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NONPARAMETRIC ANALYSIS OF RANDOM UTILITY MODELS: TESTING

YUICHI KITAMURA∗ AND JÖRG STOYE∗∗

Abstract. This paper aims at formulating econometric tools for investigating stochastic rationality,

using the Random Utility Models (RUM) to deal with unobserved heterogeneity nonparametrically.

Theoretical implications of the RUM have been studied in the literature, and in particular this paper

utilizes the axiomatic treatment by McFadden and Richter (McFadden and Richter, 1991, McFadden,

2005). A set of econometric methods to test stochastic rationality given a cross-sectional data is

developed. This also provides means to conduct policy analysis with minimal assumptions. In terms of

econometric methodology, it offers a procedure to deal with nonstandard features implied by inequality

restrictions. This might be of interest on its own right, both theoretically and practically.

1. Introduction

This paper develops new tools for the analysis of Random Utility Models (RUM). The leading

application is stochastic revealed preference theory, that is, the modeling of aggregate choice behavior

in a population characterized by individual rationality and unobserved heterogeneity. We test the

null hypothesis that a repeated cross-section of demand data was generated by such a population,

without restricting unobserved heterogeneity in any form whatsoever. Equivalently, we empirically

test McFadden and Richter’s (1991) Axiom of Revealed Stochastic Preference (ARSP, to be defined

later), using only nonsatiation and the Strong Axiom of Revealed Preference (SARP) as restrictions on

individual level behavior. Doing this is computationally challenging. We provide various algorithms

that can be implemented with reasonable computational resources. Also, new tools for statistical

inference for inequality restrictions are introduced in order to deal with the high-dimensionality and

non-regularity of the problem at hand.
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2 KITAMURA AND STOYE

Let

 : R
+ → R

denote a random utility function. Again, randomness of  represents unobserved heterogeneity across

individuals due to cross-sectional variation.1 Each consumer faces an income level and a price vector

in R
+ . Normalizing income to 1, the budget set for each consumer can be denoted as (),  ∈ R

+ ,

and the consumer’s choice is determined as

 = arg max
∈()

()

The econometrician observes a random sample of ( ). In other words, she observes (a sample analog

of) choice probability

Pr( ∈  | price is )

for each  ⊂ R
+ . The question is whether the joint distribution of ( ) (or the choice probabilities)

can be rationalized as an outcome of RUM. Our approach can be very briefly described by the following

steps:

• The first insight is that, although demand data are continuous, they can be discretized without
any loss of information as long as the set of budgets is finite. Thus, a random utility model of

demand on a finite set of budgets is really a model of discrete choice, though the number of

distinct choice objects can be large (up to 67 in our empirical application in Section 8). The

next steps of our approach immediately apply to choice problems that were discrete to begin

with.

• If there is a finite list of discrete choice problems, then there is a finite list of rational “choice
types.” Each such type is uniquely characterized by a rationalizable nonstochastic choice pat-

tern. In realistic problem sizes, there are many such types (up to 177352 in our application),

and obtaining the list is computationally challenging. Some tricks for efficiently computing

the list are an important part of our contribution.

• Think of every rational choice type as defining a vector of degenerate choice probabilities over
discrete choice objects. Then a corresponding vector of nondegenerate choice probabilities is

consistent with a random utility model iff it is a convex combination of the degenerate ones. We

collect the latter into columns of a matrix; choice probabilities are then rationalizable iff they

1Random utility models were originally developed in mathematical psychology, and in principle, our results apply to

stochastic choice behavior by an individual as well. However, in these settings it would frequently be natural to impose

much more structure than we do.
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are in the column cone spanned by this matrix. The same insight informs our test statistic,

which will be weighted Euclidean distance of estimated choice probabilities from this cone. In

particular, it is computationally convenient to work with this cone and not the polytope that

is generated by explicitly imposing that choice probabilities must be proper probabilities.

• The limiting distribution of the test statistic is intricate and, more importantly, depends dis-
continuously on unknown parameters. Such a feature has been studied extensively in the

literature on moment inequalities. However, our problem has characteristics which are not

well studied in that literature. In particular, unlike the standard problem where inequality

constraints are stated in terms of moments, our inequality constraint is formulated in terms

of unidentified parameters which in turn are connected to sample moments. In this sense the

standard problem is concerned with ‘direct’ moment inequalities, whereas this paper considers

what might be described as ‘indirect’ moment inequalities. Moreover the unidentified parame-

ters are very high dimensional. To overcome these challenges, we generate critical values by a

modified bootstrap method that avoids potential inconsistency. The procedure, which we call

the ‘tightening’ method, is related to some approaches in the literature on moment inequali-

ties, such as Andrews and Soares (2010), Bugni (2010) and Canay (2010), though these papers

consider ‘direct’ inequalities. In contrast, our tightening method resolves difficulties associated

with indirect inequalities. It is easy to implement and has practical appeal, potentially in very

broad contexts.

In summary, the present paper contributes to the literature by (i) showing that McFadden

and Richter’s ARSP, and in particular stochastic rationality of a population, can be tested non-

parametrically, and developing computational tools to do so, and (ii) proposing a method based on

‘inequality tightening’ as a way to address statistical and computational problems in dealing with

high-dimensional, indirect inequalities being tested by the nonparametric test in (i). We emphasize

that (ii) is also a contribution to specification testing of partially identified moment inequality models

more generally, namely in cases where the indirect moment inequalities are the natural description

of a model. We will also briefly explain how to carry out counterfactual analysis under ARSP and

intend to flesh out this part of the analysis in a companion paper.

2. Related Literature

This paper first and foremost builds on the classic literature on (deterministic and stochastic)

revealed preference. Inspired by Samuelson’s (1938) statement of the revealed preference paradigm,
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Houthakker (1950), Afriat (1967; see also Varian (1982)), and Richter (1966) delineated the precise

content of utility maximization if one observes a single consumer’s demand behavior. For our purposes,

this content is embodied in the Strong Axiom of Revealed Preference (SARP): The transitive closure

of directly revealed preference must be acyclical.2 This approach was extended to random utility

maximization by Block and Marschak (1960), Falmagne (1978), McFadden and Richter (1991), and

McFadden (2005). In particular, McFadden and Richter show that the precise content of random utility

maximization — or equivalently, of individual level utility maximization in the presence of unrestricted,

unobservable heterogeneity — is expressed by a collection of inequalities collectively dubbed “Axiom

of Revealed Stochastic Preference” (ARSP).

These findings resolve this paper’s questions “in the limit” when all identifiable quantities are

known. In this idealized setting, they allow one to decide with certainty whether a given demand

system or distribution of demands is rationalizable. In reality, estimators of these quantities might

fail to be rationalizable because of sampling variation, and one can merely test the hypothesis that

data might have been generated by a rational individual or population. For testing individual level

rationality, such a test was proposed by Epstein and Yatchew (1985).3 To the best of our knowledge,

we provide the first such test for ARSP.

Perhaps the closest paper to ours in spirit is Manski (2007). In a simple, very abstract discrete

choice problem (the universal set of options is a finite and, in practice, small list), he analyzes essen-

tially the same question as we do. In particular, he states the testing and extrapolation problems in the

abstract, solves them in simple examples, and outlines an approach to exact finite sample inference.

Further results for simple instances of the problem, including results on the degree of underidentifica-

tion of choice types, were provided by Sher et al. (2011). While we start from a continuous problem

2The aforecited papers subtly differ in their handling of indifference. SARP characterizes rationality in the absence

of indifference; else, it is sufficient but not necessary. Richter (1966) characterizes rationality if indifference is revealed

through set-valued choice. The Afriat inequalities, or equivalently Varian’s (1982) Generalized Axiom of Revealed

Preference (GARP), characterize rationality if indifference is permitted but cannot be revealed through set-valued choice.

These differences do not matter in our setting. Observed choice is always unique, hence Richter’s (1966) axiom

collapses to SARP. Because nonsatiation will be assumed, GARP differs from SARP only with respect to choice objects

that lie on the intersections of budget planes. With continuous demand on finitely many budgets, this case has zero

probability (and does not occur in our data). In cases where these subtleties do matter, it would be easy to adopt our

approach to any of these variations.
3See also the survey by Cherchye et al. (2009) and recent work by Dean and Martin (2011) or Echenique et al. (2011)

for other approaches to testing individual level rationality.
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and use asymptotic theory rather than exact inference, the settings become similar after our initial

discretization step. Our main contribution relative to these papers is to provide the computational

toolkit as well as asymptotic theory to handle problems of realistic size. Indeed, this toolkit was

recently employed for choice extrapolation by Manski (2012).

In a series of highly influential papers, Blundell, Browning, and Crawford (2003, 2008; BBC

henceforth) develop a nonparametric approach to conduct demand analysis based on variations in

Engel curves. They assume the same observables as we do, and apply their method to the British FES

data (we use the same data set in Section 8). BBC analyze similar questions to ours but with respect to

one individual level demand system generated by nonparametric estimation of Engel curves from these

data. This approach could be loosely summarized as revealed preference analysis of a representative

consumer (and in practice, given their specific estimation technique, of average demand). One possible

foundation for it was provided by Lewbel (2001), who gives conditions on the random part of a random

utility model that ensure integrability of expected demand. Lewbel’s (2001) assumptions therefore

precisely delineate one possible bridge between BBC’s assumptions and ours. Also, BBC exploit

only the implications of WARP for demand system and therefore test a necessary but not sufficient

condition for rationalizability of aggregate demand; see Blundell , Browning, Cherchye, Crawford, de

Rock, and Vermeulen (2012). A different test of necessary conditions is proposed by Hoderlein (2011),

who shows that certain features of rational individual demand, like adding up and standard properties

of the Slutsky matrix, are inherited by aggregate demand under weak conditions. The resulting test

is passed by the FES data.

