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Mathias Staudigl† Simon Weidenholzer‡

This Version: May 2012

Abstract

We consider a co-evolutionary model of social coordination and network formation where agents
may decide on an action in a 2 × 2 - coordination game and on whom to establish costly links to. We
find that a payoff dominant convention is selected for a wider parameter range when agents may only
support a limited number of links as compared to a scenario where agents are not constrained in their
linking choice. The main reason behind this result is that under constrained interactions agents face a
trade-off between the links they have and those they would rather have.

Keywords: Coordination Games, Equilibrium Selection, Learning, Network Formation.
JEL Classification Numbers: C72, D83.

1 Introduction

In many situations people can benefit from coordinating on the same action. Typical examples include

common technology standards (e.g. Blue-ray Disc vs. HD DVD), or the choice of common legal standards

(e.g. driving on the left versus the right side of the road). These situations give rise to coordination

games with multiple strict Nash equilibria. A broad range of global and local interaction models (see

e.g. Kandori, Mailath, and Rob (1993), Kandori and Rob (1995), Young (1993), Blume (1993, 1995),

Ellison (1993, 2000), or Alós-Ferrer and Weidenholzer (2007)) finds that in coordination games (potentially)

inefficient risk dominant conventions will emerge in the long run when agents use myopic best response

rules and occasionally make mistakes.1 The main reason behind this result is that risk dominant strategies

perform well in a world of uncertainty, where there is the possibility of misscoordination, and will eventually

take over the entire population.

In this paper, we present a model where agents in addition to their action choice in a 2×2-coordination

game may directly choose the set of their opponents. We model this by assuming that agents decide on

whom to maintain (costly) links to, thereby giving rise to a model of non-cooperative network formation

à la Bala and Goyal (2000). We focus on situations where the payoff from interaction is only received by

the party that initiated that link. Goyal and Vega-Redondo (2005) put forward the interpretation of such

networks as a peer networks, i.e. networks where influence is uni-directional. Such peer networks may, e.g.,

arise in the context of peer groups or fashion trends where it seems natural that influence is asymmetric.2

Further, our model can also be seen as a benchmark scenario for situations where the payoff from passive

interactions plays a relatively small role compared to the payoff received from active interactions.

We motivate our study of constrained interactions by the observations that in many circumstances the

set of agents a typical economic agent may link up to is fairly small compared to the overall population.

∗We are indebted to Andrea Galeotti, Matthew O. Jackson, Manfred Nermuth, and Fernando Vega-Redondo for helpful
comments and suggestions. We also would like to thank Tim Hellmann for insightful discussions. Financial support from the
Vienna Science and Technology Fund (WWTF) under project fund MA 09-017 is gratefully acknowledged.
†Institute for Mathematical Economics (IMW), Bielefeld University, Postfach 100131 33501 Bielefeld (Germany), E-mail:

Mathias.Staudigl@uni-bielefeld.de
‡Department of Economics, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom), Email:

sweide@essex.ac.uk
1See Eshel, Samuelson, and Shaked (1998) and Alós-Ferrer and Weidenholzer (2008) for local interaction models showing

that imitation learning may lead to efficient outcomes.
2Note that under such circumstances it also seems natural to assume that agents face no restriction with respect to the

number of links they receive.



For instance, in the context of social networks there is hardly anybody who is linked to everybody else

on facebook. Such constrained interactions will typically arise in situations where there are limitations on

the amount of time agents can socialize, where the marginal benefit of socializing is decreasing, and/or

the marginal cost of socializing is increasing. We further remark that, especially in large populations,

constrained interactions impose weaker assumptions on the information agents need to have on the network.

The key feature of constrained interactions is that agents will have to carefully decide on whom to estab-

lish one of their precious links to. We model this idea by introducing the concept of a link optimized payoff

function, which gives the maximally attainable payoff, given a distribution of actions in the population,

when linking up optimally. Note that, due to the coordination nature of the game, agents will always first

try to link up to agents choosing the same action as they do. Only after that they will consider linking up

to agents using different actions. When interactions are sufficiently constrained, already a (relatively) small

number of agents choosing the payoff dominant strategy enables agents -by linking up to those agents- to

secure themselves the highest possible link optimized payoff. Thus, already a small fraction of the pop-

ulation playing the payoff dominant action implies that all agents will want to establish links with those

agents and switch to (or remain at) the payoff dominant action. On the contrary, it becomes very difficult

to leave the payoff dominant convention as it will always spread back from a relatively small number of

agents using it. We show that this creates a fairly strong force allowing agents to reach efficient outcomes.

In this paper we provide a full characterization of the set of long run outcomes under constrained interac-

tions. Essentially, efficient networks will be selected if the number of maximally allowed links is low and/or

linking cost are high. Conversely, risk dominant network configurations are only selected if the number of

maximally allowed links is high and linking costs are low. We extend the focus of our model by providing a

partial characterization of the set of long run outcomes in general m×m games. It turns out that the main

message of the paper remains unaffected by this generalization: for sufficiently constrained interactions the

payoff dominant convention is the unique long run outcome. We also provide a discussion on convex linking

where constraints on the number of links are not exogenously imposed but arise endogenously as agents

decide on the optimal number of links. In this scenario, the set of long run outcomes will depend on the

shape of the cost function. Provided it is sufficiently curved, agents will only interact with a small subset

of the population, giving rise to the efficient convention. If it is, however, sufficiently less curved we obtain

global interactions where the risk dominant convention is selected.

1.1 Related Literature

The present work is closely related to the recent literature on social coordination and network formation.

As in the present paper, in Goyal and Vega-Redondo (2005) agents may unilaterally decide on whom to

maintain links to.3 In Jackson and Watts (2002) the consent of both parties is needed to form a link, which

stipulates the use of Jackson and Wolinsky’s (1996) concept of pairwise stability. Further, in Goyal and

Vega-Redondo (2005) agents may change strategies and links at the same time whereas in Jackson and

Watts (2002) an updating agent may either decide on her action or on a link.4 Apart from considering

constrained interactions, the only difference between our model and the work by Goyal and Vega-Redondo

(2005) is that in their main model the payoff received by agents is on both sides of the link (the active and

the passive one) whereas in our setup the payoff is only on the active side. Goyal and Vega-Redondo (2005)

shortly discuss the implications of having only active links in their extensions section. Goyal and Vega-

Redondo (2005) show that, regardless whether the payoff is only on the active side or on both sides of an

interaction, for relatively low costs of link formation the risk dominant complete network is selected whereas

for relatively high costs of link formation the payoff dominant convention is selected. The main reason for

this result is that if costs are low agents obtain a positive payoff from linking to other players irrespective of

their action and a complete network will form. This generates endogenously a model of global interactions

where the risk dominant action is uniquely selected. If costs of forming links are however high agents may

not want to support links to agents using a different strategy, which renders the advantage of the risk

dominant action obsolete. Hellmann (2007) provides a partial characterization of the long run outcomes in

3The setup of Hojman and Szeidl (2006) is very similar to the one of Goyal and Vega-Redondo (2005). The payoff structure
of their model extends to situations where agents also obtain payoffs from path connected agents.

4See also Staudigl (2011) for a model with asynchronous updating using the logit response dynamics.
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the Goyal and Vega-Redondo setting where payoff is also enjoyed by the passive party and where agents

are constrained in the number of active links. The focus of his study is, however, only on situations where

complete networks may form, i.e. where everybody is either actively or passively connected to everybody

else. Jackson and Watts (2002) show that, in the context of pairwise stable networks, for low linking costs

the risk dominant convention is selected whereas for high linking costs the payoff dominant and the risk

dominant conventions are both selected. The main reason behind this discrepancy to the non-cooperative

approach is that the nature of transition from one convention to another is different.5 This is also why

Jackson and Watts (2002), in their discussion of a constrained interaction scenario, do not find any relevant

effect of constrained interactions on the predictions of their model (with of course the exception being the

number of links agents form).

