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Abstract

We develop the theory of demand for commodities and assets facing incompletely insurable uncer-

tainty. First, a Slutsky matrix decomposes into substitution and income effects the derivative of demand

with respect to prices and yield structure. Next, we identify the Slutsky matrix’s properties.

The Slutsky matrix can be perturbed arbitrarily, subject only to preserving these properties, by

perturbing the underlying utility’s Hessian, while fixing point demand and marginal utility. The key

result identifies these Slutsky perturbations. For arguing genericity, it is an alternative to Citanna, Kajii

and Villanacci’s (1998) first-order conditions approach.

The latter results extend to incomplete markets Geanakoplos and Polemarchakis (1980), who intro-

duced Slutsky perturbations.

Keywords: demand theory, incomplete markets, Slutsky

JEL Classification: C63, D11, G11

∗I wish to thank Professors Donald Brown, John Geanakoplos, and Stephen Morris for their feedback and support, the Cowles

Foundation for a Carl A. Anderson fellowship, and the participants in the 12th European Workshop on General Equilibrium

Theory, on May 31, 2003. All shortcomings are mine. E-mail: Sergio_Turner@brown.edu. Telephone: 1-401-863-3690.

0



1 Introduction

We develop the theory of demand for commodities and assets facing incompletely insurable uncertainty,

given commodity prices, arbitrage-free yield structures, and contingent incomes.

First, a Slutsky matrix decomposes into substitution and income effects the derivative of demand with

respect to prices and yield structure, extending Fischer (1972) to multiple commodities.

Next, we identify the Slutsky matrix’s properties.

The Slutsky matrix can be perturbed arbitrarily, subject only to preserving these properties, by perturb-

ing the underlying utility’s Hessian, while fixing point demand and marginal utility.

The key result identifies these Slutsky perturbations, via linear constraints defined by prices and the yield

structure (theorem 2). We also spell out the identification after omission of markets due to Walras’ law and

price normalization.

The latter two results extend to incomplete markets Geanakoplos and Polemarchakis (1980), who intro-

duced Slutsky perturbations.

Finally, we include an algorithm that speeds up the computation of Slutsky matrices.

For arguing genericity, Slutsky perturbations are an alternative to Citanna, Kajii and Villanacci’s (1998)

first-order conditions approach. Geanakoplos and Polemarchakis (1986) were the first to apply Slutsky

perturbations to the study of generic Pareto improvements with incomplete markets. Since they allowed

the central planner to decide the agents’ asset portfolios, they did not need to go beyond perturbations to

the Slutsky matrices of demand in spot markets. To show why weaker interventions may improve welfare,

such as anonymous taxes and changes in asset payoffs, it became necessary to take into account how agents’

portfolio adjustments cause a further price adjustment. Naturally, this required perturbing demand in asset

markets as well, not just spot markets. The lack of an extension of Slutsky perturbations to incomplete

markets remained an obstacle for over a decade1, until a breakthrough by Citanna, Kajii, and Villanacci

(1998), who circumvented it by analyzing the agents’ first order conditions. Researchers have extended the

theory of generic Pareto improvements with incomplete markets to many policies by applying this first-order
1The exception is Elul (1995).
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approach; see Cass and Citanna (1998), Citanna, Polemarchakis, and Tirelli (2003), and Bisin et al. (2001).

We extend Slutsky perturbations to incomplete markets, to recover the advantages of the original demand-

based approach to generic improvements. First, analyzing generic welfare requires drastically fewer equations

when exploiting the envelope formula, instead of the (more numerous) first-order conditions and budget

identities generating it. Perturbations are to the objects in the envelope formula; first order conditions and

budget identities completely vanish. Genericity arguments need only invoke the identification of Slutsky

perturbations, rather than literally perturb the utilities’ Hessians—utilities no longer explicitly appear in the

paper. Second, computing the welfare impact of interventions requires knowledge by the policymaker of

the derivative of aggregate, instead of individual, demand. In the first-order approach, he needs to know

the derivative of every individual’s demand, i.e. the second derivative of every individual’s utility. Third,

explanations become more intuitive with the familiar language of demand theory than with the language of

submersions.

The paper continues as follows. Section 2 defines demand for commodities and assets in incomplete

markets, and lists the basic properties of neoclassical demand. Section 3 defines the Slutsky matrix. Section

4 focuses on a fixed demand, presenting the properties every Slutsky matrix must satisfy. It also decomposes

the derivative of demand into income and substitution effects, records the envelope property, and speeds up

the computation of the Slutsky matrix by a recursion. Section 5 focuses on generic demand, defining Slutsky

perturbations, identifying them by linear constraints, and discussing the implications of Walras’ law and

price normalization. Section 6 contains the proofs.

2 Demand

The household knows the present state of nature, denoted 0, but is uncertain as to which among s = 1, ..., S

nature will reveal in period 1. It consumes commodities c = 1, ..., C in the present and future, and invests

in assets j = 1, ..., J in the present only. Markets assign to the household an income w ∈ RS+1++ , to

commodity c a price p·c ∈ RS+1++ , and to asset j a yield W j ∈ RS+1. We call (pc)C1 = p = (ps) the
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spot prices and (W j)J1 =W = (Ws) the yield structure. The set of budget variables

b ≡ (p,W,w) ∈ B ≡ RC∗++ ×RJ×S+1 ×RS+1++

has some nonempty, open B0 ⊂ B as a distinguished subset, C∗ = C(S + 1).

Demand for commodities and assets is a function d = (x, y) : B0 → RC
∗

+ × RJ . It satisfies Walras’

relation if it makes the following an identity throughout B0:

p0sxs −W 0
sy = ws

Alternatively, [p]0 x−W 0y = w with the useful notation

[p] ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

·

ps−1 0

ps

0 ps+1

·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C∗×S+1

The interpretation is that, faced with spot prices p and yield structure W , the household modifies

its income w to w +W 0y(p,W,w) by investing in portfolio y(p,W,w), ultimately financing its state

contingent consumption x(p,W,w). Here, a yield structure specifies for each asset j that a buyer is to

collect, a seller to deliver, a value W j
s in state s, and a portfolio y ∈ RJ specifies how much of each asset

to buy (yj ≥ 0) or sell (yj ≤ 0), hence yielding W 0y. For a different emphasis, we may view the assets as

having present price q ≡ −W0 and future yield W1 ≡ (Ws)s>0.

2.1 Neoclassical demand

For b = (p,W,w) ∈ B, the financeable bundles are

X(b) = {x ∈ RC∗+ | [p]0 x− w ∈ spanW 0}

Each x ∈ X(b) implies a financing y, [p]0 x− w = W 0y, which is unique if W has linearly independent

rows: y = y(x, b). Given a utility function u : RC∗+ → R and b ∈ B0, suppose the problem

max
x∈X(b)

u(x)
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has a unique solution x(b). Then neoclassical demand at b ∈ B0 is defined to be d(b) ≡ (x(b), y(x(b), b)).

The following remark hinges on X(b) depending on W 0 only through its span, and on w only through

the component that is orthogonal to spanW 0.