Hoderlein and Stoye (2013) again use the same assumptions and the same data but ask different

questions. They bound from above and below the fraction of the population who violate the weak

axiom of revealed preference (WARP). As a corollary (namely, by exhibiting the conditions under

which the lower bound is zero), they show what discipline is put on the data by WARP alone. In

the very special case of two goods, their results are formally connected to ARSP because WARP

implies SARP (Rose (1958)), thus their corollary and ARSP must have the same specialization. This

specialization is developed, and some implications are pointed out, in Stoye and Hoderlein (2013);

in particular, they show that in the two-good case, recovering invertibility of demand by assuming

monotonicity of demand with respect to an individual fixed effect is without loss of generality. The

latter paper contains no asymptotic theory, and the asymptotic theory in Hoderlein and Stoye (2013)

is not closely related to ours.
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Finally, our approach can be usefully contrasted to the recently active literature on invertibility

of demand, that is, on conditions under which individual demand can be backed out from observation

of repeated cross-sections. See Beckert and Blundell (2007), Berry, Gandhi and Haile (2011), and

references therein. Unsurprisingly, invertibility requires substantial assumptions on structural para-

meters, i.e. utility functions and/or their distributions, which we avoid. The paper in this literature

that is perhaps closest to ours is Blundell, Kristensen, and Matzkin (2011), who investigate nonpara-

metric extrapolation of demand and, compared to our setting, essentially add only invertibility. Other

than by adding this assumption, their paper differs from ours by restricting attention to two goods.

The extension of their approach to more than two goods is challenging.

3. Methodology

Following McFadden and Richter (1991) as well as many of the aforecited references, we presume

a finite number of budgets parameterized by  ∈ {1  }.4 Indexing the corresponding budget

planes as  = () := { ≥ 0 :  = 1}, we can drop  from notation. Also anticipating that we

will assume monotonicity, we can write choice probability functions as

( ∈  |) := Pr( ∈  |budget plane is )  ⊂ Y

The space of choices Y ⊂ R
+ is unrestricted. In particular, it can be — and is, in our application —

continuous. However, the following, important observation much simplifies the problem. For every

budget  , let the  elements of
n
1|       |

o
form the coarsest partition of  s.t. no budget

plane other than  intersects the interior of any one element of the partition. In other words,n
1|       |

o
has the property that its elements are disjoint, that  =

S
=1

| for every , and

also that for any  = 1   , any  = 1   , and any 1 2 ∈ | , one has (1 − 1)(2 − 1) ≥ 0;
furthermore,

n
1|       |

o
is the coarsest such partition. Henceforth, we use the word “patch” to

denote a generic element | of X . For the simplest nontrivial example, let there be  = 2 budgets
that intersect, then there is a total of four patches: two on 1, where one is above 2 and the other

one is below it, and two patches on 2, where one is above 1 and one is below it.

4The theory was extended to the continuous case in McFadden (2005), and we discuss prospects for the analogous

extension of our approach in the conclusion.



7

We only restrict individual consumers’ behavior by monotonicity (“more is better”) and the

Strong Axiom of Revealed Preference (SARP); equivalently, we assume that each consumer maxi-

mizes some nondecreasing utility function.5 The only implication of monotonicity in our setting is

that choices must be on (and not below) budget planes, as already reflected in notation. The only

implication of SARP is to restrict, in possibly very intricate ways, whether choice can simultaneously

be above certain budgets and below others. Therefore, two consumers who exhibit different demand

behavior but choose from the same patch of each budget plane are either both consistent with our as-

sumptions or both fail them. In short, the model enforces that the probability distribution of demand

is supported on the patches and furthermore constrains the implied distribution over patches but not

the distributions on them.

We can, therefore, restrict the choice space to be X , effectively discretizing the choice problem
to one with a total of  :=

P
=1  choice objects and corresponding choice probabilities. This leaves

us with a large (in applications of practical interest) but finite set of distinct nonstochastic choice

types. We will now explain how to efficiently encode these. To do so, arrange X as a vector

X = (1|1 2|1   |)
0

and similarly write

| := Pr( ∈ | |)

 := (1|    |)
0

 := (01  
0
)
0 = (1|1 2|1   |)

0

then the -vector  contains all information that is relevant for testing RUM.

Any conceivable pattern of nonstochastic choice behavior can be identified with a binary -

vector  = (1|1   |)
0, where a component | of  equals 1 iff the corresponding component

| of X is chosen from budget  . We call  rationalizable if there exists 
∗ ∈ U such that | =

1{argmax∈
∗() ∈ |} for all | . Under our assumptions, this is the case iff behavior encoded

in  fulfills SARP, but we emphasize that the approach could be modified to impose more or less

structure on  and thereby on agents’ behavior. Every rationalizable vector  can be thought of as

characterizing a rational, nonstochastic choice type. Let {1  } collect all rationalizable vectors
and collect them in the ( ×)-matrix  := [1   ]. Then a vector of choice probabilities  is

5In a setting characterized by choice from linear budgets, this is furthermore equivalent to assuming maximization of

strictly concave utility (Varian (1982)).
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stochastically rational iff there exists  ∈ ∆−1such that  = . In words,  must be a convex

combination of the columns of . The weights  can be interpreted as implied population distribution

over rational choice types; remember, though, that each of these choice types represents an equivalence

class of observationally distinct choice types.

To see how little structure is placed on the model, observe how invertibility of demand, i.e.

recoverability of individual consumers’ demand, fails on many levels. First, we consider finitely many

budgets, so with unconstrained heterogeneity, any given demand pattern is rationalizable iff it is

rationalizable by infinitely many utility functions. Second, every column  represents a continuum of

observationally distinct, rationalizable demand patterns because of the lumping of continuous demand

data into patches. Third,  is not identified:  is typically very far from full column rank, and a 

that is rationalizable at all will typically be rationalizable by many different vectors . We return to

partial identification of  in section 9.1.

McFadden and Richter (1991; see also McFadden (2005, theorem 3.3)) anticipated the pos-

sible discretization of choice space in our setting and also also noted various equivalent statements

for the empirical content of RUM. For example,  as required here exists iff the linear program

min≥0≥0 10I s.t.  +  ≥ 10 ≤ 1 has an optimal solution with  = 0. However, we employ the

first statement verbalized above, thus we directly test:

(H): There exist a  ∈ ∆−1 such that  = ,

where ∆−1 denotes the ( − 1)-dimensional unit simplex. To test this hypothesis, we transform it

as follows. First, note that 10 = [   ] and 1
0
 =  hold by definition. Therefore,  =  implies

10 = 1. Thus (H) is equivalent to

(H): There exist  ≥ 0 such that  = 

It is easy to see that Hypothesis (H) is, in turn, equivalent to

(H): min∈ [ − ]0Ω[ − ] = 0,

where Ω is a positive definite matrix and  := {| ≥ 0}. Note that the constraint set  is a cone

in R . The solution 0 of (H) is the projection of  ∈ R
+ onto the cone under the weighted norm
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kkΩ =
√
0Ω. The corresponding value of the objective function is the square of the length of the

projection residual vector. The projection 0 is unique, but the corresponding  is not. Stochastic

rationality holds if and only if the length of the residual vector is zero.

A natural sample counterpart of the objective function in (H) would bemin∈ [̂−]0Ω[̂−],
where ̂ is an estimator of , for example by the vector of sample choice frequencies. It is useful to

normalize this sample counterpart by  to obtain an appropriate asymptotic distribution, so define

 :=  min
∈

[̂ − ]0Ω[̂ − ](3.1)

=  min
∈R

+

[̂ −]0Ω[̂ −]

Once again,  is not unique at the optimum, but  =  is. Call its optimal value ̂, noting that

̂ can also be thought of as rationality-constrained estimator of choice probabilities. Then ̂ = ̂,

and  = 0, iff the estimated choice probabilities ̂ are stochastically rational; obviously, our null

hypothesis will be accepted in this case. To determine an appropriate critical value for our test, we

will have to estimate the distribution of  . This estimation problem is rather intricate and will be

handled in section 5.

4. Computation

We now turn to computational implementation of our approach. The challenge is threefold:

First, how to encode the choice set X ; second, how to generate the matrix , and last, how to carry

out the constrained minimization in the definition of  . We explain our response to these issues in

this order.

4.1. Encoding X . Geometrically, the patches | are polyhedra with rather complex descriptions.
However, the only information that matters for computing  is how any given patch relates to the

different budgets. To implement this insight, we switch from the double index expression X =

{{|}=1}=1 to a a single index  = 1   and write X = {}=1 in the remainder of this sec-
tion. Now, let

 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if  is below 

0 if  is on 

+1 if  is above 

 = 1  

then we can represent each  by the vector

 := [1  ]  = 1  
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The choice set is represented by the ( × )-matrix = [ 0
1 

0
 ]
0 with typical cell  . Our algo-

rithm for generating  from budget data (1  ) is as follows: First, generate all possible vectors

, ignoring non-negativity constraints. This generates a matrix with  columns and
P

=1 2
−

rows. Next, test the validity of each row. To illustrate this step, suppose  = 5 with  goods, and

we want to verify whether the patch encoded by (0−1 1 1 1) exists. It is easy to see that this is the
case iff the system of ( + 1 +) inequalities

01 ≤ 1 01 ≥ 1 02 ≤ 1 03 ≥ 1 04 ≥ 1 05 ≥ 1  ≥ 0

has a solution. This can in principle be checked by repeated application of Fourier-Motzkin elimination,

but in practice this is feasible only for small problems. A more efficient approach is to use numerical

solvers that can quickly verify consistency of a set of linear inequality constraints. Using the cvx

optimization package (Grant and Boyd (2008, 2011)), we find that checking the above inequalities is

computationally inexpensive even for rather high dimensional commodity spaces.6

4.2. Computing . To compute the matrix , write

 = {}

where  equals 1 if choice type  picks patch  from budget  , where  contains . (As with

X , it is convenient for this section’s purpose to index rows of  by  = 1   instead of the double

index |.) The challenge is to ensure that a nonstochastic choice type is represented as a column
of  iff she is rationalizable, that is, iff the incomplete preference ordering revealed by her choice

behavior is acyclical. To do this, we must first extract the preferences revealed by a choice type,

then check for acyclicity. The following fact is crucial for the first step: Choice of  from budget 

reveals that  Â  for every patch  6=  s.t.  ∈ {−1 0} (the symbol Â signifies the revealed
preference relation). Here,  = 0 ⇒  Â  follows directly because  and  are on the same

budget plane, hence was chosen over ;  = −1 ⇒  Â  follows by additional uses of “more

is better” and transitivity because  was chosen over some patch that dominates . In a second

step, acyclicity of a given set of revealed preferences can be checked by the Floyd-Warshall algorithm,

efficient implementations of which are readily available.