A different branch in the literature analyzes models where agents in addition to their strategy choice

may choose among several locations where the game is played (see e.g. Oechssler (1997) , Ely (2002), or

Bhaskar and Vega-Redondo (2004)). In these models, the most likely scenario will be the emergence of

payoff dominant conventions. The reason behind this result is that agents using risk dominant strategies

may no longer prompt their interaction partners to switch strategies but instead to simply move away. In

this sense, agents can vote by their feet which allows them to coordinate at efficient outcomes. If, however,

one is prepared to identify free mobility with low linking costs, this leaves a puzzle to explain: multiple

location models select the payoff dominant convention, while the unconstrained network approach favors the

risk dominant convention. The main reason for this discrepancy lies in the fact that the multiple location

models typically consider average payoffs whereas network models consider additive payoffs. The additive

payoff structure implies that all links are valuable for sufficiently low linking costs, giving rise to the risk

dominant convention. On the contrary, in multiple locations models the number of potential opponents

does not matter and players will always prefer to interact with a small number of players choosing the payoff

dominant strategy than with a large number choosing the inefficient strategy. Note that in our constrained

links scenario a similar mechanism is at work. If the number of permitted links is relatively small only a

small fraction of agents using the payoff dominant action will prompt other agents to link up with them

and switch to the payoff dominant action. Dieckmann (1999) and Anwar (2002) present multiple location

models where each location is subject to a capacity constraint, thus limiting movements between them.

In the multiple location context these constraints on interactions imply that efficient conventions will no

longer be selected. Instead, the most likely scenario will be the coexistence of conventions. Thus, in the

multiple location context constrained interactions impede efficiency whereas in the network approach they

might facilitate efficiency.

2 Model Setup

Our model is set in the following environment. We consider N agents who play a 2 × 2 symmetric coor-

dination game against each other. In addition to choosing an action in the coordination game agents can

choose their interaction partners.

Each player i can choose an action ai ∈ {A,B} in the coordination game. We denote by u(ai, aj)

the payoff agent i receives from interacting with agent j. The following table describes the payoffs of the

coordination game.
A B

A a c

B d b

We assume that b > a > c > d > 0, so that, (A,A) and (B,B), are strict Nash equilibria, where the latter

is payoff-dominant.6 Further, we assume that a+ c > d+ b so that the equilibrium (A,A) is risk dominant

in the sense of Harsanyi and Selten (1988), i.e. A is the unique best response against an opponent playing

5In Jackson and Watts (2002) this transition is stepwise: starting with a connected component of size two, other players
mutating will join one-by-one and we gradually reach the other convention. In Goyal and Vega-Redondo (2005) and in the
present paper, once sufficiently many players play one action, all other players will immediately follow.

6That is, we restrict our analysis to the case of pure coordination games and exclude stag-hunt games, as defined by e.g.
Bhaskar and Vega-Redondo (2004), where c ≥ a. In Proposition 2 we provide sufficient conditions for a payoff dominant
action to be selected in a large class of two player games which includes stag-hunt games.
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both strategies with equal probability.

In addition to their choice in the coordination game, agents can decide on whom to link to. If player

i forms a link to player j we write gij = 1 and we write gij = 0 if player i does not form a link to player

j. Players may not be linked to themselves, i.e. we have gii = 0 for all i ∈ I. The linking decision of

agent i can be summarized by an N -tuple gi = (gi1, gi2, . . . , giN ) ∈ Gi = {0, 1}N where gii is always zero.

We denote by g = (gi)i∈I the network induced by the link decisions of all agents. A pure strategy of an

agent consists of her action choice in the coordination game, ai ∈ {A,B}, and of her linking decisions, i.e.

si = (ai, gi) ∈ Si = {A,B} × Gi. A strategy profile is a tuple s = (si)i∈I ∈
∏
i∈I Si = S. We denote by

di =
∑
j gij the out-degree of player i, i.e. the number of agents agent i has established links to. Further,

we denote by m the number of A-players at a given strategy profile s. Conversely, the number of B-players

is given by N −m.7

We assume that the utility of an agent is given by the sum of payoffs she receives from interacting with

each of her neighbors minus a cost of γ for each link sustained. So, given a strategy profile s = (si)i∈I the

total payoff for player i is given by

Ui(si, s−i) =

N∑
j=1

giju(ai, aj)− γdi.

We focus on a scenario where agents may only support a limited number of links k, i.e. di ≤ k with

1 ≤ k ≤ N − 1.8,9 We assume that agents are not constrained in the number of links they may receive.

Note that we assume that agents do not receive any payoff from passive links. Thus, agents should not

care about the number of links they receive.

In the following, we denote by −→a [k] = {s ∈ S|ai = a and di = k ∀i ∈ I} the set of monomorphic

states where all agents choose the same action a and each agent supports k links.

We consider a model of noisy best response learning in discrete time à la Kandori, Mailath, and Rob

(1993) and Young (1993). Each period t = 0, 1, 2, . . . there is a positive independent probability λ ∈ (0, 1)

that any given agent receives the opportunity to update her strategy.10 When such a revision opportunity

arises we assume that each agent chooses a strategy (i.e. an action in the base game and the set of agents

she links to) that would have maximized her payoff in the previous period. More formally, in period t agent

i chooses

si(t) ∈ arg max
si∈Si

Ui(si, s−i(t− 1))

where s−i(t− 1) is the strategy profile used by all other agents except i in the previous period. If multiple

strategies are suggested we assume that agents choose one at random.

As in our model agents may choose both their actions and the set of agents they want to link up to

simultaneously, one has to take into account her optimal linking decision when analyzing under which

conditions an agent will choose a particular action. The decision problem can therefore be split in two

parts: First, determine the optimal set of links for both actions, A and B given the distribution of play in

the population. And second, decide which of the two actions to play, given the optimal set of links. We

solve the first part of this problem by introducing the concept of a link optimized payoff function, for short

LOP. The LOP, which we denote by v(ai,m), of an agent i in period t with action ai ∈ {A,B} is given by

the maximally attainable payoff when linking up optimally given that m agents play A (and N −m agents

play B) in period t, i.e.

v(ai,m) = max
gi∈Gi

Ũ ((ai, gi),m) ,

where Ũ((ai, gi),m) denotes the payoff received by agent i when playing si = (ai, gi) when there are in

total m A-players in the population. Given the LOPs, we can then solve the second part of our problem,

7Of course, m and N −m will depend on the strategy profile s.
8If k = N − 1 we have unconstrained interactions, resembling the one sided active links model in the extensions section of

Goyal and Vega-Redondo (2005).
9Alternatively, one could also model constraints in the number of links by introducing a kinked payoff function, as e.g. in

Jackson and Watts (2002). In that case the constraint would come along endogenously.
10I.e. we are considering a model of positive inertia, where there is positive probability that a certain fraction of the

population does not receive a revision opportunity.
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which consists of finding the optimal action. Here, we consider the following myopic best response rule

where an agent i with action ai,t−1 in period t− 1, given that mt−1 agents chose A in period t− 1, chooses

his action in period t in the following way.11

• If ai,t−1 = A switch to B if v(B,mt−1−1) > v(A,mt−1), randomize between A and B if v(B,mt−1−1) =

v(A,mt−1), and stay with A otherwise.