Remark 1 Suppose B0 is X-closed: b ∈ B0, b ∈ B,X(b) = X(b0)⇒ b0 ∈ B0.

• Walras’ relation [p]
0
x(p,W,w)−W 0y(p,W,w) = w

• Revealed yield preference If ∆ ∈ spanW 0 with w +∆À 0, then

i) x(p,W,w +∆) = x(p,W,w)

ii) λ(p,W,w +∆) = λ(p,W,w)

where Du0(x(p,W,w)) = [p]λ, should it have a solution, uniquely defines λ(p,W,w) ∈ RS+1.

• Homogeneity x(p,W,w) = x(p, W̃ , w) if spanW 0 = spanW̃ 0.

We now recall a subset B0 ⊂ B for which x(b) exists, is unique and interior. Existence obtains if

utility is continuous and X(b) compact; it is well known that X(p,W,w) is compact if and only if W

is arbitrage-free, Wλ = 0 for some λ ∈ RS+1++ . Uniqueness and interiority obtain if utility is strictly

quasiconcave in RC∗++ and boundary averse, u(x) > u(x̃) whenever x ∈ RC∗++, x̃ ∈ ∂RC
∗

+ , thanks to the

convexity of X(b). In sum, neoclassical demand d = (x, y) : B0 → RC∗++ ×RJ is defined on

B0 ≡ {(p,W,w) ∈ B |W has linearly independent rows, is arbitrage-free}

given the hypotheses on utility of continuity, strict quasiconcavity in RC∗++, and boundary aversion.

3 Slutsky matrices

Assumption 1 Debreu’s setting for u:

i u is continuous, u is Cr≥2 in RC∗++

ii Du(x)À 0 for xÀ 0

iii D2u(x) is negative definite on Du(x)⊥ for xÀ 0

iv u(x) > sup∂RC∗
+
u for xÀ 0
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Debreu’s special setting means the above strengthened to ”D2u(x) is negative definite for xÀ 0.”

All three hypotheses assumed to define interior neoclassical demand are present, save for strict quasi-

concavity in RC
∗

++, which is implied by the first and third ones in Debreu’s setting.

Proposition 1 Debreu’s setting implies d = (x, y) : B0 → RC∗++ ×RJ is Cr−1.

Proof. By definition neoclassical demand is the solution to

max u(x) subject to x ≥ 0, [p]0 x−W 0y = w (max)

which exists, is unique, and interior. For now suppose (x, y) ∈ RC∗++×RJ is neoclassical demand at b ∈ B0

iff there is λ ∈ RS+1++ (necessarily unique) such that

F (x, y,λ; b) ≡

⎡⎢⎢⎢⎢⎣
Du0 − [p]λ

Wλ

− [p]0 x+W 0y + w

⎤⎥⎥⎥⎥⎦ = 0 (F)

Then (x, y,λ) is a Cr−1 implicit function of b ∈ B02, if H ≡ Dx,y,λF is surjective:

H =

⎡⎢⎢⎢⎢⎣
D2u 0 −[p]

0 0 W

−[p]0 W 0 0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎣ M −ρ

−ρ0 0

⎤⎥⎦ where M ≡

⎡⎢⎣ D2u 0

0 0

⎤⎥⎦ , ρ ≡
⎡⎢⎣ [p]

−W

⎤⎥⎦ (H)

Invertibility follows easily from (F), Debreu’s third condition, and W 0s linearly independent rows.3

We verify the above equivalence for (x, y) ∈ RC∗++ × RJ . If it solves (max), there is λ ∈ RS+1+ such

that (F), since the constraint qualification holds with linear constraints. (Independently of concavity!) So

λ ∈ RS+1++ by Debreu’s second condition. Conversely, if (F) with λÀ 0 then (x, y) solves (max):

If it did not there would be x̃, ỹ with u(x̃) > u(x) (so x̃ À 0 by boundary aversion and x À 0)

and [p]0 x̃ −W 0ỹ = w. By the strict quasiconcavity in RC∗++ u(x̃(t)) > u(x) for all t ∈ (0, 1], where
2B0 is open in B with the product topology. For suppose W has linearly independent rows and Wλ = 0 ∈ RJ ,λ ∈ Rs+1++ .

Then some open neighborhood O of W preserves the linear independence and admits, by the implicit function theorem, a

smooth function λ : O→ Rs+1++ solving W̃λ(W̃ ) = 0.
3The letter ”H” alludes to the Hessian D2

x,y,λL of L = u(x)− λ0([p]0 x−W 0y −w).
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x̃(t) ≡ tx̃ + (1 − t)x, while still x̃(t) À 0, [p]0 x̃(t) −W 0ỹ(t) = w with ỹ(t) obviously defined. Writing

∆t ≡ x̃(t)− x in a second order Taylor expansion about t = 0,

u(x̃(t))− u(x) = Du(x)∆t +
1

2
∆0tD

2u(x)∆t + o(k∆tk2)

The orthogonality Du(x)∆t = λ0[p]0∆t = λ0W 0(ỹ(t)− y) = 0 implies ∆0tD
2u(x)∆t < 0 by assumption on

D2u, so u(x̃(t))− u(x) < 0 for all t ≈ 0, a contradiction.

Since H is symmetric, so is H−1 :

H−1 =

⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦, the Slutsky matrices (Slutsky)

To keep track, S, c are symmetric of dimensions C∗ + J, S + 1, and m is C∗ + J × S + 1. We view ρ

as playing the role of prices, since ρ = p0 = p if J = S = 0 (sole budget constraint).

Having defined Slutsky matrices, we develop neoclassical demand theory in two parts. First is demand

for a fixed utility: the Slutsky decomposition, the properties of Slutsky matrices, their computation, and the

envelope property. Next is demand for a generic utility: identifying the range of perturbations of Slutsky

matrices that arise from perturbations of the Hessian of utility.

4 Fixed neoclassical demand

4.1 Slutsky decomposition

We decompose demand into substitution and income effects, generalizing Gottardi and Hens (1999) to

multiple commodities and to including the derivative with respect to asset payoffs. Differentiating the

identity F (d(b),λ(b); b) ≡ 0 with respect to b = (p,W,w),

Dp,W,w

⎡⎢⎣ d

λ

⎤⎥⎦ = −H−1 ·Dp,W,wF = −
⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦
⎡⎢⎢⎢⎢⎣
−L 0 0

0 Λ 0

−[x]0 Ψ I

⎤⎥⎥⎥⎥⎦

6



where

L ≡

⎡⎢⎢⎢⎢⎣
· 0

λsIC

0 ·

⎤⎥⎥⎥⎥⎦
C∗×C∗

Λ ≡ [λ0IJ : ... : λsIJ ]J×J(S+1) Ψ ≡

⎡⎢⎢⎢⎢⎣
y0 0

·

0 y0

⎤⎥⎥⎥⎥⎦
S+1×(S+1)J

In differentiating, we vectorized p,W as⎡⎢⎢⎢⎢⎣
·

ps

·

⎤⎥⎥⎥⎥⎦
C(S+1)

⎡⎢⎢⎢⎢⎣
·

Ws

·

⎤⎥⎥⎥⎥⎦
J(S+1)

Multiplying this out,

Dpd = S

⎡⎢⎣ L

0

⎤⎥⎦−m[x]0 DWd = −S

⎡⎢⎣ 0

Λ

⎤⎥⎦+mΨ with Dwd = m (decomposition)

so that m is the marginal propensity to demand; also, Dwλ = c.

