
de Clippel, Geoffroy

Working Paper

An axiomatization of the inner core using appropriate
reduced games

Working Paper, No. 2005-02

Provided in Cooperation with:
Department of Economics, Brown University

Suggested Citation: de Clippel, Geoffroy (2005) : An axiomatization of the inner core using
appropriate reduced games, Working Paper, No. 2005-02, Brown University, Department of
Economics, Providence, RI

This Version is available at:
https://hdl.handle.net/10419/80177

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/80177
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


An Axiomatization of the Inner Core Using

Appropriate Reduced Games

Geoffroy de Clippel 1

Chargé de Recherches FNRS. Department of Economics, Box B, Brown
University, Providence RI 02912, USA.

Abstract

I adapt a reduction process introduced by Serrano and Volij (1998) so that the
reduced games of convex-valued games are convex-valued. I use the corresponding
consistency property and its converse to axiomatize the inner core for games that
are convex-valued, non-level and smooth.

1 Introduction

The consistency property can be used to axiomatize most solution concepts in
game theory (see Thomson, 1996, for a survey). It requires that the restriction
of a payoff vector in the solution of a game to a subset of players belongs to
the solution of the reduced game. The key is to adequately define the reduced
games.

Davis and Maschler (1965) introduce the first reduction process for cooperative
games with transferable utility (TU). It involves some re-evaluation of the
coalitional bargaining power. Let N be the set of players, let u ∈ RN be a
potential agreement and let S ⊆ N be a coalition. Then, the reduced game
defined on S is obtained by considering that each strict subset of S may buy
up the cooperation of any passive player (i.e. not in S), while S itself has to
buy up the cooperation of all the passive players, the utility ‘price’ of these
players being specified by u.

Peleg (1986) observes that the Davis-Maschler consistency property can be
used to axiomatize the core on the class of balanced TU-games. Peleg (1985)

Email address: declippel@brown.edu (Geoffroy de Clippel).
1 I thank Professors Enrico Minelli and Roberto Serrano for their comments. The
usual disclaimer applies.
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extends the reduction process to games with non-transferable utility (NTU)
and uses the corresponding consistency property (and its converse) to axiom-
atize the core on a large class of NTU-games.

One may question the asymmetric treatment of the coalitions in the Davis-
Maschler-Peleg reduction process. Serrano and Volij (1998, definition 3) indeed
suggest that the grand coalition in the reduced games also considers the pos-
sibility of choosing a subset of passive players with whom to cooperate. They
apply the related consistency property and axiomatize the core for a large class
of production economies. I re-state their result on the class of NTU-games in
section 3.

It is natural in some contexts to restrict our attention to NTU games that are
convex-valued. For instance, the players may agree on lotteries, and evaluate
them according to the expected utility criterion. Unfortunately, the results
discussed so far do not apply to this class of games, as the reduced game of
a convex-valued game is not necessarily convex-valued (Peleg, 1985, section
7.6).

I convexify the Serrano-Volij reduction process. A natural interpretation is
that coalitions may use lotteries to determine the set of passive players with
whom to cooperate. I prove in proposition 2 that the analog of the axioms
introduced by Serrano and Volij (1998) then characterize the inner core for
games that are convex-valued, non-level and smooth.

The inner core is an appealing refinement of the core on the class of convex-
valued games. It is obtained by applying the fictitious-transfer procedure of
Shapley (1969) to the core defined for TU-games. The proof of my result relies
on the fact that the inner core coincides with the set of feasible allocations
that are immune to random blocking plans (Myerson, 1991, section 9.8; Qin,
1993; de Clippel and Minelli, 2004).

2 Preliminaries

If N is a finite set, then P (N) denotes the set of nonempty subsets of N . Let
S ∈ P (N) and let (u, u′) be a couple of vectors in RS. Then u ≤ u′ if ui ≤ u′i
for each i ∈ S, u < u′ if u ≤ u′ and u 6= u′, while u << u′ if ui < u′i for
each i ∈ S. If u ∈ RN , then uS denotes the projection of u on RS. Let X be
a subset of RS. Then u is efficient in X if u ∈ X and there does not exists
u′ ∈ X such that u < u′.

