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Abstract

We consider the inner core as a solution concept for cooperative games with non-

transferable utility (NTU) and its relationship to competitive equilibria of markets

that are induced by an NTU game. We investigate the relationship between certain

subsets of the inner core for NTU market games and competitive payoff vectors of

markets linked to the NTU market game. This can be considered as the case in

between the two extreme cases of Qin (1993). We extend the results of Qin (1993)

to a large class of closed subsets of the inner core: Given an NTU market game

we construct a market depending on a given closed subset of its inner core. This

market represents the game and further has the given set as the set of payoffs of

competitive equilibria. It turns out that this market is not determined uniquely and

thus we obtain a class of markets with the desired property.
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1 Introduction

The idea to consider cooperative games as economies or markets goes back to Shapley

and Shubik (1969). They look at TU market games. These are cooperative games with

transferable utility (TU) that are in a certain sense linked to economies or markets. More

precisely, a market is said to represent a game if the set of utility allocations a coalition

can reach in the market coincides with the set of utility allocations a coalition obtains

according to the coalitional function of the game. If there exists a market that represents

a game, then this game is called a market game. Shapley and Shubik (1969) prove the

identity of the class of totally balanced TU games with the class of TU market games.

Furthermore, Shapley and Shubik (1975) show that starting with a TU market game

every payoff vector in the core of that game is competitive in a certain market, called

direct market, and that for any given point in the core there exists at least one market

that has this payoff vector as its unique competitive payoff vector.

Cooperative games with non-transferable utility (NTU) can be considered as a gen-

eralization of TU games, where the transfer of the utility within a coalition does not

take place at a fixed rate. In this paper we consider NTU market games. After Shapley

and Shubik (1969), Billera and Bixby (1974) investigated the NTU case and obtained

similar results for compactly convexly generated NTU games. Analogously to the result

of Shapley and Shubik (1969) they show that every totally balanced NTU game, that is

compactly convexly generated, is a market game. The inner core is a refinement of the

core for NTU games. A point is in the inner core if there exists a transfer rate vector,

such that - given this transfer rate vector - no coalition can improve even if utility can

be transferred within a coalition according to this vector. So, an inner core point is in

the core of an associated hyperplane game where the utility can be transferred according

to the transfer rate vector. Qin (1993) shows, verifying a conjecture of Shapley and Shu-

bik (1975), that the inner core of a market game coincides with the set of competitive

payoff vectors of the induced market of that game. Moreover, he shows that for every

NTU market game and for any given point in its inner core there exists a market that

represents the game and further has this given inner core point as its unique competitive

payoff vector.

Similarly to the approach of Billera and Bixby (1974), Inoue (2010b) uses coalition

production economies as in Sun et al. (2008) instead of markets. Inoue (2010b) shows

that every compactly generated NTU game can be represented by a coalition production

economy. Moreover, he proves that there exists a coalition production economy whose

set of competitive payoff vectors coincides with the inner core of the balanced cover of

the original NTU game.

Here we consider the classical approach using markets. We investigate the case in
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between the two extreme cases of Qin (1993), where on the one hand there exists a

market that has the complete inner core as its set of competitive payoff vectors and on

the other hand there is a market that has a given inner core point as its unique competitive

payoff vector. We extend the results of Qin (1993) to closed subsets of the inner core:

Given an NTU market game we construct a market depending on a given closed subset

of the inner core. This market represents the game and further has the given set as the

set of payoffs of competitive equilibria. It turns out that this market is not determined

uniquely. Several parameters in our construction can be chosen in different ways. Thus,

we obtain a class of markets with the desired property.

Shapley and Shubik (1975) remark that in the TU case their result can be extended

to any closed and convex subset of the core. Whether a similar result analogously to the

one of Shapley and Shubik (1975) holds for NTU market games, was up to now not clear.

Our result shows, that in the NTU case it is even possible to focus on closed, typically

non-convex, subsets of the inner core.

The inner is one solution concept for NTU games. Extending the results of Qin (1993)

to closed subsets of the inner core means in particular to show such a result for all solution

concepts selecting closed subsets of the inner core.

2 NTU market games

Let N = {1, ..., n} with n ∈ N and n ≥ 2 be a set of players. Let N = {S ⊆ N |S 6= ∅} be

the set of coalitions. Define for a coalition S ∈ N the following sets RS = {x ∈ R
n|xi =

0 if i /∈ S} ⊆ R
n, RS

+ = {x ∈ R
S |xi ≥ 0 for all i ∈ S} ⊆ R

n
+, R

S
++ = {x ∈ R

S |xi >

0 for all i ∈ S} ⊆ R
n
++. For a vector a ∈ R

n and a coalition S ∈ N let aS denote the

vector, where for i ∈ S we have aSi = ai and aSj = 0 for j /∈ S. Moreover, for a ∈ R
n

and b ∈ R
n denote the inner product by a · b =

∑n

i=1 aibi and the Hadamard product by

a ◦ b = (a1b1, ..., anbn).

An NTU (non-transferable utility) game is a pair (N,V ), that consists of a player set

N = {1, ..., n} and a coalitional function V , which defines for every coalition the utility

allocations this coalition can reach, regardless of what the other players outside this

coalition do. Hence, define the coalitional function V from the set of coalitions, N , to the

set of non-empty subsets of Rn, such that for every coalition S ∈ N we have V (S) ⊆ R
S ,

V (S) is non-empty and V (S) is S-comprehensive, meaning V (S) ⊇ V (S)− R
S
+.

The literature on NTUmarket games, as for example Billera and Bixby (1974) and Qin

(1993), considers NTU games that are compactly and convexly generated. An NTU game

(N,V ) is compactly (convexly) generated if for all coalitions S ∈ N there exists a compact

(convex) set CS ⊆ R
S such that the coalitional function has the form V (S) = CS −R

S
+.
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Given a player set N = {1, ..., n} the set of balancing weights is defined by Γ(eN ) =
{

(γS)S⊆N |γS ≥ 0 ∀ S ⊆ N,
∑

S⊆N γSe
S = eN

}

. The balancing weights can be interpreted

in the following way: Every player i has one unit of time that he can split over all the

coalitions, he is a member of, with the constraint that a coalition has to agree on a com-

mon weight. Thereby, each player has to spend all his time. The weight γS can be seen

as well as the intensity with which each player participates in the coalition S ∈ N . In

particular, if we have a partition of the player set into a coalition S and its complement

N \ S a balancing weight can be defined by γS = γN\S = 1 and γT = 0 for all other

coalitions T except for S and N \S. An NTU game (N,V ) is balanced if for all balancing

weights γ ∈ Γ(eN ) we have
∑

S⊆N γSV (S) ⊆ V (N). Moreover, an NTU game (N,V ) is

totally balanced if it is balanced in all subgames. This means for all coalitions T ∈ N

and for all balancing weights γ ∈ Γ(eT ) =
{

(γS)S⊆T |γS ≥ 0 ∀ S ⊆ T,
∑

S⊆T γSe
S = eT

}

we have
∑

S⊆T γSV (S) ⊆ V (T ).