Let us interpret the decomposition as substitution and income effects. The second summands are clearly

income effects: for Dpd, the value of demanding x is [x]0p, so a change in price of ṗ implies a change in

relative income of −[x]0ṗ, which implies a change in demand of −m[x]0ṗ; for DWd, the value of demanding

y is W 0y = ΨW, and likewise. The first summands are substitution effects in this sense. Suppose, given a

small change in p,W , that we compensate the household so it can just finance the (x, y) it is demanding.

Then its compensated income and demand would be w(p,W ) ≡ [p]0x−W 0y, dcom(p,W ) ≡ d(p,W,w(p,W )),

and the substitution effects be Dpdcom,DWdcom. Computing them,

Dpd
com = Dpd+Dwd[x]

0 = S

⎡⎢⎣ L

0

⎤⎥⎦ DWd
com = DWd−DwdΨ = −S

⎡⎢⎣ 0

Λ

⎤⎥⎦
using the chain rule, (decomposition), and Dwd = m. Hence the substitution effects are the first summands.

We paraphrase the decomposition to stress the parallel with the traditional one, and to obtain a convenient

version for general equilibrium analysis. It says about Dq = D−W0 that

Dqd = S

⎡⎢⎣ 0

λ0IJ

⎤⎥⎦−mΨ0 where Ψ0 =

⎡⎢⎣ y0

0

⎤⎥⎦
S+1×J
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Concatenating the expressions for Dpd,Dqd,

Dp,qd = SL+ −m[[x]0 : Ψ0] where L+ ≡

⎡⎢⎣ L 0

0 λ0IJ

⎤⎥⎦
That is,

Dp,qd = SL+ −md̃0 where d̃ ≡ [[x]0 : Ψ0]0 (GE)

The effect on demand of price changes splits into substitution and income effects, the latter being the product

of the marginal propensity to demand with demand itself. (The notation ”d̃” expresses that d, [[x]0 : Ψ0]0

contain the same information, differing only in its display.)

4.2 Envelope property

Indirect utility v : B0 → R, v(b) ≡ u(x(b)) is derived from demand; inversely, according to the envelope

property, neoclassical demand is derived from indirect utility:

Proposition 2 Indirect utility is Cr−1 in Debreu’s setting, and its gradient Dbv equals

Dpv = −λ0[x]0 DW v = λ0Ψ Dwv = λ0

Thus Dpsv = −λsx0s,DWsv = λsy
0.

Proof. v is Cr−1 since u, x are, in Debreu’s setting. By the chain rule and (F) Dbv = Du ·Dbx =

λ0[p]0 · [Dpx : DWx : Dwx] = ∗. Differentiating Walras’ relation [p]0x =W 0y + w with respect to

p : [p]0Dpx+ [x]
0 =W 0Dpy

W : [p]0DWx =W
0DW y +Ψ

w : [p]0Dwx =W
0Dwy + I

Inserting this and λ0W 0 = 0 from (F), ∗ = λ0[−[x] : Ψ : I].
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4.3 The Slutsky list of properties

What properties do the Slutsky matrices H−1 have? Convenient notations are

m = Dwd =

⎡⎢⎣ X

Y

⎤⎥⎦ with
XC∗×S+1

YJ×S+1

ρ ≡

⎡⎢⎣ [p]

−W

⎤⎥⎦
X,Y are the marginal propensities to demand commodities, assets. (H) suggests defining functions

H(M) ≡

⎡⎢⎣ M −ρ

−ρ0 0

⎤⎥⎦ M(D) ≡

⎡⎢⎣ D 0

0 0

⎤⎥⎦ and H̃(D) ≡ H(M(D)) (functions)

Of course, in (H) we have H = H̃(D) |D=D2u, where D ∈ RC
∗×C∗ . The purpose of H̃ is to study how the

Slutsky matrices H−1 depend on D2u.

Toward the properties of H−1, we take as given some µ ∈ RS+1 with Wµ = 0. In Debreu’s setting, it

corresponds to the µ = λ in (F); in Debreu’s special setting, to µ = 0. The point is that µ is unrelated

to the second derivative D = D2u.

Theorem 1 If D is negative definite on ([p]µ)⊥ and symmetric, then H̃(D) is invertible, with inverse

Smc ≡

⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦
for some S,m, c satisfying the

S ρ0S = 0, S is negative definite on ρ⊥, symmetric

m ρ0m = I XW 0 = 0

c cW 0 = 0, c is negative definite on kerX⊥ ∩ µ⊥, symmetric4

(Slutsky list)

Conversely, if (Slutsky list), then Smc is invertible, with inverse H̃(D), for some D that is negative

definite on ([p]µ)⊥ and symmetric.

We stress that the Slutsky list of properties is exhaustive, in that it recovers all properties of the one

object (D2u) defining the Slutsky matrices H−1 = H̃(D2u)−1, namely (iii) in Debreu’s setting. Any other

property of Slutsky matrices must follow from this list; for example, YW 0 = −I from ρ0m = I,XW 0 = 0.
4 It is easy to show that kerX⊥ ∩ µ⊥ =W⊥ ∩ µ⊥.
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Note that revealed yield preference is manifested infinitesimally in XW 0 = 0, cW 0 = 0, since this

results from differentiating (i,ii) in remark 1 with respect to ∆ ∈ spanW 0.

4.4 Computation of Slutsky matrices

We can compute Slutsky matrices H−1 faster by exploiting the symmetry and sparseness of H.

Express H−1 as

S =

⎡⎢⎣ A P

P 0 B

⎤⎥⎦ m =

⎡⎢⎣ X

Y

⎤⎥⎦ ⇒ H−1 =

⎡⎢⎢⎢⎢⎣
A P −X

P 0 B −Y

−X 0 −Y 0 −c

⎤⎥⎥⎥⎥⎦ (*)

To keep track, the square A,B, c are symmetric of dimensions C∗, J, S+1, and PC∗×J ,XC∗×S+1, YJ×S+1.