6If this step were a computational bottleneck, this algorithm could be refined along the lines of the decision tree

crawling algorithm discussed in the next subsection.
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We implemented three ways to generate .7 First, a “brute force” approach initially creates

a matrix max that represents all possible choice combinations from  budgets, thus it is of size

×
Q

=1

 . Every column of 
max is then checked for rationality. This approach has the benefit of also

collecting irrational types, which can be handy for simulations, but gets unwieldy rapidly because the

number of columns of max grows extremely rapidly as budgets are added.

Our second approach is a “crawling” algorithm. Here, the core insight is that all possible choice

patterns can be associated with terminal nodes of a decision tree whose initial node corresponds to

choice from 1, the next set of nodes to choice from 2, and so on. The algorithm exhaustively

crawls this tree. The important idea is to check for choice cycles at every node that is visited and, if

a cycle is detected, to abandon the entire branch, i.e. to not visit any successor of the current node.

A column of  is discovered every time that a terminal node is visited without detecting a cycle. The

abandoning of entire branches means that most nonrationalizable choice patterns are never visited.

For example, if a cycle is detected after specifying behavior on 4 out of 10 budgets, then none of the

many possible completions of this choice pattern are considered. The downside is more frequent (for

any rational pattern that is detected) execution of the Floyd-Warshall algorithm, but this algorithm

is cheap (it terminates in polynomial time). The net effect is to improve computation time by orders

of magnitude in complicated problems. Indeed, this is our most powerful algorithm that is directly

applicable “off the shelf” in every conceivable application of our approach.

Finally, a modest amount of problem-specific adjustment can lead to further, dramatic im-

provement in many cases, including our empirical application. The key to this is contained in the

following proposition, which is established in appendix A.

Proposition 4.1. Suppose that for some  ≥ 1, none of (1  ) intersect  . Suppose also

that choices from (1  −1) are jointly rationalizable. Then choices from (1  ) are jointly

rationalizable iff choices from (+1  ) are.

This proposition is helpful whenever not all budgets mutually intersect. To exploit it in appli-

cations, one must manually check for such sets of budgets and possibly be willing to reorder budgets.

The benefit is that if the proposition applies, all rationalizable choice patterns can be discovered by

checking for rationalizable choice patterns on smaller domains and then combining the results. In

particular, proposition 1 informs the following strategy: First collect all rationalizable choice patterns

on (+1  −1). Next, for each such pattern, find all rationalizable completions of it to choice on

7Appendix B contains a more detailed description, including pseudo-code for some algorithms.
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(1  −1) as well as all rationalizable completions to (+1  ). (For the first of these steps,

one may further economize by computing all rationalizable patterns on (1  ) in a preliminary

step.) Every combination of two such completions is itself a rationalizable choice pattern. Note that

no step in this algorithm checks rationality on  budgets at once; furthermore, a Cartesian product

structure of the set of rationalizable choice patterns is exploited. The potential benefit is substantial

— in our application, the refinement frequently improves computation times by orders of magnitude.

4.3. Computing  . Computation of  is a quadratic programming problem subject to a possibly

large number of linear inequality constraints. We have nothing to add to the theory of solving such

problems, though we utilize modern numerical solvers that can handle high-dimensional quadratic

programming problems. Our currently preferred implementation utilizes cvx. We also implemented

computation of  with fmincon (using stepwise quadratic programming) and Knitro. All solvers

agree on those problems that they can handle, with fmincon being practical only for rather small

problem sizes.

4.4. Summary. The above algorithms for computation of , , and  are readily applicable to

actual problems with reasonable dimensionality, therefore they work for empirically interesting and

relevant applications as we demonstrate in Section 8. To ensure understanding of the procedure,

reconsider the simplest nontrivial example, i.e. two budgets which intersect. In this case  = 2 and

1 = 2 = 2, yielding  = 4 patches, and we have

 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −1
0 1

−1 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎦   =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 1

0 0 1

1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦   =

⎡⎢⎢⎢⎢⎢⎢⎣
Pr(1 is chosen|budget is 1)
Pr(2 is chosen|budget is 1)
Pr(3 is chosen|budget is 2)
Pr(4 is chosen|budget is 2)

⎤⎥⎥⎥⎥⎥⎥⎦ 

Here, the first row of  represents the part of budget 1 that is below 2 and so on. Rows of

 corresponds to rows of , whereas its columns correspond to types. Thus, the first column of 

indicates the rational choice type whose choice from 1 is below 2 but whose choice from 2 is above

1; as a comprehension check, note that this particular type is better off under budget 2. There are

four logically possible choice types, but one of them, namely [1 0 1 0]0, would violate the weak axiom

of revealed preference and is therefore not represented in . Given an estimator b = (b1 b2 b3 b4)0
for  and setting Ω = 2, one can then easily verify that  =  ·(max{b1+b3−1 0})2. In particular,
the test statistic  is zero if b1 + b3 ≤ 1, and in that case we immediately conclude that the data is
consistent with the random utility model.
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The example reproduces the known finding (Matzkin (2006), Hoderlein and Stoye (2009)) that

with two budgets, the content of stochastic rationality is exhausted by the restriction “1 + 3 ≤ 1”
on population choice probabilities. However, the tools proposed here allow one to perform similar

computations for very complicated examples. Think of the size of , that is, “number of patches ×
number of rational choice types,” as an indicator of problem complexity. Then the example just given

has size (4× 3). For our empirical application, we successfully computed , and computed  2000

times, in cases where  has size (67× 149570) respectively (64× 177352). The computational bottle-
necks in implementation are twofold: Computation of  took several hours in some cases (although

reduced to minutes using proposition 4.1), and computation of  (which must be iterated over to

compute critical values) took up to a minute.

5. Inference

This section discusses inferential procedures to deal with the hypothesis (H) or its equivalent

forms. We initially assume that choice probabilities were estimated by sample frequencies. For each

budget , denote the choices of  individuals, indexed by  = 1   , from the budget set  , by

| =

⎧⎪⎨⎪⎩ 1 if individual  chooses |

0 otherwise

 = 1   

Assume that one observes  random samples {{|}=1}


=1,  = 1 2   . For later use define

 :=

⎡⎢⎢⎢⎣
1|
...

 |

⎤⎥⎥⎥⎦   =

X
=1

 

An obvious way to estimate the vector  is to use choice frequencies

(5.1) ̂| =
X
=1

|   = 1     = 1  

Our main task here is to estimate the sampling distribution of  under the null hypothesis that the

true  is rationalizable. This problem is closely related to the literature on inequality testing, which

is often concerned with hypotheses of the form

0 :  ≥ 0  ∈ R× is known.
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With an (asymptotically) normal estimator so that
√
(̂ − ) ≈ (0 ), one can form

 := min
∈R

+

 [̂ − ]0−1[̂ − ]

This type of problem has been studied by Gourieroux, Holly and Monfort (1982) and Wolak (1991).

See also Chernoff (1954), Kudo (1963), Perlman (1969), Shapiro (1988), Kuriki and Takemura (2000),

Andrews (2001), Rosen (2008), and Guggenberger, Hahn and Kim (2007).8 A common way to get

a critical value for  is to consider the least favorable case, which is  = 0. This strategy is

inappropriate in the present context for a number of reasons. First, the vector  is a collection of

probability vectors, so its least favorable value cannot be at the origin. Second, as discussed later,

direct application of the above results to our problem is not computationally feasible. Third, even in

the absence of the two obstacles, the suggested least favorable distribution can lead to an unnecessarily

conservative procedure. Alternatively, one might consider a resampling method. As noted in the

literature of set-identified models, the main difficulty in calculating a valid critical value for  is the

treatment of points where more than one inequality is (almost) binding. This invalidates the naive

bootstrap and like methods. For this and related issues, see, for example, Imbens and Manski (2004),

Chernozhukov, Hong and Tamer (2007), Stoye (2009), Andrews and Soares (2010), Bugni (2010), and

Romano and Shaikh (2010).