A game is a couple (N, V ) where N is the finite set of players and V is
a correspondence that associates to every coalition S ∈ P (N) a nonempty
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compact subset V (S) of RS. The class of all games is denoted by G.

A solution Σ associates to every game (N, V ) ∈ G a subset Σ(N, V ) of V (N).
The core for instance specifies the set of feasible utility profiles that no coali-
tion can improve upon:

C(N, V ) = {σ ∈ V (N)|¬[(∃S ∈ P (N))(∃u ∈ V (S)) : σS < u]}

for each (N, V ) ∈ G.

Serrano and Volij (1998) axiomatize the core in the context of production
economies. I adapt their argument to my framework. Here are properties that
one could impose on a solution Σ defined on G.

Axiom 1 (One-Person Rationality, OPR) Σ(N, V ) = arg maxv∈V (N) v, for each
(N, V ) ∈ G such that #N = 1.
Axiom 2 (Consistency, CONS) Let (N, V ) ∈ G, let S ∈ P (N) and let σ ∈
Σ(N, V ). Then (S, VS,σ) ∈ G and σS ∈ Σ(S, VS,σ), where (S, VS,σ) is the reduced
game with respect to S and σ defined as follows:

VS,σ(T ) :=
⋃

Q∈P (N\S)∪{∅}
{u ∈ RT |(∃v ∈ V (T ∪Q)) : vT = u ∧ vQ ≥ σQ}

for each T ∈ P (S).
Axiom 3 (Converse Consistency, CO-CONS) Let (N, V ) ∈ G be a game with
at least two players and let σ ∈ V (N). If (S, VS,σ) ∈ G and σS ∈ Σ(S, VS,σ) for
each S ∈ P (N) \ {N}, then σ ∈ Σ(N, V ).

OPR requires that the solution is compatible with the maximization of indi-
vidual utilities when there is only one player. Axiom 2 is the usual consistency
property: the restriction of a payoff vector in the solution of a game to a subset
of players must belong to the solution of the reduced game. As already dis-
cussed in the introduction, the reduction process differs from Peleg’s (1985)
definition only as far as the feasible set associated to the grand coalition in
the reduced games is concerned: every coalition in the reduced game is now
free to choose the set of passive players with whom to cooperate. It is indeed
more natural to treat all the coalitions symmetrically. CO-CONS is a dual
version of CONS. If the relevant projections of a feasible allocation σ belong
to the solution of the reduced games (S, VS,σ), then it belongs to the solution
of the game (N, V ). Peleg (1985) also uses a property of converse consistency
in his axiomatization of the core. There are two main differences. First, as
already discussed, his reduced games differ from those defined in CONS. Sec-
ond, his axiom is slightly stronger as he imposes that σ ∈ Σ(N, V ) whenever
σS ∈ Σ(S, VS,σ) for each coalition S with exactly two members.

Proposition 1 (Adapted from Serrano and Volij, 1998, Theorem 4) The core
is the maximal solution to satisfy OPR and CONS on G. It is also the minimal
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solution to satisfy OPR and CO-CONS on G. Hence it is the only solution to
satisfy OPR, CONS and CO-CONS on G.

Proof: 1. The core obviously satisfies OPR. It also satisfies CONS and CO-
CONS as the following arguments show.

1.a) CONS: Let (N, V ) ∈ G, let S ∈ P (N) and let σ ∈ V (N). If σ ∈ C(N, V ),
then (S, VS,σ) ∈ G, as the finite union of compact sets is a compact set. On
the other hand, if σS 6∈ C(S, VS,σ), then there exist T ∈ P (S) and u ∈ VS,σ(T )
such that u > σT . Hence σ 6∈ C(N, V ), as there exists Q ∈ P (N \ S) ∪ {∅}
and v ∈ V (T ∪Q) such that v ≥ (u, σQ) > σT∪Q.

