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1. Introduction

In June 2008, The Economist published an article discussing the pros and cons of a preceding

oil price boost. On the one hand, the rise might be considered as “a gigantic carbon tax”

that helped Vghting global warming. On the other hand, it particularly hurt the poor who

spent a considerably higher proportion of their income on fuel than the rich. Financial com-

pensations for the core energy demand could help to solve the issue. However “it seems odd

to try to prevent energy use with higher taxes . . . and then to subsidise it” (The Economist,

2008). The article thereby raised the question how to design green taxes optimally while

accounting for distributive concerns. Rising awareness for global environmental problems

under persisting inequality has increased the salience of that question. I propose an answer

to it. I focus on the optimal level of environmental taxation and how it changes with the

level of redistribution. Despite a huge theoretical literature on environmental taxation and

quite some empirical interest on its impact on poor households, the normative question of

the optimal response to inequality concerns in the environmental tax design has not had

that much of attention.

I employ a simple Mirrlees (1971) income taxation framework which I extend by consump-

tion externalities as proposed by Cremer et al. (1998). Within this framework, a welfare-

optimising government uses non-linear income taxes to redistribute and Pigouvian taxation

to reduce negative externalities (Pigou, 1932). I show that the two tax design problems are

interconnected. In particular, the higher the level of redistribution, the lower the optimal

level of environmental taxation. The optimal level has two determinants. First, the marginal

social damage caused by the externality. Second, the cost of public funds, deVned as the im-

mediate marginal welfare losses associated with income tax collection.1 If the government

puts more weight on redistribution, it will have to accept a higher cost of public funds. Mar-

ginal revenues from the environmental tax are then more valuable from the government’s

1In formal terms, the cost of public funds is the Lagrangian multiplier of the resource constraint.
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point of view. Contrary to naive intuition, this calls for a lower environmental tax rate. The

reason is that the tax rate is at its eXcient level if the marginal revenues exactly compensate

society for the marginal external harm. The more valuable the marginal revenues are, the

less one needs to compensate for the marginal externality. To put it another way, consider

the Pigouvian tax as a bribe that consumers pay the authorities in order to get allowance for

pollution. The government is willing to accept a lower bribe if its utility per dollar is higher.

Exactly this is the case if the cost of public funds is higher.

I measure the level of redistribution by a parameter that corresponds to the weight of

less productive agents in a social-welfare function. As explained, Pigouvian taxation needs

to decrease if the parameter increases. When Vrst-best instruments are available, however,

the result reverses. Without distortions, the cost of public funds actually decreases in the

parameter, as the disutility of the hard working high productive agents receives less weight

in the welfare function. Hence the Vrst-best level of Pigouvian taxation increases with the

level of redistribution.

My main contribution with respect to the existing literature is to draw attention to the

level of Pigouvian taxation. Most of the respective literature focuses on tax rules and con-

cludes that the distortions caused by second-best instruments do not alter these rules com-

pared to Vrst-best. I show that, despite the Vrst-best shape of these rules, the second-best

level of Pigouvian taxation in fact depends on the distortions and the available income tax

instruments.

The paper also contributes to a branch of the literature that uses linear tax schemes to ana-

lyse the double-dividend hypothesis. Major insights from the linear model carry over to my

setting with incentive constraints and optimal taxes. In particular, the optimal enviromental

tax is lower in second- than in Vrst-best.

3



1.1. Related literature

This paper is part of a literature in which Pigouvian taxation meets non-linear income taxes

under asymmetric information (Mirrlees, 1971). Cremer et al. (1998) show that under the

separability assumptions from Atkinson and Stiglitz (1976) the optimal Pigouvian tax rate

is uniform, i.e., it does not discriminate between agents. Gauthier and Laroque (2009) gen-

eralise the insight: a certain part of the second-best problem can be separated such that

Vrst-best rules apply for that part of the problem. Examples include Pigouvian taxation and

the Samuelson Rule. Hellwig (2010) presents a similar result.

Kopczuk (2003), Pirttilä and Tuomala (1997), Jacobs and de Mooij (2011), and Kaplow

(2012) explicitly centre on externality taxation within a general (income) taxation problem.

In terms of questions posed their contributions are close to mine. Their answers have a

diUerent focus, though.

Kopczuk (2003) proposes to decompose the general taxation problem with externalities

into two parts: “First, calculate the appropriate Pigouvian tax necessary to correct the ex-

ternality. Then, with the externality accounted for, the usual second-best problem can be

solved using standard formulae.” (p. 84) His result holds for a variety of speciVcations (in-

cluding the model presented here) and generalises the ’principle of targeting’ (Dixit, 1985).

Kopczuk (2003) also points out, though, that actually the two parts are interrelated: the

Pigouvian tax rate might only be known after the whole problem is solved. My comparative

statics analysis characterises this interrelation.

Kaplow (2012) summarises his Vndings by stating “that simple Vrst-best rules – unmod-

iVed for labor supply distortion or distribution – are correct in the model examined.” My

analysis highlights that distribution and distortions have a signiVcant inWuence on environ-

mental policy with respect to tax levels, though.

Jacobs and de Mooij (2011, p. 2) Vnd that the “optimal second-best tax on an externality-

generating good should not be corrected for the marginal cost of public funds”. However,
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they use a non-standard deVnition for the cost of public funds. Our formal analyses are

consistent but focus on diUerent interpretations.

An earlier branch of the literature, dating back to Sandmo (1975), examines environ-

mental taxation as part of linear tax systems. Starting with Bovenberg and de Mooij (1994),

the linear-taxation model was a primer workhorse model in the discussion of the double-

dividend hypothesis.2 By a central result of this literature, the second-best environmental

tax is below the Vrst-best one (e.g. Orosel and Schöb, 1996). As I show, these insights carry

over to the case of optimal/non-linear income taxation. Metcalf (2003) uses the linear model

to carry out a comparative static analysis with a focus on environmental quality.

My analysis also relates to the literature on comparative static properties of non-linear

taxation, with and without public goods (Weymark, 1987; Brett and Weymark, 2008; Bier-

brauer and Boyer, 2010), and to applied analyses of the question how to overcome negat-

ive distributional eUects of environmental taxes (like Metcalf, 1999; West, 2005; Ekins and

Dresner, 2004). Rausch et al. (2011) recently studied the U.S. economy, Kosonen (2012) did so

for the European Union. The empirical papers investigate the relationship between house-

hold income and emission-heavy consumption like driving or heating in order to check

whether environmental taxes are regressive. They also discuss distributional impacts of en-

vironmental taxes and policies to support the poorest household. I add insights from norm-

ative theory to the discussion. In particular, I show that (a) emission-heavy consumption

should not be subsidised for poor households and (b) whether or not environmental taxes

are regressive is not per se relevant for their optimal level.

The paper is organised as follows: Section 2 presents the model. Section 3 states the rule

for optimal internalisation. Section 4 introduces tax systems. Section 5 analyses optimal

environmental taxes and provides the main results. Section 6 concludes. The Appendix

2See Goulder (1995), Schöb (1997, 2005), Bovenberg (1999) or Bovenberg and Goulder (2002) for more details
and surveys on the double-dividend discussion.
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holds proofs and formal results. It also characterises optimal allocations and discusses corner

solutions.