In order to define an NTU market game we first consider the notion of a market

which is less general than the notion of an economy according to for example Arrow

and Debreu (1954). In a market the number of consumers coincides with the number of

producers. Each consumer has his own private production set. In contrast to the usual

notion of an economy a market is assumed to have concave and not just quasi concave

utility functions.

Definition (market). A market is given by E =
{

(

Xi, Y i, ωi, ui
)

i∈N

}

where for every

individual i ∈ N

- Xi ⊆ R
`
+ is a non-empty, closed and convex set, the consumption set, where ` ≥ 1,

` ∈ N is the number of commodities,

- Y i ⊆ R
` is a non-empty, closed and convex set, the production set, such that

Y i ∩ R
`
+ = {0},

- ωi ∈ Xi − Y i, the initial endowment vector,

- and ui : Xi → R is a continuous and concave function, the utility function.

As pointed out before in a market each consumer is assumed have his own private

production set. This assumption is not as restrictive as it appears to be. A given

private ownership economy can be transformed into an economy with the same number

of consumers and producers without changing the set of competitive equilibria or possible

utility allocations, see for example Qin and Shubik (2009, section 4).

In the following, we often consider markets where Xi ⊆ R
kn
+ with k, n ∈ N. Then,

consumption vectors are usually written as xi =
(

x(1)i, ..., x(k)i
)

∈ Xi where x(m)i ∈ R
n
+
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for m = 1, ..., k. In a sense, we divide the kn consumption goods in k consecutive groups

of n goods. The vector x(m)i is the mth group of n consumption goods of the consumption

vector xi. We use an analogous notation for the production goods and price vectors.

Given a market we define which allocations are considered as feasible for some coalition

S ∈ N . An S-allocation is a tuple
(

xi
)

i∈S
such that xi ∈ Xi for each i ∈ S. The set of

feasible S-allocations is given by

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

xi ∈ Xi for all i ∈ S,
∑

i∈S

(xi − ωi) ∈
∑

i∈S

Y i

}

.

Hence, an S-allocation is feasible if there exist for all i ∈ S production plans yi ∈ Y i

such that
∑

i∈S(x
i − ωi) =

∑

i∈S yi. We refer to a feasible S-allocation in the following

together with suitable production plans as a feasible S-allocation
(

xi
)

i∈S
with

(

yi
)

i∈S
.

In the definition of feasibility it is implicitly assumed that by forming a coalition the

available production plans are the sum of the individually available production plans.

This approach is different from the idea to use coalition production economies, where

every coalition has already in the definition of the economy its own production possibility

set. Nevertheless, a market can be transformed into a coalition production economy

by defining the production possibility set of a coalition as the sum of the individual

production possibility sets.

Given the notion of a market and of feasible allocations for coalitions S ∈ N we define

an NTU market game in the following way:

Definition (NTU market game). An NTU game (N,V ) that is representable by a market

is an NTU market game. This means there exists a market E such that (N,VE) = (N,V )

with

VE(S) =
{

u ∈ R
S | ∃ (xi)i∈S ∈ F (S), ui ≤ ui(xi), ∀ i ∈ S

}

.

For an NTU market game there exists a market such that the set of utility allocations

a coalition can reach according to the coalitional function coincides with the set of utility

allocations that are generated by feasible S-allocations in the market or that give less

utility than some feasible S-allocation.

One of the main results on NTU market games in Billera and Bixby (1974) is the

following:

Theorem (2.1, Billera and Bixby (1974)). An NTU game (N,V ) is an NTU market

game if and only if it is totally balanced and compactly convexly generated.

Hence, in order to study NTU market games, it is sufficient to look at those NTU

games that are totally balanced and compactly convexly generated.
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For the succeeding analysis, it will be useful to shift a given NTU game in the fol-

lowing way (compare Billera and Bixby (1973, Proposition 2.2)): Given a vector c ∈ R
n

define the coalitional function (V + c) via (V + c) (S) = V (S) +
∑

i∈S ci. To represent a

shifted game by a market we have to shift the utility function of agent i by ci. Hence,

the shifted game with coalitional function (V + c) is again a market game. Furthermore,

shifting the utility functions of the agents does not change the set of competitive equi-

libria. Having this idea of shifting in mind we will focus in some proofs on games where

for every coalition S ∈ N we have CS ⊆ R
S
++.

To prove the above result Billera and Bixby (1974) introduce the notion of an induced

market that arises from a compactly convexly generated NTU game.

Definition (induced market). Let (N,V ) be a compactly convexly generated NTU game.

The induced market of the game (N,V ) is defined by

EV =
{

(Xi, Y i, ui, ωi)i∈N

}

with for each individual i ∈ N

- the consumption set Xi = R
n
+ × {0} ⊆ R

2n,

- the production set Y i = convexcone
[
⋃

S∈N

(

CS × {−eS}
)]

⊆ R
2n,

- the initial endowment vector ωi =
(

0, e{i}
)

,

- and the utility function ui : Xi → R with ui(xi) = x
(1)i
i .

It can easily be seen that this is a market according to the previous definition. Note

that in an induced market we have input and output goods. Initially every consumer

owns one unit of his personal input good that can only be used for the production process.

By using his input good the consumer can get utility just from his personal output good.

The consumption and production set are the same for every player. Just the utility

functions and the initial endowments are dependent on the player.

The individual production sets in an induced market are convex cones and identical

for all agents. In this situation taking the sum over production sets of some agents leads

to the same production set. Setting Y =
∑

i∈N Y i the condition for feasibility of S-

allocations reduces to
∑

i∈S(x
i − ωi) ∈ Y . Furthermore, for convex-cone technologies

the competitive equilibrium profits are equal to 0. This means that in equilibrium we

do not have to specify shares of the production as it usually done in private ownership

economies.

Thus, as long as the individual production sets are convex cones and identical for all

6



agents, we could alternatively consider a model for the production where we have only

one production set for all agents and possible coalitions without specifying the shares.

This model could be used instead of the production setup in the definition of a market.

In the definition of the induced market it is assumed that every individual has already

the production possibilities, that become available if coalitions form, included in his

personal production set. This means he already knows everything that can be produced

in the different coalitions, even if he does not possess the necessary input commodities

himself. Starting with an NTU game the utility allocations a coalition can reach in the

derived induced market are not described by defining production sets individually for

every coalition but by using input and output commodities. A utility allocation, that

is reachable in the NTU game by a coalition S, is reachable in the induced market by

the same coalition if the individuals pool their initial endowments using “one general”

production possibility set. Utility allocations that require the cooperation of individuals

outside the coalition S are technologically possible but can actually not be produced as

the input commodities of these individuals are needed. In contrast to this interpretation

in coalition production economies every coalition has its own production set.