There are three methods for inference that can be potentially used to calculate a critical value

for the statistic  . They are: (1) Regularization-based method, (2) Inequality selection method, and

(3) “Inequality tightening.” We now discuss them in turn. It is trivial that
√
(̂ − ) → (0 )

holds, where  is the asymptotic covariance matrix. Let ̂ denote a consistent estimator for . The

first approach, the method based on regularization, is easy to implement. This is basically the idea

behind subsampling and the -out-of- bootstrap. Let ̃ := ̂ +

q


(0 ̂). Recall that ̂ is the

projection of the choice frequency vector ̂ onto the cone . The factor  is a sequence that goes to

infinity slowly. The random variable ̃ is essentially a subsampled or-out-of- bootstrapped version

of ̂. Define ̃() :=


min∈R

+
[̃ − ]0Ω[̃ − ] The distribution of ̃() can be evaluated

by simulation. It provides a valid approximation of the distribution of  asymptotically, regardless

8More precisely, Guggenberger, Hahn and Kim (2007) consider specification testing of linear moment inequality

models of the form  ≤ E[]  ∈ R where  is a known conformable matrix, and propose to test its equivalent

form E[] ≥ 0 where  is another known matrix. This equivalence follows from the Weyl-Minkowski Theorem, as

discussed later in this section. Our test of ARSP can be formally regarded as a specification test of this kind, though

our testing procedure is quite different. In particular, we avoid resorting to Weyl-Minkowski equivalence because doing

so is computationally infeasible.
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of the position of 0, the population version of ̂, on the cone . This is convenient computationally,

though Andrews and Guggenberger (2009, 2010) forcefully argue that this approach can suffer from

potential conservatism, often very severely. The second approach is based on inequality selection. This

is essentially the so-called moment selection procedure proposed for moment inequality models (see,

e.g., Andrews and Soares, 2010, Bugni, 2010). While the problem at hand is not exactly a moment

inequality model, it does apply to the statistic  at least in theory. The idea of this procedure is that

when ̂ is close to the region where multiple constraints bind, it forces them to bind. The constraint

set  = {| ≥ 0} in the definition of  is expressed in terms of . Recall that  corresponding to

the projection 0 is unidentified. Let {a1a2 a} be the column vectors of an matrix . Define

cone() = {1a1 + + a :  ≥ 0}

then  = cone(). This is called the V-representation of the cone  in the literature of convex

geometry (see, e.g., Ziegler, 1995). The V-representation is not useful in detecting whether ̂ is close
to an irregular point or not, and an alternative form expressed in terms of  has to be obtained. A

result known as Weyl’s Theorem guarantees that that is possible theoretically : it says that if a set 

in R is represented as cone()  ∈ R× , we can write

 = { ∈ R | ≤ 0} for some  ∈ R× 

The last line is called the H-representation of . (The converse is also true and known as Minkowski’s
Theorem.) Applying Weyl to the definition of  , obtain

 = min
∈R :≤0

 [̂ − ]0Ω[̂ − ]

The optimal  (:= ̂) is unique, and it is now possible to apply the inequality selection procedure. Let

 be a sequence that diverges slowly to infinity. Let 1   be the row vectors of . Suppose (wlog)

−
√
1̂ ≤  −

√
 ̂ ≤  and −

√
+1̂ ≥  −

√
̂ ≥  hold. Let 1 = [

0
1  

0
 ]
0 and

2 = [
0
+1  

0
]
0. Redo the above minimization, but this time

min
∈R :1=02≤0

 [̂ − ]0Ω[̂ − ]

Let ̂ denote the minimizer and define ̃ := ̂ +
1√

(0 ̂) The distribution of

̃() = min
∈R :≤0

 [̃ − ]0Ω[̃ − ]

offers a valid approximation to the distribution of  . This is expected to work well in finite samples,

though it is computationally infeasible in the present context. To our knowledge, implementing Weyl’s
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Theorem to obtain an H-representation out of the V-representation is done by repeated application of
(some variation of) the Fourier-Motzkin elimination algorithm, which is notoriously difficult to apply

when the dimension of  is high. This is exactly the case for the problem considered in this subsection,

even for a small number of budgets.

The third approach, dubbed “inequality tightening” above, sidesteps the need for an H-
representation of , and therefore it is simple to implement and applicable to problems of a realistic

size. The idea is to “tighten” the constraint by replacing

 ≥ 0

with

 ≥ 1

for some positive scalar  that declines to zero slowly. The vector 1 can be some other fixed

-vector. Now solve

 ( ) := min
∈

 [̂ − ]0Ω[̂ − ]

= min
[−1 ]∈R

+

 [̂ −]0Ω[̂ −]

where  := {| ≥ 1} and let ̂ denote the solution. The constraints that are almost

binding at the solution (i.e. the ones with little slack) in the original statistic should be binding with

zero slack after tightening. Let ̃ := ̂ +
1√

(0 ̂) Notice that, as in the inequality selection

procedure, no regularization (or subsampling/-out-of- bootstrapping) is necessary at this stage.

Finally, define

̃( ) : = min
∈

 [̃ − ]0Ω[̃ − ](5.2)

= min
[−1 ]∈R

+

 [̃ −]0Ω[̃ −]

and use its distribution to approximate that of  . This has the same theoretical justification as the

inequality selection procedure. Unlike the latter, however, it avoids the use of H-representation, thus
it does not require Fourier-Motzkin type algorithms. It offers a computationally feasible empirical

testing procedure for stochastic rationality.

In the above procedure we tighten the constraint set  using its V-representation. The next
lemma shows that this, in effect, tightens the H-representation of  as well, though directly tightening
the H-representation is computationally infeasible for the present problem. For a matrix , let col()
denote its column space.
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Lemma 5.1. For a   0 and a matrix  ∈ R× , define

 := {| ≥ 1}

Then it can be alternatively written as

 = { :  ≤ −}

where  ∈ R× ,  ∈ R
++ and  ∈ col().

This is different from the Minkowski-Weyl theorem for polyhedra, which would provide an

expression of  as the Minkowski sum of a convex hull and a non-negative hull. Lemma 5.1 is useful

for proving the asymptotic validity of our procedure. Note that Canay (2010) proposes an approach

that that can be regarded as a method that tightens the H-representation of a moment inequality
model. We think this is a potentially very important contribution, but its nature is quite distinct

from that of ours. Like other papers in this area such as Andrews and Soares (2010), Bugni (2010)

and Chernozhukov, Hong and Tamer (2007), Canay (2010) analyzes inequalities that are stated in

terms of moments, the type of inequalities we called ‘direct moment inequalities’ in the overview in

Section 1. Obtaining ‘direct inequalities’ in our problem would amount to transforming our original

V-representation to a H-representation. If this were possible, then we could simply apply standard
methods such as those proposed in Andrews and Soares (2010) or Bugni (2010). But the very point

of our approach is to avoid this transformation because it is impossible to implement in practice.

Our tightening procedure applies to an indirect inequality model, which, in our problem, is defined in

terms of the numerically convenient V-representation only. As we shall see in Section 8, this enables
us to deal with very high-dimensional problems that appear in our empirical analysis.

The following assumption is used for our asymptotic theory.

Assumption 5.1. For all  = 1   ,



→  as  →∞, where  ∈ (0 1).

Let ,  = 1 ,  = 1   denote the ( ) element of , then define

() = [1+···−1+1 1+···−1+2  1+···
]0

for 1 ≤  ≤  and 1 ≤  ≤ . Consider the following requirement:

Condition 5.1. For some   0 and some  = 1  , var(()
0) ≥  holds for all 1 ≤  ≤ .

Note that the distribution of observations is uniquely characterized by the vector . Let P denote the
set of all ’s that satisfy Condition 5.1 for some (common) value of .
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Theorem 5.1. Choose  so that  ↓ 0 and
√
 ↑ ∞. Also let Ω = I , the -dimensional

identity matrix. Then under Assumption 5.1

lim inf
→∞

inf
∈P∩

Pr{ ≤ ̂1−} = 1− 

where ̂1− is the 1−  quantile of ̃(), 0 ≤  ≤ 1
2
.

Proof : See Appendix A.

Technically, the boundedness of our observations – each element of | is a Bernoulli(|)

random variable – and the above condition guarantee that the Lindeberg condition holds for 0̂  =

1 , which is important for the uniform size control result in the following theorem as it relies

on a triangular array CLT. It is known that a triangular array    = 1   ∼iid Bernoulli( ),
 = 1 2  obeys CLT iff  (1 − ) → ∞. Since the size control here is defined against a fixed
class of distribution F ∩ as  →∞, it seems natural to impose a fixed lower bound  in Condition

5.1. See the proof of Theorem 5.1 in Appendix for more on this point. In this theorem we use a

particular choice of the weighting matrix Ω (i.e. the identity matrix); this suffices to ensure that the

tightening method works appropriately when the empirical choice probability vector ̂ is close to a

nonregular point where multiple constraints (almost) bind. Note that we use identity matrices for

weighting in our applications, in accordance with the limit theory presented here.

6. Bootstrap Algorithm with Tightening

This section details how to simulate the distribution of  with a bootstrap procedure that

employs Theorem 5.1. First, we apply the standard nonparametric bootstrap to obtain resampled

unrestricted choice probability vector estimates ̂∗()  = 1  , where  denotes the number of

bootstrap replications. This provides the bootstrap distribution estimate as the distribution of ̂∗()−
̂  = 1  , where, as before, ̂ denotes the unrestricted choice probability vector. We need to

generate the bootstrap samples under the null, however. A naive way to achieve this would be to

center it around the restricted estimator ̂, that is

̂
∗()
 = ̂∗() − ̂ + ̂  = 1  

Recall that ̂ is the solution to

 :=  min
∈

[̂ − ]0Ω[̂ − ]

=  min
∈R

+

[̂ −]0Ω[̂ −]
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But ̂∗ is invalid due to standard results about the failure of the bootstrap in discontinuous models

(e.g., Andrews (2000)). The “tightening” remedy is to center it instead around the tightened restricted

estimator. More precisely, our procedure is as follows:

(i) Obtain the  -tightened restricted estimator ̂ , which solves

 := min
∈

 [̂ − ]0Ω[̂ − ]

= min
[−1 ]∈R

+

 [̂ −]0Ω[̂ −]

(ii) Calculate the bootstrap estimators under the restriction, using the recentering factor ̂

obtained in (i):

̂∗() := ̂∗() − ̂ + ̂   = 1  

(iii) Calculate the bootstrap test statistic by solving the following problem:


∗()
 () := min

∈
 [̂∗()

− ]0Ω[̂∗()
− ]

= min
[−1 ]∈R

+

 [̂∗()
−]0Ω[̂∗()

−]

for  = 1  .