2. Model

2.1. Production

The model is based on Cremer et al. (1998). It considers three diUerent goods. First, an in-

termediate good that is referred to as output and is denoted by Y . It serves as the numeraire

and may be interpreted as money. Second, a clean, completely private consumption good, C ,

and third, a dirty consumption good, D. The intermediate good can be transformed into the

consumption goods at Vxed rates of transformation equal to pC and pD, respectively. Para-

meters pC and pD may be interpreted as the producer prices of C and D. The intermediate

good itself can be produced with a linear technology using labour as the single input good

(but labour is not modelled explicitly). The rate of transformation between labour and the

intermediate good mirrors productivity and is denoted by w. It may be interpreted as the

wage rate.

2.2. Households and allocations

There is a continuum of measure one of agents. They diUer in exactly one dimension, namely

their productivity, which can be either low or high. An agent’s type is denoted by θ ∈

{L,H}. Their respective productivity is wθ ∈ {wL, wH}. The fraction of low-type agents is

denoted by γ ∈ (0, 1). An allocation A speciVes levels of (C,D, Y ) for both generic types,

i.e., A ≡ (CL, DL, YL, CH , DH , YH). For a given allocation the utility of an agent of type θ is

Uθ(A) = u(Cθ, Dθ)−
Yθ
wθ
− (γDL + (1− γ)DH)e.
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Function u is continuously diUerentiable three times, strictly increasing, strictly concave,

has nonnegative cross derivatives, and satisVes the Inada conditions.3 It represents private

consumption utility. In order to produce Yθ units of output, an agent has to provide Yθ/wθ

units of labour. This provision is associated with a linear disutility. The last term in the

utility function reWects the externality. Independently of his type, every agent suUers from

the overall consumption of dirty goods, γDL+(1−γ)DH . The social harm is proportional to

total dirty good consumption, and e > 0. From an agent’s point of view, own consumption

has no negative eUect on own utility as a single contribution is negligible in comparison

to the large contribution of others. Individual contributions are in fact zero due to the

assumption of a continuum of agents.4

Notice that all agents in society have quite similar preferences. In particular, their con-

sumption choice for a given budget is identical. Also, they suUer from the externality in

exactly the same way. This is not only a simpliVcation but rather a design choice. If agents

had diUerent tastes for environmental protection, then the optimal policy would obviously

depend on distributional considerations. The homogeneity in agents’ preference allows to

isolate the more subtle relations between equity and environmental policy.

2.3. Social welfare

This paper takes a normative perspective by examining what a social planner (SP) would do

in order to maximise the social welfare functionW , deVned as

W (A) = αUL(A) + (1− α)UH(A), α ∈ (0, 1),

3Formally, uCD ≥ 0 as well as uK → ∞ asK → 0, and uK → 0 asK → ∞, forK ∈ {C,D}. The Inada-
conditions are imposed in order to guarantee strictly positive optimal consumption levels. Strict concavity
guarantees unique solutions.

4Externalities of this type were termed “atmospheric” by Meade (1952). A diUerent way to interpret the
mechanism is to consider a public good that is provided by nature (like “fresh air” or “nice atmosphere”).
Dirty good consumption reduces the level or quality of the public good, whereat only total consumption
matters. The presented model wold Vt this interpretation, with the initial amount of this public good
normalised to zero.
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where A is the allocation. The welfare function is a weighted sum of the generic types’

utilities. The parameter α measures the weight SP puts on a generic low-type agent. If

α = γ, then W is the utilitarian welfare function. For α = 1, W would be the Rawlsian

welfare function.

Overall, the economy cannot consume more than it produces in terms of output. Further-

more, an exogenous revenue requirement r has to be met. The social planner thus faces a

resource constraint given by

γ(YL − pCCL − pDDL) + (1− γ)(YH − pCCH − pDDH)− r ≥ 0. (1)

If (1) holds and A ≥ 0, then A is feasible. An allocation that maximisesW among all feasible

allocations is a Vrst-best allocation.

If the social planner does not observe an agent’s type, not all feasible allocations are im-

plementable. If, for instance, an allocation disadvantages the high-type agents, they might

have an incentive to pretend to be low-types, making it impossible to implement this alloc-

ation. As a consequence, under asymmetric information, SP has to ensure that agents do

not want to misrepresent their type. This is the case if the following incentive-compatibility

constraints hold.

u(CL, DL)− YL
wL
≥ u(CH , DH)− YH

wL
, (2)

u(CH , DH)− YH
wH
≥ u(CL, DL)− YL

wH
. (3)

The underlying idea about the relation between incentive compatibility and decentral imple-

mentation, i.e. taxation, is known as the ’Taxation Principle’ (Hammond, 1979; Guesnerie,

1998).5 An allocation that maximises welfare among all feasible, incentive-compatible alloc-

ations is a second-best allocation.

5For a complete formal argument see Aigner (2011).
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By means of the following assumption, I restrict the analysis to the cases in which SP likes

to redistribute from high-type agents to low-type agents.

Assumption 1. α(1− γ)wH > (1− α)γwL.

The assumption generally holds if SP puts a suXciently high welfare weight on low-type

agents. The lower wL is relative to wH , the lower α may be, because a large diUerence in

productivity provides an eXciency argument for making high-types work more than low-

types. A low population share γ of low-types makes redistribution in their favour very

cheap, hence it also allows for a low α.

Given the shape of u, it is eXcient to produce strictly positive amounts of the consumption

goods rather than abstain from economic activity. In turn, agents have to provide output. A

look at Assumption 1 and the deVnition of W shows that, in terms of welfare, it is always

better to let the high- rather than the low-type agents produce an output unit. Consequently,

high-type agents should produce all output. In Vrst-best, this is indeed the case.6 In second-

best, this might be out of reach, as incentive constraints have to be satisVed. It is then

ambiguous whether low-type agents work. My main analysis focuses on the cases in which

they do work, i.e. YL > 0. In these cases a reallocation of output provision from low- to high-

type agents improves welfare, but is possible only if high-types’ incentive constraint (3) is

slack. Consequently, at an interior second best allocation, (3) needs to bind. As Assumption

1 favours the low-type agents, their incentive constraint (2) is always slack.7

In Appendix C, I discuss existence and comparative statics properties of second-best al-

locations with YL = 0.

6If YH could be negative, (Vrst-best) welfare would be unbounded. Obviously, that is not an option. Accord-
ingly, the nonnegativity constraint for YL binds at the Vrst-best allocation.

7See Lemmas 1, 2, 3 in Appendix A for the formal arguments.
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3. Optimal Internalisation

This section provides a general property of Pareto-optimal allocations, with respect to the

externality. At Vrst sight, the presented rule is identical for Vrst- and second-best allocations.

This is a reason why redistribution and distortions are sometimes considered to have no

structural inWuence on Pigouvian taxation. In the next step, I show, however, in what way

the Vrst- and second-best rules are in fact diUerent.

To shorten exposition, I use the following notation for J,K ∈ {C,D}. uL := u(CL, DL),

uLJ := ∂u(CL, DL)/∂JL, uLKJ := ∂2u(CL, DL)/(∂KL∂JL). Analogous deVnitions apply to

uH := u(CH , DH). The Lagrangian multiplier of the resource constraint is denoted by λ.

All results in the current section are derived in Appendix A.

3.1. A rule for optimal internalisation

Both Vrst- and second-best allocation feature the property that the marginal rates of sub-

stitution (MRS) between the two consumption goods are the same for both types of agents.

Rather than being equal to the rate of transformation (namely, producer-price ratio), as

would be the case in an unregulated market, the MRS is equal to

MRS =
uLD
uLC

=
uHD
uHC

=
pD
pC

+
e

λpC
. (4)

This is a standard result in the literature. It follows, for instance, from the more general

analysis by Hellwig (2010). It is driven by the separability feature of the utility functions.

