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Think, but Not Too Much:

A Dual-Process Model of Willpower and Self-Control∗

CARLOS ALOS-FERRER

Department of Economics

University of Cologne (Germany)

Abstract

Dual-process theories view decisions as the result of the interaction of two quali-

tatively different types of processes, automatic/impulsive and controlled/deliberative.

This paper considers a model of self-control where each decision can be taken by

either an automatic process or a deliberative one. In line with recent evidence

from psychology, effortful self-control (willpower) is modeled as a limited resource,

i.e. exercising self-control for an initial decision limits the amount of self-control

available for persevering later. Automatic decisions follow a reinforcement-based

process, while controlled ones are utility-maximizing. A “personal evolution” ap-

proach shows that agents might fall into self-control traps: for instance, although

exercising full self-control might be efficient, decision makers might be caught in a

“personal optimum” where no self-control is exercised. Reciprocally, agents might

also fall prey to excessive self-control, where they waste willpower in initial decisions

only to give in to temptation later.
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1. Introduction

Self-control problems come in different flavors. Consider any task or project requiring

perseverance, as dieting, sticking to an exercise plan, or writing a referee report. The

typical self-control failure which comes to mind involves giving in to temptation, that

is, failing to complete a task which has already been started when confronted with an

alternative which appears more tempting in the short run, like eating the chocolate pie,

sitting down to watch a movie, or working on your own, more interesting research. This

failure can be easily conceptualized as an implementation failure of deliberative, long-

run planning and a triumph of shortsighted, impulsive behavior. There are, however,

self-control problems of a completely different kind. For instance, many decision makers,

who have become acquainted with their own self-control capabilities over the years, argue

to themselves that giving in to temptation is too likely, and hence it is better not to

start at all. In this case, the problem arises from deliberation, and not in spite of it.

Further, there is also some puzzling evidence that certain self-control problems might

be best tackled by avoiding the conscious exercise of self-control. An extreme example

can be found in the smoke-cessation literature, where it has recently been found that

unplanned smoke-quitting attempts are twice as likely to be successful as planned ones

(Ferguson, Shiffman, Gitchell, Sembower, and West, 2009; West and Sohal, 2006).

The fact that there are different kinds of self-control problems is well-known in

applied psychology, which differentiates the shielding of an ongoing goal striving from

getting started with goal striving (see e.g. Gollwitzer and Sheeran, 2006). Also well-

known are some possible solutions or “strategies”. Specifically, motivation psychology

has developed surprising tactics to improve self-control, whose characteristics shed light

on the essence of self-control problems (see Fujita, 2011, for a recent review). The first

problem, giving in to temptation, can be fought by shielding the personal goal-striving

from unwanted thoughts (Achtziger, Gollwitzer, and Sheeran, 2008; Bayer, Gollwitzer,

and Achtziger, 2010). The second problem, the failure to get started, can sometimes be

counteracted by automatizing the desired behavior—in other words, thinking less about

it. Compact pieces of popular wisdom also encompass this insight, from “Don’t be a

quitter!” to “Just do it!” .

As an illustrative example, consider so-called “implementation intentions” (Goll-

witzer, 1999). Those refer to a family of tactics arising in social psychology which can

be adapted to fight different kinds of self-control problems, An implementation inten-

tion is merely an action trigger where the decision maker forms a plan in an “if/when...

then...” format, specifying an anticipated cue as a condition for starting a course of

action, e.g. “when I finish this proof, then I’ll start with that referee report.” Ex-

tensive evidence (see Achtziger and Gollwitzer, 2010, for a review) indicates that this

produces an automatization of behavior which actually helps attain the desired goals,
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by counteracting the failure-to-get-started phenomenon.1 In a second step, implemen-

tation intentions can also be used to protect ongoing goal striving from temptation by

specifying the anticipated temptations as cues, e.g. “if I am offered a snack, I’ll ask for

a glass of water instead”. In the first case, the action trigger is avoiding the onset of a

(possibly short-sighted) deliberative process. In the second case, it is fighting fire with

fire, deliberately replacing a predictable impulsive reaction with a different one; in other

words, in this case the action trigger acts as a psychological commitment mechanism,

implementing the action that a previous deliberative process found optimal.2

For an economist, it might be surprising to consider that a larger involvement of

deliberation versus impulsive or automatized actions might be the solution in some

cases and the problem in others. Following Thaler and Shefrin (1981) and Schelling

(1984), multiple selves models in economics typically address self-control problems by

postulating a long-run, farsighted planner and one or several shortsighted doers. For

instance, in the realm of intertemporal choice (Bernheim and Rangel, 2004; Benhabib

and Bisin, 2005; Fudenberg and Levine, 2006; Ali, 2011), different utility functions are

assigned to different selves, each modeling one particular motivation of a given, fixed

agent. There is no question, however, that within this approach optimality would always

ensue if the long-run planner could have her say. The problem is the lack of commitment

mechanisms: a fully rational decision maker would like to commit to the planner’s chosen

course of action.

The view from psychology is different. Dual-process theories postulate that the

human mind is mainly influenced by two kinds of processes, called automatic and con-

trolled (e.g., Bargh, 1989; Loewenstein and O’Donoghue, 2005; Evans, 2008; Weber and

Johnson, 2009). Automatic processes capture e.g. impulsive reactions and are defined

as efficient, fast, and unconscious. They rely on learned associations (brake if the traf-

fic light is red) and often respond to simple reinforcement mechanisms. Controlled

processes are the basic ingredient of deliberation and are defined as slow, partially re-

flected upon consciously, and consuming cognitive resources. The distinction between

automatic and controlled processes is often analogous to the economists’ distinction be-

tween a heuristic/intuitive and a rationality benchmark (Kahneman, 2003). In a second

step, dual-process accounts of human behavior are often extrapolated to “dual-system”

theories, which postulate that different information-processing systems are responsible

1Implementation intentions are also helpful when the desired behavior requires a punctual action
which the decision maker might delay or fail to execute under normal circumstances. For instance, in
a recent field application, Milkman, Beshears, Choi, Laibson, and Madrian (2011) used implementation
intentions to enhance influenza vaccination rates. Nickerson and Rogers (2010) used implementation
intentions to increase voter turnout in the 2008 US presidential elections.

2Other psychological manipulations follow different strategies. For instance, “cognitive reconstrual”
aims for a reappraisal of the decision framework to promote a more abstract evaluation which should
reduce impulsive behavior. Examples range from Moore, Mischel, and Zeiss (1976) to Fujita and Han
(2009).
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for handling different types of processes, e.g. an impulsive system and a reflective one

(Strack and Deutsch, 2004). Loewenstein and O’Donoghue (2005) label the two sys-

tems “affective” and “deliberative”, while Epstein (1994) calls them “experiential” and

“rational”.

There are two key differences between dual-process theories and the multiple selves

approach. The first is that, in spite of the occasional use of the adjective “rational” to

refer to controlled processes, neither kind is assumed to correspond to an all-knowing

rational planner. Indeed, if a fully rational planner decides that it is better not to start

a task because of anticipated temptation, quitting must certainly be optimal. This is

not the case if the decision to quit is the result of deliberation but not as farsighted as it

should. The second difference is that in multiple-selves models, every self is “rational”

in the sense of being a utility-maximizer given a certain utility function; in contrast,

automatic processes might not be rationalizable as utility-maximizing actors, whether

shortsighted or not. Rather, they might capture much simpler processes as e.g. pure

reinforcement.

In this paper, we propose a simple model of self-control based on ideas from the

dual-process literature which can account for different self-control failures, including

both “impulsive” giving in to temptations and “deliberative” failures to get started. In

doing so, we rely on intuitions and insights from multiple-selves models but depart from

the planner-doer formalism in favor of a dual-process approach. The basic ingredients

of the model are as follows.