1.b) CO-CONS: Let (N, V ) ∈ G be a game with at least two players and
let σ ∈ V (N) be such that (S, VS,σ) ∈ G and σS ∈ C(S, VS,σ) for each S ∈
P (N) \ {N}. I have to show that σ ∈ C(N, V ). It is sufficient to show that σ
is efficient in V (N), as V (S) ⊆ VS,σ(S) and σS is efficient in VS,σ(S) for each
S ∈ P (N) \ {N}. Suppose on the contrary that there exists u ∈ V (N) such
that u > σ. Let i ∈ N be such that ui > σi. Hence σi 6∈ C({i}, V{i},σ) because
ui ∈ V{i},σ({i}). This is impossible.

2. Σ ⊆ C: Let Σ be a solution that satisfies both OPR and CONS, let (N, V ) ∈
G and let σ ∈ V (N). If σ 6∈ C(N, V ), then there exists S ∈ P (N) and
u ∈ V (S) such that u > σS. Let i ∈ S be such that ui > σi. OPR implies that
σi 6∈ Σ({i}, V{i},σ) because ui ∈ V{i},σ({i}). Hence σ 6∈ Σ(N, V ) by CONS.

3. C ⊆ Σ: Let Σ be a solution that satisfies both OPR and CO-CONS. I
prove by induction on the cardinality of N that C(N, V ) ⊆ Σ(N, V ) for each
game (N, V ) ∈ G. The result is obvious if there is just one player in the
game, given OPR. Let n be a positive integer. Suppose that I already proved
that C(N, V ) ⊆ Σ(N, V ) for every game (N, V ) ∈ G such that #N ≤ n. Let
(N, V ) ∈ G be such that #N = n+1 and let σ ∈ C(N, V ). By 1.a, (S, VS,σ) ∈ G
and σS ∈ C(S, VS,σ) for each S ∈ P (N) \ {N}. By the induction hypothesis,
σS ∈ Σ(S, VS,σ) for each S ∈ P (N) \ {N}. By CO-CONS, σ ∈ Σ(N, V ). �

The reasoning is simple. If the players in the reduced games can buy up the
cooperation of passive players, then coalitional stability amounts to OPR. Pe-
leg’s (1985) argument is similar but less straightforward because he assumes
that the members of the grand coalition buy up the cooperation of all the
passive players in the reduced games. For instance, he establishes the maxi-
mality of the core by combining the individual rationality constraints in all
the reduced games with two players.

Peleg (1985, 1986) applies his axioms to the set of games with a non-empty
core. Hence his axiomatic characterizations are not completely independent of
the core itself. Serrano and Volij (1998) can dispense with the non-emptiness
axiom by altering the reduction process and by imposing OPR instead of
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‘individual rationality’.

The Davis-Maschler-Peleg reduction process can also be used to axiomatize
the prekernel and the prenucleolus (Sobolev, 1975; Peleg, 1986; Serrano and
Shimomura, 1998). It would be interesting to know whether similar results can
be obtained with the Serrano-Volij reduction process. In view of Proposition
1, every solution that satisfies CONS (and OPR) is a core selection. Hence
CONS could actually be used only to axiomatize the intersection of the core
with the prekernel and/or the intersection of the core with the prenucleolus.

3 The Result

A game (N, V ) is convex-valued if V (S) is convex for each coalition S ∈ P (N).
Convex-valued games are the relevant models to consider when the players
may agree on lotteries, and evaluate them according to the expected utility
criterion. CONS is inappropriate in this context, as the reduction process does
not preserve convexity. I suggest to adapt CONS by allowing the coalitions in
the reduced games to use lotteries to determine the set of passive players with
whom to cooperate.