Cremer et al. (1998) point out the relation to the famous result in Atkinson and Stiglitz (1976),

namely that, under the given assumptions, commodity prices should not be distorted, and all

redistribution can be done within the labour market. The intuition of the Atkinson/Stiglitz

result is as follows. By assumption, all agents have the same consumption pattern.8 There-

8More precisely, for a given amount of total consumption spending, all agents consume the same commodity
bundle.

10



fore the commodity demand cannot be used to screen types and commodity taxation cannot

contribute to relax the equity-eXciency trade-oU. Hence there is no point in distorting them.

The intuition carries over partially to the case where an externality is introduced. In fact,

as agents are equal in terms of their consumption preferences and their exposure to the

externality, there is no point in treating them diUerently in this respect. Yet, it is no longer

true that optimal redistribution only aUects the labour market. Optimal consumption now

depends on multiplier λ. The multiplier is crucially related to redistribution. Also, while

at Vrst sight the above formula is the same for both Vrst- and second-best allocation, λ is

diUerent in Vrst- and second-best. This has signiVcant consequences for the relation between

the degree of redistribution and the degree of intervention in the commodity market.

3.2. The cost of public funds

There is no universal deVnition for the (marginal) cost of public funds in the literature.

Jacobs (2012), for instance, recently suggested a deVnition which implies a marginal cost of

1 for typical optimal taxation schedules. In this paper I stick to the classical deVnition, used

for example in the textbook by Dahlby (2008); the (marginal) cost of public funds measure

the loss in welfare associated with raising tax revenues. Being a cost, the concept does not

account for potential beneVts from the revenues. It just tells how (welfare-)costly it is to

raise a (marginal) tax dollar.

As is well known, the so deVned (marginal) cost of public funds are equal to λ, the Lag-

rangian multiplier for the resource constraint (1). Formally, λ = −∂Ŵ/∂r, where Ŵ is the

optimised value of the welfare function. Throughout the paper I normally drop the explicit

“marginal” when referring to the cost of public funds – relying on the fact that concept is

per se a marginal one. Also, “multiplier” interchangeably refers to λ, i.e., the cost of public

funds.

The quasi-linearity in labour allows for closed-form solutions for the multiplier and plainly
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reveals the dissimilarity between Vrst- and second-best. It also shows the dependency on

the underlying parameters α and γ.

Second-best The value of the multiplier at an interior second-best allocation is

λ∗ :=
α

wL
+

1− α
wH

. (5)

To grasp the intuition, note that agents do not beneVt from r, so an increase is pure bur-

den. A way to Vnance the additional requirement is to increase output. As the incentive

constraint for the high-type agents is binding, their output may only be increased if the

low-type’s output is increased as well. The weighted welfare loss of such an increase is

equal to α/wL for the generic low-type and (1− α)/wH for the generic high-type. Notice

that the multiplier does not depend on the population shares. The reason is that a higher

revenue requirement has to be produced by all agents (independently of their type) in order

to sustain incentive compatibility.

First-best The multiplier at the Vrst-best allocation is

λF :=
1− α

wH(1− γ)
. (6)

Because only high-types work in Vrst-best, only parameters related to them matter for λF . If

SP needs an additional unit of revenue, he will make high-type agents work more. As there

are only 1 − γ high-type agents, the generic high type has to provide 1/(1 − γ) (marginal)

units of output and needs to work 1/(wH(1 − γ)) additional hours. The incurred marginal

disutility is weighted by 1− α.

The multipliers are not only diUerent in size, but also with respect to their directions of

change in the parameters α and γ. The welfare weight has an impact on the optimal tax
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design with respect to the externality. If interpreted naively, the optimal rule (4) itself hides

this fact.

4. Taxation

The current section adapts the interpretation of output being money. In this interpretation,

Y denotes gross income, w corresponds to the wage rate, and pC , pD are producer prices.

Now it is meaningful to introduce taxes and to Vnd tax systems that implement particular

allocations.

A tax system τ = (tC , tD, T ) consists of an income tax function T and speciVc commodity

taxes tC , tD ∈ R. Consumer prices are qk := pk + tk for k ∈ {C,D}. Consumption may be

subsidised through negative commodity taxes. T may be negative as well, in which case it

is a transfer to the agent.

For any type θ, let (Cθ(τ), Dθ(τ), Yθ(τ)) be the maximisers of individual utility, given τ :

(Cθ(τ), Dθ(τ), Yθ(τ)) ∈ argmax
(C,D,Y )

(
u(C,D)− Y

wθ
− (γDL + (1− γ)DH)e

s. t. qCC + qDD ≤ Y − T
)
. (7)

As before, households take DL and DH as given, so the externality is not relevant for their

decision.

When choosing a tax system, the social planner takes individual optimisation into account

and needs to respect the following Vscal budget constraint, which is equivalent to resource

constraint (1).

γ

(
TL(τ) + tCCL(τ) + tDDL(τ)

)
+ (1− γ)

(
TH(τ) + tCCH(τ) + tDDH(τ)

)
≥ r (8)
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Here, TL(τ) and TH(τ) amount to the respective total income tax payments of low- and

high-type agents.

If (8) is satisVed for some tax system τ , then τ is said to implement allocation A with

A = (CL(τ), DL(τ), YL(τ), CH(τ), DH(τ), YH(τ)) as deVned by (7). The set of available

tax systems to choose from depends on the informational constraints. When the social

planner can observe an agent’s type, the income tax may be contingent on the type. Under

asymmetric information it can only be contingent on observed gross income. In fact, with

T : (w, Y ) 7→ T (w, Y ), it is possible to Vnd a system τ that implements the Vrst-best

allocation. With T : Y 7→ T (Y ), it is possible to Vnd a system τ that the second-best

allocation. This insight allows to restrict attention to the chosen tax structure albeit the

linearity in commodity taxation.9

4.1. Normalisation

As usual in these type of models, there is a degree of freedom in the taxation choice. A

common way to deal with this is to normalise the tax system and often it is innocuous to

do so. Yet, when properties of the tax system, like a particular tax level, are the object of

interest rather than the real allocation, one has to be careful with normalisations.

This was a major issue in the double-dividend discussion between Bovenberg and deMooij

(1994); Bovenberg and Mooij (1997), Fullerton (1997) and others. The discussion centres on

the comparison of the second-best pollution tax and the Vrst-best Pigouvian tax (the mar-

ginal social harm). The actual tax level obviously depends on the chosen normalisation and

a priori it is unclear which normalisation is “correct”. In a related contribution, Schöb (1997)

focuses on the normalisation choice and shows that also “the diUerence of the Vrst-best

and second-best optimal tax on the polluting good depends on the normalization chosen.”

9The underlying arguments are standard. For a rigorous application to the current model see Aigner (2011,
Appendix B).
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(p. 174) He concludes that “such a comparison provides an inappropriate indicator for the

existence of a second dividend.” (ibid.)

To obtain valid results on comparative static properties of environmental taxation and

the relation between Vrst- and second-best level, it is important to avoid the “normalization

trap” (Schöb, 1997). Orosel and Schöb (1996) propose to study an object called the second-

best internalization tax. Unlike an actual tax rate, it is a “real” variable, derived directly from

the underlying allocation, and independent of the normalisation.10 Using their concept, the

authors Vnd a particular normalisation to be correct for doing the comparison of actual Vrst-

vs. second-best tax rates.