The general framework starts by distinguishing two broad types of processes, con-

trolled/deliberative and automatic/impulsive. In contrast to multiple-selves models, we

propose to explicitly incorporate a differential modeling for both kinds of processes.

Controlled processes will be associated to fully rational agents who optimize a given

utility function under correctly updated beliefs. Even more, we will consider a single,

fixed utility function for all controlled processes, i.e. controlled processes are always mu-

tually consistent. As a model for automatic processes, we consider an explicit stimulus-

response approach. More specifically, automatic processes correspond to the behavior

of boundedly rational behavioral rules after an implicit dynamic process has “settled”.

That is, an automatic process acts as if in the steady state of an appropriately defined

dynamical process which itself models the evolution of behavioral rules of thumb. In

this paper, we will focus on reinforcement behavior, one of the basic motors of human

learning (Bush and Mosteller, 1951, 1955), which was first incorporated into economic

modeling by Cross (1973, 1983) and has been often incorporated in models of learning

in games (Börgers and Sarin, 1997; Erev and Roth, 1998; Camerer and Ho, 1999).3

3There is abundant psychophysiological evidence showing that reinforcement processes have an au-
tomatic nature, being associated with extremely fast and unconscious brain responses. See e.g. Holroyd
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We will build the analysis in two steps. In the first step, we consider an isolated

instance of a self-control problem, simplified to the essence: an opportunity to start

a desirable behavior and a later situation where temptation appears. At each possible

decision point, as postulated by (a simplified version of) dual-process theories, the actual

decision of a decision maker might be made by either a controlled or an automatic

process, according to probabilities exogenous to the decision maker. The model will be

analyzed using the novel concept of Dual-Process Equilibrium, which takes into account

the utility-maximizing character of controlled processes and the steady-state nature of

automatic ones.

The exercise of willpower can be identified with the inhibition of automatic behavior

(impulses). Hence, the probability of automatic vs. controlled behavior is the essence

of self-control. Many factors can influence this personal parameter, from individual

characteristics to training or the nature of the problem. In the second step, we will

introduce a “personal evolution” approach, internalizing this probability. To keep the

analysis simple, personal evolution is identified with a local-adjustment dynamics where

the probability increases or decreases following the gradient of individual payoffs. Im-

plicitly, the decision maker learns to adjust the equilibrium of the various processes

determining behavior in a way which is rationally responsive to the anticipated results.

However, this leaves the door open to myopic behavior in the form of local maxima.

Hence, even in the personal evolution extension of the model, there is no all-knowing,

long-run planner.

We find that decision makers can become trapped in suboptimal situations with fre-

quent self-control failures. Depending on situational and personal factors to be described

below, those can be of different kinds. It is possible that a decision maker becomes

trapped in an “excessive deliberation” state, where he consumes his cognitive resources

deliberating on whether to get started, but frequently fails to do so, even though a lower

reliance on deliberation would result in a higher rate of success.4 Decision makers in this

situation will not face temptation often, because their main problem is a (rationalized)

failure to get started. On the opposite side of the behavioral spectrum, it is possible

that deliberation always leads to getting started, but still self-control problems appear.

One problem is that a decision maker might end up relying excessively on automatic

processes, even though more frequent deliberation would be optimal. A second and more

surprising problem is a mirror-image of the first. In this case, decision makers might

be caught in an “excessive self-control” trap, where they frequently exercise effortful

self-control, and then end up giving in to temptation too often after having started a

and Coles (2002).
4An additional negative effect of excessive deliberation pointed out in psychology is that it might

also lead to inaction and procrastination simply because a decision is not reached in time. We abstract
from this added complication here.
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goal-directed plan of action. In both cases, decision makers will identify self-control

failures with an inability to resist temptation or shield already-initiated goal-striving.

The paper is structured as follows. Section 2 discusses evidence on self-control prob-

lems and presents the basic model. Section 3 presents the concept of Dual Process

Equilibrium and characterizes the equilibria of the model. Section 4 tackles the personal

evolution approach. Section 5 briefly discusses alternative evolutionary approaches. Sec-

tion 6 concludes. Proofs are relegated to the Appendix.

2. A Self-Control Model

In order to illustrate the approach, in this paper we will focus on a specific example

which aims to capture the essence of self-control problems. To avoid confusion, we

will distinguish between self-control and willpower. We will use the word self-control

in a general sense refering to all self-regulation strategies that a decision-maker might

use, including e.g. adopting self-commitment mechanisms, psychological interventions

as the implemention intentions mentioned above, or the avoidance of future temptations

(Thaler and Shefrin, 1981). The word willpower will be used in a specific sense, namely

the effortful inhibition of impulses as part of a self-control act.5 In particular, instances of

self-control without conscious deliberation (e.g. Bargh and Chartrand, 1999) correspond

to effortless self-control, i.e. self-control not requiring willpower. The existence of this

possibility is the key to the success of implementation intentions.

Psychological models of self-control (Baumeister, 2002) postulate that the same men-

tal resource is used for different tasks requiring willpower, ranging from the inhibition

of impulses to persistence on complex cognitive tasks, etc. This resource is viewed as

being limited; acts of willpower consume it. In other words, decision makers are on a

“cognitive budget” regarding willpower. Limiting this resource by exerting effortful self-

control induces a state of “ego-depletion” that impairs the performance of subsequent

tasks that also require willpower. Accordingly, ego-depletion is a state in which decision

makers’ capacity to exert effortful self-control is reduced (Baumeister, 2002; Baumeister,

Vohs, and Tice, 2007; Muraven, Tice, and Baumeister, 1998).6 Dozens of empirical stud-

ies have found that depleted subjects have more difficulties exercising willpower than

non-depleted controls, and are hence more likely to give up in tasks requiring persis-

5Self-control is often defined in the second, narrower sense (e.g. Baumeister, 2002). Recently, Fujita
(2011) has argued in favor of a broader conceptualization, defining self-control as the process of advancing
distal, abstract motives over more proximal, concrete ones when the two motives conflict. Under this
view, for instance, the deliberate use of a self-commitment mechanism is a self-control strategy, whether
the mechanism is external (as e.g. committing to savings plans) or internal (as in e.g. Ali, 2011).

6This is often called “the strength model of self-control”. This model views self-control analogously
to a muscle: behavior that requires high willpower consumes strength and energy. Willpower becomes
“fatigued” after being exerted in one task, leading to a reduced self-control capacity in a subsequent
task.
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tence (Baumeister, Bratslavsky, Muraven, and Tice, 1998), overeat (Vohs and Heather-

ton, 2000), shop impulsively (Vohs and Faber, 2007), and even cheat when reporting

their own performance (Mead, Baumeister, Gino, Schweitzer, and Ariely, 2009). Hag-

ger, Wood, Stiff, and Chatzisarantis (2010) present an extensive review of experimental

studies in this area.7

We integrate these insights in our model as follows. A decision maker (DM) faces a

task which requires perseverance to complete. Initially (t = 1), the DM can simply Shirk,

not getting started at all, resulting in a neutral outcome, also called Shirk for simplicity.

If the DM actually manages to Start with the task, further down the road (t = 2) he

will be faced with temptation. The DM will then have a choice between exercising

self-control (Persevere), resulting in Success, or alternatively to Give Up, resulting in

failure. A graphical representation of the decision tree is given in the left-hand part of

Figure 1.