The main proof of the above theorem from Billera and Bixby (1974) relies on Billera

(1974). In a similar manner as Shapley and Shubik (1969), he starts with an NTU game,

(N,V ), and looks at the induced market of that game, EV , and afterwards at the NTU

game that is induced by the induced market, VEV
. He shows that this game coincides

with the totally balanced cover of the game (N,V ).

The next step is to investigate the existing literature on and to study the relationship

between solution concepts in cooperative game theory, as the inner core, and those in

general equilibrium theory, as the notion of a competitive equilibrium. Analogously to

the TU case of Shapley and Shubik (1975), Qin (1993) shows that the inner core of an

NTU market game coincides with the set of competitive payoff vectors of the induced

market of that game. Moreover, he shows that for every NTU market game and for any

given point in its inner core, there is a market that represents the game and further has

the given inner core point as its unique competitive payoff vector. Before we extend the

results of Qin (1993) we recall the basic definitions and state his main results. We start

with the definition of the inner core and the notion of competitive payoff vectors in the

context of NTU market games. Afterwards, we state the main results of Qin (1993) and

comment on the ideas he uses to prove them.

In order to define the inner core we first consider a game that is related to a compactly

generated NTU game, called the λ-transfer game. Fix a transfer rate vector λ ∈ R
n
+.
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Define vλ(S) = max{λ · u|u ∈ V (S)} as the maximal sum of weighted utilities that

coalition S can achieve given the transfer rate vector λ. The λ-transfer game, denoted as

(N,Vλ), of (N,V ) is defined by taking the same player set N and the coalitional function

Vλ(S) = {u ∈ R
S |λ · u ≤ vλ(S)}. Qin (1994, p.433) gives the following interpretation

of the λ-transfer game: “The idea of the λ-transfer game may be captured by thinking

of each player as representing a different country. The utilities are measured in different

currencies, and the ratios λi/λj are the exchange rates between the currencies of i and

j.” As for the λ-transfer game only proportions matter we can assume without loss of

generality that λ is normalized, i.e. λ ∈ ∆ =
{

λ ∈ R
n
+|
∑n

i=1 λi = 1
}

. Define the positive

unit simplex by ∆++ =

{

λ ∈ R
n
++

∣

∣

∣

∣

∑n
i=1 λi = 1

}

.

The inner core is a refinement of the core. The core C(V ) of an NTU game (N,V ) is

defined as the set of utility allocations that are achievable by the grand coalition N such

that no coalition S can improve upon this allocation. Thus,

C(V ) =
{

u ∈ V (N)
∣

∣ ∀S ⊆ N ∀u′ ∈ V (S) ∃i ∈ S such that u′
i ≤ ui

}

.

A utility allocation is in the inner core IC(V ) of a compactly generated game (N,V )

if it is achievable by the grand coalition N and if additionally there exists a transfer rate

vector λ ∈ ∆ such that this utility allocation is in the core of the λ-transfer game. More

precisely:

Definition (inner core). The inner core of a compactly generated NTU game (N,V ) is

given by

IC(V ) = {u ∈ V (N)| ∃λ ∈ ∆ such that u ∈ C(Vλ)}.

Qin (1993, Remark 1, p. 337) remarks that if the NTU game is compactly convexly

generated the vectors of supporting weights for a utility vector in the inner core must

all be strictly positive. This can be seen by the following argument: If for one player

i ∈ N λi is equal to 0, then the core of the λ-transfer game is empty, because player i

can improve upon any u ∈ Vλ(N) by forming the singleton coalition {i}.

Qin (1994) considers sufficient conditions for the inner core to be non-empty. In

particular he shows that a compactly generated NTU game (N,V ), where V (N) is convex,

has a non-empty inner core if it is balanced with slack, meaning that for balancing

weights (γS)S⊆N with γN = 0 we have
∑

S⊂N

γSV (S) ⊂ intRn V (N) where intRn V (N) is

the interior of V (N) relative to R
n. Other contributions related to the non-emptiness of

the inner core can be found for example in Iehlé (2004), Bonnisseau and Iehlé (2007) or

Inoue (2010a).

We now define a competitive equilibrium for a market E .
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Definition (competitive equilibrium). A competitive equilibrium for a market E is a

tuple
(

(x̂i)i∈N , (ŷi)i∈N , p̂
)

∈ R
`n
+ × R

`n
+ × R

`
+

such that

(i)
∑

i∈N x̂i =
∑

i∈N (ŷi + ωi) (market clearing),

(ii) for all i ∈ N , ŷi solves maxyi∈Y i p̂ · yi (profit maximization),

(iii) and for all i ∈ N , x̂i is maximal with respect to the utility function ui in the budget

set {xi ∈ Xi|p̂ · xi ≤ p̂ · (ωi + ŷi)} (utility maximization).

Given a competitive equilibrium its competitive payoff vector is defined as
(

ui
(

x̂i
))

i∈N
.

Qin (1993) investigates the relationship between the inner core of an NTU market

game and the set of competitive payoff vectors of a market that represents this game.

He establishes, following a conjecture of Shapley and Shubik (1975), the two theorems

below analogously to the TU-case of Shapley and Shubik (1975).

Theorem (1, Qin (1993)). The inner core of an NTU market game coincides with the

set of competitive payoff vectors of the induced market by that game.

Theorem (3, Qin (1993)). For every NTU market game and for any given point in its

inner core, there is a market that represents the game and further has the given inner

core point as its unique competitive payoff vector.

To show his first result Qin (1993) uses the notion of the induced market of a com-

pactly convexly generated NTU game as it was already used by Billera and Bixby (1974).

It turns out that the set of competitive equilibrium payoff vectors of the induced market

coincides with the inner core. For his second result Qin (1993) fixes an inner core point,

denoted by u∗ 1, and chooses one transfer rate vector λ∗
u∗ from an associated λ-transfer

game. He modifies the given NTU game by applying a suitable strictly monotonic trans-

formation on the utility allocations a coalition can reach. In this modified game the given

inner core point u∗ can be strictly separated from the set of utility allocations the grand

coalition can reach (excluding u∗). Denote the modified game by (N, V̄ ) and the convex

compact sets generating this game by (C̄S)S∈N . A market to prove Theorem 3 of Qin

(1993) can be defined as follows:

1Qin (1993) considers only NTU games where for all coalitions S ∈ N the generating sets satisfy CS ⊆ R
S
+

and CS ∩ R
S
++

6= ∅ and hence has u∗ � 0.
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Define for all coalitions S ∈ N

A1
S =

{(

uS ,−eS ,−eS ,−eS , 0
)

|uS ∈ C̄S
}

⊆ R
5n,

A2
S =

{(

uS , 0,−eS , 0,−eS
)

|uS ∈ C̄S
}

⊆ R
5n,

A3
S =

{(

uS , 0, 0,−eS ,−eS
)

|uS ∈ C̄S
}

⊆ R
5n.