(iv) Use the empirical distribution of 
∗()
 ()  = 1   to obtain the critical value for  .

This method relies on a tuning parameter  which plays the role of a similar tuning parameter

in the moment selection approach (namely, the parameter labeled  in Andrews and Soares (2010)).

In a simplified procedure in which the unrestricted choice probability estimate is obtained by simple

sample frequencies, one reasonable choice would be

 =

s
log



where  is the minimum of the ‘sample size’ across budgets:  = min  ( is the number

of observations on Budget  : see (5.1)). The logarithmic penalization corresponds to the Bayes

Information Criterion. The use of  can probably be improved upon, but suffices to ensure validity

of our inference.
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7. Test statistic with smoothing

In our empirical analysis in Section 8, the estimator ̂ is a standard kernel estimator, so the

above formula needs to be modified. Let () be the bandwidth applied to Budget  . Then an

appropriate choice of  is obtained by replacing  in the definition above with the “effective sample

size”  (). That is:

 =

s
log



where  = min (). Strictly speaking, asymptotics with nonparametric smoothing involve

bias, and the bootstrap does not solve the problem. A standard procedure is to claim that one used

undersmoothing and can hence ignore the bias. We follow this convention.

To formally state the asymptotic theory behind our procedure with smoothing, let x() denote

the median (log) income levels for year . We observe  random samples
n³
{|}=1 ()

´o

=1
  =

1   . Instead of sample frequency estimators, we use

̂| =

P

=1(
()−x()

 ()
)|P

=1(
()−x()

 ()
)



̂ = (̂1|   ̂ |)
0

̂ = (̂01  ̂
0
)
0

(note the index  in | now refers to year), where () is the log income of person , 1 ≤  ≤ 

observed in year . The kernel function  is assumed to be symmetric about zero, integrate to 1 and

satisfy
R |()|  ∞ and

R
2()  ∞. Needless to say, ̂| is a standard kernel regression

estimator for

| := |(x())

where

|() := Pr(| = 1|() = )

As before, we write  := (1|    |)
0 and  := (01  

0
)
0 = (1|1 2|1   |)

0. The smoothed

version of  is computed using the above kernel estimator for ̂ in (3.1). We also replace the

normalizing factor  with  min (), which is convenient for asymptotic analysis. Likewise,

̃( ) is obtained applying the same replacements to the formula (5.2), although generating ̃

requires a slight modification. Let ̂ () be the -th block of the vector ̂ , and ̂ be a consistent

estimator for the asymptotic variance of
p
 ()(̂ − ). We use ̃ = (̃ (1)

0  ̃ ()
0) for

the smoothed version of ̃ (), where ̃ () := ̂ () +
1√

 ()
(0 ̂)  = 1   .
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Let ̇ (̈) denote the first (second) derivative of a function . Recall that the modulus of

continuity of  defined on R at 0 is given by

(  0) := sup |()− (0)|  |− 0| ≤ 

for   0.

Condition 7.1. Let   0 and  ∞ be some constants, and  : [0∞]→ [0∞] some function such
that () ↓ 0 as  ↓ 0. The following holds:

(i)  ∈ ;

(ii) var(()
0|() = x()) ≥  holds for all 1 ≤  ≤  for some  = 1  ;

(iii) () is continuously distributed with density , and (x()) ≥  for every 1 ≤  ≤ ;

(iv) | is twice differentiable and 
¡
̈|  x()

¢ ≤ ()  ≥ 0, sup |̇| | ≤  and sup | ¨| | ≤ 

for every 1 ≤  ≤  and 1 ≤  ≤ ;

(v)  is twice differentiable and 
³
̈  x()

´
≤ ()  ≥ 0, sup  ≤ , sup |̇ | ≤  and

sup |̈ | ≤  for every 1 ≤  ≤ .

In what follows  signifies the joint distribution of (| ()). Let F be the set of all

(1  ) that satisfy Condition 7.1 for some ( (·)).

Corollary 7.1. Choose  and  ()  = 1   so that  ↓ 0, () = (− 1
5 ) and

p
 min  () ↑

∞. Also let Ω = I , the -dimensional identity matrix. Then under Assumption 5.1

lim inf
→∞

inf
(1 )∈F

Pr{ ≤ ̂1−} = 1− 

where ̂1− is the 1−  quantile of ̃(), 0 ≤  ≤ 1
2
.

The proof of Corollary 7.1 is almost the same as the proof of Theorem 5.1, except that the as-

ymptotic normality proof in Bierens (1987, Section 2.2) and Condition 7.1 are used to obtain triangular

array CLT’s and uniform consistency results.

8. Empirical Application

We apply our methods to data from the U.K. Family Expenditure Survey, the same data used

by Blundell, Browning, and Crawford (2008, BBC henceforth). To facilitate comparison of results,

we use the same subset of these data as they do, namely the time periods from 1975 through 1999,

households with a car and at least one child, and also the same composite goods, namely food,
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nondurable consumption goods, and services (with total expenditure on the three standing in for

income).

To test random utility models, our strategy is to extract one budget per year, which corresponds

to that year’s median expenditure. We then estimate the distribution of demand on that budget by

kernel density estimation applied to budget shares, where the kernel is normal, the bandwidth was

chosen according to Silverman’s rule of thumb, and the underlying distance metric was log()

(thus spending 10% more or 10% less than the median was considered equidistant from it). Like

BBC, we assume that all consumers in one year face the same prices, and we use their price data.

While budgets have a tendency to move outward over time, we find that there is substantial overlap of

budgets. Thus, our analysis is not subject to the frequently reported problem that revealed preference

tests are near vacuous because income gains dominate relative price changes. At the same time, the

tendency of budgets to move outward means that budgets which are more than a few years apart

do not tend to overlap, making the refinement of our crawling algorithm via Proposition 4.1 very

powerful in this application.

It is computationally prohibitively difficult to test stochastic rationality on all 25 periods at

once, so we rather work with all possible sets of eight consecutive periods. This leads to a collection of

18 matrices (). Testing problems were of vastly different complexity, with the size of the matrix

 ranging from (14× 21) to (67× 149570) and (64× 177352); thus, there were up to 67 patches and
up to 177352 rational choice types. Over this range of problem sizes, time required to compute 

varied from split-second to several hours with the crawling algorithm. Time required to compute the

larger matrices improves by a factor of about 100 using the refinement. Time required to compute

 varied from split-second to about one minute, with problem size (67× 149570) turning out to be
the hardest. Thus, our informal assessment is that for computation of  , increasing  (and therefore

the dimensionality of the quadratic programming problem’s objective function) is more costly than

increasing  (and therefore the number of linear constraints).

For each testing problem, we computed , ,  , as well as critical values and p-values using

the tightened bootstrap algorithm with  = 2000 resamples. Results are summarized in table 1. We

find that  = 0 in only one case; that is, only in one case are the estimated choice probabilities

rationalizable. However, violations of stochastic rationality are by and large not significant. We get

one p-value below 10%, illustrating that in principle our test has some power, though this p-value

must of course be seen in the context of the multiple hypothesis tests reported in table 1. Notice also
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periods I H N JN p-value 10% c.v. 5% c.v.

75-82 50 42625 1229 23 96% 31 40

76-83 67 149570 1209 25 95% 25 33

77-84 55 97378 1160 22 94% 20 25

78-85 49 61460 1108 22 93% 17 23

79-86 43 38521 1033 24 69% 76 94

80-87 35 7067 1033 16 77% 21 34

81-88 27 615 995 16 62% 67 82

82-89 14 21 987 0 100% 24 34

83-90 14 21 869 00015 50% 21 35

84-91 16 63 852 15 71% 26 38

85-92 27 1131 852 175 22% 31 43

86-93 43 10088 828 215 17% 29 38

87-94 49 55965 828 259 18% 35 46

88-95 52 75318 828 223 15% 28 36

89-96 64 17735 795 161 23% 27 36

90-97 46 22365 715 174 91% 169 22

91-98 39 9400 715 217 16% 28 35

92-99 21 225 715 258 102% 26 34

Table 1. Numerical Results of Testing Rationality Using FES data.

that the p-values seem to exhibit strong serial dependence. This is as expected — recall that any two

consecutive p-values were computed from two subsets of data that overlap in seven of eight periods.

Figures 1 through 3 further illustrate the analysis, using the 1975-82 periods as example, i.e.

they correspond to the first row in table 1. Figure 1 visualizes the relevant budget sets; figure 2

illustrates patches on the 1982 budget set; figure 3 depicts the bootstrapped distribution of  . There

is substantial overlap across budgets, with the 1975-1982 periods generating 50 distinct “patches” and

a total of 42625 choice types. The reason is that due to the 1970’s recession, budgets initially contract

and then recover over this time period, generating an intricate pattern of mutual overlaps. The test

statistic for 1990-97 is close to the 10% critical value. An increase of the bootstrap size to 10000 (not

reported) confirms a p-value of under 10% for this test statistic seen in isolation. However, a single
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rejection at the 10% level is well within expectations for joint testing of many hypotheses. Our overall

conclusion is that observed choice probabilities differ from rationalizable ones but not significantly so.