Decisions Processes

t = 1

t = 2

Shirk Start

Give Up Persevere

u(Shirk) = 0

u(Failure) = −d u(Success) = 1

Controlled1:
Max u

s = C

Automatic1:
Reinforcement

s = A

1− λ1

λ1

Controlled2:
Max u

Automatic2:
Breakdown

1− λ2(s)

λ2(s)

λ2(C) > λ2(A)

FIGURE 1: Schematic representation of the basic model.

This setting is similar to the basic problem described in e.g. the multiple-selves model

of Bénabou and Tirole (2004), who use it to study internal commitments based on self-

7Ozdenoren, Salant, and Silverman (forthcoming) consider a formal model where an agent with
limited willpower has to allocate this resource optimally in order to regulate consumption over time.
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reputation over the own, uncertain willpower. Here, we postulate a model explicitly

based on dual-process ideas instead. At each of the two decision nodes, two different

processes compete for determining the DM’s actual decision, an automatic process and a

controlled one. Controlled processes in both decision nodes correspond to rational utility

maximization given the appropriate beliefs (which in equilibrium will be further required

to be correct, given the behavior prescribed by other processes). Given preferences

Success ≻ Shirk ≻ Failure, we can normalize utilities to u(Success) = 1, u(Shirk) = 0,

and u(Failure) = −d with d > 0.

Note that controlled processes maximize the same, shared utility function and hence

are consistent with each other. This is in stark contrast to models of multiple-selves

or time-inconsistent preferences, where decisions taken at different decision nodes by

otherwise rational selves follow different utility functions.

The automatic processes which play a role at each decision node capture impulsive

behavioral factors. At the second decision node (t = 2), the process corresponds to a

“breakdown of will” and simply leads to giving up. Of course, this could be rationalized

by an alternative utility function or generalized to a probability distribution. This simple

formulation is meant to capture the possible failure of self-control at this point without

introducing unnecessary complications.

In general, automatic processes determine behavior on the basis of associations cre-

ated in previous instances of the problem. We make this explicit for the key automatic

process operating at the first decision node (t = 1). This process corresponds to an

effortless reinforcement process. Hence, while we can adopt a static approach for the

controlled processes, modeling this automatic process requires an implicitly dynamic

approach. Formally, this process specifies a probability to start, zn, which is increased

each time that the two-stage decision situation is faced and a decision to start (indepen-

dently of which process determined it) results in success. Analogously, zn is decreased

when such a decision results in a failure. The subindex n refers to occurrences of the

two-stage problem, i.e. to an orthogonal temporal dimension. In equilibrium, and fol-

lowing a reduced-form dynamic formulation, the process will simply be required to have

arrived at a (stable) steady state, E(zn+1|zn) = zn, given the behavior prescribed by

other processes.

The last element of the model specifies which process actually determines the de-

cision at each decision node. We adopt a probabilistic formulation. Let λt denote the

probability that the decision at node t = 1, 2 is determined by the automatic process.

Hence, a large λ1 indicates low self-control at t = 1. A schematic representation of the

postulated processes and their probabilities is given in the right-hand part of Figure 1.

In this framework, willpower is the act of inhibiting an automatic decision and

adopting a controlled one instead. Exercising willpower is costly and reduces the self-
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control budget available for subsequent decisions. This is modeled as follows. While λ1

is fixed at t = 1, there are two possible values of λ2, which depend on whether willpower

has been already exercised or not. More specifically, if the automatic process took the

decision at t = 1, then λ2 = λ2(A); if it was the controlled process which took the

decision at t = 1, then λ2 = λ2(C) > λ2(A). That is, the exercise of willpower at t = 1,

resulting in a controlled decision, reduces the probability that the DM will be able to

exercise self-control again at t = 2. Note that an automatic decision might result in

an “automatic start” (and hence be viewed as effortless self-control) and still consume

no self-control resources. Symmetrically, a controlled decision might lead to a rational

failure to start and still consume those resources. What matters is the adoption of a

controlled decision, and not the particular content of that decision; to put it simply,

effort is spent independently of success.

3. Dual-Process Equilibria

The key concept for the analysis of dual-process models as sketched here is that of a

Dual-Process Equilibrium, which is defined to be a profile formed by optimal strategies

for the controlled processes and steady states for the automatic processes. In general,

optimality of the strategies of the former might depend on the actions of the latter, and

the steady-state computation for the latter might depend on the strategies of the former.

The key difference between this equilibrium concept and, say, a Perfect Bayesian Equi-

librium, is that automatic processes are not rationalized as optimizing agents, but rather

they are required to act as in a stable state of an implicit dynamical process, taking

the behavior of controlled processes as given. In contrast, in a Dual-Process Equilib-

rium controlled processes behave in a more “classical” way, essentially corresponding

to standard, optimizing players who take the behavior of other processes (controlled or

automatic) fully into account.

Let us turn to the self-control problem described above. Behavior at t = 2 can be

characterized in a straightforward way. Since u(success) > u(failure), the controlled

process always chooses to Persevere, while the automatic process, by construction, al-

ways chooses to Give Up. The equilibrium behavior of the controlled process at t = 1

corresponds to sequential rationality, i.e. utility maximization given correct beliefs.8 The

computation is as follows.

Start � Shirk ⇐⇒ 1− λ2(C)− dλ2(C) ≥ 0 ⇐⇒ λ2(C) ≤ 1

1 + d
(1)

8Note that an extensive form capturing the model would include a move by nature after the controlled
process decides to start, with fixed probabilities λ2(C), 1−λ2(C) leading to (decisions themselves leading
to) failure and success, respectively. Hence the implicit condition on beliefs is that the probabilities of
nature’s decisions are “known” by the rational processes.
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Last, we discuss the behavior prescribed by the reinforcement process at t = 1. Suppose

that the two-stage problem is faced repeatedly, instances being given by n = 1, 2, . . ..

The reinforcement process determines whether to start or not following a simple prob-

ability distribution (zn, 1 − zn). The probability of starting is updated every time this

action is adopted: it is increased if it previously led to a success and decreased if it

previously led to a failure. Following a classic formulation (Cross, 1973),

zn+1 =

{

θ + (1− θ)zn if success

(1− θ)zn if failure

where 0 < θ < 1 is an adjustment factor (which will be irrelevant for steady-state

computations). If the DM shirks, the payoffs of start are not experienced and zn is

not updated. If the DM starts, whether the process which led to starting the task

was an automatic or a controlled one is irrelevant for the purposes of updating zn: the

probability is based on actual experiences and not on internal processes.

Given the behavior prescribed by the other three processes, it is possible to compute

the expected value of zn+1 after the n-th instance of the problem. In equilibrium we

will require the reinforcement process to have reached a probabilistic steady state, i.e.

z = z∗ with

E(zn+1|zn = z∗) = z∗.

Further, we will also require that the dynamics points towards z∗ in a probabilistic sense,

i.e. E(zn+1|zn < z∗) > zn and E(zn+1|zn > z∗) < zn in an interval around z∗. If these

conditions are met, we refer to z∗ as a stable steady state for the reinforcement process.

In view of these considerations, and in particular since behavior at t = 2 is already

determined, we can provide a simpler definition for the model at hand.

Definition 1. A Dual-Process Equilibrium (DPE) of the self-control model is a

pair (x, z) such that

(i) the strategy prescribing to start with probability x is optimal for the controlled

process at t = 1 given λ2(C), and

(ii) z is a stable steady state for the reinforcement process at t = 1, given the behavior

of the controlled process at t = 1.

In general, one might want to allow the increase in λ2 due to an initial exercise of

willpower to depend on λ1, the probability of impulsive decision-making at the begin-

ning. For instance, it would be sensible to assume that increased self-control possibilities

at t = 1 (reduced λ1) result in a larger loss in the self-control budget at t = 2 (increased

λ2(C) − λ2(A). For this reason, and also in order to minimize the use of subindices in
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the subsequent analysis, we now adapt our notation as follows.