Let EV̄ ,u∗ =
{

(

Xi, Y i, ωi, ui
)

i∈N

}

be the market with for every individual i ∈ N

- the consumption set Xi = X = R
n
+ × {(0, 0, 0)} × R

n
+ ⊆ R

5n
+ ,

- the production set Y i = Y = convexcone
[

⋃

S⊆N

(

A1
S ∪A2

S ∪A3
S

)

]

⊆ R
5n,

- the initial endowment vector ωi =
(

0, e{i}, e{i}, e{i}, e{i}
)

∈ R
5n
+ ,

- the utility function ui(xi) = min
{

x
(1)i
i ,

(λ∗

u∗◦u∗)·x(5)i

λ∗

u∗i

}

with xi = (x(1)i, 0, 0, 0, x(5)i) ∈

Xi and x
(1)i
k is the kth entry of x(1)i.

Note that, similarly to the induced market, all individuals have the same consumption

sets and the same production sets. The individuals differ in their initial endowment

vectors and their utility functions. Qin (1993) introduces the sets A1
S , A

2
S , A

3
S in order

to be able to show that the equilibrium price vector for the 5th group of n goods, p̂(5),

is strictly positive. The ith consumer obtains utility from the ith component of the

vector of the 1st group of n goods and from all the 5th n goods. The dependence of

the utility function on all components of the 5th group of n goods is crucial to show the

positiveness of p̂(5). To prove his result Qin (1993) shows that the market EV̄ ,u∗ represents

the modified game and that the given inner core point is the unique competitive payoff

vector of this economy. By applying the inverse strictly monotonic transformation to the

utility functions he obtains his result.

In order to extend the results of Qin (1993) to a large class of closed subsets of the

inner core we make use of the fact that for compactly convexly generated NTU games

competitive payoff vectors need necessarily to be in the inner core. To see this we use a

modified version of Proposition 1 from de Clippel and Minelli (2005).

Let N = {1, ..., n} be the set of agents and {1, .., `} be the set of commodities. Let

Xi ⊆ R
`
+ be a convex set containing 0, the consumption set of agent i. Each individual

has a continuous, concave, (weakly) increasing and locally non-satiated utility function

ui : R`
+ → R and an initial endowment vector ωi ∈ R

`
+\{0}. Let Y i ⊆ R

` be a non-empty

and closed convex cone, the production set of agent i’s firm.

10



Lemma 1. Let
(

(

x̂i
)

i∈N
,
(

ŷi
)

i∈N
, p̂
)

be a competitive equilibrium such that p̂ · ωi > 0

for all individuals i ∈ N . Then
(

ui
(

x̂i
))

i∈N
is in the inner core of the game induced by

the economy.

The proof of Lemma 1 can be found in Appendix A.1.

3 An extension of the Results of Qin (1993)

In the above two theorems Qin (1993) considers on the one hand the whole inner core

and on the other hand a single point in the inner core. In this section we extend the

results of Qin (1993) by showing a similar result for closed subsets of the inner core.

In the following we consider NTU market games and closed subsets of the inner core

with certain properties. We want to ensure that for every point in a subset of the inner

core, denoted by A, of a given NTU market game (N,V ) we can find a normal vector

such that this point is strictly separated from the set V (N) without the point by the

hyperplane using this normal vector. If we assume that the individual rational part of

V (N) is strictly convex, then this property is satisfied. Moreover, we want to assume

that this set of normal vectors, where each normal vector corresponds to one point of

the set A, is bounded below by a strictly positive vector. This means that the exchange

rates, represented by the normal vectors, within the set A cannot be too extreme. We

make the following definition:

Definition (strict positive separability). A pair [(N,V ), A] consisting of a compactly,

convexly generated and totally balanced NTU game (N,V ) and a closed subset A of its

inner core satisfies strict positive separability [SPS] if the following condition holds:

There exists an ε > 0 and a mapping λ : A → ∆++, that associates to every point

x ∈ A a normal vector λ(x) = λx, such that

– every point x ∈ A can be strictly separated from the set V (N)\{x} using this

normal vector λx, i.e.

λx · x > λx · y for all y ∈ V (N) \ {x},

– for all x ∈ A every coordinate of the normal vector λx is strictly greater than

ε, i.e.

λx
i > ε for all i ∈ N.

For a pair [(N,V ), A] satisfying strict positive separability there might exist more

than on mapping λ and more than one ε. In the following we always consider one fixed

11



mapping λ together with one fixed ε satisfying the conditions. Whenever λ or ε appear

we mean the ones we fixed knowing that we might have chosen different ones.

The assumption of strict positive separability is not as restrictive as it might appear.

It is satisfied for example if the individual rational part of V (N) is strictly convex and

A is a closed subset of the interior of the inner core.

Note that from ε < λx
i =

λx
i

1 ≤ λx
i

λx
j

it follows that

ε < min
i,j∈N

λx
i

λx
j

for all λx, x ∈ A.

Figure 1 illustrates the idea of strict positive separability with some examples. Assume

that we have always two players and that the coalitional function is given by V ({1}) =

V ({2}) = {0} − R+ and V ({1, 2}) is given as indicated in Figure 1.

V ({1, 2})

u2

u1

A�

0

V ({1, 2})

u2

u1

A

�

�

0

V ({1, 2})

u2

u1

A

�
�

�
�

0

Example 1 Example 2 Example 3

V ({1, 2})

u2

u1

A�

�

0

V ({1, 2})

A
u2

u1

	

0

V ({1, 2})

A

u2

u1



�

0

Example 4 Example 5 Example 6

Figure 1: Examples where SPS is satisfied.
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In Examples 1, 2, 3 and 4 the set V ({1, 2}) is strictly convex. Here the inner core is

given by all points on the efficient boundary without the two points on the axes. Thus,

the NTU game together with every closed subset of its inner core satisfies SPS. This

holds in particular for single points, finite sets, closed and connected sets or finite unions

of closed sets.

Example 5 illustrates the case where the set V ({1, 2}) is generated by a square and

thus the inner core consists only of the corner point. In this case all the vectors in

the strictly positive two-dimensional simplex support this inner core point. In order to

establish SPS we just take one of these supporting vectors.

In Example 6 the set V ({1, 2}) is generated by a polyhedron. The set A is a finite set,

consisting of some corner points of the polyhedron. For each of these corner points there

exists a strictly positive normal vector that strictly separates it from V ({1, 2}) without

this corner point. The NTU game (N,V ) and this choice of the set A satisfy SPS.

Figure 2 shows some examples that do not satisfy strict positive separability. As

before assume that we have always two players and that the coalitional function is given

by V ({1}) = V ({2}) = {0} − R+ and V ({1, 2}) is given as indicated in Figure 2.

V ({1, 2})

A

u2

u1

�



0

V ({1, 2})

u2

u1

A�

�

0

Example 7 Example 8

Figure 2: Examples where SPS is not satisfied.

In contrast to Example 6, in Example 7 the set A is chosen to be the line segment

connecting two neighboring corner points of a polyhedron. Hence, all points in the set

A have a common normal vector. Thus, each of this points cannot be strictly separated

from the polyhedron without this point. Therefore, SPS is not satisfied. In Example

8 each point in the set A can be strictly separated from V ({1, 2}) without the point.