9. Further Applications and Extensions

9.1. Partial Identification of . Our setting gives rise to an identified set H for weights  over

rational choice types

H = { ∈ ∆−1 :  = }

and our main test could be interpreted as a specification test for the null hypothesis 0 : H 6= ∅.
Estimation of H is, therefore, a natural issue. We focus on it somewhat less because the identified

set is a collection of distributions over lists of choice behaviors and, at least in our application, is not

immediately interpretable in terms of structural parameters of interest. This caveat might not apply

to other applications, however.

If our model is misspecified, then H is empty. To generate an estimand that is nonempty by

construction, define

H(Ω) = arg min
∈∆−1

{( − )0Ω ( − )}

This set is independent of the choice of the weighting matrix Ω (as long as Ω is positive definite), and

then coincides with H as previously defined, iff the latter is nonempty. But it also defines a coherent

notion of “pseudo-true (partially identified) distribution of rational types” even if the data are not

rationalizable.

H is a singleton iff  is point identified, which will rarely be the case in interesting applications

of our framework. Indeed, in our application, H(Ω) is a high-dimensional, convex polyhedron even

in cases where b is not rationalizable. That is, unlike in some applications of moment inequalities,
failure of the sample criterion function to attain a minimal value of zero does not make the sample

analog of the identified set a singleton.

Explicit computation of H(Ω) is demanding. Our suggestion is to write

H(Ω) =

½
 ∈ ∆−1 : ( − )0Ω ( − )− min

∈∆−1
{( − )0Ω ( − )} = 0

¾
and compute a plug-in estimator that replaces  with b. Noting that we showed how to compute

the inner minimum, computation of these estimators could utilize methods based on support vector

machines as developed in current work by Bar and Molinari (2012). The estimator is clearly going to

be consistent. An appropriately modified version of the method described in Sections 5 and 6 can be

applied to inference on H or elements ofH , though we leave its detailed analysis for future research.
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9.2. Partial Identification of Counterfactual Choices. The toolkit developed in this paper also

allows for counterfactual analysis. At the most general level, to bound the value of any function ()

subject to the constraint that  rationalizes the observed data, solve the program

min
∈R

+

 max
∈R

+

() s.t.  = ̂

recalling that ̂ = ̂ whenever ̂ is rationalizable.9 Some interesting applications emerge by restricting

attention to linear functions () = 0, in which case the bounds are furthermore relatively easy to

compute because the program is linear. We briefly discuss bounding demand under a counterfactual

budget, e.g. in order to measure the impact of policy intervention. This is close in spirit to bounds

reported by Blundell et al. (2008; see also Cherchye et al. (2009) and references therein) as well as

Manski (2007, 2012).

In this subsection only, assume that demand on budget  is not observed but is to be bounded.

Write

 =

⎡⎣ −



⎤⎦   =
⎡⎣ −



⎤⎦   =
⎡⎢⎢⎢⎣

1|
...

 |

⎤⎥⎥⎥⎦
and let  signifies the -th unit vector. We will begin by bounding components of the vector  .

Corollary 9.1. The identified region for  is given by

H() = { : − = −   ≥ 0}

In particular, | is bounded by

| ≤ | ≤ |

where

| = min
©
0

ª
 − = −   ≥ 0

| = max
©
0

ª
 − = −   ≥ 0

In this paper’s application, the patches | , and hence the probabilities | , are not of intrinsic

interest. However, they might be the object of interest in applications where the choice problem was

9Equivalently, one could use the previous subsection’s notation to write

min max () s.t.  ∈H(Ω)

which is more similar to the way that similar problems are stated by Manski (e.g., Manski (2007)).



26 KITAMURA AND STOYE

discrete to begin with. Indeed, the above is the bounding problem further analyzed in Sher at al.

(2011).

Next, let () = E[argmax∈
()], thus the vector () with typical component ()

denotes expected demand in choice problem  . Define the vectors

() : = [(1|)  ( |)]

() : = [(1|)  ( |)]

with components

(|) : = min{ :  ∈ |} 1 ≤  ≤ 

(|) : = max{ :  ∈ |} 1 ≤  ≤  

thus these vectors list minimal respectively maximal consumption of good  on the different patches

within  . Computing ((|) (|)) is a linear programming exercise. Then we have:

Corollary 9.2. Expected demand for good  on budget  is bounded by

() ≤ () ≤ ()

where

() : = min ()  − =    ≥ 0

() : = max ()  − =    ≥ 0

Finally, consider bounding the c.d.f. of demand () = Pr( ≤ ). This quantity must be

bounded in two steps. The event ( ≤ ) will in general not correspond to a precise set of patches,

that is, it is not measurable with respect to (the algebra generated by) {1|    |}. An upper
bound on () will derive from an upper bound on the joint probability of all patches | s.t.  ≤ 

holds for some  ∈ | . Similarly, a lower bound will derive from bounding the joint probability of

all patches | s.t.  ≤  holds for all  ∈ | .10 We thus have:

Corollary 9.3. For  = 1  and  ≥ 0, () is bounded from below by

min
∈R

+

X
∈{1}:
(|)≤

0

s.t. − = −

10These definitions correspond to inner and outer measure, as well as to hitting and containment probability.
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and from above by

max
∈R

+

X
∈{1}:
(|)≤

0

s.t. − = − 

where
¡
(|) (|)

¢
are defined as before.

While both the lower and the upper bound, seen as functions of , will themselves be proper

c.d.f.’s, they are not in general feasible distributions of demand for . That is, the bounds are sharp

pointwise but not uniformly. Also, bounds on a wide range of parameters such as the variance of

demand follow from the above bounds on the c.d.f. through results in Stoye (2010). However, because

the bounds on the c.d.f. are not uniform, these derived bounds will be valid but not necessarily sharp.

When trained on this paper’s empirical application, these bounds are uncomfortably wide,

motivating the search for nonparametric refinements that lead to narrower bounds without tightly

constraining heterogeneity. This search, as well as the development of inference procedures for the

bounds, are the subject of ongoing research. We also note that in his recent analysis of optimal taxation

of labor, Manski (2012) uses the computational tools developed in this paper to find informative

bounds.

9.3. Choice from Binary Sets. The methods developed in this paper, including the two extensions

just discussed, immediately apply to nonparametric analysis of random discrete choice. Indeed, the

initial discretization step that characterizes our analysis of a demand system is superfluous in this

case. We briefly elaborate on one salient application that has received substantial attention in the

literature, namely the case where choice probabilities for pairs of options,

 := Pr( is chosen from { })

are observed for all pairs of choice objects { } drawn from some finite, universal set A.
Finding abstract conditions under which a set of choice probabilities { :   ∈ A} is rational-

izable has been the objective of two large, disjoint literatures, one in economics and one in operations

research. See Fishburn (1992) for a survey of these literatures and Manski (2007) for a recent dis-

cussion of the substantive problem. There exists a plethora of necessary conditions, most famously

Marschak’s (1960) triangle condition, which can be written as

 +  +  ≤ 2∀   ∈ A
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This condition is also sufficient for rationalizability if A contains at most 5 elements (Dridi (1980)).

Conditions that are both necessary and sufficient in general have proved elusive. We do not discover

abstract such conditions either, but provide the toolkit to numerically resolve the question in compli-

cated cases, including a statistical test if probabilities are estimated rather than perfectly observed.

To see this, define  = (#A)(#A − 1)2 “budgets” that correspond to distinct pairs   ∈ A, and
let the vector  (of length  = 2) stack these budgets, where the ordering of budgets is arbitrary

and options within a budget are ordered according to a preassigned ordering on A. Each rational
type (and thus, column of the matrix ) then corresponds to an ordering of the elements of A and

can be characterized by a binary -vector with just the same interpretation as before. As before, an

-vector of choice probabilities  whose components correspond to components of  is rationalizable

iff  =  for some  ∈ ∆−1. All methods developed in this paper apply immediately.

To illustrate, let A = {  }, then one can write

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣













⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣













⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 1 0

0 1 1 0 0 1

0 1 0 1 0 1

1 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


and one can readily verify that  =  for some  ∈ ∆5 iff both ++ ≤ 2 and ++ ≤
2. More generally, the matrix  has  = (#A)! columns. This limits computational feasibility of
our approach, but note that the set of orderings of elements of A is easily characterized, so that

computation time per column of  will be low.

10. Conclusion

This paper presented asymptotic theory and computational tools for completely nonparametric

testing of Random Utility Models. Again, the null to be tested was that data were generated by a

RUM, interpreted as describing a heterogeneous population, where the only restrictions imposed on

individuals’ behavior were “more is better” and SARP. In particular, we allowed for unrestricted,

unobserved heterogeneity and stopped far short of assumptions that would recover invertibility of

demand. As a result, the distribution over utility functions in the population is left (very) underiden-

tified. We showed that specification testing of the model is possible nonetheless. The method is easily
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adapted to choice problems that are discrete to begin with, and one can easily impose more (or also

fewer) restrictions at the individual level.

Possibilities for extensions and refinements abound. We close by mentioning some salient issues.

(1) The methods discussed in this section are computationally intensive. The proposed algorithms

work for a reasonably sized problem, though it is important to make further improvements in the

algorithms if one wishes to deal with a problem that is large, say in terms of the number of budgets.

(2) We formulated the  statistic for the case with a finite set of budgets. In certain applications,

however, it would be necessary to deal with a continuum of budgets. Theoretically, this can be

handled by considering an appropriate discretization argument (McFadden (2005)). For the proposed

projection-based econometric methodology, such an extension requires evaluating choice probabilities

locally over points in the space of  via nonparametric smoothing, then use the choice probability

estimators in the calculation of the  statistic. The asymptotic theory then needs to be modified.

