, (Γj)j=0,...,r, (∆j)j=1,...,q,Σ
∗)i,

with at least one restriction specifying that some coefficient in row i has a
known nonzero value, i = 1, 2, ...,m, to avoid homogeneity of rS(α) = 0 in
the parameter of a single equation. The assertion above is found practical
because it helps in distinguishing between minimum necessary restrictions
and those unneeded ”over − identifying” restrictions, that are testable.

10. Conclusions. Hannan E. (1969) discovered the RF parameter
identifiability problem in the ARMA(p, q) model. He proved the simple re-
sult that in URF coprime models the parameter is identifiable if and only if
the end parameter matrix (Πp,Ψq) has full row rank. He also suggested that
common factors in non-coprime models are removable. This suggestion is
neither implementable nor always desirable. Information about the presence
of nonunimodular common factors is at best available only if the parameter
is known, not before its estimation. In the meantime, in most theoretical
and applied statistical work the model, without testing, is assumed to be
coprime.

Glover and Willems (1974) derived identifiability conditions that hold for
coprime and noncoprime minimal state-space systems. Deistler M. (1976)
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questioned the assumption of coprimeness and Deistler and Schrader (1979)
analyzed identifiability in a special model without assuming coprimeness.
This paper has been inspired by this literature and it contributes towards
removing coprimeness from the list of assumptions, while retaining stability
and minimum phase assumptions that are needed in the construction of
transfer coefficient functions and common factor transforms. It advocates a
testable procedure that replaces the coprimeness assumption.

Theorems 1 and 2 state the central result. It is shown that in stable mod-
els with invertible moving average there are no alternative URF equivalent
parameters, if and only if a submatrix =URF of transfer coefficients at lags
q, r and beyond, is of full row rank pm. The suggestion follows that the
estimation procedure of the ARMAX(p, r, q) model incorporate a stepwise
monitoring of the rank of that matrix. If the rank is λ, pm− λ linear inde-
pendent RF coefficient restrictions on each RF row may render the RRF pa-
rameter identifiable. In dealing with SF equations with an identifiable URF
or RRF parameter, restrictions satisfying adequacy criteria of the Cowles
Commission guide the researcher in distinguishing exactly identifying from
over-identifying testable restrictions.

Under normality of the white noise error process, the RF conditional MLE
θ̂ is a recommended estimator. This is a locally converging sequence of gener-
alized least squares estimators, as described in (e.g., Reinsel et. al. , 1992) or
an approximating sequence of least squares estimators advocated in Spliid
H. (1983). A necessary and sufficient consistency condition is the identi-
fiability condition ρ(=URF ) = pm or ρ(=RRFi) = pm, i = 1, . . . ,m. This
condition implies the nonsingularity of the information matrix Rothenberg
T. (1973) and the local peakedness of the conditional likelihood. The Cragg
and Donald (1996) rank test is applicable in testing the rank of =URF . In
applications with sample data, the calculated rank of any estimated matrix
=̂URF is pm and the rank test is a test of the hypothesis that the calculated
rank is less than pm. It is a test of nonidentifiability, so called in Koopmans
and Hood [1953], assigning confidence levels to the calculated rank.
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11. Grover-Willems State-space Identifiability. Further details
about the conversion of the ARMA(p, q) model into a state-space model
are given here and it is shown that for this state-space prediction error form
model the minimality condition is the required Glover-Willems identifiability
condition.

Let the state variables be the conditional expectations in period t of the
future values of yt. Simple rules are followed, information about past error
variables is never lost and the expectation about a future value is equal to
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the mean, i.e., we set E(ηt−i|t) = ηt−i and E(ηt+1+i|t) = 0, 0 ≤ i.
From the causal transfer equations yt =

∑∞
i=0 Tη,iηt−i obtain

E(yt+i|t) = E(yt+i|t− 1) + Tη,iηt, 0 < i,

reflecting that ηt is revealed in period t. From the RF equations (1) obtain

E(yt+M |t) = −
p∑
i=1

ΠiE(yt+M−i|t) +

q∑
i=0

ΨiE(ηt+M−i|t)

= −
p∑
i=1

Πi[E(yt+M−i|t− 1) + Tη,M−iηt] + ΨqE(ηt+M−q|t)

= −
p∑
i=1

Πi[E(yt+M−i|t− 1) + Tη,Mηt,

using ΨM =
∑p

j=0 ΠjTη,M−j .