I impose two regularity conditions. A game (N, V ) is non-level if

[vi ≥ max
u∈V ({i})

u] → [(∃v′ ∈ V (S)) : v′S\{i} >> vS\{i}]

for each v ∈ V (S), each i ∈ S and each coalition S ∈ P (N) with at least two
members. This is a very weak form of transferable utility: if an agreement v
for S is individually rational for player i, then there exists an agreement v′ for
S that makes all the members of S \ {i} strictly better off, obviously at the
expense of player i if v is efficient. In particular, if a vector λ is orthogonal
to V (S) at an efficient utility profile that is individually rational for all the
players, then λ is strictly positive. Next, a convex set is smooth at a point
of its boundary if it admits a unique supporting hyperplane at this point.
A convex-valued game (N, V ) is smooth if V (S) is smooth at each efficient
utility profile, for each coalition S. The set of convex-valued games that are
both non-level and smooth is denoted by G ′.

I consider solutions defined on G ′ in the remainder of the paper. The inner
core is obtained by applying Shapley’s (1969) fictitious-transfer procedure to
the core defined on the class of games with transferable utility:

IC(N,V ) =
⋃

λ∈RN
++

{σ ∈ V (N)|(∀S ∈ P (N))(∀u ∈ V (S)) :
∑
i∈S

λiui ≤
∑
i∈S

λiσi}

for each (N, V ) ∈ G ′. It is the set of feasible utility profiles σ for which there
exists a vector of utility weights λ such that no coalition can improve upon
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σ even by making λ-weighted transfers of utilities between its members. By
construction, the inner core is a subset of the core. The inclusion may be strict,
as the following example shows.

Example 1 Let (N, V ) ∈ G ′ be the game defined as follows: N := {1, 2, 3},
V ({i}) = [0, 1] for each i ∈ {1, 2, 3}, V ({1, 2}) = {u ∈ R2

+|u2
1 + 10u2

2 ≤ 910},
V ({1, 3}) = V ({2, 3}) = {u ∈ R2

+|u2
1 + u2

2 ≤ 2} and V ({1, 2, 3}) = {u ∈
R3

+|u2
1 + u2

2 + u2
3 ≤ 300}. The payoff profile σ := (10, 10, 10) belongs to the

core but not to the inner core. To see that σ does not belong to the inner core,
observe that any vector of weights supporting V (N) at σ is proportional to
(1, 1, 1) and that coalition {1, 2} could improve upon σ if its members were able
to transfer utility at this rate (for instance by achieving (30, 1) and transferring
fourteen units of utility from player 1 to player 2).

Axiom 4 (One-Person Rationality, OPR) Σ(N, V ) = arg maxv∈V (N) v, for each
(N, V ) ∈ G ′ such that #N = 1.
Axiom 5 (Consistency’, CONS’) Let (N, V ) ∈ G ′, let S ∈ P (N) and let
σ ∈ Σ(N, V ). Then (S, V ′

S,σ) ∈ G ′ and σS ∈ Σ(S, V ′
S,σ), where (S, V ′

S,σ) is
the reduced game with respect to S and σ defined as follows: 2

V ′
S,σ(T ) := co[VS,σ(T )]

for each T ∈ P (S).
Axiom 6 (Converse Consistency’, CO-CONS’) Let (N, V ) ∈ G ′ be a game with
at least two players and let σ ∈ V (N). If (S, V ′

S,σ) ∈ G ′ and σS ∈ Σ(S, V ′
S,σ)

for each S ∈ P (N) \ {N}, then σ ∈ Σ(N, V ).

CONS’ and CO-CONS’ are the analog of CONS and CO-CONS obtained by
convexifying the reduction process.

The inner core is the only solution to satisfy these three axioms on G ′. I need
the following lemma to prove this result. It is a convenient reformulation of
previous results stating that any feasible allocation that is immune to random
blocking plans belongs to the inner core (Myerson, 1991, section 9.8; Qin,
1993; de Clippel and Minelli, 2004).

Lemma 1 (Adapted from de Clippel and Minelli, 2004, Proposition 4) Let
(N, V ) ∈ G ′ and let σ ∈ V (N). If σS ∈ C(S, V ′

S,σ) for each S ∈ P (N), then
σ ∈ IC(N, V ).