The aforementioned contributions feature linear labour and commodity taxation, and do

not model distributive issues.11 Their insights on normalisations carry over to my model,

though. As I show in Appendix B.2, the “real” object of interest should be the greenness,

which is independent of the normalisation and measures tax-induced incentives to reduce

pollution. It is conceptually similar to the second-best internalisation tax of Orosel and

Schöb (1996). Also, it turns out that the greenness equals the tax rate tD on the dirty good iU

the tax rate tC on the clean good is normalised to zero: precisely the normalisation identiVed

as “correct” by Orosel and Schöb (1996) for the respective purpose.

For this reason it is save to proceed the analysis with tC ≡ 0. For further reference, I call

such a tax system normalised.

5. The optimal Pigouvian tax

Given tC ≡ 0, how high should tD be? An optimum is characterised by the fact that a mar-

ginal reallocation does not change welfare. In particular, keeping private spending constant,

a marginal change in consumption levels must not change welfare. Consider a marginal

10The deVnition of the second-best internalisation tax uses the observation that private marginal utility should
equal social marginal welfare – a property of an allocation rather than a tax system.

11The papers on the double dividend normally have identical/representative consumers. Distributional con-
cerns appear only indirectly as a motive for the unavailability of lump sum taxation.
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shift from C to D (for all agents, taking account of diUerences in prices). This has three ef-

fects: (1) Consumption utility u is unchanged as agents are at their individual optimum. (2)

External harm increases at rate e. (3) Tax revenues increase at rate tD and relax the budget

constraint of the social planner. Multiplier λ tells how welfare is aUected from relaxing the

public budget. Thus the marginal eUect of tax revenues on welfare amounts to tDλ. The

overall marginal change in welfare is −e+ tDλ. For this change to be zero, tD needs to be

tD =
e

λ
. (9)

5.1. The comparative statics of Pigouvian taxation

The following Propositions essentially combine equation (9) with the Vndings from Section

3.2. They state the main result of the paper: comparative static properties of those tax

systems that implement the Vrst- and second-best allocation, respectively.

Proposition 1 (First-best Pigouvian taxation). If a normalised tax system τF = (0, tFD, T
F )

implements the Vrst-best allocation AF , then

tFD =
e

λF
.

Furthermore,

∂tFD
∂α

> 0,
∂tFD
∂γ

< 0.

Despite the lack of distortions, distributive concerns inWuence the environmental tax;

more redistribution calls for a higher Vrst-best Pigouvian tax tFD. The relation reverses com-

pletely if Vrst-best instruments are not available and the labour market is distorted.
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Proposition 2 (Second-best Pigouvian taxation). If a normalised tax system τ ∗ = (0, t∗D, T
∗)

implements an interior second-best allocation A∗, then

t∗D =
e

λ∗
.

Furthermore,

∂t∗D
∂α

< 0,
∂t∗D
∂γ

= 0.

In a nutshell, higher labour market distortions coming from increased redistribution im-

ply a lower optimal Pigouvian tax level. To develop a detailed intuition for the results,

decompose the comparative statics into two aspects. (1) In Vrst- as well as in second-best tD

is inversely proportional to λ. (2) The reaction of λ diUers for Vrst- and second-best. The

Vrst aspect is not new. It is already well established for models of linear labour/commodity

taxation. As shown, it carries over to a world with incentive constraints. The second aspect

has not drawn that much of attention in the literature but is crucial as it drives the reversed

results. I discuss the two aspects in turn.

5.1.1. The inverse relationship of tD and λ

To grasp the intuition behind the inverse relation, consider the purpose of Pigouvian taxa-

tion: its (only) goal is to restore the eXcient level of dirty-good consumption. From a welfare

perspective, a unit of the dirty-good should be consumed if and only if consumption is not

only individually optimal, but private beneVts also outweigh social harm. Consequently,

dirty-good consumption is at its socially optimal level only if marginal private (net) beneVts

exactly equal marginal social harm. To measure and compare these two objects, it is useful

to quantify them in terms of money.

(1) The optimising agent is willing to pay tD units of additional taxes for the right to
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consume her last unit ofD rather than spending the respective money on C . So tD is a good

measure of (net) private beneVts of the marginal unit of dirty-good consumption.

(2) Now consider the social planner. If D increases by one unit, welfare decreases by e.

If SP receives exactly e/λ units of money to relax the budget constraint, welfare increases

by (e/λ)λ = e. Thus the marginal social harm measured in money is equal to e/λ. It is

the exact amount of money that society needs as a compensation for additional dirty-good

consumption. The amount is lower if the received money is more useful in the sense that

the cost of public funds is higher. Putting together (1) and (2) shows that if tD = e/λ, then

individual maximisation leads to an allocation in which, at the margin, private (net) beneVts

equal social harm.

A more naive view, which evaluates Pigouvian taxes in a partial or isolated manner rather

than viewing it as part of a whole tax system, could reason that ’Pigouvian taxes do two

things: reduce pollution and create revenue. So they should be high if pollution is severe or

if revenues are very valuable to the state.’ Naive intuition would thus suggest that higher

cost of public funds (associated with marginal tax revenue being more valuable) should

lead to higher Pigouvian tax rates. In fact, this ’rationale’ would provide a straightforward

argument for the double dividend hypothesis, which by now has been mostly falsiVed (e.g.,

Fullerton and Metcalf, 1998). The strong form of the double-dividend hypothesis states that

a revenue-neutral introduction of green taxes is desirable even if environmental beneVts

are not taken into account (Goulder, 1995). In the model that I propose this fails clearly:

Pigouvian taxation, namely tD > 0, is optimal only if an externality is present, i.e., if e > 0.

Among others, Bovenberg (1999) gives the same argument, albeit for a model with linear

taxation. Empirical investigations by Goulder (1995) tend to reject the hypothesis as well.

The intuition that rejects the double dividend hypothesis is also central to the comparat-

ive static analysis. The more valuable the marginal tax revenues, the less is needed to com-

pensate for the marginal externality, and — because the one and only purpose of Pigouvian
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taxation is to induce alignment of private beneVts and social harm at the margin — a lower

Pigouvian tax rate is asked for. Various authors have noticed the underlying rationale in

their respective settings, so it applies quite universally (e.g., Schöb, 1997). As Bovenberg and

de Mooij (1994) put it, “each unit of pollution does not have to yield as much public revenue

to oUset the environmental damage if this revenue becomes more valuable” (p. 361).

In a recent contribution, Jacobs and de Mooij (2011) make the seemingly contradictory

statement that the optimal second-best environmental tax is not sensitive to the cost of

public funds at all. Their conclusion follows from a their newly proposed deVnition of

the cost of public funds. So the diUerence in conclusion is one of interpretations rather

than formal results. Their interpretation suggests that tax distortions do not play a role

for optimal environmental taxes, which clearly is at odds with my analysis. Indeed, Jacobs

and de Mooij (2011, p. 13) qualify their interpretation themselves: "The optimal second-best

environmental tax does require a correction for distributional concerns and interactions with

labor supply, but not for pre-existing tax distortions." The comparative statics results Vll the

gap of specifying the “correction for distributional concerns” but also broaden the existing

insights by highlighting that even without distortions, distribution concerns inWuence the

optimal environmental tax level.

I should highlight that the preceding discussion is aboutmarginal rather than total reven-

ues. The diUerence is crucial: total revenues from Pigouvian taxation do not compensate for

the overall external harm. Although the two Vgures coincide in the linear speciVcation, they

generally diUer. More to the point, Pigouvian revenues should not be used to compensate

the harmed people; it is not its purpose, and it might reduce incentives to avoid exposure to

an externality in the Vrst place (Oates, 1995).