Algorithm 1 H−1 exists if D is negative definite, and is recursively computable if D is symmetric:

D−1

Φ ≡ [p]0D−1[p] auxiliary matrix

B = (WΦ−1W 0)−1

Y = −BWΦ−1 c = Φ−1 − Φ−1W 0BWΦ−1

P = −D−1[p]Y 0 X = D−1[p]c

A = (I −X[p]0)D−1

Computing D−1 is the most expensive step, which is cheaper with state separable utility,

u(x) = a(u0(x0), ..., uS(xS)) for some a, (us)s

because then D is block diagonal and its inverse too

D =

⎡⎢⎢⎢⎢⎣
D0 0

·

0 DS

⎤⎥⎥⎥⎥⎦ D−1 =

⎡⎢⎢⎢⎢⎣
D−10 0

·

0 D−1S

⎤⎥⎥⎥⎥⎦ ⇒ Φ is diagonal

The next properties of the Slutsky matrices must, by theorem 1, already follow from the Slutsky list.
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Corollary 1 Fix D as above. Then B is negative definite, kerP = kerY 0 and rankY = J,

ker c = kerX, c is negative definite on
¡
WΦ−1

¢⊥
, has rank S + 1− J, and c = cΦc. Lastly,⎡⎢⎣ X

Y

⎤⎥⎦Φc =
⎡⎢⎣ X

0

⎤⎥⎦
meaning that, for marginal income ẇ ∈ spanΦc, marginal demand mẇ is as if asset markets were absent.

5 Generic neoclassical demand

Equilibrium theory goes beyond demand theory by adding market clearing. Policy theory then adds some

policy parameters. By implicitly differentiating market clearing, the envelope property at once gives a

formula for the derivative of equilibrium welfare with respect to the policy parameters. Inevitably, this

formula contains the Slutsky matrices. So the generic welfare impact of policy is inevitably tied to the

generic Slutsky matrices, which we therefore seek to identify.

5.1 Slutsky perturbations

A perturbation of the Slutsky matrices is a point ∇ ∈ RdimH . A Slutsky perturbation is one arising

from a perturbation of the Hessian of utility. More exactly, recall Slutsky matrices are H−1 with H =

H̃(D) |D=D2u . By continuity of H̃, H̃(D)−1 exists for all close enough D ≈ D2u. If D is symmetric

then we call the difference ∇ = H̃(D)−1−H−1 a Slutsky perturbation. With this perturbation Slutsky

matrices go from H−1 to H−1 +∇, and ∇ arises from a perturbation from D2u to D.

Being symmetric, we write

∇ =

⎡⎢⎣ Ṡ −ṁ

−ṁ0 −ċ

⎤⎥⎦
and identify a Slutsky perturbation with a triple Ṡ, ṁ, ċ. Our main goal is to identify Slutsky perturbations,
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without reference to the inversion defining them, in terms of individual constraints on ∇ :

on Ṡ ρ0Ṡ = 0 and Ṡ is symmetric

on ṁ ρ0ṁ = 0 and ẊW 0 = 0

on ċ ċW 0 = 0 and ċ is symmetric

(constraints)

Each of these three independent linear constraints is satisfied by zero, 0 = Ṡ, ṁ, ċ.

Theorem 2 (Slutsky perturbations identified) Given u in Debreu’s setting and b in B0, consider

the Slutsky matrices H−1. Every small enough Slutsky perturbation ∇ satisfies (constraints). Conversely,

every small enough perturbation ∇ that satisfies (constraints) is Slutsky: H−1+∇ is the inverse of H̃(D)

for some D that is negative definite on Du(x(b))⊥ and symmetric. (Negative definite, given u in

Debreu’s special setting.)

Thus Slutsky perturbations are characterized as those that satisfy (constraints), affecting S,m, c simul-

taneously or separately. A proof of theorem from theorem 1 is trivial , if we appeal to

Lemma 1 (Stability) Fix a dimension 0 < dim ≤ C∗ for the Grassmanian GC∗,dim. Suppose continuous

functions D : K → RC
∗×C∗ , S : K → GC∗,dim. If D(x) is negative definite on σ(x), then D(x̃) is

negative definite on σ(x̃), for all nearby x̃ ≈ x.

Proof. A matrix D is negative definite on a nonzero subspace σ iff maxz∈σ∗ z
0Dz < 0, by compactness

of σ∗ ≡ {z ∈ σ | z0z = 1}. By hypothesis, ²(x) ≡ maxz∈σ∗(x) z0D(x)z < 0, and by the maximum principle

²(·) is continuous, so ²(x̃) < 0 is an open neighborhood of x. (To apply the principle, note σ∗(·) is a

continuous, nonempty, compact valued correspondence and (x, z) 7→ z0D(x)z a continuous function.)

Proof. of theorem 2. Clearly ∇ = H̃(D)−1−H−1 satisfies (constraints) if both H−1, H̃(D)−1 satisfy

(Slutsky list). This hypothesis in turn holds, by the first part of theorem 1, if D2u,D are (1) symmetric

and (2) negative definite on ([p]µ)⊥. These conditions hold for D2u in Debreu’s setting; by definition of

a Slutsky perturbation (1) holds for D, and by stability (σ ≡ ([p]µ)⊥) so does (2), if it is small enough.

Conversely, suppose ∇ satisfies (constraints). By the first part of theorem 1 H−1 satisfies (Slutsky

list), so clearly H−1 + ∇ satisfies (Slutsky list)—save perhaps for the definiteness statements, which by

12



stability (σ = ρ⊥, ker(X + Ẋ)⊥ ∩µ⊥) still hold if ∇ is small enough. Therefore H−1+∇ is invertible, by

the converse part of theorem 1, with inverse H̃(D) for some D that is negative definite on ([p]µ)⊥ and

symmetric. Thus H̃(D)−1 = H−1 +∇ and ∇ is a Slutsky perturbation.

In sum, the range of ∇ = H̃(D)−1−H−1 as D varies symmetrically is the ∇ satisfying (constraints).

5.2 Quadratic perturbations

AHessian perturbation is a symmetric point ∆ ∈ RC∗ .We just saw which perturbations H−1 → H−1+∇

of the Slutsky matrices arise from Hessian perturbations D2u→ D = D2u+∆. Now we recall a well-known

”fact” that every such ∆ arises from a quadratic perturbation of utility preserving Debreu’s setting and

x(b) as neoclassical demand.

Definition 1 A quadratic perturbation of utility at x ∈ RC∗++ is a pair (ω,∆) consisting of a Cr≥2

weight function ω : RC
∗

+ → [0, 1] that equals unity in a neighborhood of x and has compact support

in RC
∗

++, and of a symmetric matrix ∆ of dimension C∗. It operates on functions RC
∗

+ → R as

u 7→ u(ω,∆)(x) ≡ u(x) + ω(x)
2 (x− x)0∆(x− x).

Proposition 3 (Hessian perturbations identified) If u is in Debreu’s setting, so is u(ω,∆t) for all

small enough support(ω),t, and then x is the u−demand at b iff it is the u(ω,∆t)−demand at b. Last

but not least, D2u(ω,∆t)(x) = D
2u(x) +∆t, so that ∂

∂t |t=0 D2u(ω,∆t)(x) = ∆.

Conclusion 1 Suppose u belongs in Debreu’s setting and b in B0, and consider the Slutsky matrices

S,m, c at x(b). Then any small enough perturbation to them that satisfies (constraints), and none other,

we can rationalize by a quadratic perturbation u(ω,∆) of u such that u(ω,∆) preserves Debreu’s setting

and demand du(ω,∆)(b) = du(b) at b, and has the perturbed S,m, c for its Slutsky matrices.