Proof: Notice that σ is efficient in V (N) since σ ∈ C(N, V ). Let λ be the
unique normalized vector that is orthogonal to V (N) at σ. Notice also that

2 ‘co’ denotes the convex hull operator. If A is a subset of some euclidian space,
then co(A) is the set of vectors that can be written as a convex combination of
finitely many elements of A.
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σi ≥ maxv∈V ({i}) v for each i ∈ N . Hence λ >> 0, thanks to the first regu-
larity condition imposed on the games in G ′. Let S be a coalition. The utility
profile σS is optimal in V ′

S,σ(S), as σS ∈ C(S, V ′
S,σ). Let λ′ be a vector that is

orthogonal to V ′
S,σ(S) at σS. Let U := {u ∈ RS|(u, σN\S) ∈ V (N)}. Observe

that U ⊆ V ′
S,σ(S) and that σS ∈ U . Hence λ′ is orthogonal to U at σS. The

smoothness of V (N) implies that λ′ is proportional to λS, thanks to lemma
4 in the appendix. In addition, V (S) ⊆ V ′

S,σ(S). Hence
∑

i∈S λiui ≤
∑

i∈S λiσi

for each u ∈ V (S). �

Example 1 illustrates lemma 1. The utility profile σ = (10, 10, 10) belongs to
core but not to the inner core. Hence there must exists a coalition S ( N
such that σS 6∈ C(S, V ′

S,σ). Indeed, σ{1,2} is not optimal in V ′
{1,2},σ({1, 2}), as

(30, 1) ∈ V ({1, 2}), (
√

79, 11) ∈ V{1,2},σ({1, 2}) and (10, 10) < (30,1)+10(
√

79,11)
11

.

Lemma 1 does not hold for convex-valued games that do not satisfy the two
regularity conditions, as the following example shows.

Example 2 (Adapted from de Clippel and Minelli, 2004, Example 3) Let σ =
(3, 3, 3) and let ({1, 2, 3}, V ) be the game defined as follows: V ({i}) = {0}
for each i ∈ {1, 2, 3}, V ({1, 2}) = V ({2, 3}) = {u ∈ R2

+|u1 + 9u2 ≤ 9},
V ({1, 3}) = {u ∈ R2

+|9u1 +u2 ≤ 9} and V ({1, 2, 3}) = {u ∈ R3
+|u ≤ (3, 3, 3)}.

It is easy to check that σS ∈ C(S, V ′
S,σ) for each S ∈ P ({1, 2, 3}). Suppose

that (3, 3, 3) belongs to the inner core of ({1, 2, 3}, V ). Let λ be the associated
vector of utility weights. Observe that (9, 0) ∈ V ({1, 2}) ∩ V ({2, 3}) and that
(0, 9) ∈ V ({1, 3}). Hence 3λ1 + 3λ2 ≥ 9λ1, 3λ2 + 3λ3 ≥ 9λ2 and 3λ1 + 3λ3 ≥
9λ3. This implies that 6(λ1 + λ2 + λ3) ≥ 9(λ1 + λ2 + λ3), which is impossible.

Proposition 2 The inner core is the maximal solution to satisfy OPR and
CONS’ on G ′. It is also the minimal solution to satisfy OPR and CO-CONS’
on G ′. Hence it is the only solution to satisfy OPR, CONS’ and CO-CONS’
on G ′.

Proof: 1. The inner core obviously satisfies OPR. It also satisfies CONS’ and
CO-CONS’ as the following argument shows.

1.a) CONS’: Let (N, V ) ∈ G ′, let S ∈ P (N) and let σ ∈ IC(N, V ). I first
characterize V ′

S,σ(T ) for each T ∈ P (S). Observe that the set {u ∈ RT |(∃w ∈
V (T ∪Q)) : wT = u∧wQ ≥ σQ} is convex for each Q ∈ P (N \S)∪{∅}. Hence
v ∈ V ′

S,σ(T ) if and only if there exist a probability distribution α defined over
P (N \ S) ∪ {∅}, a function x : P (N \ S) ∪ {∅} → RT and a function w that
associates to every coalition Q ∈ P (N \S)∪{∅} an element w(Q) in V (T ∪Q)
such that v =

∑
Q∈P (N\S)∪{∅} α(Q)x(Q), wT (Q) = x(Q) and wQ(Q) ≥ σQ, for

each Q ∈ P (N \ S).