λ1 = ∆, λ2(A) = λ, λ2(C) = λ+ g(∆)

with 0 < g(∆) < 1 − λ. Note that, however, at this point we do not exclude the

possibility of a constant g(∆).

With this reformulation, the parameter λ can be interpreted as the intensity of the

temptation at t = 2, while ∆ (or, rather, 1−∆) can be interpreted as the intensity with

which willpower is exercised. From now on, we assume that 1− λ(1 + d) > 0, or

λ <
1

1 + d
. (2)

This condition serves to exclude trivial cases. If it were violated, then the controlled

process would never consider starting, even in the absence of depletion effects.

3.1 The Reinforcement Process

Consider a Dual-Process Equilibrium where the controlled process at t = 1 starts

with probability x ∈ [0, 1]. This probability will affect the probability of an automatic

start, z, since a controlled start leads to a decision at t = 2 with reduced probability of

perseverance.

Consider the n-th instance of the two-stage problem. If the automatic process takes

the decision at t = 1, then the expected value of zn+1 is given by

zn [(1− λ)(θ + (1− θ)zn) + λ(1− θ)zn] + (1− zn)zn = zn [1 + θ (1− λ− zn)] (3)

If the controlled process decides instead, the expected value of zn+1 becomes

x [(1− λ− g(∆))(θ + (1− θ)zn) + (λ+ g(∆))(1 − θ)zn] + (1− x)zn =

= zn + xθ [1− λ− g(∆)− zn] (4)

Recall that if either the automatic or the controlled process determine the decision but

lead to shirking, zn+1 is not updated. We obtain

E(zn+1) = ∆zn [1 + θ (1− λ− zn)] + (1−∆) [zn + xθ (1− λ− g(∆) − zn)] =

= zn + θ [(1−∆)x (1− λ− g(∆)) − zn ((1−∆)x−∆(1− λ− zn))] (5)

The condition for a (stable) steady state of the reinforcement process becomes

E(zn+1) T zn ⇐⇒ ∆z2n + zn ((1−∆)x−∆(1− λ))− (1−∆)x(1− λ− g(∆)) S 0
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The left-hand-side of the inequality is a polynomial of second degree with positive

discriminant, hence its value is positive below the first root and above the second one,

and negative between the roots. Thus zn increases in expected value between the roots

and decreases otherwise. However, the value of the polynomial at zn = 0 is negative

and can be zero only if x = 0. Hence the first root is either strictly negative and can

be ignored (if x > 0) or it yields a steady state z = 0 which is then unstable (if x = 0).

The value of the polynomial at z = 1 is strictly positive for any value of x. Hence, it

follows that there exists a unique steady state, which is (globally) stable and is (after

some simplifications) given by

z∗ =
1

2∆

[

− ((1−∆)x−∆(1− λ)) +
√

((1−∆)x+∆(1− λ))2 − 4x∆(1 −∆)g(∆)
]

(6)

3.2 Equilibria

We start by analyzing pure strategy equilibria9 where the controlled process at t = 1

always shirks, i.e. x = 0. By condition (1), this occurs if and only if

λ+ g(∆) ≥ 1

1 + d
.

If the controlled process always shirks, equation (5) reduces to

E(zn+1) = zn +∆θzn (1− λ− zn) (7)

and there are two steady states, z = 0 and z = 1− λ. The first one is unstable and the

second one is stable. Hence, we obtain a Shirking DPE where the controlled process at

t = 1 always shirks and the reinforcement process starts automatically with probability

z = 1− λ.

The interpretation of this equilibrium is straightforward. The controlled process is

discouraged by a too large probability of breakdown of will at t = 2, i.e. whenever the DM

“thinks about it”, he gives up since he does not trust himself to continue. Given this, the

action to start occurs only automatically (“just do it”), and the model becomes a classic

reinforcement example. Hence, in equilibrium the probability to start is numerically

equal to the probability that the task is successfully completed, corresponding to a

simple probability matching result as known from the reinforcement learning literature

(Bush and Mosteller, 1951; Siegel and Goldstein, 1959).10

9Whether a Dual-Process Equilibrium is in mixed or pure strategies refers to the strategies of the
controlled processes only.

10Suppose a decision maker repeatedly chooses among two options, A and B, only one of them leading
to a reward. Suppose that the probability that A is the winning option is constant among periods and
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We now turn to pure strategy equilibria where the controlled process at t = 1 always

starts, i.e. x = 1. By condition (1), this occurs if and only if

λ+ g(∆) ≤ 1

1 + d
.

If the controlled process always starts, equation (5) reduces to

E(zn+1) = zn + θ [(1−∆)(1− λ− g(∆))− zn (1− 2∆ +∆λ+∆zn)] (8)

There is a unique steady state, which is globally stable and given by (taking x = 1 in

(6))

z∗ = 1 +
1

2∆

[

−(1 +∆λ) +
√

(1−∆λ)2 − 4∆(1−∆)g(∆)
]

(9)

Finally, consider mixed-strategy equilibria where the controlled process at t = 1 ran-

domizes, starting with probability 0 < x < 1. By condition (1), this can occur if and

only if

λ+ g(∆) =
1

1 + d
.

Since this equation involves only exogenous parameters at this point, we conclude that

mixed-strategy equilibria are possible but correspond to knife-edge situations. If the

equality holds, we obtain a continuum of mixed-strategy equilibria with x ∈ [0, 1] and

z = z(x) given by (6).

In summary,

Theorem 1. A Dual-Process Equilibrium of the self-control model always exists.

(a) If λ + g(∆) > 1
1+d

, there exists a unique DPE, where the controlled process at

t = 1 always shirks (x = 0) and the reinforcement process starts automatically

with probability z = 1− λ (Shirking DPE).

(b) If λ + g(∆) < 1
1+d

, there exists a unique DPE, where the controlled process at

t = 1 always starts (x = 1) and the reinforcement process starts automatically

with probability z∗ given by (9) (Willpower DPE).

(c) If λ+g(∆) = 1
1+d

, there exists a continuum of DPE, indexed by x ∈ [0, 1]. At each

one of these DPE, the controlled process at t = 1 starts with probability x and the

reinforcement process starts automatically with probability z∗ given by (6).

equal to p > 1/2. In the long run, reinforcement learning will lead to the decision maker choosing A a
percentage p of the time, while a rational decision maker should simply choose A all the time.
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3.3 Rational Failures to Get Started

The existence of Shirking equilibria in Theorem 1 captures the phenomenon of “de-

liberative failures to get started”. Case (a) indicates that this phenomenon might appear

when depletion effects are strong or the disutility of failure is large. For instance, imag-

ine a student who suddenly realizes that there are only a few weeks left until the exam

for a difficult, boring subject (and let us abstract from the reasons for the student’s pro-

crastination). In order to pass the exam, the student needs to tackle an intensive study

plan with several multi-hour study sessions per day. Every given day, it is likely that the

first session will cause a strong depletion effect leading to a failure of perseverance as the

time slot for the second session approaches. The student might well anticipate this and

never get started at all, giving up on the subject. A different example are tasks where

there is a high social or subjective cost of failure, e.g. if giving up carries a (subjective

or objective) stigma. For instance, starting with but failing to complete an ambitious

task might be damaging for the DM’s self-image, and hence the DM might rationally

decide not to risk failure and never attempt the task.

A shirking equilibrium, however, is an equilibrium, and under the condition given

in Theorem 1(a), it is the only equilibrium. It would be futile to attempt to bring

the DM to exercise willpower and deliberately start the self-control task. The effects

of depletion, which the DM anticipates, will offset the benefits of deliberately starting

more often. On the one hand, depletion will lead to increased failure and hence increase

disutility. On the other hand, increased failure will feed back to the automatic process,

which will correspondingly reduce the share of automatic starts.