An argument about generic policy can exchange weighty luggage—quadratic perturbations of utility, first

order conditions, and budget identities—for the lighter identification.

13



5.3 Slutsky perturbations as a transversality tool in equilibrium

Here we describe the range of Slutsky perturbations, identified in theorem 2, once the Slutsky matrices have

been trimmed due to Walras’ law and to a price normalization.

Walras’ identity implies Walras’ law, that S + 1 of the market clearing equations are redundant at

equilibrium, where household incomes wh = [p]0eh arise from endowments eh ∈ RC∗+ . For asset market

clearing Σyh = 0 and Walras’ identity [p]0xh = wh +W 0yh imply

[p]0Σ
¡
xh − eh

¢
= Σ

¡
[p]0xh − [p]0eh

¢
= Σ

¡
wh +W 0yh − wh

¢
= W 0Σyh

= W 00 = 0

But [p]0Σ
¡
xh − eh

¢
= 0 says p0sΣ

¡
xhs − ehs

¢
= 0 for every state s ≥ 0. Since psC > 0, it follows that

all commodity markets clear, Σ
¡
xhs − ehs

¢
= 0, if in every state all but the last commodity’s market clears,

Σ
¡
xhs − ehs

¢
= 0, the underbar denoting omission of the last coordinate.

If the future yields s > 0 are real, say W j
s = p

0
sa
j
s for some real asset ajs ∈ RC , then no equilibrium

allocation is lost by the price normalization psC = 1 for every s ≥ 0. For in equilibrium no-arbitrage

state prices µ ∈ RS++ exist, W0 = −q = −W1µ, making the set X(b) of financeable bundles homogeneous

of degree zero in price levels γ ∈ RS+1++ → p̃s = γps, in that X(b) = X(b̃) for b̃ =
³
p̃, (W̃0, W̃1), w̃

´
=³

p̃, (−W̃1µ, W̃1),
¡
[p̃]0eh

¢
h

´
where W̃1 has W̃ j

s = p̃
0
sa
j
s. So the normalization γs =

1
psC

leaves neoclassical

demand, hence the equilibrium allocation, intact.

The relevance of Walras’ law and the price normalization is that equilibrium with real assets is described

by as many equations of demand and supply as equilibrating prices, C∗ − (S + 1) = (S + 1)(C − 1) + J.

The differential (dp, dq) of equilibrium prices with respect to perturbations of the economy, say, arising

from policy, depends on the Jacobian of aggregate demand σ0 =def Σ(x
h0, yh0)(b(p, q)), according to the
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implicit function theorem:

0 = ∆

⎡⎢⎣ dp

dq

⎤⎥⎦+D(wh)Σ
⎡⎢⎣ xh

yh

⎤⎥⎦Dp,q ¡[eh]0p¢h = 0
⎡⎢⎣ dp

dq

⎤⎥⎦ = −∆−1

⎡⎢⎣D(wh)Σ
⎡⎢⎣ xh

yh

⎤⎥⎦Dp,q ¡[eh]0p¢h
⎤⎥⎦

provided ∆ is invertible. We can compute the Jacobian ∆ from the above Slutsky decompositions

once we realize how budget variables b = b(p, q) = (
¡
p, 1
¢
, (−q,W1) ,

¡
[eh]0p

¢
h
) depend on (p, q). In

turn, the Jacobian depends on the Slutsky matrices Sh,mh, ch through the Slutsky decompositions, the

dimensions being trimmed by Walras’ law and the price normalization: (S + 1)(C − 1) + J squared,

(S +1)(C − 1) + J × (S + 1) , and (S + 1)× (S + 1) . The values of the missing coordinates are recoverable

from the Slutsky properties ρ0S = 0, S is symmetric, ρ0m = I. Thus at an equilibrium where ∆ is

invertible, (dp, dq) exists and depends on the trimmed Slutsky matrices.

Any question about the equilibrium welfare impact of perturbations of the economy involves the differen-

tial (dp, dq), owing to the envelope property, proposition 2. Often, the answer to such a question is true only

generically in the economy’s utility parameters. Arguing such an answer involves the transversality theorem

(see Mas-Colell I.2.2). Verifying the rank hypothesis of this theorem then involves the derivative of (dp, dq)

with respect to utility parameters; recalling how (dp, dq) depends on the Slutsky matrices, this involves

the derivative of the Slutsky matrices S,m, c with respect to utility parameters. If the utility parameters

index quadratic perturbations, as in definition 1, then the range of this latter derivative (and this is all that

is needed to verify the rank hypothesis) is identified by theorem 2 as the Slutsky perturbations. In sum,

Slutsky perturbations allows us to argue properties of equilibrium that are generic with respect to utilities,

without having to specify which quadratic perturbations of utility lead to the Slutsky perturbations.

Since verifying the transversality hypothesis involves trimmed Slutsky perturbations Ṡ, ṁ, ċ, we describe

the correspondence between trimmed Slutsky perturbations Ṡ, ṁ, ċ ≈ 0 and Slutsky perturbations. The

usefulness of this correspondence is that in proofs we can invoke such Ṡ, ṁ, ċ and know that they correspond

to quadratic perturbations of utility. The point is that all the information lost by trimming is recoverable

from the Slutsky properties (constraints).
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Proposition 4 Fix a small enough square matrix Ṡ ∈ R[(S+1)(C−1)+J]2 . Then it is the trimmed Ṡ from

a Slutsky perturbation iff Ṡ is symmetric.

Proof. Suppose Ṡ is from a Slutsky perturbation. Then by theorem 2 it satisfies the constraints

(constraints), hence is symmetric, so the trimmed submatrix Ṡ is symmetric.

Conversely, suppose Ṡ is symmetric. We now show how the constraints (constraints), namely ρ0Ṡ = 0

and Ṡ is symmetric, imply a unique Ṡ from a Slutsky perturbation. First uniqueness. Use symmetry to

write

Ṡ =

⎡⎢⎣ Ȧ Ṗ

Ṗ 0 Ḃ

⎤⎥⎦
with dimensions ȦC∗×C∗ , ḂJ×J (symmetric), ṖC∗×J . Note

Ṡ =

⎡⎢⎣ Ȧ Ṗ

Ṗ
0
Ḃ

⎤⎥⎦
Then

Ṡρ =

⎡⎢⎣ Ȧ[p]− ṖW

Ṗ 0[p]− ḂW

⎤⎥⎦ = 0

⇔
Ȧ[p] = ṖW

[p]0Ṗ =W 0Ḃ

We see that [p]0Ṗ =W 0Ḃ determines S + 1 rows of Ṗ , for

[p]0Ṗ = [p]0

⎡⎢⎢⎢⎢⎣
Ṗ 0

...

ṖS

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
p00Ṗ

0

...

p0SṖ
S

⎤⎥⎥⎥⎥⎦
(Superscripts index sets of rows.) That is, the last row of each Ṗ s is determined by the equation p0sṖ

s =

10sW
0Ḃ, and recoverable from it in conjunction with the other rows, i.e. with Ṗ . Further, we see that
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Ȧ[p] = ṖW determines S + 1 columns of Ȧ, for

Ȧ[p] =

∙
Ȧ0 ... ȦS

¸
[p] =

⎡⎢⎢⎢⎢⎣
Ȧ0p0

...