I prove now that (S, V ′
S,σ) ∈ G ′. The convex hull of a compact set is a set
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that is both compact and convex. Let T ∈ P (S) be a coalition with at least
two members, let v ∈ V ′

S,σ(T ), let (α, x, w) be some triple associated to v
(see the previous paragraph) and let i ∈ T . If vi ≥ maxu∈VS,σ({i})′ u, then

there exists Q̂ ∈ P (N \ S) ∪ {∅} such that xi(Q̂) ≥ maxu∈V ({i}) u. Since V

satisfies the first regularity condition, there exists z ∈ V (T ∪ Q̂) such that
z(T∪Q̂)\{i} >> x(T∪Q̂)\{i}. I obtain x′ by modifying x as follows: x′(Q̂) := zT

and x′(Q) := x(Q) for every Q ∈ P (N \ S) ∪ {∅} different from Q̂. Then
v′ :=

∑
Q∈P (N\S)∪{∅} α(Q)x′(Q) ∈ V ′

S,σ(T ) and v′T\{i} >> vT\{i}. Suppose now

that v ∈ RT is efficient in V ′
S,σ(T ) in order to check the second regularity

condition. Let Q ∈ P (N \ S) ∪ {∅}. If α(Q) > 0, then x(Q) is efficient in
{u ∈ RT |(∃w ∈ V (T ∪ Q)) : wT = u ∧ wQ ≥ σQ}. Lemma 4 in the appendix
implies that {u ∈ RT |(∃w ∈ V (T ∪ Q)) : wT = u ∧ wQ ≥ σQ} is smooth at
x(Q). Therefore V ′

S,σ(T ) is smooth at v.

I finally prove that σS ∈ IC(S, V ′
S,σ). Let λ ∈ RN

++ be a vector that sup-
ports σ as an inner core allocation for (N, V ), let T ∈ P (S), let v ∈ V ′

S,σ(T )
and let (α, x, w) be some triple associated to v as before. I have:

∑
i∈T λivi =∑

i∈T λi
∑

Q∈P (N\S)∪{∅} α(Q)xi(Q) =
∑

Q∈P (N\S)∪{∅} α(Q)
∑

i∈T λiwi(Q). Hence
there exists Q ∈ P (N \S)∪{∅} such that

∑
i∈T λivi ≤

∑
i∈T λiwi(Q). As σQ ≤

wQ(Q) and w(Q) ∈ V (T∪Q), I have:
∑

i∈T λivi+
∑

i∈Q λiσi ≤
∑

i∈T∪Q λiwi(Q) ≤∑
i∈T∪Q λiσi. Hence

∑
i∈T λivi ≤

∑
i∈T λiσi. So σS ∈ IC(S, V ′

S,σ).

1.b) CO-CONS’: Let (N, V ) ∈ G be a game with at least two players and let
σ ∈ V (N). Suppose that σS ∈ IC(S, V ′

S,σ) for each S ∈ P (N) \ {N}. Hence
σS ∈ C(S, V ′

S,σ) for each S ∈ P (N) \ {N}. In addition, σ ∈ C(N, V ), as the
core satisfies CO-CONS. Lemma 1 implies that σ ∈ IC(N, V ).

2. Σ ⊆ IC: Let Σ be a solution that satisfies both OPR and CONS’. It is
easy to adapt item 2 in the proof of proposition 1 to show that Σ ⊆ C. The
following argument proves the stronger result Σ ⊆ IC. Let (N, V ) ∈ G ′ and
let σ ∈ V (N). Suppose that σ 6∈ IC(N, V ). Lemma 1 implies that there exists
S ∈ P (N) such that σS 6∈ C(S, V ′

S,σ). Hence σS 6∈ Σ(S, V ′
S,σ) and σ 6∈ Σ(N, V )

by CONS’.