Nevertheless SPS is not satisfied, as the set A is not closed.
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The properties, that we require at this point by considering only [(N,V ), A] satisfying

SPS, are stronger than the properties, that we really need. For example it is sufficient if we

can strictly separate each point in the boundary of A from A without it. Nevertheless,

we choose to consider [(N,V ), A] which satisfy SPS, because they allow for an easy

interpretation. After the presentation of the main results we discuss the question, how

this can be weakened such that cases as in Example 6 are included in our results.

Now we prove the following result:

Theorem. Let [(N,V ), A] satisfy strict positive separability. Then there exists a market

such that this market represents the game (N,V ) and such that the set of competitive

payoff vectors of this market is the set A.

We show this result for NTU games where for every coalition S ∈ N we have

CS ⊆ R
S
++. Due to the remark on page 6 this is not a restriction as we can shift

an arbitrary given NTU game such that this condition is satisfied. After having applied

our results we shift back the obtained economies such that they represent the original

game. Hence, in the following if we consider an NTU game, we always assume for every

coalition S ∈ N that we have CS ⊆ R
S
++.

Before beginning with the construction of a market satisfying the properties mentioned

above, we introduce an auxiliary game and some notation.

Let [(N,V ), A] satisfy SPS. Let (N, Ṽ ) be the NTU-game defined by

Ṽ (S) =







V (S) if S ⊂ N
⋂

a∈A

{z ∈ R
n|λa · z ≤ λa · a} if S = N

where λa is as in the definition of SPS.

Note that to define the game (N, Ṽ ) we use for every point of the set a ∈ A just one

normal vector that strictly separates this point from V (N) \ {a}. The games (N,V ) and

(N, Ṽ ) are equal except for the grand coalition N . For the coalition N we extend the set

V (N) depending on the normal vectors of the set A. For illustration purposes figure 3

shows as an example for two players the sets V ({1, 2}) and Ṽ ({1, 2}).

To describe the relation between (N, Ṽ ) and (N,V ) we introduce the following nota-

tion: Let z ∈ Ṽ (N) and

t̄z = min
{

t ∈ R+|z − teN ∈ V (N)
}

.

Define

C̃N =
{

z ∈ Ṽ (N)
∣

∣∃t ∈ R+ such that z − teN ∈ CN
}

.
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Ṽ ({1, 2})

V ({1, 2})

u2

u1

A

0

Figure 3: Example: The sets V ({1, 2}) and Ṽ ({1, 2}) for N = {1, 2}.

Then we also have C̃N =
{

z ∈ Ṽ (N)
∣

∣z − t̄zeN ∈ CN
}

.

The following remark is easy to verify:

Remark.

1. The game (N,V ) is contained in the game (N, Ṽ ). This means we have V (S) ⊆

Ṽ (S) for all S ⊆ N .

2. The set C̃N is convex and furthermore, CN ⊆ C̃N .

3. The game (N, Ṽ ) is a convexly generated and totally balanced NTU-game, but it

is not compactly generated. In particular we have Ṽ (N) 6= C̃N − R
n
+.

4. SPS ensures in particular: If we take x in V (N) outside from A, then x is in the

interior of Ṽ (N),

x ∈ V (N) \A ⇒ x ∈ int
(

Ṽ (N)
)

.

The second point of the remark can be seen as follows: Take z1, z2 ∈ C̃N and α ∈ [0, 1].

Then there exist tz1 and tz2 such that z1 − tz1eN ∈ CN and z2 − tz2eN ∈ CN . As CN

is per assumption convex α
(

z1 − tz1eN
)

+ (1 − α)
(

z2 − tz2eN
)

∈ CN . As well the set

Ṽ (N), as an intersection of halfspaces, is convex and hence αz1+(1−α)z2 ∈ Ṽ (N). Thus
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taking tαz1+(1−α)z2 = αtz1 + (1−α)tz2 shows that (αz1 + (1− α)z2)− tαz1+(1−α)z2eN =

α
(

z1 − tz1eN
)

+ (1 − α)
(

z2 − tz2eN
)

∈ CN . Therefore, we have αz1 + (1− α)z2 ∈ C̃N .

Hence, C̃N is convex.

Definition. Define the mapping PA : Ṽ (N) −→ V (N) via

PA (x) = x− t̄xeN .

The following figure illustrates the mapping PA for the example from figure 3.

�
A

u1

�
�

�

� �
�

Figure 4: Illustration of the mapping PA for the example from figure 3.

Note, that if x ∈ V (N) then t̄x = 0 and PA (x) = x.

Remark.

1. The mapping PA is continuous and its image is V (N).

2. The set C̃N can be written as

C̃N =
{

z ∈ Ṽ (N)
∣

∣PA (z) ∈ CN
}

= P−1
A

(

CN
)

,

thus we have PA

(

C̃N
)

= CN .

3.1 The basic idea

First, we present an intermediate result, which is interesting in itself. For [(N,V ), A]

satisfying SPS we construct a market such that this market represents the given game

and such that the set of payoff vectors of competitive equilibria with strictly positive
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price vectors coincides with the given set A. In the last chapter we show, how we deal

with the case, when the equilibrium price vectors are not necessarily strictly positive,

using a more complicated market with a similar structure.

Definition. Let [(N,V ), A] satisfy SPS. Then the market E0
V,A is defined by

E0
V,A =

{

(

Xi, Y i, ui, ωi
)

i∈N

}

with for every individual i ∈ N

- the consumption set Xi = R
n
+ × {0} × R

n
+ × {0} ⊆ R

4n,

- the production set

Y i = convexcone









⋃

S∈N\{N}, cS∈CS

(

cS ,−eS , cS ,−eS
)





∪





⋃

c̃N∈C̃N

(

PA

(

c̃N
)

,−eN , c̃N ,−eN
)







 ⊆ R
4n,

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}
)

,

- and the utility function ui : Xi → R with ui
(

(x(1), 0, x(3), 0)
)

= min
(

x
(1)
i , x

(3)
i

)

.

Note that this market has the same consumption and production set for every indi-

vidual i ∈ N . The individuals differ in their initial endowment vectors and their utility

functions. There are input and output commodities. The 2nd group and the 4th group

of n commodities are the input commodities and every individual i ∈ N owns one unit

of his personal input commodity in the ith component of the 2nd and the 4th group of n

goods. The 1st and the 3rd group of n goods are the output commodities, from whose

ith component player i ∈ N obtains utility. The construction of this market is based on

the idea of the induced market in Billera and Bixby (1974) or Qin (1993).

We now need to establish first that the market E0
V,A is indeed a market for the NTU

market game (N,V ).

Lemma 2. The market E0
V,A represents the game (N,V ).

The proof of Lemma 2 is inspired by Billera (1974).

Proof.