• If ai,t−1 = B switch to A if v(A,mt−1+1) > v(B,mt−1), randomize between A and B if v(A,mt−1+1) =

v(B,mt−1), and stay with B otherwise.

With independent probability ε ∈ (0, 1) an updating agent ignores the prescription of the adjustment

process and chooses a strategy at random, i.e. she makes a mistake or mutates. The process defined above

gives rise to a finite state time–homogeneous Markov chain with stationary transition probabilities. The

limit invariant distribution (as the rate of experimentations tends to zero) µ∗ = limε→0 µ(ε) exists and is

an invariant distribution of the process without mistakes (see e.g. Freidlin and Wentzell (1988), Kandori,

Mailath, and Rob (1993), Young (1993), or Ellison (2000)). It singles out a stable prediction of the original

process, in the sense that, for any ε small enough, the play approximates that described by µ∗ in the long

run.

Definition 1. The states in the support of µ∗, S = {ω ∈ Ω | µ∗(ω) > 0} are called Long Run Equilibria

(LRE) or stochastically stable states.

In particular, we will be using a lemma based on Ellison’s (2000) Radius-Coradius Theorem and on

methods developed by Freidlin and Wentzell (1988) to identify the set S.12

3 Constrained Interactions

Note that, since we are considering coordination games with a > c and b > d, all agents will first try to link

up to other agents using the same action and only then may consider linking up to other agents using a

different action.13 However, whether agents will indeed link up to agents using a different action or not will

depend on the relative magnitude of the linking cost γ. First, if linking costs are relatively low, 0 ≤ γ ≤ d,

all agents will first connect to agents of their own kind and will only then fill up the remaining slots with

agents using different actions. Consequently, the LOPs of an A-player and of a B-player, when confronted

with a distribution of play (m,N −m), are given by

v(A,m) = amin{k,m− 1}+ c(k −min{k,m− 1})− γk
v(B,m) = bmin{k,N −m− 1}+ d(k −min{k,N −m− 1})− γk.

Now consider the intermediate cost scenario where d ≤ γ ≤ c. In this case B-players will only link up to

other B-players whereas A- players will first link up to all other A-players and only then will also link up

to B-players, yielding

v(A,m) = amin{k,m− 1}+ c(k −min{k,m− 1})− γk
v(B,m) = (b− γ) min{k,N −m− 1}.

For high linking costs, c ≤ γ ≤ a, agents will only interact with agents using the same action and we obtain

v(A,m) = (a− γ) min{k,m− 1}
v(B,m) = (b− γ) min{k,N −m− 1}.

11This decision rule is similar to Sandholm (1998). We deviate from Sandholm’s (1998) original rule, which prescribes agents
to stay put in case of ties, by imposing random tie breaking. We have also considered the case where agents stay put at their
current action in case of a payoff tie and have found that the long run predictions remains unaffected.

12See Appendix A for details.
13If we were considering stag-hunt games, with c > a, A-players will first link up to B players and only then consider players

of their own kind. This would give rise to different dynamics, where the payoff of playing A (weakly) increases the fewer
A-agents there are. Note, however, that since (B,B) is a payoff dominant Nash equilibrium it will eventually be optimal to
switch to B if the number of A-players is sufficiently small.
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For each of these three scenarios, we can now identify conditions under which an A-player will switch

to B with positive probability, i.e. v(B,m − 1) ≥ v(A,m) and under which a B-player will switch to A,

i.e. v(A,m+ 1) ≥ v(B,m) (again with positive probability). Depending on the relationship between m, N ,

and k, we have to analyze four sub-cases for each of our three cost scenarios.14 We report our findings in

Table 1.15

Switching thresholds for A-players

v(B,m− 1) ≥ v(A,m) k > m− 1 k ≤ m− 1 k ≤ N −m

k > N −m k > N −m

0 ≤ γ ≤ d m ≤ (N−1)(b−d)−k(c−d)
a+b−c−d + 1 := ψ`1 m ≤ N − a−d

b−d k := ψ`2 a.s.

d ≤ γ ≤ c m ≤ (N−1)(b−γ)−k(c−γ)
a+b−c−γ + 1 := ψm1 m ≤ N − a−γ

b−γ k := ψm2 a.s.

c ≤ γ ≤ a m ≤ (N−1)(b−γ)
a+b−2γ

+ 1 := ψh1 m ≤ N − a−γ
b−γ k := ψh2 a.s.

Switching thresholds for B-players

v(A,m+ 1) ≥ v(B,m) k > m k ≤ m k ≤ N −m− 1

k > N −m− 1 k > N −m− 1

0 ≤ γ ≤ d m ≥ (N−1)(b−d)−k(c−d)
a+b−c−d := ψ`1 − 1 m ≥ N − 1 − a−d

b−d k := ψ`2 − 1 n.s.

d ≤ γ ≤ c m ≥ (N−1)(b−γ)−k(c−γ)
a+b−c−γ := ψm1 − 1 m ≥ N − 1 − a−γ

b−γ k := ψm2 − 1 n.s.

c ≤ γ ≤ a m ≥ (N−1)(b−γ)
a+b−2γ

:= ψh1 − 1 m ≥ N − 1 − a−γ
b−γ k := ψh2 − 1 n.s.

Table 1: Where “a.s.” means that a player always switches to the other action and “n.s.” means that a
player never switches to the other action.

With the help of Table 1 we are now able to characterize the set of absorbing sets, i.e. sets of states

that can not be left under the dynamics without mistakes.

Lemma 1. The sets
−→
A [k] and

−→
B [k] are the only absorbing sets.

Proof. In each of the above cases, we find that if it is optimal for an agent to remain at her action then it is

optimal for agents using a different action to switch. Consider any state s /∈
−→
A [k]∪

−→
B [k] and give revision

opportunity to agent i with action ai. If the agent remains at her action we know that all subsequent

agents will either switch to that action or remain at that action and we arrive at a state in
−→
A [k]∪

−→
B [k]. If

the revising agent i switches to the other action we give a revision opportunity to agents who also choose

ai. Those agents will all switch to the other action and we arrive at a state in
−→
A [k] ∪

−→
B [k]. Further,

consider the states
−→
A [k] ∪

−→
B [k] and note that under our best response process ties are broken randomly.

This implies that agents are indifferent between having links to, say, agent i and agent j. It follows that

for each pair of states s, s′ ∈
−→
A [k] (and also for a pair in

−→
B [k]) there is a positive probability of moving

from s to s′ without mistakes, i.e. all states in
−→
A [k] (and all sates in

−→
B [k]) form an absorbing set. �

We are now able to state our main theorem which characterizes the set of long run equilibria.

Theorem 1. Under constrained interactions we have that,

• for low linking costs, 0 ≤ γ ≤ d, there exist two thresholds, k` and k̄` , with k̄` ≥ k` > N−1
2 , such

that (i) for k < k`, S =
−→
B [k], (ii) for k ∈ [k`, k̄`], S =

−→
A [k] ∪

−→
B [k], and (iii) for k > k̄`, S =

−→
A [k];

• for intermediate linking costs, d ≤ γ ≤ c, there exist two thresholds, km and k̄m , with k̄m ≥ km >
N−1
2 , such that (i) for k < km, S =

−→
B [k], (ii) for k ∈ [km, k̄m], S =

−→
A [k] ∪

−→
B [k], and (iii) for

k > k̄m, S =
−→
A [k];

14In the first sub-case, with k > m− 1 and k > N −m neither A- nor B- players may fill all their slots with agents of their
own kind. In the second sub-case, k > m− 1 and k ≤ N −m, A-players do not find enough A-players to fill up all their slots
whereas B-players can fill up all their slots with other B-players. In the third case, with k ≤ m− 1 and k > N −m, A-players
will only link to other A players whereas B-players can not fill up all their slots with other B-agents. In the remaining case,
with k ≤ m− 1 and k ≤ N −m, both A- and B- players will link up only to agents of their own kind.

