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Abstract

It is well-know that estimation by reduced rank regression is given by the solution to

a generalized eigenvalue problem. This paper presents a new proof to establish this result

and provides additional insight into the structure of the estimation problem. The proof is a

direct algebraic proof that some might find more intuitive than existing proofs.
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1 Introduction

Reduced rank regression (RRR) problems appear in several econometric models. Examples

include the analysis of multivariate time-series, see Velu, Reinsel, and Wichern (1986) and

Velu and Reinsel (1987) and the analysis of cointegrated variables in the vector autoregressive

framework, see Johansen (1988, 1991, 1996). Reduced rank regression was introduced by

Anderson (1951) and the book by Reinsel and Velu (1998) contains an excellent exposition

of reduced rank regression and its relations to econometric models.

The objective in a RRR is to minimize the sum of squared residual subject to a reduced

rank condition. Without the rank condition the estimation problem is a simple OLS problem.

The properties RRR and OLS estimators have been analyzed and compared by Anderson

(2002), in both a stationary and non-stationary setting. To show that the RRR estimators

solve the minimization problem is not as simple as is the case for the OLS estimator. The

estimation problem of a RRR can be simplified to the problem maxx∈Rp×r |x0Mx| / |x0Nx| ,
where M and N are data-dependent matrices, and where |A| denotes the determinant of a
squared matrix A. The difficult step is to show that x̂ = (v̂1, . . . , v̂r) is the solution to this

problem, where v̂1, . . . , v̂r are the the eigenvectors of |λN −M | = 0 that corresponds to the
r largest eigenvalues. This result can be obtained by a second order Taylor expansion, as

in Johansen (1996); by reference to Poincare’s theorem, see Magnus and Neudecker (1988);

or by the algebraic proof presented in this paper. The new proof is based on a determi-

nant representation that yields additional insight into estimation problems under additional

restrictions.1

2 Reduced Rank Regression

A reduced rank regression takes the form

Z0t = αβ
0Z1,t +ΨZ2,t + εt, t = 1, . . . , T, (1)

1Estimation of reduced rank parameters under additional parameter restrictions lead to more complicated
estimation problems, which do not have closed-form solutions. Problems of this kind have been considered
by Johansen and Juselius (1992), Boswijk (1995), and Hansen (2002) who proposed dexterous algorithms to
solve the estimation problem.
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where Z0,t, Z1,t, and Z2,t are vectors of dimension p, p1, and p2 respectively, and where

α, β, and Φ are parameters of dimension p × r, p1 × r, and p × p2 respectively. The error
term, εt, is iid, with mean, E(εt) = 0, and variance var(εt) = Ω, and εt is independent of

(Z1t, Z2,t, Z1,t−1, Z2,t−1, . . .). The RRR estimators of α, β, and Ψ are defined as the solution

to minα,β,Ψ
T
t=1 εtε

0
t , and the RRR estimator is the maximum likelihood estimator if εt

is assumed to be normally distributed.

In matrix notation a RRR take the form Z0 = Z1βα
0 + Z2Ψ0 + ε, where the tth row

of Z0, Z1, Z2, and ε is given by Z00,t, Z
0
1,t, Z

0
2,t, and ε

0
t respectively, t = 1, . . . , T , so that

var(ε0) = IT ⊗ Ω. We define the moment matrices Mij = Z0iZj/T, i, j = 0, 1, 2 and Sij =

Mij −Mi2M
−1
22 M2i, i, j = 0, 1.

Theorem 1 (Reduced Rank Regression) The parameter estimators of (1) are given by

β̂ = (v̂1, . . . , v̂r)φ,

α̂(β) = S01β̂ β̂
0
S11β̂

−1
,

Ψ̂ = M02M
−1
22 − α̂β̂

0
M12M

−1
22 ,

where (v̂1, . . . , v̂r) are the eigenvectors corresponding to the r largest eigenvalues λ̂1, . . . , λ̂r

of |λS11 − S10S−100 S01| = 0,2 and where φ is an arbitrary r × r matrix with full rank.

Remark 1 The parameters α and β are not identified. However, the r × r matrix, φ, can
be used as a normalization device. E.g. if the normalization β = (Ir,β

0
2)
0 is desired, one can

choose φ to be the inverse of the matrix that consists of the first r rows of (v̂1, . . . , v̂r).

Remark 2 With a Gaussian likelihood, the MLE estimator for Ω is given by Ω̂ = S00 −
S01β̂ β̂

0
S11β̂

−1
β̂
0
S10 and the maximum value of the likelihood is L−2/Tmax (α̂, β̂, Ψ̂, Ω̂) =

(2πe)p |S00| r
i=1(1− λ̂i).

Remark 3 Johansen (1988) applied RRR to the vector autoregressive model with cointe-

grated variables. The RRR structure appears from the error correction model, ∆Xt =

αβ0Xt−1 +
k−1
i=1 Γi∆Xt−i + ΦDt + εt, by setting Z0t = ∆Xt, Z1t = Xt−1 and Z2t =

(∆X 0
t−1, . . . ,∆X

0
t−k+1,D

0
t)
0.