5.1.2. How λ changes in parameters

The changes of tFD and t∗D with respect to welfare weight α have diUerent signs. This point is

worth stressing again as previous contributions with non-linear income taxes tend to high-
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light the similarities rather than the diUerences of Vrst- and second-best Pigouvian taxes.

This focus comes naturally when examining the optimal rules, which are – almost – identical

for Vrst- and second-best.

For the version of their model that resembles the one of this paper, Cremer et al. (1998)

conclude that “the optimal tax on the externality generating good is strictly Pigouvian” (p.

345; Proposition 1), where the term ’Pigouvian’ is based on the Vrst-best tax on the dirty good

(DeVnition 1). Likewise Gauthier and Laroque (2009) show that Vrst-best rules quite often

hold also at second-best allocations if utility is separable. With respect to externalities they

Vnd that “a non-satiated second best allocation can be supported with a Vrst best Pigovian

tax” (Remark 4).12 Kopczuk (2003) and Kaplow (2012) make similar observations.

While all of these Vndings are correct, they suggest (quite explicitly in some cases) that

distortions are not that relevant for the second best tax. Proposition 2 highlights the oppos-

ite. Also, these results might distract from the considerable diUerences between Vrst- and

second-best when it comes to tax levels rather than tax rules. In fact, the optimal rule for

the model at hand is given in (4) – for both Vrst- and second-best. Only an inspection of the

respective multipliers reveals the diUerences between them.

First-best multiplier Recall that only high types work at a Vrst-best allocation and that λF is

derived from an output increase of high-types. Now, if α increases, SP cares less about high-

type agents working more, thus the cost of public fund decrease. Tax revenues generated

by tD are less valuable per unit so more (marginal) revenues need to be collected at the

optimum. If γ is increased, the generic high-type has to work more for an higher overall

output requirement and the cost of public funds increases. Marginal revenues generated by

tD now have higher value per unit and less is needed to satisfy optimality condition (9).

12Gauthier and Laroque (2009) do point out, though, that the whole second-best problem must be solved to
obtain the actual Pigouvian tax.
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Second-best multiplier From (5) the cost of public funds at a second-best allocation is λ∗ =

α/wL + (1 − α)/wH . As λ∗ does not depend on γ, neither does t∗D. The higher the welfare

weight of low-type agents, the more redistribution is asked for and the more distortions are

accepted. Higher distortions imply higher excess burden of taxation and thereby higher cost

of public funds. Marginal revenues from Pigouvian taxation are then more valuable and less

marginal revenue is needed to satisfy optimality condition (9).

First- vs. second-best As argued, the diUerent directions of change of the Pigouvian tax

with respect to the welfare weight derive from the diUerent reactions of the cost of public

funds. In the one case, the social planer cares less about those who work, i.e., environmental

revenues decrease in value, in the other case, income tax distortion increase, environmental

revenues increase in value.

Distribution and taxes To sum up, this section highlights a link between Pigouvian taxa-

tion and the degree of redistribution as measured by welfare weight α. Welfare optimising

societies with diUerent opinions about equity need to have diUerent levels of Pigouvian tax-

ation, even if Vrst-best instruments are feasible. This is not entirely obvious because in basic

partial equilibrium models, the level of Pigouvian taxation is typically pinned down solely

by Pareto eXciency. Asymmetric information proofs to be a crucial determinant of the link

between environmental taxation and redistribution: the sign of the dependence changes

when going form Vrst- to second-best.

A note on corner solutions So far, the second-best comparative statics assumed an interior

solution. Corollary 2 in Appendix C shows that for corner solution the tax on the dirty good

does not change at all in α. If for some α the second-best allocation features YL = 0, then a

further increase in α cannot change the optimal allocation: it is neither possible to decrease
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YL nor to increase low-type agents’ consumption without violating incentive constraints.

Consequently, the optimal tax remains Vxed.13

5.2. First- vs second-best Pigouvion tax level

Bovenberg and de Mooij (1994) examine the double dividend hypothesis by comparing Vrst-

and second-best environmental tax. Their contribution led to quite some follow-up pa-

pers on the subject. The workhorse model of this literature is a representative household

model with linear income and commodity taxes. (e.g., Bovenberg, 1999) Lump sum taxes

are allowed or disallowed for exogenous reasons. In these settings, the second-best envir-

onmental tax falls short of the Vrst-best one.14 The result carries over to my setting with

incentive-constraint redistribution.

Proposition 3. Fix parameters and consider two normalised tax systems, τF and τ ∗, which

implement the Vrst- and second-best allocations, respectively. Then

t∗D < tFD.

Proof. (6) and (5) imply λ∗ − λF > 0 due to Assumption 1. t∗D < tFD follows from (9) .

Following the discussion of the comparative statics, the intuition for the result should

be clear. The second-best tax system distorts the labour market which increases the cost

of public funds compared to a Vrst-best system. The diUerence in the cost of public funds

causes the diUerence in the tax levels.

13The result is shown to hold for α ≥ γ. I expect it to hold for a broader range of parameters, though.
14See also Schöb (2005). As detailed in Section 4.1 and the references mentioned there, the comparison hinges

on the “correct” normalisation choice, which by now is well-understood (Orosel and Schöb, 1996). Ap-
pendix B.2 justiVes the normalisation choice speciVcally for the presented model.
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5.3. The role of regressivity

Environmental taxes are regressive if tax payments in proportion to total consumption spend-

ing decrease in total consumption spending. Energy-intensive goods like electricity and

heating are often considered to feature regressive consumption pattern, so taxes on these

goods might indeed be regressive. The Economist (2008), for instance, is concerned about

this possibility in the article I cited in the Introduction. The presumption also gave rise

to applied studies on the impact of green tax reforms on low-income households like Met-

calf (1999), West (2005) or Ekins and Dresner (2004). In an empirical study focusing on

the European Union, Kosonen (2012) Vnds that electricity and heating indeed tend to be

regressive but for transport fuel and vehicles it is the other way around; they seem to be

progressive. Also, there are considerable diUerences between countries. Overall, the actual

evidence for regressive spending patterns is quite mixed.

The analysis in this paper contributes to these considerations by showing that the ques-

tion of regressivity might not be that important after all. By choosing consumption utility u,

one could easily induce regressive as well as progressive consumption patterns for the dirty

good. Yet, none of this would have an inWuence on the optimal level of the environmental

tax. The income tax/transfer system might adapt but not so the optimal incentive to reduce

pollution.

To be concrete consider a normalised second-best tax system. Now change the underlying

sub-utility u in a way to make dirty good spending patterns more/less regressive. How does

the optimal tax system change? First, tD does not change. The income tax T generally does

change, though. If marginal income taxes changed, the incentive to pollute would change

despite constant tD. An analysis of the optimal allocation shows, however, that this is not

the case; the distortions necessary for redistribution do not hinge on the particularities of u

(see Appendix A, Proposition 5). So, the optimal response to a “sudden regressivity” requires

23



no action with respect to environmental taxes. It could trigger a higher transfer amount to

support the poor, though.

Admittedly, this neutrality observation would be diluted without the linearity and separ-

ability assumptions. However, regressivity apparently is not relevant for the Pigouvian tax

per se – otherwise this should appear in the model presented here, which allows for a pure

regressivity eUect.

6. Conclusion

This paper looks at the interdependence of distributive and environmental policies from a

normative perspective. It reveals a qualitative diUerence between Vrst- and second-best.