15For the referees’ convenience we report the derivation in an appendix which is not intended for publication.
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• for high linking costs, c ≤ γ ≤ a, there exists a thresholds kh, with kh > N−1
2 , such that (i) for

k ≤ kh, S =
−→
B [k] and (ii) for k > k̄h, S =

−→
A [k] ∪

−→
B [k];

We have relegated the derivation of the thresholds and the proof of Theorem 1 to the appendix. The

intuition behind this result is the following: If agents may only support a limited number of connections

they will first try to fill up their slots with agents using the same action. If the number of maximally

allowed links is relatively small, already a small number of agents using the efficient action will cause other

agents to switch to the efficient action. Further, upsetting the efficient convention is quite difficult as the

efficient action may spread back from relatively small subgroups using it.

We now proceed to contrast our results under constrained interactions to the unconstrained interaction

case. For the sake of concreteness, we focus our discussion on one particular case where the thresholds take

a rather simple form and remark that the qualitative insights are not altered by this restriction.

Remark 1. In the proof of Theorem 1 we obtain explicit explicit expressions for the thresholds k`, k̄`, km,

k̄m, and kh. In the non-generic case (where ψ`1, ψ
m
1 , ψ

h
1 /∈ Z) and N is odd these are given by

k` = k̄` =
N − 1

2

(
b− a
c− d

+ 1

)
, km = k̄m =

N − 1

2

(
b− a
c− γ

+ 1

)
, and kh = N − 1.

Setting k = N − 1 in the above thresholds reveals that under unconstrained interaction we have a linking

cost threshold γ∗ = a+ c− b, such that (i) S =
−→
A [N − 1] if γ ≤ γ∗ and (ii) S =

−→
B [N − 1] if γ > γ∗.

Note that the linking cost threshold in the unconstrained interaction scenario γ∗ lies in the range (d, c).

Thus, under unconstrained interactions the risk dominant convention is selected for (relatively) low linking

cost and the payoff-dominant convention is only selected for relatively high linking costs. This is in stark

contrast to the case of constrained interactions, where the payoff dominant convention may be selected

even for low linking costs. In particular, note that we have k`, km, kh > N−1
2 . Thus, if agents may support

at most links to half of the population, k ≤ N−1
2 , the payoff dominant convention is always selected,

regardless of the level of linking costs. In Figure 1 we highlight our results by plotting the parameter

combinations under which either of the two conventions is LRE for general linking costs 0 ≤ γ ≤ a and

1 ≤ k ≤ N − 1 permitted links. Note that the right border of Figure 1 corresponds to the unconstrained

interaction scenario. In contrast to this unconstrained interaction case, the efficient convention is selected

for a quite large range of parameter combinations.

Figure 1: LRE in the game [a, c, d, b] = [4, 3, 1, 5] with N = 101. Note that the line segment separating the
two the selection regions is k` = k̄` for γ ∈ [0, d] and km = k̄m for γ ∈ [d, c].
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4 Extensions

4.1 General games

It is interesting to note that, by Theorem 1, we always have S =
−→
B [k] for k ≤ N−1

2 . This implies that if

agents may only support links to less than half of the population we will always observe efficient outcomes

in the long run. Note that this insight is not confined to the class of 2× 2-coordination games, but can be

easily generalized to r× r games in the presence of a payoff dominant strategy. To this end, let us consider

a two-player symmetric game with action set A = {a1, . . . , ar}.
We say that an action a is (uniquely) payoff dominant if it is a symmetric NE with the highest pure-

action payoff, i.e. u(a, a) > u(a′, a′′) for all a′, a′′ 6= a and u(a, a) > u(a′, a) for all a′ 6= a. We use Morris,

Rob, and Shin’s (1995) notion of 1
2 -dominance to generalize the concept of risk dominance to r×r-games. In

this sense, a strategy a is said to be 1
2 -dominant if a is the unique best response against any mixed strategy

putting at least probability 1
2 on the pure strategy a. Further, we denote by u = min{u(a, a′)|a, a′ ∈ A}

the lowest payoff in the game. Then,

Proposition 2. Assume that 0 ≤ γ ≤ u. For N sufficiently large we have

(i) If a is 1
2 -dominant and k = N − 1 we have that S = −→a [N − 1].

(ii) If a is payoff dominant and k ≤ N−1
2 we have that S = −→a [k].

We have relegated the proof into the appendix. Note that this partial characterization also includes

the aforementioned class of stag-hunt games (see footnote 6). The intuition behind the first part is that

under unconstrained interactions all links will form and we obtain a model of global interactions where the
1
2 -dominant strategy is selected. The second part exploits the idea that if agents may only support links to

k other agents, then agents who choose the payoff dominant action and link up to k other agents choosing

the payoff dominant action will receive the highest possible payoff. If k ≤ N−1
2 then less than half of the

population playing the payoff dominant action will cause other players to shift. This essentially implies

that the payoff dominant convention becomes easier to reach than to leave.

4.2 Convex Linking Costs

We will now consider the case where the cost of forming links is convex in the degree of a player. In this

setting the number of links an agent maximally supports arises endogenously. Here we find that if the

cost function is sufficiently curved, so that agents will not link to everybody in the population, the payoff

dominant convention is selected. However, for sufficiently less curved cost functions agents will link to

everybody in the population and the selection of the risk dominant convention remains.

We assume that the cost of forming d links is given by φ(d), with φ(0) = 0, φ′(·) > 0, and φ′′(·) > 0.

Thus, the payoff of an agent is given by

Ui(si, s−i) =

N∑
j=1

giju(ai, aj)− φ(di).

Let dx|y denote the outdegree of a typical x ∈ {A,B} player going to the pool of y ∈ {A,B} players.

Then dx = dx|A + dx|B , x ∈ {A,B} is the total outdegree of a typical x ∈ {A,B}-player. The LOPs of an

A-player and of a B-player are given by:

v(A,m) = ad∗A|A + cd∗B|A − φ(d∗A),

v(B,m) = dd∗B|A + bd∗B|B − φ(d∗B)

where d∗x|y(m) is the optimal out-degree of an x ∈ {A,B} player with y ∈ {A,B} players, when there are

in total m A-players in the population. The optimal number of A links of an A-player, d∗A|A(m), is the

highest number of links such that the creation of an additional link to an A-player will not weakly increase

8



the utility of the player. Thus, it is given by

d∗A|A(m) := max {x ∈ {0, 1 . . . ,m− 1}|a ≥ φ(x)− φ(x− 1)} .

Now let us attend to the optimal number of B-links of an A-player. An A-player with d∗A|A(m) links to

A-players will establish links to B-players as long as each additional link carries a positive net utility, i.e.

d∗A|A(m) is characterized by

d∗A|B(m) := max
{
x ∈ {0, 1 . . . , N −m}|c ≥ φ

(
d∗A|A(m) + x

)
− φ

(
d∗A|A(m) + x− 1

)}
.

Now note that if d∗A|A(m) < m− 1 we have that φ(dA|A(m) + 1)− φ(dA|A(m)) > a > c as dA|A(m) is the

largest integer for which φ(dA|A(m))−φ(dA|A(m)−1) holds and (by convexity) φ(x+1)−φ(x) is increasing

in x. Thus, if an A- agent does not form links to all other A-agents, he will never consider linking up to a

B-agent and we have d∗A(m) = d∗A|A(m). Conversely, if dA|A(m) = m− 1, additional links to B-players are

possible.