This outcome is, in a sense, inefficient. In a shirking equilibrium, the automatic

process is caught in an “irrational” probability-matching outcome. By (2), it would be

optimal to start at t = 1 if depletion effects were absent. Then, it would be more efficient

to bring the automatic process to start more often, without incurring in depletion effects.

Indeed, the expected utility in Shirking equilibria (where x = 0 and z = 1− λ) is

Π0 = ∆(1− λ)(1− λ(1 + d)) > 0 (10)

and, if the automatic process would operate at z > 1− λ, the expected payoff would be

∆z(1 − λ(1 + d)) > Π0. Moreover, increasing ∆ (thinking less) would also result in an

increased utility, even if z remained unchanged.

Increasing ∆z without engaging active deliberation is precisely the objective of psy-

chological manipulations to counteract the failure to get started, as e.g. implementation

intentions. By setting a just-do-it automatized action trigger, an implementation inten-

tion simultaneously increases the likelihood of automatic behavior (reducing willpower)

and the probability that the automatic process starts with the task. This explains why,
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in situations where we can rationally talk ourselves out of an action plan, a seemingly

irrational commitment to give up willpower acts might be welfare-improving.

4. The Optimal Degree of Willpower

Many decision makers struggle for self-control in certain aspects of their lives. Here

we propose a “personal evolution” approach as a shortcut for intrapersonal parameter

adjustment, as (over the course of one’s life) the reliance on certain processes becomes

established.

More specifically, suppose the decision maker faces self-control problems as described

above along his or her personal life. The quest for optimal self-control reduces to ad-

justments in the parameter ∆, the probability of impulsive behavior in the presence of

full self-control resources. Imagine that the decision maker attempts to slowly build

self-control (reducing ∆) but repeatedly experiences failure, in the form of giving in to

temptation, after exercising willpower. Given the disutility of failure, this might result

in an overall reduction in utility, discouraging the decision maker from further reducing

∆. Reciprocally, if the reduction in ∆ leads to an overall increase in utility due to an

increase in the success rate, the decision maker will further reduce ∆.

In this section, we internalize the parameter ∆ following a further implicitly dynamic

approach. Our interpretation is that, for classes of decision problems which are encoun-

tered relatively often, this parameter is “adjusted” over one’s life in a local way, i.e. it

will increase or decrease slightly whenever doing so results in a utility gain. In other

words, we adopt a gradient dynamics leading to local optimality as a criteria for personal

optimality. In the framework of the self-control model analyzed in the previous sections,

we then ask the question of whether relying on automatic processes beyond a given,

unavoidable background level (presumably founded on biological evolution, childhood

experiences, etc) can become a local optimum for a decision maker.

Consider the following framework. We consider the particular case with g(∆) = g,

i.e. there is a fixed, physiological depletion effect. The utilities of shirking, success,

and failure are fixed. The parameter λ is also fixed and, as commented above, taken

to represent a measure of the “temptation” associated to a given self-control problem.

However, the parameter ∆ might vary as follows:

∆ = ∆0 +∆p

where ∆0 is a fixed “background automaticity rate” (you cannot avoid a certain prob-

ability of reacting automatically), but ∆p is a “personal” parameter which becomes

trained over time. An appropriate criterion to evaluate “personal optimality” is simply
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expected utility.

Π(x, z) = ∆z [−λd+ (1− λ)] + (1−∆)x [−(λ+ g)d+ (1− λ− g)] =

∆z [1− λ(1 + d)] + (1−∆)x [1− (λ+ g)(1 + d)] (11)

We focus on the case where Willpower equilibria exist, since else there is little to

study. The formalism is particularly convenient here, since for this particular problem

the parameter ∆ does not affect whether the DPE is of one or the other type (this needs

not be true for more general models).

The utility in Willpower equilibria (where x = 1 and z is given by (9)) is

Π1 = (1− λ(1 + d))

[

1 +
1

2

[

−(1 + ∆λ) +
√

(1−∆λ)2 − 4∆(1 −∆)g
]

−(1−∆)

(

g(1 + d)

(1− λ(1 + d))

)]

(12)

Say that ∆ is a personal optimum if it is a local maximum of Π1 under the constraint

that ∆ ≥ ∆0. Say that it is efficient if it is a global optimum of Π1 under the same

constraint. The following lemmata (whose proofs are relegated to the appendix) explore

the properties of Π1.

Lemma 1. Π1 is a strictly convex function of ∆.

Lemma 2. There exist g, g with 0 < g < g < 1 such that

(a) if g ≥ g, Π1 is strictly increasing in ∆;

(b) if g ≤ g, Π1 is strictly decreasing in ∆; and

(c) if g < g < g, Π1 has a unique interior minimum ∆(g).

The convex shape of Π1 has an intuitive interpretation. Consider case (c) in the

last lemma. The utility function Π1 has two local maxima, with minimal and maximal

willpower, respectively. The reason for this U-shaped utility is the tradeoff between the

direct and indirect effects of willpower exercise. Increasing willpower (reducing ∆p) leads

to a larger share of deliberate starts. However, each deliberate start causes depletion

and reduces the chances of later perseverance. Further, failed perseverance “teaches”

the automatic process (through reinforcement) to reduce the probability of an automatic

start.

Suppose that the DM is exercising very low willpower (∆ close to 1). Then, most

of the successful runs (starting, then persevering) come from automatic starts, which

occur with a given probability z > 0. If the percentage of the decisions taken by the

controlled process is slightly increased, the associated successes will deliver positive
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utility, but the increased failures due to the effects of depletion will feed back in an

overall reduced share of automatic starts. Since most of the successful runs actually

come from automatic starts, this will have a large negative effect on overall utility.

Suppose, on the contrary, that the share of automatic decisions is small (∆ close to

0). Then, the positive effect of increasing the number of deliberative starts will easily

offset the negative effect of reduced automatic starts due to failed attempts. However,

if depletion effects are too strong, as in case (a), the direct disutility of failure is too

large and this offsetting effect will never materialize. On the other hand, if the effects

of depletion are small enough, as in case (b), increasing the share of deliberate starts

will always pay off.

Since there are at most two personal optima, efficiency becomes a matter of pair-

wise comparison. We conclude that, depending on personal and situational factors (the

strength of the temptation, the personal disutility of failure, the background automatic-

ity, and the depletion associated to the task), either maximum exercise of willpower or

full automatization of behavior will be efficient. However, the DM might well be trapped

in the inefficient personal optimum. The following theorem spells out the circumstances

under each personal optimum is efficient.

Theorem 2. Let λ + g < 1
1+d

. If the probability of automatic decisions at t = 1, ∆,

is constrained by ∆ ≥ ∆0 > 0 then there exist g, g, g∗ with 0 < g < g∗ < g < 1, and

continuous functions ∆(g), ∆′(g) with ∆′(g) = ∆(g) = 1, 0 ≤ ∆′(g) < ∆(g) on g ∈]g, g[,
∆′(g∗) = 0, and ∆(g) = 0, such that exactly one of the following cases occur:

(I) Efficient Automaticity. Full automaticity (∆ = 1) is the only personal optimum

and also efficient, if and only if one of the following possibilities occur:

(Ia) High Depletion: g ≥ g;

(Ib) High Background Automaticity: ∆0 ≥ ∆(g) (and g < g < g).