ȦSpS

⎤⎥⎥⎥⎥⎦
(Subscripts index sets of columns.)That is, the last column of each Ȧs is determined by the equation

Ȧsps = ṖWs, and recoverable from it in conjunction with the other columns, i.e. with Ȧ. This shows

uniqueness, in that Ṡ ≡ Ȧ, Ṗ , Ḃ is the image of at most one Ṡ ≡ Ȧ, Ṗ , Ḃ. Now we show existence. Given

Ṡ ≡ Ȧ, Ṗ , Ḃ, use the equations (1) p0sṖ s = 10sW 0Ḃ to define S + 1 extra rows for Ṗ and hence to define

Ṗ , and (2) Ȧsps,−C + aspsC = ṖWs to define S +1 extra columns a0, ..., aS ∈ RC
∗−(S+1). Then for each

s extend Ȧ
s

s ∈ RC−1×C−1 to Ȧss ∈ RC×C as follows:

Ȧss =

⎡⎢⎣ Ȧ
s

s as

a0s xs

⎤⎥⎦
where xs ∈ R is to be determined. This is symmetric because by assumption Ṡ hence Ȧ hence Ȧ

s

s is.

Since already Ȧsps,−C + aspsC = ṖWs, to show Ȧsps = ṖWs it suffices to pick xs as the unique solution

of a0sps,−C + xspsC = 1
0
sC ṖWs. This extension of Ṡ ≡ Ȧ, Ṗ , Ḃ to Ṡ ≡ Ȧ, Ṗ , Ḃ by construction satisfies

the constraints (constraints) and so by theorem 2 is a Slutsky perturbation.

Proposition 5 Fix a small enough matrix ṁ =

⎡⎢⎣ Ẋ

Ẏ

⎤⎥⎦ ∈ R(S+1)(C−1)+J×(S+1). Then it is the trimmed
ṁ from a Slutsky perturbation iff ẊW 0 = 0.

Proof. Suppose ṁ is from a Slutsky perturbation. Then by theorem 2 it satisfies the constraints

(constraints), in particular ẊW 0 = 0, hence ẊW 0 = 0.

Conversely, suppose ẊW 0 = 0. We now show how the constraints (constraints), namely ρ0ṁ = 0 and

ẊW 0 = 0, imply a unique ṁ from a Slutsky perturbation. Indeed, 0 = ρ0ṁ = [p]0Ẋ −W 0Ẏ states

[p]0Ẋ = [p]0

⎡⎢⎢⎢⎢⎣
Ẋ0

...

ẊS

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
p00Ẋ

0

...

p0SẊ
S

⎤⎥⎥⎥⎥⎦ =W 0Ẏ
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so that the last row of each Ẋs is determined by the equation p0sẊ
s = 10sW

0Ẏ , and recoverable from it in

conjunction with the other rows, i.e. with Ẋ. This shows uniqueness, in that ṁ ≡ Ẋ, Ẏ is the image of

at most one ṁ ≡ Ẋ, Ẏ . Now we show existence. Given ṁ ≡ Ẋ, Ẏ , use the equation p0sẊ
s = 10sW

0Ẏ to

define S + 1 extra rows for Ẋ and hence to define Ẋ.

To conclude, it is possible to argue transversality with Slutsky perturbations, which appear naturally

in verifying the rank hypothesis of the transversality theorem whenever the underlying system of equations

involves the differential (dp, dq), such as in equilibrium welfare analysis. In the case of real assets, the

computations facing us involve trimmed Slutsky matrices. The previous two propositions show how to

perturb these trimmed Slutsky matrices in a way compatible with unique Slutsky perturbations, hence with

local Hessian perturbations of utility.

6 Proofs

6.1 The Slutsky properties

We tie the Slutsky properties to each of three increasingly stringent descriptions of H in (H):

H =

⎡⎢⎣ M −ρ

−ρ0 0

⎤⎥⎦
(I) the relationship between M, ρ

(II) M =M(D) for some D

(III) D is negative definite on ([p]µ)⊥5

Equivalence 1 Fix a matrix ρ.6 Suppose

M is negative definite on ρ⊥ and symmetric, and ρ has no kernel (I)

Then ⎡⎢⎣ M −ρ

−ρ0 0

⎤⎥⎦ (1)

5We will take µ = λ or 0, according as we are in Debreu’s setting or Debreu’s special setting. (III) says ”D is negative

definite” if µ = 0.
6This does not have to be the particular one in (H).
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is invertible, with inverse ⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦ (1’)

for some S,m, c satisfying

ρ0S = 0, S is negative definite on ρ⊥, symmetric

ρ0m = I

c is symmetric

(I’)

Conversely, suppose (I’). Then (1’) is invertible, with inverse (1), for some M satisfying (I).

We use the convenient notation

ρ ≡

⎡⎢⎣ ρ1

ρ2

⎤⎥⎦ where
ρ1 = first C

∗ rows of ρ

ρ2 = last J rows of ρ

Equivalence 2 Fix ρ with no kernel. Suppose (I) and consider the m, c implied by Equivalence 1. If

M(D)0s last J rows and columns are zero (II)

then

Xρ02 = 0 Y ρ02 = I cρ02 = 0 (II’)

Conversely, suppose (I’) and consider the M implied by Equivalence 1. If (II’) then (II) for some D.

Lastly, Y ρ02 = I is redundant in (II’) if ρ2 has linearly independent rows.

Equivalence 3 Fix ρ with no kernel and ρ2µ = 0. Suppose (I) and consider the m, c implied by

Equivalence 1; suppose (II). If

D is negative definite on (ρ1µ)
⊥ (III)

then

c is negative definite on kerX⊥ ∩ µ⊥ (III’)

Conversely, suppose (I’) and consider the M implied by Equivalence 1; suppose (II’) and consider the

solution to M =M(D) implied by Equivalence 2. If (III’) then (III).
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We now apply the Equivalences to our particular case:

M =M(D2u) ρ1 = [p] ρ2 = −W (particular)

Lemma 2 Suppose M = M(D) with D negative definite on (ρ1µ)
⊥, where ρ2µ = 0 and ρ2 has

linearly independent rows. Then M is negative definite on ρ⊥.

Proof.

[a0 : b0]M

⎡⎢⎣ a

b

⎤⎥⎦ = a0Da
Suppose [a0 : b0] ∈ ρ⊥, that is, a0ρ1 = −b0ρ2. Claim: a ∈ (ρ1µ)⊥. For a0ρ1µ = −b0ρ2µ = 0c So a0Da < 0

unless a = 0⇒ b0ρ2 = 0⇒ b = 0 given the linearly independent rows.

Proof. of theorem 1. By hypothesis and the lemma, M(D) is negative definite on ρ⊥, and ρ has no

kernel because ρ1 = [p] has none. So by Equivalence 1 (I’) holds for S,m, c u H̃(D)−1. Obviously M(D)

satisfies (II), so by Equivalence 2 (II’) holds, with −YW 0 = I redundant since ρ2 = −W has linearly

independent rows. Lastly, by Equivalence 3 (III’) holds. That is, (Slutsky list) = (I’, II’, III’) holds.