The optimal linking strategy of a B-player can be characterized by

d∗B|B(m) := max {x ∈ {0, 1 . . . , N −m− 1}|b ≥ φ(x)− φ(x− 1)}

and

d∗B|A(m) := max
{
x ∈ {0, 1 . . . ,m}|d ≥ φ

(
d∗B|B(m) + x

)
− φ

(
d∗B|B(m) + x− 1

)}
.

Now note that if φ(N − 1)− φ(N − 2) ≤ d a B-player will establish links to all other A players. Since

d < c < a < a, this tells us that the B-player will also establish links to all other B-players and that also A-

players will link up to everybody. Thus, we have d∗A|A(m) = m−1, d∗A|B(m) = N−m, d∗B|B(m) = N−m−1,

and d∗B|A(m) = m, implying global interactions. Another observation is that if φ (x) − φ (x+ 1) > b, so

that B-players establish at most x links to other B-players, no player will establish more than x links to

other players, i.e. d∗A(m), d∗B(m) ≤ x for all m ∈ {0, 1, . . . N}. These two observations allow us to provide

the following partial characterization of LRE (the proof of which can be found in the appendix).

Proposition 3. Under convex linking costs we have for N sufficiently large

(i) If φ(N − 1)− φ(N − 2) ≤ d we have that S =
−→
A [N − 1].

(ii) If φ
(
N−1
2

)
− φ

(
N+1
2

)
> b we have that S =

−→
B [d∗B|B(0)].

5 Conclusion

We have presented a model of social coordination and network formation where agents may only support

a limited number of links. We find that under sufficiently constrained interactions a population of myopic

players will learn to coordinate on efficient convention in the long run. This is in sharp contrast to the

unconstrained interaction case where they may get stuck at risk dominant conventions.

In this note we have concentrated on a situation were agents face no constraints with respect to the

number of incoming links and where the payoff from an interaction is only enjoyed by the active party.

There are however many situations where also the passive side of an interaction benefits. Likewise, there

are also situations in which agents are restricted in the number of passive interactions they may have

(regardless of whether these passive interactions carry payoff or not). For instance, if socializing is time

consuming there might also be some capacity constraints limiting the number of incoming links. A possible

starting point to model such situations might be the “two sided links through independent decisions” model

discussed in the extension section of Goyal and Vega-Redondo (2005) where a link is only formed if both

parties involved offer to form it. One difficulty that would arise in such a setting is that under constrained

interactions there might actually be agents who receive more link requests than free slots. Thus, in a setting

where passive links are also constrained one would also have to model how active link requests and (free)

passive links are matched. We think that these points deserve further attention and leave them as a topic

for further research.
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Appendix A Review of techniques

We refer to the process without mistakes (ε = 0) as the unperturbed process and call the process with

mistakes (ε > 0) the perturbed process. Since P (ε) is strictly positive for ε > 0, the perturbed process

always has a unique strictly positive invariant distribution µ(ε) ∈ ∆(Ω).

Ellison (2000) presents a powerful method to determine the set of LRE which is based on a character-

ization by Freidlin and Wentzell (1988). Let X and Y be two absorbing sets of the unperturbed process

and let c(X,Y ) > 0 be the minimal number of mistakes needed for a direct transition from X to Y (i.e.

the cost of transition). Define a path P of length `(P ) from X to Y as a finite sequence of absorbing sets

P = {X = S0, S1, ..., S`(P ) = Y } and let S(X,Y ) be the set of all paths from X to Y . The cost of the path

is given by the sum of its transition costs

c(P ) =

l(P )∑
k=1

c(Sk−1, Sk).

The minimal number of mistakes required for a (possibly indirect) transition from X to Y is

C(X,Y ) = min
P∈S(X,Y )

c(P ).

The radius of an absorbing set X is defined as

R(X) = min{C(X,Y )|Y is an absorbing set, Y 6= X},

i.e. the minimal number of mistakes needed to leave X. The coradius of X is defined as

CR(X) = max{C(Y,X)|Y is an absorbing set, Y 6= X},

i.e. the maximal number of mistakes needed to reach X. In the proof we will make use of the following

lemma:

Lemma 4. Let X and Y be two absorbing sets. Then:

(a) If R(X) > CR(X), then S = X.

(b) If there are only two absorbing sets and if R(X) = CR(X), then S = X ∪ Y .

Part (i) of the lemma is simply the Radius-Coradius theorem of Ellison (2000). Part (ii) can be proved

using the methods characterized by Freidlin and Wentzell (1988). To this end, define an X-tree as a

directed tree such that the set of nodes is are the absorbing sets, and the tree is directed into the root X.

The cost of a tree is the sum of the costs of transition for each edge. A state is then LRE if and only if

it is the root of a minimum cost tree. If there are only two absorbing sets we have that the cost of an

X-tree is c(Y,X) = CR(X) = R(Y ) and the cost of a Y -tree is given by c(X,Y ) = CR(Y ) = R(X). If

R(X) = CR(X) we have that both the X-tree and the Y -tree are of minimal cost, implying S = X ∪ Y .

Appendix B Proofs

Proof of Theorem 1

Using the switching thresholds reported in Table 1 we can identify the set of long run equilibria S. We

will analyze the low, the intermediate, and the high cost scenario in turn. For each of these three cases

the proof proceeds in two steps: i) to determine the Radius and the Coradius of the absorbing sets and ii)

apply part (b) of Lemma 4 to identify the set of LRE.

B.1 The low cost case

B.1.1 Computing the Radius and Coradius

Transition from
−→
A [k] to

−→
B [k].
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First consider the transition from
−→
A [k] to

−→
B [k]. Take a state in

−→
A [k]. We denote by mAB the remaining

number of A-players after the necessary number of mutations towards action B have occurred. Thus, mAB

is the maximum number of A-players such that the transition from
−→
A [k] to

−→
B [k] occurs with positive

probability. Hence, N −mAB is the minimum number of B-players making B a best-response. Attending

to Table 1 we see that whenever m ≤ N−k this transition always occurs. Thus, we know that mAB ≥ N−k
must be true. For, in case the remaining number of A-players after the mutations is lower or equal than

N − k we already know that A players always switch. Now consider the case where mAB > N − k. In this

case the N −mAB B-players can not fill their k slots with fellow B-players. There are two possibilities we

have to consider: (i) mAB < k + 1 and (ii) mAB ≥ k + 1.

If mAB < k+1 A-players will link up to both kinds of players after the mutations have happened. It follows

from Table 1 that in this case mAB = bψ`1c. If mAB ≥ k + 1, then the mAB remaining A-players will only

link up to other A-players. Attending Table 1, we see that mAB = bψ`2c. First let us look at the inequality

bψ`1c < k + 1. Since, k ∈ Z this holds if ψ`1 < k + 1, which translates into k > (N−1)(b−d)
a+b−2d . Second, we see

that bψ`2c ≥ k+ 1 if ψ`2 ≥ k+ 1, which translates into k ≤ (N−1)(b−d)
a+b−2d . Recalling that mAB has to be larger

or equal to N − k, we have that

mAB =

{
max

{
bψ`2c, N − k

}
if k ≤ (N−1)(b−d)

a+b−2d
max{

⌊
ψ`1c, N − k

}
if k > (N−1)(b−d)

a+b−2d
.