• As V (S) = CS − R
S
+ it is enough to show, that for all S ∈ N the payoff vectors

in the set CS can be achieved by coalition S in the market E0
V,A. Let z ∈ CS .
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We show, that there exists a feasible S-allocation
(

xi
)

i∈S
with

(

yi
)

i∈S
such that

ui
(

xi
)

= zi for all i ∈ S.

Define for i ∈ S the consumption plan

xi =
(

z{i}, 0, z{i}, 0
)

and let

yi =
1

|S|

(

z,−eS , z,−eS
)

be the production plan for all i ∈ S. By the definition of the consumption sets we

observe xi ∈ Xi for all i ∈ S. With regard to the production sets for S 6= N we

have immediately yi ∈ Y i for all i ∈ S. For S = N note that z ∈ V (N) ⊆ Ṽ (N)

and thus PA(z) = z. Hence, we have yi ∈ Y i for all i ∈ N . Observe that

∑

i∈S

(

xi − ωi
)

=
∑

i∈S

yi.

Hence,
(

xi
)

i∈S
is a feasible S-allocation and

ui
(

xi
)

= zi for all i ∈ S.

• Let
(

x̄(1)i, 0, x̄(3)i, 0
)

i∈S
be a feasible S-allocation with

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i
)

i∈S

in the market E0
V,A.

The feasibility implies

(

∑

i∈S

x̄(1)i,−eS ,
∑

i∈S

x̄(3)i,−eS

)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i
)

.

Each production set is a convex cone of a union of convex sets. Hence, an arbitrary

production plan can be written in the following way: Choose one suitable element

from each of the convex sets and build a linear combination (with non-negative

coefficients) of these elements. For the 1st and the 2nd group of n commodities we

obtain, that there exist αi
R ∈ R+ for all R ∈ N , ziR ∈ CR for all R ∈ N \ {N} and

z̃iN ∈ C̃N , such that

(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N\{N}

αi
R

(

ziR,−eR
)

+ αi
N

(

PA

(

z̃iN
)

,−eN
)

.

As PA

(

C̃N
)

= CN there exists ziN ∈ CN such that PA

(

z̃iN
)

= ziN and hence we
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have
(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N

αi
R

(

ziR,−eR
)

.

As feasibility implies

(

∑

i∈S

x̄(1)i,−eS
)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i
)

, for the 2nd group of n

coordinates we have that

eS =
∑

i∈S

∑

R∈N

αi
Re

R

=
∑

R∈N

(

∑

i∈S

αi
R

)

eR.

Thus αi
R > 0 implies R ⊆ S and if we define α (R) =

∑

i∈S

αi
R, then (α (R))R⊆S is a

balanced family for the coalition S. Looking at the 1st group of n coordinates we

have

∑

i∈S

x̄(1)i =
∑

R⊆S

∑

i∈S

αi
Rz

i
R

=
∑

{R⊆S|α(R)>0}

α(R)

(

1

α (R)

∑

i∈S

αi
Rz

i
R

)

.

Since CR is convex we have

1

α (R)

∑

i∈S

αi
RzR ∈ CR

and hence, using totally balancedness,
∑

i∈S

x̄(1)i ∈ V (S).

From the definition of the utility function we obtain ui
(

x̄(1)i, 0, x̄(3)i, 0
)

≤ x̄
(1)i
i .

Since
(

x̄
(1)i
i

)

i∈S
≤
∑

i∈S

x̄(1)i ∈ V (S) we have by the S-comprehensiveness of V (S)

that
(

ui
(

x̄(1)i, 0, x̄(3)i, 0
))

i∈S
∈ V (S).

We verify that the payoff vectors in the set A are indeed competitive payoff vectors

of the market E0
V,A:

Proposition 1. Every point in the set A is equilibrium payoff vector of the market E0
V,A.
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Proof. Let a ∈ A and λa ∈ ∆ be a normal vector such that a is in the core of the λa-

transfer game. We know that λa is strictly positive (compare the remark on page 8).

By the assumption that CN ⊆ R
N
++ we know that a is strictly positive. To prove the

proposition, we show that the consumption and production plans

(

x̂i
)

i∈N
=
((

a{i}, 0, a{i}, 0
))

i∈N

and
(

ŷi
)

i∈N
=

((

1

n

(

a,−eN , a,−eN
)

))

i∈N

together with the price system

p̂ = (λa, λa ◦ a, λa, λa ◦ a)

constitute a competitive equilibrium in the market E0
V,A.

First note that as PA(a) = a we have ŷi ∈ Y i for all i ∈ N . According to the remark

above, the price system p̂ is strictly positive. As we have a convex-cone-technology

maximum profits are zero. We observe

p̂ · ŷi =
1

n

(

λa · a− (λa ◦ a) · eN + λa · a− (λa ◦ a) · eN
)

= 0.

Hence, the production plan ŷi is profit maximizing.

As we have a min-type or Leontief utility function, it is optimal for each agent i to

spend his budget in a way such that x̂
(1)i
i = x̂

(3)i
i and that he does not consume anything

of the other commodities. Furthermore, he has to spend all his budget, because the

preferences are locally non-satiated and continuous. The budget constraint is satisfied

with equality,

p̂ · x̂i = λa ·
(

a{i} + a{i}
)

= (λa ◦ a) ·
(

e{i} + e{i}
)

= p̂ · ωi

and

x̂(1)i = a{i} = x̂(3)i.

Hence, the consumption vector x̂i is utility maximizing on the budget set of agent i.

Furthermore, the market clearing condition

∑

i∈N

x̂i =
∑

i∈N

ωi +
∑

i∈N

ŷi

is satisfied.
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Thus, we have found a competitive equilibrium with equilibrium payoff vector

(

ui
(

x̂i
))

i∈N
= a.

Looking again at the competitive equilibrium price vectors in the proof of Proposition

1 note: For a competitive equilibrium with payoff vector a ∈ A the equilibrium price

vector for the 1st (respectively 3rd) group of n goods, the output goods, is the normal

vector λa separating the point a from V (N). The transfer rate vectors coincide with the

equilibrium prices for the output goods of the market. The input goods are priced by

λa ◦ a. This is the transfer rate vector weighted by the according point of the set A.

Interpreted differently: The input goods are first weighted by the point a of the set A and

afterwards they are priced by the transfer rate vector λa. The relationship of the transfer

rate vectors and the prices of competitive equilibria was observed in several publications

discussing the relation between NTU games and economies. Examples are Shubik (1985),

Shapley (1987), Trockel (1996) and Qin (1993). Shapley (1987, p. 192) states: “There is

a strong analogy though no formal equivalence that we know of between the comparison

weights that we must introduce in order to obtain a feasible transfer value and the

prices in a competitive market.” Here we obtain a formal equivalence for the prices of

the output goods and an indirect link for the prices of the input goods. Trockel (1996)

investigated this equivalence for NTU bargaining games and Qin (1993) obtained very

similar equilibrium prices as we have here.

Next, we consider the utility allocations outside the set A. Using Lemma 1 it is

sufficient to consider those vectors in the inner core.