3. IC ⊆ Σ: Let Σ be a solution that satisfies both OPR and CO-CONS’. I prove
by induction on the cardinality of N that IC(N, V ) ⊆ Σ(N, V ) for each game
(N, V ) ∈ G ′. The result is obvious for one-player games, given OPR. Let n be
a positive integer. Suppose that I already proved that IC(N, V ) ⊆ Σ(N, V )
for every game (N, V ) ∈ G ′ with at most n players. Let (N, V ) ∈ G ′ be a
game with n + 1 players and let σ ∈ IC(N, V ). By 1.a, (S, V ′

S,σ) ∈ G ′ and
σS ∈ IC(S, V ′

S,σ) for each S ∈ P (N) \ {N}. By the induction hypothesis,
σS ∈ Σ(S, V ′

S,σ) for each S ∈ P (N) \ {N}. By CO-CONS’, σ ∈ Σ(N, V ). �

The axioms are independent. For each non-negative integer k, let Σk be the
solution defined as follows: Σk(N, V ) := IC(N, V ) for each game (N, V ) ∈ G ′
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with #N < k and Σk(N, V ) = ∅ for each game (N, V ) ∈ G ′ with #N ≥ k. Σ0

(the empty solution) satisfies both CONS’ and CO-CONS’, but not OPR. For
each k ≥ 1, Σk satisfies both OPR and CONS’, but not CO-CONS’. Finally,
the core satisfies both OPR and CO-CONS’, but not CONS’.

The regularity assumptions are important. The inner core does not satisfy
CO-CONS’ on the class of all convex-valued games. Consider the game V
and the payoff vector σ defined in example 2 for instance. We have: σ 6∈
IC(N, V ) although σS ∈ IC(S, V ′

S,σ) for each coalition S different from the
grand coalition. Also, the inner core is not the maximal solution to satisfy
OPR and CONS’ on the class of convex-valued games. I refer again to the
game V and the payoff vector σ defined in example 2. Consider for instance
the solution Σ that coincides with the inner core for all convex-valued games
except ({1, 2, 3}, V ) where the solution is {σ}. It is easy to check that Σ
satisfies both OPR and CONS’. Yet it is larger than the inner core.

I proposed a first axiomatization of the inner core in de Clippel (2002). This
previous result is not related at all to proposition 2. Indeed, it showed that the
inner core is a natural extension of the core defined for TU-games to some class
of convex-valued NTU-games, by adapting Aumann’s (1985) axiomatization
of the Shapley (1969) NTU value. The key properties were the conditional
sure-thing and the conditional decreasingness axioms. They linked the solu-
tion of NTU-games with the solution of some supporting TU-games. The key
properties in proposition 2 are the consistency and the converse consistency
axioms. They link coalitional stability with one-person rationality. This ap-
proach leads to a full axiomatization of the inner core that does not impose
on the solution to coincide with the (inner) core on the class of TU-games.
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Appendix

Lemma 2 (Intermediate Value Theorem for Correspondences) Let β be a real num-
ber and let F : [a, c] → R be a correspondence with non-empty convex values and a
compact graph. If there exists a couple (α, γ) ∈ F (a) × F (c) such that α < β < γ,
then there exists b ∈ [a, c] such that β ∈ F (b).

Proof: The set S := {x ∈ [a, c]|(∃χ ∈ F (x)) : χ ≤ β} is nonempty (as it contains a)
and bounded above by c. Let b be its supremum. I show that β ∈ F (b). Let (xk)k∈N
be a sequence in S such that xk → b and let (χk)k∈N be a sequence such that χk ≤ β
and χk ∈ F (xk) for each k ∈ N. I may assume without loss of generality (because
F has a compact graph) that χk → χ for some χ ∈ F (b). Notice that χ ≤ β. Let
(x̂k)k∈N be a sequence in [b, c] such that x̂k → b and let (χ̂k)k∈N be a sequence
such that χ̂k ≥ β and χ̂k ∈ F (xk) for each k ∈ N. I may assume without loss of
generality (because F has a compact graph) that χ̂k → χ̂ for some χ̂ ∈ F (b). Notice
that χ̂ ≥ β. In addition, F (b) is a convex set. Hence β ∈ F (b). �

Let V be a compact and convex subset of RN , let i ∈ N and let r ∈ R. Let
f : RN\{i} → RN be the function defined as follows: fi(φ) := r and fj(φ) := φj if
j ∈ N \ {i}, for each φ ∈ RN\{i}. Let U be the slice of V obtained by intersecting
V with the set of vectors in RN whose ith component equals r:

U := {φ ∈ RN\{i}|f(φ) ∈ V }.