One can check that bψ`2c ≥ N − k and that bψ`1c ≥ N − k whenever k ≥ (N−1)(a−c)
a+b−2c . Since (N−1)(a−c)

a+b−2c <
(N−1)(b−d)
a+b−2d , this is always the case in the relevant range. Thus, we have that

mAB =

{
bψ`2c if k ≤ (N−1)(b−d)

a+b−2d
bψ`1c if k > (N−1)(b−d)

a+b−2d
.

For the transition from
−→
A [k] to

−→
B [k] it has to be the case that there are at most mAB A-players in the popu-

lation. Thus, N−mAB A-players must switch from A to B, establishing R(
−→
A [k]) = CR(

−→
B [k]) = N−mAB .

Transition from
−→
B [k] to

−→
A [k]

Now consider the transition from
−→
B [k] to

−→
A [k]. We denote by mBA the minimal number of A-players so

that the remaining B-players have A as their best-response. We can infer from Table 1 that B-players will

never switch if k ≤ N −m− 1. Thus, for B-players to switch mBA > N − k − 1 must be true. Now there

are two remaining possibilities: mBA < k or mBA ≥ k. We can infer from Table 1 that mBA = dψ`1e− 1 in

the first case, and mBA = dψ`2e − 1 in the second case. We then have dψ`1e − 1 < k if ψ`1 ≤ k, which gives

k ≥ N(b−d)
a+b−2d + a−c

a+b−2d . Likewise, dψ`2e − 1 ≥ k if ψ`2 > k, which yields k < N(b−d)
a+b−2d .

It remains to see what happens for k ∈
[
N(b−d)
a+b−2d ,

N(b−d)
a+b−2d + a−c

a+b−2d

)
. We claim that in this range

mBA ≥ k, and prove the claim via contradiction. Assume that in this range for k it is the case that

mBA < k. Then the new A-agents will also have to link up to B-agents. For a B-player to switch we must

have m ≥ mBA ≥ dψ`1e − 1. Thus, k > mBA ≥ dψ`1e − 1 must be true. We have that k > dψ`1e − 1 if

k ≥ ψ`1, which yields that k ≥ N(b−d)
a+b−2d + (a−c)

a+b−2d . This contradicts k ∈
[
N(b−d)
a+b−2d ,

N(b−d)
a+b−2d + a−c

a+b−2d

)
, proving

the claim. It follows that mBA ≥ k. Now assume that we have exactly k A-players. Attending the LOP

we see that a B-player will switch to A if v(A, k + 1) ≥ v(B, k), which yields k ≥ (N−1)(b−d)
a+b−2d . Hence, for

all k ≥ (N−1)(b−d)
a+b−2d indeed k mutations are sufficient for a transition. Thus, since mBA ≥ k and mBA is the

minimal number of players involved in a transition, we conclude that mBA = k. Summing up, provided

that mBA > N − k − 1, we find that

mBA =


dψ`2e − 1 if k < N(b−d)

a+b−2d
k if N(b−d)

a+b−2d ≤ k <
N(b−d)
a+b−2d + a−c

a+b−2d
dψ`1e − 1 if k ≥ N(b−d)

a+b−2d + a−c
a+b−2d

.
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Now observe that dψ`2e− 1 = k if k < ψ`2 ≤ k+ 1 which holds for k ∈
[
(N−1)(b−d)
a+b−2d , N(b−d)

a+b−2d

)
. Thus, we have

mBA =


dψ`2e − 1 if k < (N−1)(b−d)

a+b−2d
k if (N−1)(b−d)

a+b−2d ≤ k < N(b−d)
a+b−2d + a−c

a+b−2d
dψ`1e − 1 if k ≥ N(b−d)

a+b−2d + a−c
a+b−2d

.

Further, note that dψ`1e − 1 = k if k < ψ`1 ≤ k + 1 which translates to k ∈
[
(N−1)(b−d)
a+b−2d , N(b−d)

a+b−2d + a−c
a+b−2d

)
.

Hence, for k in this range we have k = dψ`1e − 1. Thus,

mBA =

{
dψ`2e − 1 if k < (N−1)(b−d)

a+b−2d
dψ`1e − 1 if k ≥ (N−1)(b−d)

a+b−2d
.

Finally, we see that dψ`2e − 1 > N − k − 1 and that dψ`1e − 1 > N − k − 1 whenever k > (N−1)(a−c)
a+b−2c .

Note that as (N−1)(a−c)
a+b−2c < (N−1)(b−d)

a+b−2d
16 this is always the the range where k ≥ (N−1)(b−d)

a+b−2d . It follows that

mBA is indeed the minimal number of A-players required for the transition from
−→
B [k] to

−→
A [k], establishing

CR(
−→
A [k]) = R(

−→
B [k]) = mBA.

B.1.2 Identifying the LRE

We will now identify the set of LRE for the ranges of k identified above. We start with the case where

k < (N−1)(b−d)
a+b−2d . Note that we have R(

−→
B [k]) = dψ`2e − 1 and CR(

−→
B [k]) = N − bψ`2c. If ψ`2 ∈ Z we

have that CR(
−→
B [k]) = N − (N − a−d

b−d k) = a−d
b−d k. As b > a it follows that CR(

−→
B [k]) < k. Fur-

ther, it is easy to verify that in this case R(B[k]) > k. Hence, R(
−→
B [k]) > k > CR(

−→
B [k]), which

implies by Lemma 4 that S =
−→
B [k] if ψ`2 ∈ Z. Likewise, consider the case ψ`2 /∈ Z. We know that

CR(
−→
B [k]) = N − bN − a−d

b−d kc = N − (N − da−db−d ke) = da−db−d ke. As b > a, it follows that CR(
−→
B [k]) ≤ k.

Now, consider R(
−→
B [k]) = bψ`2c = dψ`2e − 1. We have R(

−→
B [k]) > k, whenever dψ`2e − 1 > k which is the

case whenever ψ`2 − 1 > k. As above, k < (N−1)(b−d)
a+b−2d implies ψ`2 − 1 > k. Thus, if k < (N−1)(b−d)

a+b−2d we have

that R(
−→
B [k]) > k ≥ CR(

−→
B [k]), establishing that also S =

−→
B [k] if ψ`2 /∈ Z.

Now consider the case where k = (N−1)(b−d)
a+b−2d . First, note that in this case ψ`1 − 1 = ψ`2 − 1 = k. Thus,

ψ`1, ψ
`
2 ∈ Z, and we see that R(

−→
B [k]) = k and CR(

−→
B [k]) = N − k− 1. Consequently, R(

−→
B [k]) > CR(

−→
B [k])

whenever k = (N−1)(b−d)
a+b−2d > N−1

2 . Since b > a this inequality always holds which shows that S =
−→
B [k] in

this case.

Finally we consider the case where k > (N−1)(b−d)
a+b−2d . Now, we have that R(

−→
A [k]) = CR(

−→
B [k]) = N−bψ`1c

and CR(
−→
A [k]) = R(

−→
B [k]) = dψ`1e − 1. Here, we have to distinguish two cases, ψ`1 ∈ Z and ψ`1 /∈ Z and N

even.

Case 1: ψ`1 ∈ Z
We have R(

−→
A [k]) = CR(

−→
B [k]) = N − ψ`1 and CR(

−→
A [k]) = R(

−→
B [k]) = ψ`1 − 1. Therefore, S =

−→
B [k]

whenever ψ`1 >
N+1
2 , which translates into

k <
N − 1

2

(
b− a
c− d

+ 1

)
≡ k`.