Proposition 2. Any payoff vector of a competitive equilibrium of the market E0
V,A with

a strictly positive equilibrium price vector is an element of the set A.

Proof. Lemma 1 ensures that every competitive equilibrium payoff vector is in the inner

core. Assume that there exists a competitive equilibrium ((xi)i∈N , (yi)i∈N , p) such that

its payoff vector (ui(xi))i∈N is in the inner core but not in the set A and such that the

equilibrium price vector is strictly positive, p � 0.

Then, there exists an element cN in the inner core outside A such that ui(xi) = cNi
for all player i = 1, ..., n. Let xi = (x(1)i, x(2)i, x(3)i, x(4)i). By the definition of the

consumption set we know x(2)i = x(4)i = 0 and by the definition of the utility function

we obtain x
(1)i
i ≥ cNi and x

(3)i
i ≥ cNi for all i = 1, ..., n.
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Claim 1: From the utility maximization and the strict positivity of the price vector it

follows that we need to have

x
(1)i
i = cNi = x

(3)i
i .

The proof of Claim 1 can be found in Appendix A.2.

We get by the market clearing condition: y =
∑

i∈N

(

xi − ωi
)

=
(

cN ,−eN , cN ,−eN
)

.

But the production plan y = (cN ,−eN , cN ,−eN ) is not profit maximizing.2

To see this notice the following: As cN is in the inner core but outside the set A

there exists a c̃N with PA

(

c̃N
)

= cN and c̃N � cN . Consider the production plan
(

PA

(

c̃N
)

,−eN , c̃N ,−eN
)

. Looking at the profits and using the strict positivity of the

price vector we observe

p · y = p(1) · cN − p(2) · eN + p(3) · cN − p(4) · eN

< p(1) · cN − p(2) · eN + p(3) · c̃N − p(4) · eN

= p(1) · PA

(

c̃N
)

− p(2) · eN + p(3) · c̃N − p(4) · eN

≤ 0.

Thus, we have found a production plan that has strictly higher profits than y. This is a

contradiction, since y needs to be profit maximizing.

It follows that with strictly positive price vectors the allocations outside the set A

but in the inner core cannot be competitive equilibrium payoff vectors.

Combining the two propositions above we obtain the following theorem:

Theorem. Let [(N,V ), A] satisfy strict positive separability. The set of payoff vectors of

competitive equilibria with a strictly positive equilibrium price vector of the market E0
V,A

coincides with the set A.

Positive equilibrium price vectors are required to obtain the above results

Up to now we always considered competitive equilibria with only strictly positive equilib-

rium price vectors. This was indeed necessary. If we also allow for price vectors that are

not strictly positive, then we can construct a competitive equilibrium with competitive

payoff vectors outside the given set A. To see this fix a /∈ A but in the inner core. Then

there exists ã ∈ C̃N such that PA (ã) = a and ã � a. Consider

2Since the individual production sets are convex cones, to check profit maximization it is sufficient to
consider the joint production plans. We have

∑n
i=1

Y i = Y j for any j ∈ N .
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x̂i =
(

(PA (ã))
{i}

, 0, ã{i}, 0
)

=
(

a{i}, 0, ã{i}, 0
)

for all i ∈ N,

ŷi =

(

1

n

(

PA (ã) ,−eN , ã,−eN
)

)

=

(

1

n

(

a,−eN , ã,−eN
)

)

for all i ∈ N,

p̂ = (λa, λa ◦ a, 0, 0)

where λa is one normal vector from a λa-transfer game and (PA (ã))
{i}

is the vector

that has as its ith coordinate the ith coordinate of PA (ã) and zero coordinates otherwise.

Analogously define ã{i}.

We show that
(

(x̂i)i∈N , (ŷi)i∈N , p̂
)

constitutes a competitive equilibrium with the

payoff vector a /∈ A.

• First note that ui(x̂i) = min {ai, ãi} = ai, since we have ã � a.

• For the profit maximization we obtain

p̂ · ŷi =
1

n

(

λa · a− (λa ◦ a) · eN
)

= 0.

Since the maximum profits are zero, ŷi is profit maximizing.

• For the utility maximization we obtain that the budget constraint is satisfied with

equality,

p̂ · x̂i = λa · a{i} = (λa ◦ a) · e{i} = p̂ · ωi,

and furthermore individual i spends all his budget for the ith commodity in the 1st

group of n goods. Since the prices are equal to zero for the 3rd and 4th group of

n goods he can consume x̂
(3)i
i = ãi without using any of his budget. Thus, x̂i is

utility maximizing.

• Moreover, the market clearing condition is satisfied

∑

i∈N

x̂i =
∑

i∈N

ωi +
∑

i∈N

ŷi.

Thus, we have found a competitive equilibrium with equilibrium payoff vector

(

ui
(

x̂i
))

i∈N
= a /∈ A.
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3.2 The main results

In order to deal with the general case without assuming the strict positivity of price

vectors, we modify the market from the previous section in an appropriate way. This

modification allows us to show, that the prices of the 3rd group of n commodities are

strictly positive, p(3) � 0. For the rest of this section let [(N,V ), A] satisfy SPS. To

simplify the notation of the market, we introduce some sets before:

For the definition of the production sets define for all coalitions S ∈ N \ {N}

A1
S =

{(

cS ,−eS , cS ,−eS ,−eS
)

|cS ∈ CS
}

,

A2
S =

{(

cS , 0, cS ,−eS , 0
)

|cS ∈ CS
}

,

A3
S =

{(

cS , 0, cS , 0,−eS
)

|cS ∈ CS
}

and for the grand coalition N define

A1
N =

{

(

PA

(

c̃N
)

,−eN , c̃N ,−eN ,−eN
)

|c̃N ∈ C̃N
}

,

A2
N =

{

(

PA

(

c̃N
)

, 0, c̃N ,−eN , 0
)

|c̃N ∈ C̃N
}

,

A3
N =

{

(

PA

(

c̃N
)

, 0, c̃N , 0,−eN
)

|c̃N ∈ C̃N
}

.

In order to obtain the result without the assumption of strictly positive price vectors,

we modify the utility functions, the production and consumption sets. The utility func-

tions do not depend anymore only on the two personal output commodities but also on

the whole second group of output commodities. For that we add ‘a little bit’ of utility

from the other players output goods. This ‘little bit’ is described by using the ε > 0 from

the definition of SPS.

Definition (induced A-market). Let [(N,V ), A] satisfy strict positive separability. Let

ε > 0 such that ε < mini,j∈N
λa
i

λa
j

for all a ∈ A. The induced A-market of the game (N,V )

and the set A is defined by

EV,A,ε = {(Xi, Y i, ui, ωi)i∈N}

with for every individual i ∈ N

- the consumption set Xi = R
n
+ × {0} × R

n
+ × {0} × {0} ⊆ R

5n,

- the production set Y i = convexcone
[
⋃

S∈N

(

A1
S ∪A2

S ∪A3
S

)]

⊆ R
5n

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}, e{i}
)

,
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- and the utility function ui : Xi → R with

ui
(

x(1), 0, x(3), 0, 0
)

= min



x
(1)
i , x

(3)
i + ε

∑

j 6=i

x
(3)
j



 .