It is a convex set. The next proposition states that, under mild conditions, any
vector λ that is orthogonal to U at some vector φ∗ can be extended into a vector
that is orthogonal to V at f(φ∗).

Lemma 3 Let φ∗ be a vector that belongs to the boundary of U and let λ ∈ RN\{i}\
{0} be a vector that is orthogonal to U at φ∗. If there exists a couple (v, v′) ∈ V ×V
such that vi < r < v′i, then there exists µ ∈ RN that is orthogonal to V at f(φ∗)
such that µN\{i} = λ.

Proof: Let µ : R → RN be the function defined as follows: µi(x) := x and µj(x) := λj

for each j ∈ N \ {i} and each x ∈ R. Let F : R → R be the correspondence defined
as follows:

F (x) := projR{i}{χ ∈ V |µ(x) is orthogonal to V at χ}

for each x ∈ R. Observe that F has non-empty convex values. Also, I have that∑
j∈N

µj(x)vj ≤
∑
j∈N

µj(x)χj ≤ xχi + max
u∈V

∑
j∈N\{i}

λjuj

which implies that
x(vi − χi) ≤ max

u∈V

∑
j∈N\{i}

λj(uj − vj)

for each x ∈ R and each χ ∈ V such that µ(x) is orthogonal to V at χ. Hence, there
exists x ∈ R− and χi ∈ F (x) such that χi < r. Similarly,

x(v′i − χi) ≤ max
u∈V

∑
j∈N\{i}

λj(u∗j − v′j)
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for each x ∈ R and each χ ∈ V such that µ(x) is orthogonal to V at χ. Hence,
there exists x ∈ R+ and χi ∈ F (x) such that r < χi. In addition, the graph of the
correspondence F restricted to [x, x] is compact. By lemma 2, there exists x̂ ∈ [x, x]
such that r ∈ F (x̂). Hence, there exists φ̂ ∈ U such that µ(x̂) is orthogonal to V
at f(φ̂). This implies that µ(x̂) is orthogonal to V at f(φ∗), as

∑
j∈N µj(x̂)fj(φ̂) =

µi(x̂)r +
∑

j∈N\{i} λjφ̂j ≤ µi(x̂)r +
∑

j∈N\{i} λjφ
∗
j =

∑
j∈N µj(x̂)fj(φ∗). �

Lemma 3 is not valid without the existence of a couple (v, v′) ∈ V × V such that
vi < r < v′i, as the next example shows.

Example 3 The set V := {v ∈ RN |
∑

j∈N v2
j ≤ 1} is compact and convex. Let

i ∈ N , let r := 1 and let φ∗ := 0 ∈ RS\{i}. Notice that U = {0} and so φ∗ ∈ ∂U . If
a vector µ is orthogonal to V at f(φ∗), then µN\{i} = 0. Hence it is impossible to
extend any vector λ orthogonal to U at φ∗ into some vector µ orthogonal to V at
f(φ∗).

Lemma 4 If u is efficient in V , V is smooth at u, and there exists a couple (v, v′) ∈
V × V such that vi < ui < v′i, then U is smooth at uN\{i}.

Proof: Let µ be the unique normalized vector that is orthogonal to V at u. By
lemma 3, any vector λ that is orthogonal to U at uN\{i} must be proportional to
µN\{i}. Hence U is smooth at uN\{i}. �

Example 3 shows that lemma 4 is not valid without the existence of a couple (v, v′) ∈
V × V such that vi < ui < v′i.
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