Conversely, if (Slutsky list) = (I’, II’, III’) holds, then we apply the converse part of the Equivalences.

By Equivalence (1) (Smc)=(1’) is invertible, and the symmetric M appearing in (1) must by Equivalence

2 be M =M(D) for some (necessarily symmetric) D (recall Y ρ02 = I is redundant), and by Equivalence

(3) D must satisfy (III).

6.2 Equivalence lemmas

Equivalence 1

Proof. Invertibility: Suppose [x0, y0]0 is in the kernel of (1). Then Mx − ρy = 0 and ρ0x = 0 ⇒

x0Mx = 0 and x ∈ ρ⊥ ⇒ x = 0⇒ ρy = 0 ⇒ y = 0 since ρ has no kernel, hence (1) is invertible. Since

(1) is symmetric, so is its inverse, making S, c symmetric. By definition of inverse,

MS + ρm0 = I −Mm+ ρc = 0

ρ0S = 0 ρ0m = I

20



Hence ρ0S = 0, ρ0m = I. Turning to S0s semidefiniteness, fix γ and consider γ0Sγ. Solve⎡⎢⎣ M −ρ

−ρ0 0

⎤⎥⎦
⎡⎢⎣ a

b

⎤⎥⎦ =
⎡⎢⎣ γ

0

⎤⎥⎦ ≡
Ma− ρb = γ

ρ0a = 0

which is possible by invertibility. Then

γ0Sγ =

(a0M − b0ρ0)Sγ = a0MSγ = a0(I − ρm0)γ =

a0γ = a0(Ma− ρb) = a0Ma

Since a ∈ ρ⊥, by hypothesis on M γ0Sγ = a0Ma < 0 unless a = 0⇒ −ρb = γ or γ ∈ spanρ. So if γ

∈ ρ⊥, then γ = 0. That is, S is negative definite on ρ⊥.

Conversely, suppose (I’). Then the invertibility of (1’) is established similarly as above. Since (1’) is

symmetric, so is its inverse ⎡⎢⎣ M −α

−α0 β

⎤⎥⎦
for some symmetric M,β. Claim: α = ρ,β = 0. By definition of inverse, MS + αm0 = I and

α0S + βm0 = 0; postmultiplying by ρ and invoking (I’) establishes the claim.c Clearly ρ0m = I implies

ρ has no kernel. Lastly, M is negative definite on ρ⊥: Fix γ and consider γ0Mγ. Solve⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦
⎡⎢⎣ a

b

⎤⎥⎦ =
⎡⎢⎣ γ

0

⎤⎥⎦ ≡
Sa−mb = γ

m0a+ cb = 0

and suppose γ ∈ ρ⊥ ≡ 0 = ρ0(Sa − mb) = −b. That is, Sa = γ and m0a = 0. Since Mγ =

MSa = (I − ρm0)a = a, γ0Mγ = a0Sa. Invoking (I’), we see γ0Mγ < 0 unless a = ρα for some

α⇒ 0 = m0a = m0ρα = α⇒ a = 0⇒ γ = Sa = 0. Hence M is negative definite on ρ⊥.

Equivalence 2

Proof. By hypothesis, write

M =

⎡⎢⎣ D 0

0 0

⎤⎥⎦
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Focusing on the bottom part of MS + ρm0 = I,

0 + ρ2m
0 = [0 : I]

which says Xρ2 = 0, Y ρ2 = I. As for cρ02 = 0: Using −Mm+ ρc = 0, 0 = M [0 : I]0 = Mmρ02 = ρcρ02.

Since ρ has no kernel, cρ02 = 0.

Conversely, applying (II’) to −Mm+ ρc = 0:

M

⎡⎢⎣ 0

I

⎤⎥⎦ =Mmρ02 = ρcρ02 = 0

This and the symmetry of M imply that M is zero off the northwestern corner.

Lastly, I = ρ0m = ρ01X + ρ02Y , so Xρ02 = 0 implies ρ02 = 0 + ρ02Y ρ
0
2 or ρ02(I − Y ρ02) = 0. If ρ2 has

linearly independent rows, I − Y ρ02 = 0.

Equivalence 3

Expressing H−1 as in (*), by definition of inverse we have:⎡⎢⎢⎢⎢⎣
A P −X

P 0 B −Y

−X 0 −Y 0 −c

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

D 0 −ρ1

0 0 −ρ2

−ρ01 −ρ02 0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
I 0 0

0 I 0

0 0 I

⎤⎥⎥⎥⎥⎦
AD +Xρ01 = I Xρ02 = 0 Aρ1 + Pρ2 = 0

P 0D + Y ρ01 = 0 Y ρ02 = I P 0ρ1 +Bρ2 = 0

−X 0D + cρ01 = 0 cρ02 = 0 X 0ρ1 + Y
0ρ2 = I

Lemma 3 Every z ∈ RC∗ can be expressed as z = Aa+Xb for some a ∈ X⊥, b ∈ kerX⊥.

Proof. Set b = ρ01z, a = Dz − ρ1cb. Then Aa+Xb = A(Dz − ρ1cb) +Xb = (AD)z − (Aρ1)cb+Xb =

(I − Xρ01)z − (−Pρ2)cb + Xb = z − X(ρ01z − b) + P (ρ2c)b = z since from the equations ρ2c = 0. Now

a ∈ X⊥ : X 0a = X 0(Dz − ρ1cb) = cρ01z − (I − Y 0ρ2)cb = c(ρ01z − b) = 0. To get b ∈ kerX⊥, redefine

b = (ρ01z)
∗ where "∗" denotes the orthogonal projection to kerX⊥, but keep a as before.

Lemma 4 If Sρ = 0, S is negative definite on ρ⊥, symmetric, then A is negative definite on X⊥.
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Proof. Fix a and write ⎡⎢⎣ a

0

⎤⎥⎦ = x+ y ∈ ρ⊥ + spanρ

Since ρ0S = 0, Sρ = 0,

a0Aa = [a0 : 0]S

⎡⎢⎣ a

0

⎤⎥⎦ = x0Sx
By hypothesis on S, a0Aa < 0 unless x = 0⇒ [a0 : 0]0 = y = ργ some γ ⇒ 0 = ρ2γ. If a ∈ X⊥ then

0 = X 0a = X 0ρ1γ = (I − Y 0ρ2)γ = γ ⇒ y = 0⇒ a = 0. That is, A is negative definite on X⊥.

Proof. of Equivalence 3. Suppose throughout ρ2µ = 0. We will appeal twice to the string

(Xδ)0(ρ1µ) = δ0(X 0ρ1)µ = δ0(I − Y 0ρ2)µ = δ0µ (string)

The third row implies X 0DX = c: X 0DX = cρ01X = c(I − ρ02Y ) = c. For every δ, δ0cδ =

(Xδ)0D(Xδ) = ∗, and Xδ ∈ (ρ1µ)⊥ if δ ∈ µ⊥ by the (string), so ∗ < 0 by hypothesis on D, unless

Xδ = 0 or δ ∈ kerX. If δ ∈ kerX⊥ then δ = 0. That is, c is negative definite on δ ∈ kerX⊥ ∩ µ⊥.