Likewise, we see that S =
−→
A [k] if ψ`1 < N+1

2 which is the case if k > k`. If k = k` we have that

R(
−→
A [k]) = CR(

−→
A [k]) = R(

−→
B [k]) = CR(

−→
B [k]) and, thus, S =

−→
A [k] ∪

−→
B [k].

Finally, let us check whether the local threshold identified for k > (N−1)(b−d)
a+b−2d is indeed also a global

16This inequality can be rewritten as (b− a)(a+ b− c− d) > 0 and, thus, holds for our parameters.
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thresholds. Recall that for k ≤ (N−1)(b−d)
a+b−2d we have that S =

−→
B [k]. Now note that k` > (N−1)(b−d)

a+b−2d .17 Thus,

we have (for the entire range of k) that S =
−→
B [k] if k < k`. We can summarize our results for ψ`1 ∈ Z:

S =


−→
B [k] if k < k`,
−→
A [k] ∪

−→
B [k] if k = k`,

−→
A [k] if k > k`.

Thus, we have identified our two thresholds in the theorem as k` = k̄` = k`.

Case 2: ψ`1 /∈ Z.

Now, consider the case where ψ`1 /∈ Z. Recall that R(
−→
A [k]) = CR(

−→
B [k]) = N − bψ`1c = N − dψ`1e + 1.

Consequently, S =
−→
A [k] if dψ`1e < N

2 + 1, S =
−→
B [k] if dψ`1e > N

2 + 1, and, S =
−→
A [k]∪

−→
B [k] if dψ`1e = N

2 + 1.

As we are rounding up we now need to distinguish two subcases: i) N is odd and ii) N is even:

Subcase 2a: ψ`1 /∈ Z and N odd.

One sees that dψ`1e < N
2 +1 if ψ`1 ≤ N+1

2 .18 Thus, S =
−→
A [k] for k ≥ k`. Likewise, we have that dψ`1e > N

2 +1

if ψ`1 >
N+1
2 .19 Hence, S =

−→
B [k] for k < k`.

Again, we can check that our local thresholds identified for k > (N−1)(b−d)
a+b−2d is indeed also a global

threshold. We have previously established that k` > (N−1)(b−d)
a+b−2d . Thus, we globally have that S =

−→
B [k] if

k ≤ k`. We can summarize our results for the case ψ`1 /∈ Z and N odd as follows:

S =

{ −→
B [k] if k < k`,
−→
A [k] if k ≥ k`,

Now note that k` is the value of k that solves ψ`1 = N+1
2 . Thus, if N is odd we have ψ`1 ∈ Z. It follows

that the case k = k` can not occur if ψ`1 /∈ Z. Thus, the two thresholds in the statement of the theorem

are given by k` = k̄` = k`.

Subcase 2b: ψ`1 /∈ Z and N even.

We have that dψ`1e < N
2 + 1 if ψ`1 ≤ N

2 . Thus, S =
−→
A [k] if k ≥ k̃`, where

k̃` ≡ k` +
a+ b− c− d

2(c− d)
.

Similarly, we have that dψ`1e > N
2 + 1 if ψ`1 >

N
2 + 1. Hence, S =

−→
B [k] if k < k`− a+b−c−d

2(c−d) . Note, however,

that at k = k`− a+b−c−d
2(c−d) we have that ψ`1 = N

2 + 1, which is impossible by our hypothesis that ψ`1 /∈ Z. For

the remaining interval (k` − a+b−c−d
2(c−d) , k̃`) we have dψ`1e = N

2 + 1 and and, thus, S =
−→
A [k] ∪

−→
B [k]. Again,

we can check that our local thresholds identified for k > (N−1)(b−d)
a+b−2d are indeed also global threshold. We

have previously established that k` > (N−1)(b−d)
a+b−2d . Thus, also k̃` = k` + a+b−c−d

2(c−d) > (N−1)(b−d)
a+b−2d . We have

that k` − a+b−c−d
2(c−d) > (N−1)(b−d)

a+b−2d if N > 2 + 2(a−d)
b−a and we have that k` − a+b−c−d

2(c−d) ≤
(N−1)(b−d)
a+b−2d otherwise.

Thus, it follows that globally we have S =
−→
B [k] if k ≤ k̂` where

k̂` ≡ max

{
k` − a+ b− c− d

2(c− d)
,

(N − 1)(b− d)

a+ b− 2d

}
.

On the contrary, if k` < k < k̄` we have S =
−→
A [k] ∪

−→
B [k]. Summarizing, the case where ψ`1 /∈ Z and N

17This inequality can be rewritten as b(a+ b− c− d) > a(a+ b− c− d) and, hence, holds for our parameters.
18Note that if ψ`1 ≤

N+1
2

we have, since N+1
2
∈ Z, that dψ`1e ≤

N+1
2

and, consequently, that dψ`1e <
N
2

+ 1.
19Note that N+1

2
is the largest integer smaller than N

2
+ 1 if N is odd. Since ψ`1 /∈ Z by hypothesis, it follows that whenever

ψ` > N+1
2

we get the desired inequality.
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even, we have

S =


−→
B [k] if k ≤ k̂`
−→
A [k] ∪

−→
B [k] if k̂` < k < k̃`

−→
A [k] if k ≥ k̃`

.

Finally, we remark that if k = k̃` we have that ψ`1 = N
2 and therefore ψ`1 ∈ Z. Thus, this case can not

occur for ψ`1 /∈ Z. Now, consider k = k̂`. Note that k̂` is either k` − a+b−c−d
2(c−d) or (N−1)(b−d)

a+b−2d . In either case

we have ψ`1 ∈ Z. Thus, k = k̂` can not occur either. It follows that the thresholds in the theorem are given

by k` = k̂` and k̄` = k̃`.

Finally, note that in all subcases we have k̂` ≥ k` > (N−1)(b−d)
a+b−2d > N−1

2 . Thus, whenever k ≤ N−1
2 we

have S =
−→
B [k].

B.2 Intermediate costs

The proof of the intermediate cost case, d ≤ γ < c, follows exactly the same steps as the low cost case and

is omitted. We remark that the only difference between ψm1 and ψ`1 and between ψm2 and ψ`2 is that d is

replaced by γ. Thus, also in the relevant thresholds for the intermediate cost case, km,km, and k̄m, d is

replaced by γ.

B.3 High costs

Finally, consider the high cost case, c ≤ γ ≤ a. Here, we can note that the only difference between ψh1 and

ψ`1 and between ψh2 and ψ`2 is that c and d must be replaced by γ. In particular, we find that

mAB =

{
bψh2 c if k ≤ (N−1)(b−γ)

a+b−2γ ,

bψh1 c if k > (N−1)(b−γ)
a+b−2γ ,

and mBA =

{
dψh2 e − 1 if k < (N−1)(b−γ)

a+b−2γ ,

dψh1 e − 1 if k ≥ (N−1)(b−γ)
a+b−2γ .

This gives us that R(
−→
A [k]) = CR(

−→
B [k]) = N −mAB and CR(

−→
A [k]) = R(

−→
B [k]) = mBA.

As before, we find that S =
−→
B [k] if k ≤ (N−1)(b−γ)

a+b−2γ . Now, consider the case where k > (N−1)(b−γ)
a+b−2γ . Here,

we have that R(
−→
A [k]) = CR(

−→
B [k]) = N − bψh1 c and CR(

−→
A [k]) = R(

−→
B [k]) = dψh1 e − 1. First, consider the

case where ψh1 ∈ Z. Here, we have that R(
−→
B [k]) > CR(

−→
B [k]) if ψh1 >

N+1
2 . It is straightforward to check

that, since b > a, this inequality always holds, and, thus, we have S =
−→
B [k] in this case. Thus, we have

kh = N − 1.