2The eigenvectors satisfy S10S
−1
00 S01v̂i = λiS11v̂i, v̂

0
iS11v̂j = 1{i=j}. These are easily obtained using

standard software such as Ox, Gauss, or Matlab, because (v̂1, . . . , v̂p) = S
1/2
11 (x1, . . . , xp), where (x1, . . . , xp)

are the eigenvectors of the matrix S−1/211 S10S
−1
00 S01S

−1/2
11 . The eigenvalues of the two problems are the

same.
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The following lemma is a central element of the proof of Theorem 1.

Lemma 2 Let x be a p×r matrix,M and N be p×p symmetric matrices, whereM is positive

semi-definite and N is positive definite. Let λ1, . . . ,λp be the eigenvalues of |λN −M | = 0,
ordered in descending order, and let v1, . . . , vp be the corresponding eigenvectors.

Then x̂ = (v1, . . . , vr) maximizes and x̃ = (vp−r+1, . . . , vp) minimizes the function f(x) =

|x0Mx| / |x0Nx| , and the maximum and minimum are given by f(x̂) = r
i=1 λi and f(x̃) =

p
i=p−r+1 λi respectively.

The proof of Johansen (1988) is based on a second order Taylor expansion of log f(x).3

Below we shall present an algebraic proof, which applies a representation of determinants

that involve products on non-squared matrices.

We introduce the following notation. Let Drp denote the set of all possible subsets of

J ⊂ {1, . . . , p} that consist of r ≤ p distinct integers. For a given subset, J ⊂ Drp, a p × r
matrix, y, and a p × p matrix Λ, we define the r × r matrices yJ = {yij}i∈J, j=1,...,r and
ΛJ = {Λij}i,j∈J . We use diag(a1, . . . , ap) to denote the p× p diagonal matrix with diagonal
elements: a1, . . . , ap.

Example 1 For p = 3, r = 2 we have D23 = {{1, 2}, {1, 3}, {2, 3}}, and the subset J =
{1, 2} and the matrix

y =
y11 y21 y31

y12 y22 y32

0

, lead to yJ =
y11 y12

y21 y22

,

and Λ = diag(λ1,λ2,λ3) results ΛJ = diag(λ1,λ2).

The following lemma provides a useful determinant representation.

Lemma 3 Let Λ = diag(λ1,λ2,λ3), and y a real p× r matrix, where r ≤ p. Then with the
definitions above, we have that

|y0Λy| =
J∈Drp

|y0JΛJyJ | =
J∈Drp

|y0JyJ |Πi∈Jλi =
J∈Drp

|yJ |2Πi∈Jλi. (2)

3The expression for the second order term is given in Johansen (1996), which corrects that in Johansen
(1988).
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Let Q0ΛQ = S
−1/2
11 S10S

−1
00 S01S

−1/2
11 be an orthogonal decomposition and define y =

QS
1/2
11 β. In the appendix we show that minimizing the determinant of the sum of squared

residuals, is equivalent to maximizing |y0Λy|/|y0y|, where λ1, . . . ,λp are the eigenvalues of
|λS11 − S10S−100 S01| = 0, and Lemma 3 shows that |y0Λy|/|y0y| = J∈Drp |yJ |2Πi∈Jλi. So
restrictions on β translate into restrictions on y through y(β) = QS

1/2
11 β, which lead to

restrictions on the possible convex combination, {|yJ |2}J∈Drp , that one can take over the
elements {Πi∈Jλi}J∈Drp . This observation may be useful for the estimation of reduced rank
regressions that are subject to parameter restrictions on β, but we shall not attempt to

address this issue in this paper.

3 Conclusion

This paper presented a new representation for determinants of products of non-squared

matrices that led to a new algebraic proof of Theorem 1. The determinant representation

provides additional insight into the estimation problem in the reduced rank regressions that

are subject to parameter restrictions.

A Appendix

Proof of Lemma 3. The second and third equality follows trivially from |AB| = |A| |B|
for matrices of proper dimensions, and first holds trivially for r = 1 or p = r. So the proof

is completed by induction as follows. Given that (i) (2) holds for (p, r) = (p̃− 1, r̃− 1); and
(ii) (2) holds for (p, r) = (p̃− 1, r̃), we show that (2) holds for (p, r) = (p̃, r̃). The following
scheme

p\r 1 2 3 4 · · ·
1 X − − −
2 X X − −
3 X ? X −
4 X ? ? X
...

...
. . .

shows that this completes the proof.

Let Λ̃ ≡ diag(λ1, . . . ,λp−1) and consider the case where (yp1, . . . , ypr) = (0, . . . , 0). In
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this case we define ỹ ≡ {yij}i=1,...,p−1, and by (ii) we have that

|y0Λy| = |ỹ0Λ̃ỹ| =
J∈Drp−1

|y0JyJ | ·Πi∈Jλi

=
J∈Drp,p/∈J

|y0JyJ | ·Πi∈Jλi +
J∈Drp,p∈J

|y0JyJ | ·Πi∈Jλi.