Distributive goals and environmental policies are linked by the cost of public funds. On

the one hand they inWuence the optimal environmental tax level, on the other hand they

are a function of distribution policies. I Vnd that if society wants more redistribution, the

second-best environmental tax is lower, whereas the Vrst-best environmental tax is higher.

The results from this paper also clarify some aspects of the literature on Pigouvian tax-

ation. First, it is important to distinguish optimal rules from optimal levels. Many contri-

butions on second-best environmental taxation with non-linear income taxes focus on the

optimal tax rule and point out their “Vrst best Wavor”15, emphasising the similarity of Vrst-

and second-best with respect to environmental taxes. My focus on tax level shows signiVc-

ant diUerences in the level and the parameter dependence. Income tax distortions do play a

substantial role for environmental taxes.

Second, insights gained from models with linear income/commodity taxation carry over

to settings with non-linear income taxation and incentive constraints. This holds true for

the role of distortions as well as the result that the second-best environmental tax falls short

of the Vrst-best one.

15Gauthier and Laroque (2009, p. 1168)
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What can be learned in terms of policy implications? First, the view that the two goals

of redistribution and environmental protection can be addressed independently by means

of two diUerent instruments (income tax and Pigouvian taxation) needs to be reconsidered.

In particular, the designer of environmental taxes has to account for the value in terms

of welfare that is created by the tax revenues. This value is a function of the income tax

schedule and the depends on the set of available instruments as well as on informational

constraints. To determine the optimal level of environmental taxation, the designer trades

oU external harm against useful tax revenues. The optimum is pinned down by the revenues

from the last unit of pollution. Total revenues, in contrast, are irrelevant for the optimal

level of Pigouvian taxation. So environmental taxes do not have a general function to shift

the tax burden from labour income to externalities.

Second, the intricate empirical question of regressivity is not too relevant for tax design-

ers. In fact, whether or not environmental taxes are regressive should not inWuence their

level. In particular, tax rates should not be reduced for poor households in an attempt to

compensate for any disproportionate burden from environmental taxes. This would reduce

incentives and provide an ineXcient means of redistribution. Instead, one might raise the

transfers to those households.
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Appendix

A. First- and Second-Best Allocation

Lemma 1. If AF is a Vrst-best allocation under Assumption 1, then Y F
L = 0 and Y F

H > 0.

Proof. Suppose Y F
L > 0. If the total output of all low-type agents is lowered by ∆ ∈

(0, γY F
L ), every low-type individual may reduce his own output by ∆/γ. The immediate

welfare gain is α∆/(γwL). To Vnance the output reduction high types have to increase

their total output by ∆, resp. their individual output by ∆/(1 − γ). The immediate wel-

fare loss is (1 − α)∆/((1 − γ)wH). The net eUect of the alteration is strictly positive given

Assumption 1, a contradiction.

Hence Y F
L = 0. Y F

H > 0 needs to holds given the Inada-conditions on u.

Lemma 2. If A is a second-best allocation, then

1. At most one incentive compatibility constraint is binding.

2. YH > YL and uH > uL.

Proof. 1. Suppose the contrary. Summation of both ICs yields YL = YH and u(CL, DL) =

u(CH , DH). Due to the shape of u, this can be optimal only if (CL, DL) = (CH , DH).

To complete the argument, it suXces to show that such a bunching allocation is domin-

ated by a constrained laissez-faire allocation. Fix any feasible bunching allocation Ab =

(Cb, Db, Y b, Cb, Db, Y b) and deVne for any type θ, (C lf
θ , Y

lf
θ ) := argmax C,Y {u(C,Db) −

Y/wθ s.t. Y ≥ pCC + pDD
b + r}. Then, in particular, u(C lf

θ , D
b)− Y lf/wθ ≥ u(Cb, Db)−

Y b/wθ. Furthermore, maximisers are unique and (C lf
L , Y

lf
L ) 6= (C lf

H , Y
lf
H ). Thus there ex-

ist θ such that u(C lf
θ , D

b) − Y lf/wθ > u(Cb, Db) − Y b/wθ. The constraint laissez-faire

allocation Alf thereby Pareto-dominates the bunching allocation Ab. Alf is also incentive
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compatible and feasible. Hence, Ab cannot be a solution to the second-best problem and the

contradiction is completed. (The argument builds on Bierbrauer and Boyer, 2010, Lemma 1)

2. Add both ICs to obtain YH ≥ YL. Equality would imply a bunching allocation which is

not optimal as shown above. Hence YH > YL. ICH then implies uH > uL.

Lemma 3. If A∗ is an interior second-best allocation under Assumption 1, then high types’

incentive constraint (3) is binding, low types’ incentive constraint (2) is slack.

Proof. Suppose by contradiction that (3) was slack, i.e., uH − YH/wH > uL − YL/wH . Then

there exits an ε > 0 such that also uH − (YH + ε)/wH > uL − (YL − ε(1 − γ)/γ)/wH .

The ε-perturbed allocation is constructed in a way to keep total output constant. Incentive

compatibility is sustained, too. The welfare eUect of the perturbation is

dW = α
1− γ
γwL

ε− (1− α)ε

wH
> 0⇔ α

γwL
>

(1− α)

(1− γ)wH

dW is strictly positive precisely under Assumption 1, hence a contradiction.

If ICH is binding then ICL must be slack by Lemma 2.

First-order conditions

Considering the lemmas, an appropriate Lagrangian for an optimal allocation is

L = α [u(CL, DL)− YL/wL − (γDL + (1− γ)DH)e]

+ (1− α) [u(CH , DH)− YH/wH − (γDL + (1− γ)DH)e]

+ λ(γ(YL − pCCL − pDDL) + (1− γ)(YH − pCCH − pDDH)− r)

+ µ(u(CH , DH)− YH/wH − u(CL, DL) + YL/wH)

+ δYL.

(10)

27



Next, set the partial derivatives to zero.

αuLC − γλpC − µuLC = 0⇔ (α− µ)uLC = λγpC (11)

αuLD − γλpD − µuLD − γe = 0⇔ (α− µ)uLD = λγpD + γe (12)

−α/wL + γλ+ µ/wH + δ = 0⇔ γλ = α/wL − µ/wH − δ (13)

(1− α)uHC − (1− γ)λpC + µuHC = 0⇔ (1− α + µ)uHC = (1− γ)λpC (14)

(1− α)uHD − (1− γ)λpD + µuHD − (1− γ)e = 0⇔ (1− α + µ)uHD = (1− γ)(λpD + e)(15)

−(1− α)/wH + (1− γ)λ− µ/wH = 0⇔ (1− α + µ)/wH = (1− γ)λ (16)

It follows that

µ = wH

(
(1− γ)α

wL
− γ(1− α)

wH

)
− wH(1− γ)δ (17)

λ =
α

wL
+

1− α
wH

− δ

For a Vrst-best allocation, set µ = 0, for an interior second-best allocation, set δ = 0.

Proposition 4 (First-best allocation). Given Assumption 1, allocation AF is a Vrst-best alloc-

ation if and only if it satisVes the following system of equations.

uLC =
pC
wH

1− α
α

γ

1− γ
, uLD =

pD + e/λF

wH

1− α
α

γ

1− γ
,

uHC =
pC
wH

, uHD =
pD + e/λF

wH
,

Y F
L = 0, Y F

H =
γ

1− γ
(
pCC

F
L + pDD

F
L

)
+ pCC

F
H + pDD

F
H +

r

1− γ
,

λF =
1− α

wH(1− γ)
.