With M := Max(p, q), with the state variables zt+1 := E(yt+Mt+1 |t) and
with the state parameter δ = (π, ψ), where π = vec(Π1, . . . ,Πp), ψ =
(ψ1, . . . , ψq) and ψj = vecΨj , vecZ being the row of rows of the matrix Z,
the expectations are the equations

zt+1 = JM (δ)zt + Tη(δ)
M
1 ηt,(32)

with

mM ×mM JM (δ) :=


−Π1 . . . −ΠM−1 −ΠM

Im . . . 0 0
. . . . . . . . . . . .
0 . . . Im 0

 .

These and the observation equation yt = Czt + ηt, with m × mM C :=
(0, . . . , 0, Im), are the state-space prediction error form equations of the
ARMA(p, q) model.

As shown above when p < q, (32) is reachable if and only if Ψq is non-

singular and ρ((Tη)
q;qm+p−1
q−p+1;qm) = pm. When q ≤ p, (32) is reachable if and

only if ρ((Tη)
p;pm+p−1
1;pm ) = pm.The Glover-Willems identifiability theorem in

minimal state-space models is this.

Proposition 1. Glover-Willems Proposition: [1974]. The parameter of
the minimal state-space model (32) is identifiable if and only if ρ(Z(M)) =
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(mM)2 + (p+ q)m2 where

Z(M) :=

 ImM ⊗ JM (δ)
′ − JM (δ)⊗ ImM ∂(vecJM (δ))′

∂δ

ImM ⊗ (Tη(δ)
M
1 )′

∂(vecTη(δ)M1 )′

∂δ
−(0, . . . , Im)⊗ ImM 0

 .(33)

It wil be shown that Z(M)) of the ARMA(p, q) model has full column
rank (mM)2 + (p+ q)m2. Write (33) in partitioned form as

Z(M) =

 Z1 Z2
∂j′M
∂π 0

ImM ⊗ (Tη(δ)
M
1 )′

∂t′M
∂π

∂t′M
∂ψ

0 − IMm2 0 0

 ,

where jM = vecJM (δ), tM = vecTη(δ)
M
1 and (Mm)2 × (Mm)2

(Z1, Z2) =


A+B1 B2 . . . BM−1 BM
C A . . . 0 0
...

. . .
. . .

...
...

0 0
. . . A 0

0 0 . . . C A

 ,

with A := Im⊗JM (δ)
′
, Bi := Πi⊗ ImM , C := −IMm2 and the last (block)

column in (Z1, Z2) is Z2 = (B′M , 0, . . . , 0, A
′)′.

If 0r,s is a r × s null matrix, the matrix of partial derivatives

∂j′M
∂π

=

(
D

0(M−1)Mm2,pm2

)
, with D := Im ⊗

(
Imp

0m(M−p),mp

)
.(34)

Letting E := ImM ⊗ (Tη(δ)
M
1 )′ after substitution in (34) one gets

Z(M) =



A+B1 B2 . . . BM−1 BM D 0
C A . . . 0 0 0 0
...

. . .
. . .

...
...

...
...

0 0
. . . A 0 0 0

0 0 . . . C A 0 0

E
∂t′M
∂π

∂t′M
∂ψ

0 0 . . . 0 C 0 0


,

Eliminating sequentially the last row, the upper recursive matrix having
C in its diagonal and the second to last column one has

ρ(Z(M)) = (mM)2 + pm2 + ρ(
∂t′M
∂ψ

).
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From the relations Tη,i = Ψi −
∑i

k=1 ΠkTη,i−k we have

∂(vecTη,i)
′

∂ψj
= δijIm2 −

i−1∑
k=1

(Πk ⊗ Im)
∂(vecTη,i−k)

′

∂ψj

where δij is the Kronecker delta. Since
∂(vecTη,i−k)

′

∂ψj
= 0 for i < j, the matrix

∂t′M
∂ψ has Im2 as element when i = j, the null matrix when i < j and has

rank qm2. The Glover-Willems condition ρ(Z(M)) = (mM)2 + (p+ q)m2 is
satisfied by the reduced form minimal state-space system (32). �
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