(II) Efficient Self-Control. Maximum Self-Control (∆ = ∆0) is the only personal

optimum and also efficient, if and only if g ≤ g (Low Depletion);

(III) Self-Control Failure. Full automaticity is a personal inefficient optimum (with

maximum control being the efficient optimum) if and only if g < g < g∗ (moder-

ately low depletion) and ∆0 < ∆′(g) (low background automaticity).

(IV) Excessive Self-Control. Maximum Self-Control is a personal inefficient opti-

mum (with full automaticity being the efficient optimum) if and only if ∆′(g) <

∆0 < ∆(g) (moderate background automaticity) (and g < g < g). In case g ≥ g∗,

then ∆′(g) = 0 and the condition ∆′(g) < ∆0 is void.
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(V) In the knife-edge case with ∆0 = ∆′(g) and g < g < g∗, both maximum self-control

and full automaticity are personal efficient optima.

The different cases in the last theorem are qualitatively illustrated in Figure 2. We

can summarize the classification in words as follows. First, a task causing next to no

depletion (Case II) does not pose a problem (since you know you can trust yourself in

the future) and will efficiently be undertaken under maximum control. The latter kind

of tasks will typically not be perceived as self-control problems at all.

Second, if a task causes a high depletion (but not so high that the equilibrium

becomes of the shirking type), then it is optimal to automatize the associated decisions

as much as possible. Note that this is different from the reasoning behind a Shirking

DPE. In the situation described in case Ia, the controlled process at t = 1 will still find

it optimal to start, given that this process is required to make the decisions. However,

the DM (viewed as a planner) would have preferred that this process does not make the

decision at all. The reason is that, for the controlled process, the costs of depletion are

sunk. Ex ante, however, it would have been preferable to avoid them.

For intermediate depletion values, the outcome depends on the background auto-

maticity rate. If that rate is high, then in practice a full-control personal optimum

becomes unattainable (independently of whether it would have been efficient or not),

and hence again decision makers efficiently rely on full automaticity (case Ib). For in-

stance, if you want to get rid of an habitual behavior, but that behavior happens to be

aligned with your inborn (or childhood-learned) reflexes, you will find that consciously

fighting it is next to impossible.

Trouble arises systematically for intermediate depletion values and moderate or low

background automaticity rates, for in this case there are always two personal optima but

only one of them (except in knife-edge cases) is efficient. If background automaticity is

relatively low (case III), we reach a situation with which many decision makers frequently

identify. In this case, although exercising maximum self-control would be efficient, there

exist personal optima with full automaticity. In this case, the decision-maker is caught

in a trap. Although it might be clear that exercising full self-control would be beneficial,

the road to heaven is paved with very slippery stones, for, since the inefficient personal

optimum is a local maximum, any small increase in self-control will lead to a decrease in

utility. Hence, slowly increasing your exercised self-control will not lead to immediate

rewards; quite the opposite.

This situation, with moderate depletion and low background automaticity, corre-

sponds to the quintessential self-control problem where people fail to exercise willpower

when they should. The insight of the model presented here is that decision-makers might

still be at a personal optimum, where small increases in the exercise of willpower are

counterproductive. Hence, we are led to the conclusion that the most promising course
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of action is a radical shift, which typically will fail in the absence of external help, e.g. in

the form of a commitment mechanism or psychological interventions as those described

in the introduction.

The second problematic situation is an “excessive self-control trap” (case IV). If

the background automaticity is relatively high but not extreme, full automaticity is

efficient, but decision makers may be caught in personal optima with maximum exercise

of willpower. Ultimately, this is inefficient because those attempts remain relatively

unsuccessful compared with what could be achieved under full automaticity. Decision

makers exercise too much willpower, constantly trying to complete a task or bring a

certain habitual behavior in line, more or less successfully. Slightly lowering his or

her efforts is counterproductive. The irony is that spontaneous, effortless, unplanned

behavior would actually result in an improvement in this case. Further, it stands to

reason that this phenomenon will typically not be fully recognized, since, after all, the

decision maker seems to be doing his or her best.

It is conceivable that clinically overweight people, or people exhibiting mild forms of

compulsive behavior, might fall in this case. In both examples, the behavior in question

is likely to be relatively automatized (a moderately high, probably learned background

automaticity rate) and the depletion associated to every act of willpower is moder-

ate. Although addiction problems are most certainly not merely willpower problems

(Bechara, Noel, and Crone, 2006), this might also be the case some non-compulsive

smokers fall in, hence yielding an explanation why unplanned smoke-quitting attempts

are twice as likely to be successful as planned ones (Ferguson, Shiffman, Gitchell, Sem-

bower, and West, 2009; West and Sohal, 2006). Indeed, it appears that each year more

smokers quit smoking unassisted (“cold turkey”, i.e., simply stop overnight; Chapman

and MacKenzie, 2010) than by all assisted methods combined. In terms of the model,

this might correspond to smokers previously caught in the excessive self-control trap

(since large numbers of smokers report wanting to give up smoking) and suddenly find-

ing out that there is a minimum-resistance path to accomplish their objectives.

This last observation, which is admittedly speculative, points to a possible asymme-

try in the concept of personal evolution introduced in this paper. We have identified

personal evolution with the gradual adjustment of a self-control parameter, following

the direction of increased payoffs. It might, however, be reasonable to postulate that

“jumps” in the direction of reduced self-control are easier than those in the opposite

direction. This might be an additional explanation why some of the most successful

psychological interventions in the realm of self-control operate by automatizing behav-

ior, rather than calling for the exercise of additional willpower.
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FIGURE 2: Illustration of the cases in Theorem 2.

5. Evolutionary Optimality and Automatic

Rationality

Suppose we considered a more biological concept of evolutionary stability. In an

implicit evolutionary approach, as in the literature on the evolution of preferences (e.g.

Samuelson, 2004; Netzer, 2009), “nature” acts as a shortcut for the evolutionary process,

choosing certain parameters in order to maximize appropriate evolutionary criteria.11

Let us start with a simple consideration. A first, näıve criterion would be to max-

imize the probability of an automatic start, z. This objective is often implicitly or

explicitly cited in psychology as a beneficial effect of various forms of interventions. The

intuition for why a large proportion of automatic starts is desirable is simple. Since an

automatic start does not consume self-control resources, it would be optimal to start

automatically as often as possible, hence economizing self-control resources to avert

possible breakdowns of will later on.

11For instance, Netzer (2009) has offered an evolutionary rationale for the existence of different utility
functions for short-run and long-run decisions.
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Since automatic starts are dynamically “trained” by a reinforcement process, intu-

itively every controlled start, which hence leads to a decision with limited self-control

at t = 2, will reduce the probability of an automatic start. Thus, the probability of an

automatic start will be maximal at the unappealing shirking equilibria. The following

result formalizes this intuition.

Proposition 1. Fix the temptation probability λ. Suppose nature’s objective is to max-

imize the probability of an automatic start, z. If either

(a) ∆ and g(∆) are also fixed and nature selects the disutility of failure only, d;

(b) or if nature is able to select any values of, d > 0, ∆ > 0, and g(∆) ∈]0, 1− λ[,

then the optimal values are such that a Shirking equilibrium with x = 0 and z = 1 − λ

results.

Fixing the temptation parameter λ is the most reasonable approach in this situation.