28



Proof. With µ = 0, the Lagrange function (10) is concave and the Vrst order conditions are

necessary and suXcient for a solution. Consider conditions (13) and (16) with µ = 0. Then

λF =
1− α

wH(1− γ)
, δF =

α

wL
− γλ > 0⇒ Y F

L = 0.

Notice that the inequality is satisVed if and only if Assumption 1 holds. The statement of

the Proposition now follows from conditions (11), (12), (14), (15), and the binding resource

constraint (1).

Low-type agents do not work at all. Due to linear disutility from working, Assumption 1

implies that any given amount of output requirement fosters lower aggregated disutility if

it is provided solely by high types rather than low types. If YL could be negative, welfare

would be unbounded.

For a moment, ignore the Lagrangian multiplier of the resource constraint λF . Then con-

sumption of high types is independent of the welfare weight and the population shares, and

is just determined by eXciency considerations. It departs from standard results only through

a corrective element that takes care of the external eUects of dirty-good consumption. The

consumption levels of the low-type agents, though, heavily depend on welfare weights as

well as the population shares. The underlying trade-oU lies between consumption utility

of low-types and disutility of high types, who have to work for the provision of low-type

consumption. Low-type productivity wL is irrelevant for the allocation given that they do

not work.

Lemma 4. Let u(C,D) be strictly concave and continuously diUerentiable and let kC , kD be

two constants such that the system uC(C,D) = kC , uD(C,D) = kD has a solution. Then the

solution is unique.

Proof. Consider the three-dimensional space. Let s = (sC , sD) be a solution. The tangential

plane at S = (sC , sD, u(s)) is spanned by the directions of the two partial derivatives at S.
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As u is strictly concave, the whole range of u – except u(s) – lies below that plane. Now

consider a point s′ that also solves the above system but is diUerent from s. The tangential

plane at s′ is parallel to the one at s, yet one of the planes is higher than the other. But than

it is no longer possible that the whole range of u lies below the lower plane. This creates a

contradiction.

Proposition 5 (Interior second-best allocation). If A∗ is an interior second-best allocation

under Assumption 1, then it is unique and solves the following system of equations with d =

µ∗(1− wL/wH)/(α− µ∗).

uLC =
pC
wL

(1 + d) uLD =
pD + e/λ∗

wL
(1 + d)

uHC =
pC
wH

uHD =
pD + e/λ∗

wH

Y ∗L = r + γ(pCC
∗
L + pDD

∗
L) + (1− γ)(pCC

∗
H + pDD

∗
H)− wH(uH − uL)(1− γ)

Y ∗H = r + γ(pCC
∗
L + pDD

∗
L) + (1− γ)(pCC

∗
H + pDD

∗
H) + wH(uH − uL)γ

λ∗ =
α

wL
+

1− α
wH

, µ∗ = α(1− γ)
wH
wL
− (1− α)γ. (19)

Proof. If A∗ is an interior second-best allocation, then it satisVes conditions (13) and (16)

with δ set to zero. Then λ∗ and µ∗ are uniquely determined and strictly positive. For given

values of λ∗ and µ∗, (11), (14), (12), and (15) uniquely determine the consumption levels

(uniqueness is established by Lemma 4). Output requirements follow from the binding re-

source constraint (1) combined with the binding incentive constraint (3).

The conditions for high-type consumption levels are almost identical to the corresponding

Vrst-best conditions (18). The subtle but important diUerence lies in the Lagrangian multi-
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plier λ, which is diUerent in Vrst- and second-best and, most importantly, features diUerent

comparative statics properties.

The consumption levels of low types are distorted downwards, i.e., the labour choice is

distorted in favour of leisure. The distortion is captured by d and is higher if µ∗ is higher or

the diUerence in productivities is larger.

B. Taxation

B.1. Proofs of the main results

Proof of Proposition 1. Combining tC ≡ 0 with Proposition 4 and the fact that

qD
qC

=
pD + tD
tC

= MRS

yields MRS = pD/pC + e/(λFpC) = (pD + tD)/pC ⇔ tD = e/λF . From (6), λF =

(1− α)/(wH(1− γ)). The comparative statics immediatly follow.

Proof of Proposition 2. Combining tC ≡ 0 with Proposition 5 and the fact that

qD
qC

=
pD + tD
tC

= MRS

yields MRS = pD/pC + e/(λ∗pC) = (pD + tD)/pC ⇔ tD = e/λ∗. From (19), λ∗ =

α/wL + (1− α)/wH). The comparative statics immediatly follow.

B.2. Discussion of the chosen normalisation

This section justiVes the normalisation choice made in the main part of the paper. To do

so, I deVne the greenness g which mirrors the tax system’s inherent incentives to reduce

pollution.
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DeVnition 1. The greenness of tax system τ = (tC , tD, T ) is denoted by g and is deVned as

g := tD − tC
qD
qC
.

To see why the greenness is useful, consider an agent who faces some tax system τ and

decides to purchase an additional unit of D, while reducing her consumption of C in order

to keep total spending constant. The reallocation has consequences for the social planner’s

tax revenue. By deVnition, the greenness gives this hypothetical change in revenues.

From the agent’s point of view, g not only includes what they have to pay in taxes for

additional consumption ofD, but also what they save in taxes when consuming less C . The

Pigouvian rationale is to provide agents with the incentive to shift consumption from D to

C . The greenness is an accurate measure of how intense this incentive is. Importantly, it

does so independently of the normalisation:

Lemma 5. 1. If tax system τF implements the Vrst-best allocation AF , then its greenness

gF equals e/λF , with λF as given in Proposition 4.

2. If tax system τ ∗ implements an interior second-best allocation A∗, then its greenness g∗

equals e/λ∗ with λ∗ as given in Proposition 5.

Proof. For a proof see Aigner (2011).

To sum up, the allocation to be implemented uniquely Vxes the greenness of a tax system;

it corresponds to the external harm relative to the cost of public funds. It is a unambiguous

measure of how “green” the tax system is. As such it provides a meaningful base for the

comparative static analysis. Now, if τ is a normalised tax system (i.e., tC ≡ 0) then g = tD.

Hence analysing g is equivalent to analysing tD in a normalised tax system.
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C. Second-Best Corner Solutions

A second-best corner solution is a second-best allocation with YL = 0. In this section I show

that for some parameters this is the relevant case. I then claim that a corner solution does

not change at all if α is increased (Proposition 6). Thereby I extend the comparative statics

properties of Pigouvian taxation to instances of corner solutions (Corollary 2). Proposition

6 builds on a conjecture that generalises Lemma 3. Unfortunately, I can only partially verify

that conjecture (Lemma 8).

Lemma 6. If A is a second-best allocation and

α ≥ γ

1− γ
1

wH

wL
− 1

, (20)

then A is a corner solution, i.e. YL = 0.

Proof. By contradiction, assume A is an interior solution. Then it satisVes conditions (11) to

(16) with δ = 0. Hence µ = (1− γ)αwH/wL − γ(1− α) by (17). But then the condition on

parameters stated in the Lemma implies α− µ ≤ 0. This, however, contradicts (11).

Remark 1. Bierbrauer and Boyer (2010) exclude corner solutions in their comparative stat-

ics analysis by assuming 1 > (1 − γ)wH/wL. Their inequality always holds if (20) is not

satisVed, but the converse is not true. Hence, I do not expect (20) to be a necessary condition

for a corner solution.

To proceed, let me introduce some convenient notation.