Another approach that can mitigate the computational constraint is to consider a partition of the

space of  such that R
+ = P1 ∪ P2 · · · ∪ P . Suppose we calculate the  statistic for each of these

partitions. Given the resulting  statistics, say 1  · · ·   , we can consider their function such as
max := max1≤≤  . Or, alternatively, their weighted average may be used. These extensions and

their formal statistical analysis are of practical interest.

(3) It might frequently be desirable to control for observable covariates to guarantee the homogeneity

of the distribution of unobserved heterogeneity. Once again, this requires incorporating nonparametric

smoothing in estimating choice probabilities, then averaging the corresponding  statistics over the

covariates. This extension will be pursued.

(4) The econometric techniques outlined here can be potentially useful in much broader contexts.

Again, our proposed hypothesis test can be regarded as specification test for a moment inequali-

ties model. The proposed statistic  is an inequality analogue of goodness-of-fit statistics such as

Hansen’s (1982) overidentifying restrictions test statistic. While there are other proposals for speci-

fication testing in moment inequality models (see, e.g., Andrews and Guggenberger (2009), Andrews

and Soares (2010), Bugni (2010), and Guggenberger, Hahn and Kim (2008)), the current approach

provides an alternative and convenient procedure. As we discussed in Section 1, our procedure applies

to ‘indirect moment inequality models’ as well. This can be useful in other applications, for example
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in any setting where theoretical restrictions inform the V-representation of a cone, meaning that its
H-representation may not be available in practice.

11. Appendix A: Proofs

Proof of Proposition 4.1. We begin with some preliminary observations. Throughout this proof,

() denotes the object actually chosen from budget .

(i) If there is a choice cycle of any finite length, then there is a cycle of length 2 or 3 (where

a cycle of length 2 is a WARP violation). To see this, assume there exists a length  choice cycle

() Â () Â () Â  Â (). If () Â (), then a length 3 cycle has been discovered.

Else, there exists a length  − 1 choice cycle () Â () Â () Â  Â (). The argument can

be iterated until  = 4.

(ii) Call a length 3 choice cycle irreducible if it does not contain a length 2 cycle. Then a choice

pattern is rationalizable iff it contains no length 2 cycles and also no irreducible length 3 cycles. (In

particular, one can ignore reducible length 3 cycles.) This follows trivially from (i).

(iii) Let  = 3 and  = 1, i.e. assume there are three budgets but two of them fail to

intersect. Then any length 3 cycle is reducible. To see this, assume w.l.o.g. that 1 is below 3,

thus (3) Â (1) by monotonicity. If there is a choice cycle, we must have (1) Â (2) Â (3).

(1) Â (2) implies that (2) is below 1, thus it is below 3. (2) Â (3) implies that (3)

is below 2. Thus, there is a length 2 cycle in (2 3).

We are now ready to prove the main result. The nontrivial direction is “only if,” thus it suffices

to show the following: If choice from (1  −1) is rationalizable but choice from (1  ) is

not, then choice from (+1  ) cannot be rationalizable. By observation (ii), if (1  )

is not rationalizable, it contains either a 2-cycle or an irreducible 3-cycle. Because choice from all

triplets within (1  −1) is rationalizable by assumption, it is either the case that some ( )

constitutes a 2-cycle or that some triplet (  ), where    w.l.o.g., reveals an irreducible

choice cycle. In the former case,  must intersect  , hence    , hence the conclusion. In the

latter case, if  ≤ , the choice cycle must be a 2-cycle in ( ), contradicting rationalizability of

(1  −1). If  ≤  , the choice cycle is reducible by observation (iii). Thus,    , hence the

conclusion. ¤

Proof of Lemma 5.1. By the Minkowski-Weyl theorem

 = { ∈ R :  ≤ 0}
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Letting  =  − 1 , we have

 = {| ≥ 0}

= {[ + 1 ]| ≥ 0}

=  ⊕ 1

= { : − 1 ∈ }

where ⊕ signifies Minkowski sum. Define

 = −1 

Using the H-representation of ,

 = { : (− 1) ≤ 0}

= { :  ≤ −}

Note that the above definition of  implies  ∈ col(). Also define

Φ := −

= −

⎡⎢⎢⎢⎣
01
...

0

⎤⎥⎥⎥⎦ [1 · · ·   ]
= {Φ}

where Φ = 0 1 ≤  ≤  1 ≤  ≤  and let  be the -th standard unit vector in R
 . Since

 ≥ 0, the V-representation of  implies that  ∈ , and thus

 ≤ 0

by its H-representation. Therefore

(11.1) Φ = −0 ≥ 0 1 ≤  ≤  1 ≤  ≤ 

Write  = (1  )
0. We now show that  6= 0 for all 1 ≤  ≤ . To see it, note

 = Φ1

=

⎡⎢⎢⎢⎣
P

=1Φ1
...P

=1Φ

⎤⎥⎥⎥⎦
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But unless we have the case of rank() = 1 (in which case the proof is trivial) it cannot be that

 ∈ { : 0 = 0} for all 

Therefore for each , Φ = 0 is nonzero at least for one  1 ≤  ≤ . Since (11.1) implies that

all of {Φ}=1 are non-negative, we conclude that

 =

X
=1

Φ  0

for all . We now have

 = { :  ≤ −}   0

where the strict vector inequality is meant to hold element-by-element. ¤

Proof of Theorem 5.1. By applying the Minkowski-Weyl theorem and Lemma 5.1 to  and ̃(),

we see that our procedure is equivalent to comparing

 = min
∈R :≤0

 [̂ − ]0Ω[̂ − ]

with the 1−  quantile of the distribution of

̃( ) = min
∈R :≤−

 [̃ − ]0Ω[̃ − ]

with  ∈ R
++, where

̃ = ̂ +
1√

(0 ̂)

̂ = argmin
∈R :≤−

 [̂ − ]0Ω[̂ − ]

In the rest of the proof we use the following definition and notation. For  dimensional vec-

tors  = (1  )
0 and  = (1  )

0, we use the notation min( ) to signify the vector

(min(1 1) min( ))
0. Suppose  is  ×  dimensional and rank() = . Define an  ×

matrix  such that  is a matrix whose rows consist of a basis of the row space row(). Also let

 be an ( − ) ×  matrix whose rows form an orthonormal basis of ker = ker(), and define

 =
¡



¢
. Finally, let ̂ = ̂ and ̂ =̂. Then

 = min
≤0



∙µ




¶
(̂ − )

¸0
−10−1

∙µ




¶
(̂ − )

¸
= min

≤0


µ
[̂ −]

̂−

¶0
−10−1

µ
[̂ −]

̂−

¶


Let

U1 =
½µ





¶
:  =   = ≤ 0  ∈ R

¾



33

then writing  =  and  =,

 = min
()∈U1



µ
̂ − 

̂− 

¶0
−10−1

µ
̂ − 

̂− 

¶
Also define

U2 =
½µ





¶
:  ≤ 0  ∈ col()  ∈ R−

¾
where col() denotes the column space of . Obviously U1 ⊂ U2. Moreover, U2 ⊂ U1 holds. To see
this, let

¡
∗
∗
¢
be an arbitrary element of U2. We can always find ∗ ∈ R such that ∗ = ∗.

Define

∗∗ := ∗ + 0∗ − 0∗

then ∗∗ = ∗ = ∗ ≤ 0 and∗∗ =∗+ 0∗− 0∗ = ∗, therefore
¡
∗
∗
¢
is an element

of U1 as well. Consequently,
U1 = U2

We now have

 = min
()∈U2



µ
̂ − 

̂− 

¶0
−10−1

µ
̂ − 

̂− 

¶

=  min
()∈U2

µ
̂ − 



¶0
−10−1

µ
̂ − 



¶


Define

 ( ) =

µ




¶0
−10−1

µ




¶
  ∈ R  ∈ R−

and

() := min
∈R−

 ( ) () := min
≤0∈col()

([ − ])

It is easy to see that  : R → R+ is a positive definite quadratic form. We can write

 =  min
≤0∈col()

([̂ − ])

= (̂)

= (
√
̂)

Let ̂ , ̂
 and  denote the -th elements of ̂ = ̂ , ̂ and . Since ̂ solves

min
≤−

[̂ − ]0Ω[̂ − ]

= min
≤−

 ([̂ −] ̂−)
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it is sufficient to choose the -dimensional identity matrix for Ω so that ̂ can be written as

̂ = I{̂ ≤ −}(̂ +  (̂)) + I{̂  −}(−)

for 1 ≤  ≤ , where  (·) = [1 (·)   (·)]0 is a vector valued function from R to col(), and

satisfies k ()k ≤  for some finite  for every  in R. Using this and defining  ∼ N(0 ̂)
and  = ,

̃() ∼ min
≤−



∙µ




¶
(̂ +−12 − )

¸0
−10−1

∙µ




¶
(̂ +−12 − )

¸
=  min

≤−∈col()

³

h
̂ +−12 − 

i´


In what follows, for an element-by-element vector inequality  ≤   = (1  )
0  = (1  )0, we

use I{ ≤ } to signify the -vector of indicator functions whose -th element is given by I{ ≤ }.
Defining  =  +  in the above,

̃ () ∼  min
≤0


³

h
̂ + +−12 − 

i´
=  min

≤0

³

h
I{̂ ≤ } ¯ (̂ +  (̂) + ) +−12 − 

i´
= 

³√
I{−1 ̂ ≤ } ¯ [−1 ̂ + −1  (̂) + ] + 

´
where ¯ denotes the Hadamard product. Define functions

() :=
I{ ≤ −} ¯ [ −+ ]

and

() := (+∞) · I{ ≤ −}

where  is the -vector of ones, with the convention that 0 · +∞ = 0. These functions satisfy

Assumptions GMS 1, 3 and 7 of AS10. Without loss of generality, let 1 = 1 and suppose 

increases monotonically in  . Let

̃ := (−(−−1 ̂) + )

and

̃ := (−(−−1 ̂) + )

then by construction ̃ ≤ ̃ ( ) ≤ ̃. Moreover, ̂1− and ̂1− be the 1 −  quantiles of

̃ and ̃ , respectively. Then we have

(11.2) ̂1− ≤ ̂1− ≤ ̂1−
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Now we invoke Theorem 1 of AS10. As noted before, the function  is a positive definite quadratic form

onR, and so is its restriction on col(). Then Assumptions 1-3 of AS10 hold for the function  defined

above if signs are adjusted appropriately as our formulae deal with negativity constraints whereas AS10

is formulated for positivity constraints (note that Assumption 1(b) does not apply here since we use a

fixed weighting matrix). AS10 imposes a set of restrictions on the parameter space (see their Equation

(2.2) on page 124). Their condition (2.2) (vii) is a Lyapunov condition for a triangular array CLT.