Since the last term is zero we have proven the lemma for the case where (yp1, . . . , ypr) = 0.

Assume now that (yp1, . . . , ypr) 6= 0. Choose a full rank r × r-matrix Q, such that
(yp1, . . . , ypr)Q = (0, . . . , 0, 1) and define the p − 1 × r − 1 matrix z̃ to be the first r − 1
columns of ỹQ. Then it holds that

|Q|2 |y0Λy| = Q0ỹ0Λ̃ỹQ+
0r−1×r−1 0

0 λp

= |Q0ỹ0Λ̃ỹQ|+ |z̃0Λ̃z̃|λp. (3)

By assumption (ii), the first term can be expressed as

|Q0ỹ0Λ̃ỹQ| = |Q|2
J∈Drp−1

|ỹ0J Λ̃J ỹJ | = |Q|2
J∈Drp,p/∈J

|y0JΛJyJ |. (4)

For J ∈ Dr−1p−1 we have that

|z̃J | =
z̃J 0

0 1
= |yJ̃Q|, and λp|Λ̃J | = |ΛJ̃ |,

where J̃ = {J ∪ {p}} ∈ Drp, so the second term of (3) can be expressed as

|z̃0Λ̃z̃|λp = λp = |Q|2
J∈Dr−1p ,p∈J

|y0JΛJyJ |, (5)

where we made use of assumption (i). Combining the identities (3—5), we have shown

|Q|2|y0Λy| = |Q|2 J∈Drp,p/∈J |y0JΛJyJ | + |Q|2 J∈Drp,p∈J |y0JΛJyJ | = |Q|2 J∈Drp |y0JΛJyJ |,
which completes the proof.

Lemma 4 Let Λ = diag(λ1, . . . ,λp) where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and consider the

function g(y) = |y0Λy| / |y0y| . For ŷ = (Ir, 0r×p−r)0, ỹ = (0r×p−r, Ir)0, (the first r and last
r unit vectors) it holds that maxy∈Rp×r g(y) = g(ŷ) =

r
i=1 λi and miny∈Rp×r g(y) = g(ỹ) =

p
i=p−r+1 λi.
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Proof. By Lemma 3 we have that g(y) = |y0Λy| / |y0y| = J∈Drp |yJ |2Πi∈Jλi/ J∈Drp |yJ |2,
which is a convex combination over i∈Jλi, J ∈ Drp. Since the smallest and largest ele-
ments are r

i=1 λi and
r
i=1 λi, and these values can be obtained with ỹ and ŷ the proof is

complete.

Proof of Lemma 2. The matrix (N− 1
2MN− 1

2 ) is symmetric positive semi-definite, so

we can diagonalize it as N− 1
2MN− 1

2 = Q0ΛQ, where Q0Q = I, Λ = diag(λ1, . . . ,λp), and

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. By defining y = QN
1
2x, we have that |x0Mx| / |x0Nx| =

|y0Λy| / |y0y|. By Lemma 4, this is maximized (minimized) by ŷ = (Ir, 0)0 (ỹ = (0, Ir)0), so
f(x) is maximized (minimized) by x̂ = N− 1

2Q0ŷ (x̃ = N− 1
2Q0ỹ).

Proof of Theorem 1. The objective is to minimize m0(α,β,Ψ), where

m0(α,β,Ψ) = T−1
T

t=1

ε̂tε̂
0
t , ε̂t = Z0t − αβ0Z1t −ΨZ2t.

It is simple to verify that argminΨm(α,β,Ψ) = Ψ̂(α,β) = M02M
−1
22 − αβ0M12M

−1
22 , as

it follows by the simple regression result. By defining the auxiliary variables, R0t = Z0t −
M02M

−1
22 Z2t and R1t = Z1t−M12M

−1
22 Z2t, the estimation problem is simplified to minimizing

m1(α,β) = |T−1 T
t=1 ε̃tε̃

0
t|, where ε̃t = R0t − αβ0R1t.

Similarly, we find that argminαm1(α,β) = α̂(β) = S01β(β
0S11β)−1, and the simplified

problem is now to minimize m2(β), where

m2(β) = T−1
T

t=1

(R0t − α̂(β)β0R1t)(R0t − α̂(β)β0R1t)0

= |S00 − S01β(β0S11β)−1β0S10| = |S00| |β
0(S11 − S10S−100 S01)β|

|β0S11β|
.

Let 0 ≤ ρ̂1 ≤ · · · ≤ ρ̂p be the eigenvalues of |ρS11 − (S11 − S10S−100 S01)| = 0 and v̂1, . . . , v̂p
the corresponding eigenvectors. Then, by Lemma 2, β̂ = (v1, . . . , vr) minimizes m2(β). The

eigenvectors satisfy [S11 − (S11 − S10S−100 S01)]vi = ρivi, i = 1, . . . , p. Since vi is also an

eigenvectors to (S11−S10S−100 S01) with eigenvalue λ̂i = 1− ρ̂i, it follows that the solution is
given from the r largest eigenvalues of |λS11 − S10S−100 S01| = 0.
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