DeVnition 2. DeVne A(α) to be a second-best allocation, in which the welfare weight is

given by α and all other parameters are Vxed. For α′ < α′′ and θ ∈ {L,H} deVne U ′θ :=

Uθ(A(α′)), U ′′θ := Uθ(A(α′′)), and dUθ := U ′′θ − U ′θ.

Quite intuitively, if the taste for redistribution increases, low-type agents receive higher

utility. At the same time, high-type agents have to receive lower utility because someone
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has to pay for the increase in UL. The following lemma formalises this intuition. Notice that

also a zero-change in utility is possible.

Lemma 7. If α increases from α′ to α′′, then

dUL ≥ 0 ≥ dUH .

Proof. From DeVnition 2 it follows, in particular,

α′U ′L + (1− α′)U ′H ≥ α′U ′′L + (1− α′)U ′′H ⇒ 0 ≥ α′dUL + (1− α′)dUH (21)

α′′U ′′L + (1− α′′)U ′′H ≥ α′′U ′L + (1− α′′)U ′H ⇒ α′′dUL + (1− α′′)dUH ≥ 0 (22)

Summing up (21) and (22) yields dUL ≥ dUH . Next, suppose by contradiction that dUH > 0,

then dUL > 0, but that contradicts (21). It follows similarly that dUL ≥ 0.

Lemma 3 shows that the incentive constraint of high-type agents binds at interior second-

best allocations, given Assumption 1. Its proof does not work for corner solutions, though.

By contrast, the following lemma does hold for corner solutions, albeit under more restrict-

ive conditions on parameters.

Lemma 8. Suppose α ≥ γ. If A is a second-best allocation, then the incentive constraint (3)

for the high-type agents is binding at A.

Proof. I Vrst show that marginal utility is lower for high- than for low-type agents. Then

I show that a marginal redistribution of C from high- to low-type agents increases welfare

and hence needs to be ruled out by a binding incentive constraint. Otherwise the allocation

cannot be second-best. In term of notation, recall that uθ = u(Cθ, Dθ).

Claim: uC(CL, DL) > uC(CH , DH)
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Case 1, DH ≤ DL: then CH > CL, because, by Lemma 2, u(CL, DL) < u(CH , DH). De-

creasing marginal utility and a positive cross derivative uCD ≥ 0 then imply uC(CL, DL) >

uC(CH , DL) ≥ uC(CH , DH), hence the claim holds.

Case 2A, DH > DL, CH ≤ CL: then, similar to Case 1, uD(CL, DL) > uD(CL, DH) ≥

uD(CH , DH). At an optimal allocation, uLD/u
L
C = uHD/u

H
C , hence u

L
D > uHD implies uLC > uHC ,

as claimed.

Case 2B, DH > DL, CH > CL: as u is strictly concave,

uH − uL < (CH − CL)uLC + (DH −DL)uLD, and

uL − uH < (CL − CH)uHC + (DL −DH)uHD

need to hold.16 Rearranging the second inequality gives, in combination with the Vrst,

uHD(DH −DL) + uHC (CH − CL) < uH − uL < (CH − CL)uLC + (CH − CL)uLD.

(CH − CL), (DH − DL) > 0, thus uHD < uLD or uHC < uLC . If one of these two inequalities

holds, the other one must hold as well, otherwise uLD/u
L
C = uHD/u

H
C cannot be true. This

completes the proof of the claim.

Now, suppose that the lemma is false, then u(CH , DH)−YH/wH > u(CL, DL)−YL/wH at

a second-best allocation. Then there exist dCH , dCL with dDH = −dCLγ/(1−γ) < 0, such

that the incentive constraint still holds, i.e. that u(CH + dCH , DH) − YH/wH > u(CL +

dCL, DL) − YL/wH . The modiVed allocation (CL + dCL, DL, YL, CH + dCH , DH , YH) is

also feasible by construction (and still satisVes low-type agents’ incentive constraint). For

16In general, if a continuously diUerentiable function f is strictly concave over an open, convex subset of
Rn, then f(x) − f(x0) <

∑
i fxi

(x0)(xi − x0i ), for all x, x0 from that subset. See Sydsaeter et al. (2008,
Theorem 2.4.1) for a textbook reference.
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dDL → 0, the change in welfare is approximately

dW ≈ αuLCdCL − (1− α)uHC dCLγ/(1− γ) = dCL
(
α(1− γ)uLC − (1− α)γuHC

)
. (23)

If α ≥ γ, and uLC > uHC as claimed, then α(1−γ)uLC−(1−α)γuHC > 0 and welfare increases.

Hence, a contradiction.

If the welfare function is utilitarian (α = γ) or exhibits an even stronger tendency to

redistribute in favour of the low-type agents, high-type agents incentive constraint must

be binding. This is not a necessary condition, though. Equation (23) shows that even with

α < γ a slack incentive constraint would be impossible, provided that uLC is suXciently

greater than uHC . In fact, I believe that the constraint is binding whenever Assumption 1 is

satisVed.

Conjecture 1. If A is a second-best allocation under Assumption 1, then high types’ incentive

constraint is binding at A.

The following proposition is the main result of the current section. If conjecture 1 holds,

the proposition and its two corollaries extend to all parameters satisfying Assumption 1.

Proposition 6. Suppose α′ ≥ γ. Let A(α′) be a second-best corner solution. Then A(α′′) =

A(α′) for all α′′ > α′.

Proof. Claim 1: At a corner solution all agents have the same utility level.

By Lemma 8, high-type agents incentive constraint is binding. Adding−(γDL+(1−γ)DH)e

to the binding incentive constraint gives UH(A(α′)) = u(CH , DH)−YH/wH − (γDL+ (1−

γ)DH)e = u(CL, DL)− (γDL + (1− γ)DH)e = UL(A(α′)).

Claim 2: UL(A(α′′)) = UH(A(α′′)).

From Lemma 7, UL(A(α′′)) − UL(A(α′)) ≥ UH(A(α′′)) − UH(A(α′)). Given Claim 1 this

reduces toUL(A(α′′)) ≥ UH(A(α′′)). The incentive constraint of high types implies, though,

that UH(A(α′′)) ≥ UL(A(α′′)). Hence UL(A(α′′)) = UH(A(α′′)).
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Claim 3: A(α′′) = A(α′).

Suppose the opposite, then UL(A(α′′)) > UL(A(α′)) by Lemma 7 and the fact that solutions

are unique (if they exist). But then Claims 1 and 2 imply that also UH(A(α′′)) > UH(A(α′)).

This contradicts Lemma 7.

Increasing the welfare weight of low-type agents does not change the allocation if low-

type agents already provide zero output. The only way to increase their utility is to increase

their consumption. But then high-types incentive constraint can no longer be satisVed.

Thus the limits of redistribution (under information constraint) are met, once all output is

produced by high-type agents:

Corollary 1. Suppose α′ ≥ γ. Let A(α′) be a second-best corner solution. Then the Rawlsian

allocation AR = limα→1A(α) is equal to A(α′). Also, the second-best Pareto-frontier has a

kink at [UL(AR), UH(AR)] if α′ < 1.

Notice that it is possible that the Rawlsian allocation is not a corner solution. Put diUer-

ently, (second-best) redistribution can hit its very limit well before low-type agents provide

zero output.

Yet, if for some α < 1, low-type agents’ output does equal zero, then, consequently, the

comparative statics of Pigouvian taxation are also zero:

Corollary 2. Suppose α ≥ γ. Let A(α) be a second best allocation with YL = 0. Let tD(α) be

the dirty good tax of a normalised tax system that implements A(α). Then tD(α′) = tD(α) for

all α′ ≥ α.
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