This parameter measures the extent of the basic decision problem we are modeling, which

results e.g. due to nature’s tinkering with an immediate consumption bias due to other,

more basic survival needs (e.g. the need to store fat for a long winter in a hunter-gatherer

society). The remaining parameters have more involved interpretations: ∆ is related to

the availability of self-control when faced with long-term decisions, g(∆) is the reduction

in self-control due to a previous exercise thereof, and d is the perceived disutility of

failure. Obviously, nature would not be able to set g(∆) arbitrarily close to zero due

to basic neurophysiological constraints. However, the last result holds independently of

such additional constraints as long as g(∆) > 0.12

Proposition 1 shows that the mere automatization of behavior cannot have been

an evolutionary criterion for the human mind. If we consider Willpower equilibria,

Lemma 1 shows that such an evolutionary approach for the automaticity rate ∆ is not

appropriate, since convexity of Π1 implies that duality, i.e. ∆ ∈ ]0, 1[ cannot be optimal

in this sense. This is, however, not surprising. The reasons for evolutionary optimality

of dual processes have to be looked for elsewhere. The main evolutionary advantage

of a dual-process decision maker is in decision speed, an aspect totally ignored here.

Automatic reactions are far quicker than controlled ones. They allowed our ancestors

to run first (hence avoiding being eaten) and think later. If you are in the middle of the

street and suddenly discover a truck is about to hit you, it is not a good idea to stop

and think carefully whether jumping right or left is better. Just jump. Following the

evolution parable, nature has probably found it optimal to endow us with a background

12Indeed, an all-powerful nature capable of “designing humans” who experience no depletion effects
would find that setting g(∆) = 0 yields z∗(1) = z∗(0), i.e. Willpower equilibria would deliver the same
probability of automatic start as Shirking equilibria.
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automaticity rate ∆0 > 0 to be applied over a variety of different tasks. Once we

particularize to a specific task, though, that background automaticity becomes an added

constraint and we enter the realm of personal evolution.

Two comments are in order. First, in spite of these considerations, the “automati-

zation of rationality” remains an attractive goal, and some psychological interventions

as implementation intentions (Gollwitzer, 1999) have been designed to pursue it. The

interpretation of such interventions, however, is not that they aim to increase the prob-

ability of starting automatically, z, for its own sake. In our terms, their aim is, given

a DPE (z, x), to introduce a new automatic process which ignores the outcome of rein-

forcement and follows the decision that the controlled process would have taken without

spending self-control resources. Hence, the objective of such interventions is to increase

z by changing the nature of the automatic process involved, moving it away from pure

reinforcement, and effectively producing more “rational” decisions with a minimum of

cognitive costs.

Second, Proposition 1 does not mean that the model at hand or related ones could not

be used to tackle questions of evolutionary optimality. In particular, the background rate

∆0 and the disutility of failure d can only be understood through such an approach.13

However, such an approach would be better undertaken in a setting where different tasks

appear at random, leading e.g. to different values of the temptation parameter. This

can be done extending our basic game to one of imperfect information. This task is left

for future research.

6. Conclusion

This paper presents a new modelization of the basic idea that decisions are the

result of the interaction of different processes within a decision maker. Drawing on

dual-process theories from psychology, we propose to analyze decisions through Dual-

Process Equilibria, where processes of different nature are modeled in different ways.

Controlled processes are modeled as rational players from classical game theory. Auto-

matic processes are modeled through techniques and ideas from the literature of learning

in games. In the model presented here, and following again insights from psychology,

we have identified them with reinforcement processes. The interaction among different

processes is captured through an extensive-form formulation analogous to that employed

for models with multiple selves.

13Evidence from neuroscience, incorporated e.g. in prospect theory and reflected in phenomena like
loss aversion, shows that the human brain is hardwired to experience a greater disutility from negative
outcomes than the corresponding utility from positive outcomes of equivalent magnitude. In other
words, even if the objective (in evolutionary terms) utility of failure is equal in magnitude but opposite
in sign to the utility of success, nature seems to have found optimal to set the subjective magnitude of
failure’s disutility above that of success. This would be an argument for d > 1 in the current setting.
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The first finding is that, if depletion effects are too strong or the disutility of fail-

ure is too high, Shirking equilibria appear where decision makers rationally decide not

to get started at all. However, psychological interventions might improve welfare by

automatizing behavior, i.e. avoiding excessive deliberation.

Willpower equilibria involve controlled processes which start rationally but cause

depletion and effortless automatic processes which only start with a certain probability.

Inhibiting automatic reactions in favor of controlled ones correspond to acts of willpower.

In this setting, the idea of personal evolution helps explain individual heterogeneity and

shows that suboptimal modes of behavior, as e.g. self-control failures, can correspond

to cognitive traps.

We identify two such traps. The first one correspond to the classical idea of self-

control failure, where the individual relies excessively on automatic processes. However,

this situation is a local maximum and any attempt to gradually reduce this dependence

results in a utility loss, even though a maximum exercise of willpower would be efficient.

The second trap is more surprising. If depletion effects and/or background au-

tomaticity are moderate but not too low, the exact opposite might happen. Deci-

sion makers might then be caught in a local optimum involving maximum exercise of

willpower, which however leads to overall results which are worse than those which could

be obtained by relying on automatic (or automatized) behavior only. Hence, decision

makers who appear to be doing their best, without however satisfactorily reaching their

objectives, might be well advised to radically rethink their approach.

A. Appendix: Proofs

PROOF OF LEMMA 1. For notational convenience, let R∆ = (1−∆λ)2−4∆(1−∆)g.

R∆ is the discriminant of the polynomial we analyzed to compute z∗ (recall (6)), for

x = 1. As we argued in the main text, R∆ > 0.

To see that Π1 is a strictly convex function of ∆, we compute

∂Π1

∂∆
= (1− λ(1 + d))

[

−1

2

[

λ+
(1−∆λ)λ+ 2(1− 2∆)g√

R∆

]

+

(

g(1 + d)

(1− λ(1 + d))

)]

(A1)

∂2Π1

∂∆2
= −1

2

(1− λ(1 + d))

R∆

[

(

−λ2 − 4g
)

√

R∆ +
((1−∆λ)λ+ 2(1− 2∆)g)2√

R∆

]

22



Rcall that, by (2), λ(1 + d) < 1. Then,

∂2Π1

∂∆2
T 0 ⇐⇒

(

−λ2 − 4g
)

√

R∆ +
((1−∆λ)λ+ 2(1− 2∆)g)2√

R∆

S 0 ⇐⇒

((1−∆λ)λ+ 2(1 − 2∆)g)2 S
(

λ2 + 4g
)

R∆ ⇐⇒

(1− 2∆)2g2 + (1−∆λ)λ(1 − 2∆)g S −λ2∆(1−∆)g + g(1−∆λ)2 − 4∆(1−∆)g2

⇐⇒ g S 1− λ

Since g < 1− λ, we conclude that
∂2Π1

∂∆2
> 0 for all ∆, and the claim holds.

PROOF OF LEMMA 2: First note that if ∂Π1

∂∆

∣

∣

∣

∆=0
≥ 0, then Π1 is strictly increasing

in ∆ ny Lemma 1 and reaches a maximum at ∆ = 1. This happens if and only if

(evaluating (A1) at ∆ = 0)

∂Π1

∂∆

∣

∣

∣

∣

∆=0

≥ 0 ⇐⇒ λ+ g ≤
(

g(1 + d)

(1− λ(1 + d))

)

⇐⇒ g ≥ λ
1− λ(1 + d)

d+ λ(1 + d)
=: g

Note that g ∈]0, 1[.
If ∂Π1

∂∆

∣

∣

∣

∆=1
≤ 0, then Π1 is strictly decreasing in ∆ and reaches a maximum at

∆ = 0. This happens if and only if (evaluating (A1) at ∆ = 1)

∂Π1

∂∆

∣

∣

∣

∣

∆=1

≤ 0 ⇐⇒ λ+
(1− λ)λ− 2g

(1− λ)
≥

(

2g(1 + d)

(1− λ(1 + d))

)

⇐⇒

(1− λ(1 + d))(λ(1 − λ)− g) ≥ g(1 − λ)(1 + d) ⇐⇒
(1− λ(1 + d))λ(1 − λ) ≥ g [(1− λ)(1 + d) + (1− λ(1 + d))] = g [1 + (1− 2λ)(1 + d)]

⇐⇒ g ≤ λ(1− λ)
1− λ(1 + d)

1 + (1− 2λ)(1 + d)
=: g

Notice that λ < 1
1+d

implies that the denominator in the last fraction is always strictly

positive.