Conversely, fix z ∈ RC∗ and by lemma 3 write z = Aa + Xb with a ∈ X⊥, b ∈ kerX⊥. Claim:

z0Dz = a0Aa+b0cb. Dz = D(Aa+Xb) = (I−ρ1X 0)a+ρ1cb = a+ρ1cb. Thus z
0Dz = (a0A+b0X 0)(a+ρ1cb) =

a0Aa+ a0Aρ1cb + b
0X 0a+ b0X 0ρ1cb = ∗. The second term is zero, since the equations say Aρ1c = −Pρ2c

and ρ2c = 0, and so is the third one, since X
0a = 0. So ∗ = a0Aa+ b0(I − Y 0ρ2)cb = a0Aa+ b0cb.c

By lemma 4 and a ∈ X⊥, a0Aa < 0 unless a = 0. By hypothesis on c and b ∈ kerX⊥, b0cb < 0 unless

b = 0—so long as b ∈ µ⊥. So to show D is negative definite on (ρ1µ)
⊥, it suffices that z ∈ (ρ1µ)⊥ ⇔ b ∈

µ⊥. To see this implication, we take the particular b = (ρ01z)
∗ from the proof of lemma 3, and apply

(string) twice, with δ = ρ01z and δ̃ = b: z0ρ1µ = δ0µ = (Xδ)0(ρ1µ) = (Xb)
0(ρ1µ) = b

0µ (the definition of

b⇒ δ − b ∈ kerX ⇒ Xδ = Xb).

6.3 Quadratic perturbations

Proof. of proposition 3. Assuming that u(ω,∆) is also in Debreu’s setting, the remainder is easy:
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Given its interiority, x is the u−neoclassical demand at (p,W,w) iff (F) holds at x and u iff (F) holds

at x and u(ω,∆) iff x is the u(ω,∆)−neoclassical demand at (p,W,w). The first and last equivalences

hold because u, u(ω,∆) belong in Debreu’s setting, and the middle one because Du(x) = Du(ω,∆)(x).

Last but not least, ω ≡ 1 in a neighborhood x ≈ x, where u(ω,∆t)(x) ≡ u(x) + 1
2(x − x)0∆t(x − x)

and D2u(ω,∆)(x) = D
2u(x) + 1

2(∆+∆
0)t = D2u(x) +∆t, the last equality by ∆0s symmetry.

To verify for u(ω,∆) the four conditions in Debreu’s setting, fix ω and write K ≡ support(ω).

(i) Obvious.

(ii, iii) These hold with the proviso x ∈ RC∗++\K, since RC
∗

++\K is open and u(ω,∆) |RC∗
++\K= u |RC∗++\K ,

so we turn to x ∈ K. Both supK
°°Du(ω,∆)(x)−Du(x)°° , supK °°D2u(ω,∆)(x)−D2u(x)

°° are bounded since
Du(ω,∆)(x),D

2u(ω,∆)(x) are continuous in x and K compact, and homogeneous of degree one in t, hence

may be chosen smaller than any given δ > 0 by replacing ∆ with ∆t for all small enough t > 0.

Choosing δ small enough to make true the implications
°°Du(ω,∆)(x)−Du(x)°° < δ ⇒ Du(ω,∆)(x) À

0,
°°D2u(ω,∆)(x)−D2u(x)

°° < δ ⇒ D2u(ω,∆)(x) is negative definite on Du(x)⊥ (appealing to lemma 1 with

D(x) ≡ D2u(ω,∆)(x),σ(x) ≡ Du(x)⊥), these conditions also hold at x ∈ K.

(iv) This holds with the proviso x ∈ RC∗++\K since u(ω,∆) |RC∗
++\K= u |RC∗

++\K , so we turn to x ∈ K.

Write ² ≡ u(x)− sup∂RC∗
+
u. Condition (iv) states ² > 0. Now suppose that K is small enough (possible

by u0s continuity), in that |u(x)− u(x)| < ²
2 for x ∈ K, and that the rescaling of ∆ is too, in that

|(x− x)0∆(x− x)| < ² for x ∈ K. Then for x ∈ K u(ω,∆)(x) = u(x) + ω(x)
2 (x − x)0∆(x − x) >

u(x)− ²
2 +

ω(x)
2 (−²) ≥ u(x)− ² = sup∂RC∗+ u = sup∂RC∗+

u(ω,∆), the latter since u = u(ω,∆) on ∂RC
∗

+ c

6.4 Computation of Slutsky matrices

As in the proof of Equivalence 3, but substituting ρ1 = [p], ρ2 = −W ,

AD +X[p]0 = I XW 0 = 0 A[p]− PW = 0

P 0D + Y [p]0 = 0 −YW 0 = I P 0[p]−BW = 0

−X 0D + c[p]0 = 0 cW 0 = 0 X 0[p]− Y 0W = I

(system)

Proof. of algorithm 1. Invertibility is easy. We deduce formulas for A,B, c, P,X, Y recursively, while

imposing A,B, c0s symmetry, which we verify last, and refer to equation ij as that appearing in row i,
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column j of the (system). Note Φ ≡ [p]0D−1[p] is symmetric, negative definite since [p] has no kernel.

Equation 21 holds iff P ≡ −D−1[p]Y 0; equation 31 iff X ≡ D−1[p]c; equation 11 iff A ≡

[(I −X[p]0)D−1]0. With this definition of X, 12 holds if 32 holds. So far P,X,A are in terms of Y, c,

which we describe in terms of B.

Given this formula for P , 23 holds iff −Y Φ− BW = 0 iff Y ≡ −BWΦ−1. Given the formulas for

X,Y , 33 holds iff cΦ+Φ−1W 0BW = I iff c ≡ Φ−1 − Φ−1W 0BWΦ−1.

Claim: A,P as defined make 13 true. A[p]− PW = D−1(I − [p]X 0)[p] +D−1[p]Y 0W = ∗. Since 33

holds by definition of c, ∗ = D−1(I − [p]X 0)[p] +D−1[p](X 0[p]− I) = 0.

Now define B ≡ (WΦ−1W 0)−1. Note, WΦ−1W 0 is invertible if negative definite, which it is since Φ−1

is (as the inverse of a negative definite matrix) and W 0 has no kernel.

Claim: B as defined makes 22, 32 true. 22: −YW 0 = BWΦ−1W 0 = I. 32: cW 0 = (Φ−1 −

Φ−1W 0BWΦ−1)W 0 = Φ−1W 0(I −B ·WΦ−1W 0) = Φ−1W 0(0) = 0.

These definitions solve the system modulo A,B, c0s symmetry, which does exist: B is symmetric

indeed, which implies c is, which implies A = D−1(I − [p]X 0) = D−1 −D−1[p]c[p]0D−1 is.
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