A similar argument establishes that we also have S =
−→
B [k] if ψh1 /∈ Z and N is odd and that we also

have kh = N − 1 in this case.

Now, consider the case where ψh1 /∈ Z and N is even. Here, we have R(
−→
B [k]) > CR(

−→
B [k]) if dψh1 e > N

2 +1

which, in turn, translates into N > 2 + 2(a−γ)
b−a . Thus, S =

−→
B [k] if N > 2 + 2(a−γ)

b−a . Thus, in this case we

have kh = N − 1.

If, however, N ≤ 2 + 2(a−γ)
b−a we have dψh1 e = N

2 + 1 and, thus, S =
−→
A [k] ∪

−→
B [k] (provided that

k > (N−1)(b−γ)
a+b−2γ ). In this case we have that kh = (N−1)(b−γ)

a+b−2γ .

Proof of Proposition 2

Let us start with part (i). For 0 ≤ γ ≤ u and k = N − 1 we have that each agent (irrespective of his own

action) will link up to all other agents in the population. Thus, we obtain a model of global interactions.

It is well known (see e.g. Ellison (2000)) that under these premises S = −→a [N − 1] for N sufficiently large.

Now consider part (ii). Now 0 ≤ γ ≤ u implies that each agent will form all of his k links. Since, (a, a)

is a strict Nash equilibrium the set −→a [k] is absorbing. Further, as a is payoff dominant, we know that once

we have k agents adopting it all other agents will switch to a. Hence, CR(−→a [k]) ≤ k. Conversely, note
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that if there are more (or exactly) k + 1 a-players in the population we will for sure move back to −→a [k].

Thus, to leave the basin of attraction of −→a [k] we need more than N − k − 1 players to mutate to some

other action, establishing R(−→a [k]) ≥ N − 1− k. Thus, S = −→a [k] if k ≤ N−1
2 .

Proof of Proposition 3

The proof of part (i) follows by the observation that if φ(N − 1) − φ(N − 2) ≤ d all links will be formed

and we have a model of global interaction where the risk dominant action is selected in a sufficiently large

population.

Consider now the second part of the Proposition. Consider the set S =
−→
B [d∗B|B(0)] where all agents

play B and support d∗B|B(0) links. Note that these states form an absorbing set since (B,B) is a Nash

equilibrium. Consider any state ω /∈ D
(−→
B [d∗B|B(0)]

)
. Note that if there are d∗B|B(0) B-players in the

population all A-players will want to link up to those players and switch to the B. To see this more

formally note that d∗B|B(0) ≥ d∗A|A(m) + d∗A|B(m) for all m ∈ {0, 1, . . . N}. Thus, since b > a > c, we have

that a B-player receives a higher LOP than an A-player:

bd∗B|B(0) > ad∗A|A(m) + d∗A|B(m).

Thus, all A-players will switch to B. This implies that with at most d∗B|B(m) mutations we can reach the

state
−→
B
[
d∗B|B(0)

]
. Thus, CR

(−→
B [d∗B|B(0)]

)
≤ d∗B|B(0) < N−1

2 . Conversely, to leave the basin of attraction

of of
−→
B [d∗B|B(0)] we need to make sure that there are less than d∗B|B(0) + 1 B-agents in the population.

(Otherwise, the current B-agents will remain at B and the A agents will switch to B.) Thus, we need

more than N − d∗B|B(0)− 1 agents to mutate to A, establishing R
(−→
B [d∗B|B(0)]

)
> N − d∗B|B(0)− 1. Thus,

S =
−→
B [d∗B|B(0)] if d∗B|B(0) ≤ N−1

2 , which is the case if φ(N−12 )− φ(N+1
2 ) > b.
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Appendix C Not intended for publication

C.1 Derivation of the switching thresholds reported in Table 1

We only provide the computations for the switching thresholds of A-players. The switching thresholds of

B-players can be computed analogously.

Case 1 First, consider the case of low linking costs, 0 ≤ γ ≤ d. An A-player will switch to B with positive

probability if

amin{k,m− 1}+ c(k −min{k,m− 1}) ≤ bmin{k,N −m}+ d(k −min{k,N −m})

Depending on the relationship between N , n, and k we obtain four subcases.

(1i) If k > m − 1 and k > N −m neither A- nor B- players may fill up all their slots with other

agents of their own kind. An A-player will switch to B with positive probability if

a(m− 1) + c(k −m+ 1) ≤ b(N −m) + d(k −N +m),

i.e. if

m ≤ (N − 1)(b− d)− k(c− d)

a+ b− c− d
+ 1 := ψ`1.

(1ii) If k > m−1 and k ≤ N−m, A-players do not find sufficiently many other A-players to fill up all

their slots, whereas B-players can fill up all their slots with other B-players. As b is the highest

payoff in the base game, B-players will always earn the highest payoff whenever they may fill up

all their slots, and so A-players always switch to B.20

(1iii) If k ≤ m− 1 and k > N −m, A-players will link only to other A-players whereas B-players can

not fill up all their slots with agents of their own kind. An A-player may switch to B whenever

ak ≤ b(N −m) + d(k −N +m)

i.e. if

m ≤ N − ka− d
b− d

:= ψ`2.

(1iv) In the remaining case with k ≤ m− 1 and k ≤ N −m both A- and B- players will link up only

to agents of their own kind. Here we find that A-players always have an incentive to switch to

B.

Case 2 For intermediate linking costs, d ≤ γ ≤ c, B-players will no longer interact with A-players, but

A-players will still interact with B-players. Consequently, an A-player switches to B with positive

probability if

amin{k,m− 1}+ c(k −min{k,m− 1})− γk ≤ (b− γ) min{k,N −m}

Let us again consider our four subcases:

(2i) When k > m− 1 and k > N −m an A-player will switch to B with positive probability if

m ≤ (N − 1)(b− γ)− k(c− γ)

a+ b− c− γ
+ 1 := ψm1 .

(2ii) If k > m − 1 and k ≤ N −m there are sufficiently many B-players so that choosing B always

gives the highest payoff.

20Formally, v(A,m) = a(m − 1) + c(k −m + 1) − γk and v(B,m) = (b − γ)k. A-players will switch to B iff b > am−1
k

+

(1− m−1
k

)c. On the right-hand side we have a convex combination in [c, a]. Since b > a > c the claim follows.
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(2iii) Whenever k ≤ m− 1 and k > N −m, A-player will switch to B with positive probability if

m ≤ N − a− γ
b− γ

k := ψm2 .

(2iv) If k ≤ m− 1 and k ≤ N −m then A-players as well as B-players can completely isolate. Since

the B-players earn always a higher payoff, all A-players will switch to B.

Case 3 Finally, we consider the case of high linking costs, c ≤ γ ≤ a. In this case any interaction between

groups of agents choosing different actions is completely shut down. In this scenario, an A-player will

switch to with positive probability B whenever

(a− γ) min{k,m− 1} ≤ (b− γ) min{k,N −m}.

(3i) If k > m− 1 and k > N −m we find that an A-player will switch to B with positive probability

if

m ≤ (N − 1)(b− γ)

a+ b− 2γ
+ 1 := ψh1 .

(3ii) If k > m− 1 and k ≤ N −m the same applies as in cases (1ii) or (2ii).

(3iii) If k ≤ m− 1 and k > N −m we have that A-players will switch to B with positive probability

whenever

m ≤ N − a− γ
b− γ

k := ψh2 .

(3iv) If k ≤ m− 1 and k ≤ N −m the same applies as in cases (1iv) or (2iv).
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