It can be shown that g < 1− λ. This holds if and only if

λ(1− λ(1 + d)) < 1 + (1− 2λ)(1 + d) ⇐⇒ λ < 1 + (1− λ)2(1 + d)

⇐⇒ 1 + (1− λ)(1 + d) > 0

which proves the claim. Notice that g < g follows by convexity of Π1 (Lemma 1), but it

also can be easily checked directly. If g < g < g, then there exists an interior minimum,

but still there is a corner solution.
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PROOF OF THEOREM 2. The proof relies on Lemmata 1 and 2. First, we claim that

there exists g∗ such that Π1|∆=0 ≤ Π1|∆=1 ⇐⇒ g ≥ g∗.

To see this, note that since Π1 is strictly convex by Lemma 1, the function Π1 has

either a global maximum at ∆ = 0, or a global maximum at ∆ = 1. Whether the first

or the second case occur depends only on the following inequality (recall (12)):

Π1|∆=0 ≤ Π1|∆=1 ⇐⇒ g(1 + d)

(1− λ(1 + d))
≥ λ ⇐⇒ g ≥ λ

[

1

1 + d
− λ

]

=: g∗

which proves the claim. Note that if g = g∗ (hence there are two global maxima), by

Lemma 2 we must be in the case g < g < g, hence g < g∗ < g

We now turn to a case-by-case analysis, systematically following the possible values

of the parameters.

Case 1. If g ≥ g, then utility is maximized at full automaticity, ∆ = 1; further,

utility is strictly increasing in ∆ by Lemma 2. Hence full automaticity is the only

personal optimum, which is also efficient. This is case (Ia) in the statement.

Case 2. If g ≤ g, then utility would be maximized at full control, ∆ = 0; further,

utility is strictly decreasing in ∆ by Lemma 2. Hence maximum control, ∆ = ∆0, is the

only personal optimum, which is also efficient. This is Case (II) in the statement.

Case 3. If g∗ ≤ g < g, then there is an interior minimum at ∆ = ∆(g) by Lemma 2

and ∆ = 1 is the global maximum by the claim above.14 Then, we have to distinguish

two subcases.

Case 3a. If ∆0 ≥ ∆(g), then utility is strictly increasing at ∆0 and again full

automaticity is the only personal optimum,15 which is also efficient. This belongs to

Case (Ib).

Case 3b. If ∆0 < ∆(g), then utility is strictly decreasing at ∆0. It follows that

maximum control, ∆ = ∆0 is a personal optimum but full automaticity is efficient. This

belongs to Case (IV).

Case 4. If g < g < g∗, then there is an interior minimum at ∆ = ∆(g) by Lemma

2 and ∆ = 0 is the global maximum by the claim above. It follows that there exists

∆′(g) ∈]0,∆(g)[ such that

Π1|∆=∆0
T Π1|∆=1 ⇐⇒ ∆0 S ∆′(g)

Then, we have to distinguish several subcases.

Case 4a. If ∆0 ≥ ∆(g), then utility is strictly increasing at ∆0 and again full

automaticity is the only personal optimum, which is also efficient. This belongs again

to Case (Ib).

14If g = g∗, there are two global maxima at ∆ = 0, 1, but the first is irrelevant since ∆0 > 0.
15In the corner case ∆0 = ∆(g), utility is also strictly increasing given the constraint ∆ ≥ ∆0.
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Case 4b. If ∆′(g) < ∆0 < ∆(g), then utility is strictly decreasing at ∆0; further,

the utility at ∆0 is strictly smaller than that at ∆ = 1. Hence, full automaticity is

the efficient optimum, but maximum control is an inefficient personal optimum. This

belongs again to Case (IV).

Case 4c. If ∆0 = ∆′(g), then utility is strictly decreasing at ∆0; further, the utility

at ∆0 is equal to that at ∆ = 1. This is the knife-edge Case (V).

Case 4d. If ∆0 < ∆′(g), then utility is strictly decreasing at ∆0, and the utility

at ∆0 is strictly larger than that at ∆ = 1. Hence, maximum control is the efficient

optimum, but full automaticity is an inefficient personal optimum. This is Case (III).

Continuity of ∆(·) and the facts that ∆(g) = 1 and ∆(g) = 0 follow from the

definition of ∆(·) and Lemma 2. Continuity of ∆′(g) and the facts that ∆′(g) = 1,

0 ≤ ∆′(g) < ∆(g) on g ∈]g, g[, and ∆′(g∗) = 0 follow from definition of ∆′(·).

PROOF OF PROPOSITION 1. (a) Notice that d does not appear in any equilibrium

computation. It merely determines which type of equilibrium does the model have,

Hence, selecting d amounts to selecting the equilibrium type. Given an equilibrium, the

relationship between the probability of a controlled start, x, and that of an automatic

start, z, is given by equation (6). A simple computation shows that

2∆
dz∗(x)

dx
= (1−∆)

[

−1 +
(1−∆)x+∆(1− λ)− 2∆g(∆)

√

((1−∆)x+∆(1− λ))2 − 4x∆(1 −∆)g(∆)

]

(A2)

Consider the fraction appearing in (A2). The square of this fraction is strictly smaller

than one (and hence so is its absolute value) if and only if

(((1−∆)x+∆(1− λ))− 2∆g(∆))2 < ((1−∆)x+∆(1− λ))2 − 4x∆(1−∆)g(∆)

⇐⇒ 4∆2g(∆)2 − 4((1 −∆)x+∆(1− λ))∆g(∆) < −4x∆(1−∆)g(∆)

⇐⇒ g(∆) < 1− λ

and this last condition is always fulfilled (recall that 1− λ− g(∆) > 0 is the probability

of the controlled process determining the decision at t = 2). Hence, it follows from (A2)

that z∗(x) is strictly decreasing and the conclusion follows.

(b) For each combination of the parameters ∆, g(∆), and d, by Theorem 1 three

situations might result. If λ+ g(∆) > 1
1+d

, there is a unique DPE of the Shirking type

with z = 1 − λ. If λ + g(∆) < 1
1+d

, there is a unique DPE of the Willpower type with

z given by (9). If λ+ g(∆) = 1
1+d

, there is a continuum of equilibria with x ∈ [0, 1] and

z(x) given by (6).

Consider a situation in the second case and let z∗(1) denote the associated probability

of an automatic start. Increasing d leaving other parameters constant (for example) leads
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to an outcome in the first case, with a probability of automatic start z∗(0) = 1−λ. But

then, using (9),

z∗(0) > z∗(1) ⇐⇒

1− λ > 1 +
1

2∆

[

−(1 + ∆λ) +
√

(1−∆λ)2 − 4∆(1−∆)g(∆)
]

⇐⇒

1−∆λ >
√

(1−∆λ)2 − 4∆(1 −∆)g(∆) ⇐⇒
0 < 4∆(1−∆)g(∆)

which always holds independently of ∆, g(∆), and d. Hence, all Willpower equilibria

have smaller z than Shirking equilibria.

Suppose now that nature sets ∆, g(∆), and d such that there is a continuum of

mixed-strategy equilibria. The computations in part (a) show that the equilibrium

which maximizes z is the one with complete shirking, x = 0, and the probability of

automatic start is identical to that of shirking equilibria. This completes the proof.
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