Following AS10, consider a sequence of distributions  = [
0
1   

0
 ]

0  = 1 2  in P ∩  such

that (1)
√
 →  for a non-positive  as  → ∞ and (2) Cov (

√
̂) → Σ as  → ∞

where Σ is positive semidefinite. As  ∈ P, Condition 5.1 demands that var (()0) ≥  holds

for some  for each  . Therefore we have lim→∞ var (()
0) ≥  for some . For such ,

the Lindeberg condition for CLT holds for
p
()[1()

0[̂ − ()]  ()
0[̂ − ()]]

0 where

̂ = [̂1|   ̂ | ]
0, and we have

√
(̂ −  )


; (0Σ). The other conditions (2.2)(i)-(vi) hold

trivially. Finally, Assumptions GMS 2 and GMS 4 of AS10 are concerned with their thresholding

parameter  for the -th moment inequality, and by letting  = 12, the former holds by the

condition
√
 ↑ ∞ and the latter by  ↓ 0. Therefore we conclude

(11.3) lim inf
→∞

inf
∈P∩

Pr{ ≤ ̂11−} = lim inf
→∞

inf
∈P∩

Pr{ ≤ ̂+∞1−} = 1− 

Combining (11.2) and (11.3) the desired conclusion follows. ¤

Before stating the proof of Corollary 7.1, let us introduce some notation.

Notation. Let () := [1()  ()]
0 ∈ R× . For  ∈ F and 1 ≤  ≤  , define


()
 () :=  [|() = ] 

()
 = 

()
 (x())  = [

(1)


0
  

()


0
]0

and

Σ
()
 () := Cov [|() = ]

Also let 
()
 denote the density of () under  .

Note that Σ
()
 () = diag

³

()
 ()

´
− 

()
 ()

()
 ()

0 The following is used in the proof of

Corollary 7.1:

Proposition 11.1. If Conditions 7.1(iv) and (v) hold for some  ∞ and  such that ()→ 0 as

 → 0, then {()∈F}, {̇()∈F}, {̈()∈F}, { ()∈F}, {̇ ()∈F}, and {̈ ()∈F} are equicontinuous at x() for
all 1 ≤  ≤ .
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The proof is straightforward and thus omitted.

Proof of Corollary 7.1. The proof follows the same steps as those in the proof of Theorem 5.1,

except for the treatment of ̂. Therefore, instead of the sequence    = 1 2  in P ∩ , consider
a sequence of distributions  = [1    ]  = 1 2  in F such that (1)

√
 →  for

a non-positive  as  →∞; (2) Σ() (x())→ Σ()(x()) as  →∞, 1 ≤  ≤  where Σ() is positive

semidefinite; and (3) 
()

(x())→  ()(x()) as  →∞ 1 ≤  ≤  .

Define

() =
1√




µ
()− x()



¶
()[ − 

()

(())]

then

(11.4)  [()] = 0 1 ≤  ≤ 

By the standard change of variable argument

Cov (()) =

Z
()Σ

()

(x() + )

()0 ()
(x() + )

2()

for 1 ≤  ≤  . Let ∆ := Cov (())−()Σ()(x())()
0()
(x())

R
2(), then

∆ =

Z
()

h
Σ
()

(x() + )−Σ()(x())

i
()

0

()

(x() + )

2()

+()Σ
()

(x())()

0
Z h


()

(x() + )−  ()(x())

i
2()

but as  →∞ °°°Σ() (x() + )−Σ()(x())
°°°

≤
°°°Σ() (x() + )−Σ() (x())

°°°+ °°°Σ() (x())−Σ()(x())°°°
≤ sup

∈F

°°°Σ() (x() + )−Σ() (x())
°°°+ °°°Σ() (x())−Σ()(x())°°°

→ 0 for every 

where the convergence holds by Proposition 11.1. Similarly, as  →∞¯̄̄

()

(x() + )−  ()(x())

¯̄̄
→ 0 for every 

By the Bounded Convergence Theorem conclude that

(11.5) ∆→ 0

This means that a version of equation (2.2.10) in Bierens (1987) still holds even under the sequence

of distributions {}∞=1 as specified above.
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We next verify the Lyapunov condition. As  ∈ F , Condition 7.1(ii) demands that

var (()
0| = x()) ≥ 

holds for some  for each  . Thus we have lim→∞ var (()
0| = x()) ≥  for some .

Define 2 := Cov

³P
=1 (|)

´
for such  where (|) denotes the -th element of the 

random vector (). Note that  ³  , and therefore proceeding as in the derivation of (11.5),

then using Equation (2.2.10) in Bierens (1987) we obtain

(11.6)
1

2+

X
=1

 [|(|)|2+]→ 0

for 1 ≤  ≤  . By (11.4), (11.5) and (11.6), we have

1p


X
=1

 ()

; (0Ω1) Ω1 = ()Σ()(x())()

0
 ()(x())

Z
2()

Finally, the convergence results corresponding (2.2.4) and (2.2.5) in Bierens (1987) hold under the

sequence of distributions {}∞=1 as specified above, once again by proceeding as in the derivation
of (11.5). It follows thatp


()[̂ −  ]


; (0Ω2) Ω2 =

1

 ()(x())
()Σ()(x())()

0
Z

2()

The rest is the same as the proof of Theorem 5.1. ¤

12. Appendix B: Algorithms for Computing 

This appendix algorithms for computation of . The first algorithm is a brute-force approach

that generates all possible choice patterns and then verifies which of these are rationalizable. The

second one avoids the construction of the vast majority of possible choice patterns because it checks

for rationality along the way as choice patterns are constructed. The third algorithm uses proposition

1. To give a sense of the algorithms’ performance, the matrix  corresponding to the 1975-1982

data, which is of size [50× 42625] and cannot be computed with our implementation of algorithm 1,

computes in about 2 hours with our implementation of algorithm 2, and (after suitable rearrangement

of budgets) in about 2 minutes with our implementation of algorithm 3. All implementations are in

MATLAB and are available from the authors. The instruction to FW-test a sequence refers to use of

the Floyd-Warshall algorithm to detect choice cycles. We use the FastFloyd implementation due to...

Algorithm 1: Brute Force
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This algorithm is easiest described verbally. First generate a matrix max that contains all

logically possible choice patterns. To do so, let  denote the set of unit vectors in  and observe

that a stacked vector (01  
0
)
0 is a column of max iff (1  ) ∈ 1 × × . It is then easy

to construct max by looping. Next, generate  by FM-testing every column of max and retaining

only columns that pass.

Algorithm 2: Decision Tree Crawling

An intuition for this algorithm is as follows. All possible choice patterns can be arranged on

one decision tree, where the first node refers to choice from 1 and so forth. The tree is systematically

crawled. Exploration of any branch is stopped as soon as a choice cycle is detected. Completion of a

rationalizable choice pattern is detected when a terminal node has been reached.

Pseudo-code for this algorithm follows.

1. Initialize 1 =  =  = 1.

2. Initialize  = 2.

3. Set (1) = 1  () = . FW-test ((1)  ()).

4. If no cycle is detected, move to step 5. Else:

4a. If   , set  =  + 1 and return to step 3.

4b. If  =  and −1  −1, set  = 1, −1 = −1 + 1,  =  − 1, and return
to step 3.

4c. If  = , −1 = −1, and −2  −2, set  = −1 = 1, −2 = −2 + 1,

 =  − 2, and return to step 3.
(...)

4z. Terminate.

5. If   , set  =  + 1,  = 1, and return to step 3.

6. Extend  by the column [1  ]
0. Also:

6a. If   , set  =  + 1 and return to step 3.

6b. If  =  and −1  −1, set  = 1, −1 = −1 + 1,  =  − 1, and
return to step 3.

6c. If  = , −1 = −1, and −2  −2, set  = −1 = 1, −2 = −2 + 1,

 =  − 2, and return to step 3.
(...)
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6z. Terminate.

Algorithm 3: Refinement using Proposition 4.1

Let budgets be arranged s.t. (1  ) do not intersect  ; for exposition of the algorithm,

assume  is above these budgets. Then pseudo-code for an algorithm that exploits proposition 1

(calling either of the preceding algorithms for intermediate steps) is as follows.

1. Use brute force or crawling to compute a matrix +1→−1 corresponding to budgets

(+1  ), though using the full  corresponding to budgets (1  ).
11

2. For each column +1→−1 of +1→−1, go through the following steps:

2.1 Compute (by brute force or crawling) all vectors 1→ s.t.

(1→  +1−1) is rationalizable.

2.2 Compute (by brute force or crawling) all vectors

 s.t. (+1−1 ) is rationalizable.

2.3 All stacked vectors (01→  0+1−1 
0
)
0 are valid columns of .
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