Note that this market is very similar to the market we defined in the previous section.

We change the definition of the production and consumption sets slightly by introducing

a further input commodity. Moreover, the utility functions here depend on all coordinates

of the 3rd group of n goods.

Having defined the induced A-market we prove the following theorem, which is the

main result of this paper:

Theorem. Let [(N,V ), A] satisfy strict positive separability. Then there exists a market

such that this market represents the game (N,V ) and such that the set of competitive

payoff vectors of this market is the set A.

To prove the above theorem we use the induced A-market EV,A,ε as defined before.

We divide the proof of this Theorem into 3 parts: First we show, that EV,A,ε represents

the game (N,V ), in the second part we prove, that every vector in the set A is a compet-

itive payoff vector, and in the third part we show that competitive payoff vectors always

belong to the set A.

Lemma 3. The induced A-market EV,A,ε represents the game (N,V ).

The proof of Lemma 3 is inspired by Billera (1974).

Proof.

• As V (S) = CS − R
S
+ it is enough to show, that the payoffs in the set CS can be

achieved by coalition S in the market EV,A,ε. Let z ∈ CS . We show, that there

exists a feasible S-allocation
(

xi
)

i∈S
with

(

yi
)

i∈S
such that ui

(

xi
)

= zi for all

i ∈ S.

Define for i ∈ S the consumption plan

xi =
(

z{i}, 0, z{i}, 0, 0
)

and let

yi =
1

|S|

(

z,−eS , z,−eS ,−eS
)
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be the production plan for all i ∈ S. By the definition of the consumption sets we

observe xi ∈ Xi for all i ∈ S. With regard to the production sets for S 6= N we

have immediately yi ∈ Y i for all i ∈ S. For S = N note that z ∈ V (N) ⊆ Ṽ (N)

and thus PA(z) = z. Hence, we have yi ∈ Y i for all i ∈ N . Observe that

∑

i∈S

(

xi − ωi
)

=
∑

i∈S

yi.

Hence,
(

xi
)

i∈S
is a feasible S-allocation and

ui
(

xi
)

= zi for all i ∈ S.

• Let
(

x̄(1)i, 0, x̄(3)i, 0, 0
)

i∈S
be a feasible S-allocation with

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i, ȳ(5)i
)

i∈S

in the market EV,A,ε.

The feasibility implies

(

∑

i∈S

x̄(1)i,−eS ,
∑

i∈S

x̄(3)i,−eS ,−eS

)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i, ȳ(5)i
)

.

Each production set is a convex cone of a union of convex sets. Hence, an arbitrary

production plan can be written in the following way: Choose one suitable element

from each of the convex sets and build a linear combination (with non-negative

coefficients) of these elements. For the 1st and the 2nd group of n commodities we

obtain, that there exist αi
R ∈ R+ for all R ∈ N , ziR ∈ CR for all R ∈ N \ {N} and

z̃iN ∈ C̃N , such that

(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N\{N}

αi
R

(

ziR,−eR
)

+ αi
N

(

PA

(

z̃iN
)

,−eN
)

.

As PA

(

C̃N
)

= CN there exists ziN ∈ CN such that PA

(

z̃iN
)

= ziN and hence we

have
(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N

αi
R

(

ziR,−eR
)

.

As feasibility implies

(

∑

i∈S

x̄(1)i,−eS
)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i
)

, for the 2nd group of n

coordinates we have that

eS =
∑

i∈S

∑

R∈N

αi
Re

R
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=
∑

R∈N

(

∑

i∈S

αi
R

)

eR.

Thus αi
R > 0 implies R ⊆ S and if we define α (R) =

∑

i∈S

αi
R, then (α (R))R⊆S is a

balanced family for the coalition S. Looking at the 1st group of n coordinates we

have

∑

i∈S

x̄(1)i =
∑

R⊆S

∑

i∈S

αi
Rz

i
R

=
∑

{R⊆S|α(R)>0}

α(R)

(

1

α (R)

∑

i∈S

αi
Rz

i
R

)

.

Since CR is convex we have

1

α (R)

∑

i∈S

αi
RzR ∈ CR

and hence, using totally balancedness,
∑

i∈S

x̄(1)i ∈ V (S).

From the definition of the utility function we obtain ui
(

x̄(1)i, 0, x̄(3)i, 0, 0
)

≤ x̄
(1)i
i .

Since
(

x̄
(1)i
i

)

i∈S
≤
∑

i∈S

x̄(1)i ∈ V (S) we have by the S-comprehensiveness of V (S)

that
(

ui
(

x̄(1)i, 0, x̄(3)i, 0, 0
))

i∈S
∈ V (S).

Proposition 3. Every point in A is an equilibrium payoff vector of the market EV,A,ε.

Proof. The above proposition holds by an argument similar to the one used in the proof

of Proposition 1. Let a ∈ A and λa ∈ ∆ an associated normal vector. We know that

λa is strictly positive (compare the remark on page 8). Note that the consumption and

production plans
(

x̂i
)

i∈N
=
((

a{i}, 0, a{i}, 0, 0
))

i∈N

and
(

ŷi
)

i∈N
=

((

1

n

(

a,−eN , a,−eN ,−eN
)

))

i∈N

together with the price system

p̂ =

(

λa,
2

3
(λa ◦ a) , λa,

2

3
(λa ◦ a) ,

2

3
(λa ◦ a)

)
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constitute a competitive equilibrium in the market EV,A,ε. The equilibrium price vector

is strictly positive since a and λa are strictly positive.

As we have a convex-cone-technology maximum profits are zero. We observe

p̂ · ŷi =
1

n

(

λa · a−
2

3
(λa ◦ a) · eN + λa · a−

2

3
(λa ◦ a) · eN −

2

3
(λa ◦ a) · eN

)

= 0.

Hence, the production plan ŷi is profit maximizing.

Next we show that the consumption vector xi is utility maximizing on the budget set

of agent i.

• First notice that the budget constraint is satisfied with equality,

p̂ · x̂i = λa ·
(

a{i} + a{i}
)

=
2

3
(λa ◦ a) ·

(

e{i} + e{i} + e{i}
)

= p̂ · ωi.

• Second the consumption vector of agent i satisfies

x̂
(1)i
i = x̂

(3)i
i + ε

∑

j 6=i

x̂
(3)i
j .

This means agent i consumes in a way such that he receives the “same amount of

utility” from the 1st group of n goods and the 3rd group of n goods. For an agent

with a min-type or Leontief utility function it is a necessary condition for utility

maximization to consume in such a way (as long as we have strictly positive prices).

This can be seen by similar arguments like in the proof of Claim 1.

• Third, it remains to check that x̂i is indeed utility maximizing for agent i on

his budget set. Hereby, the crucial point to see is, that agent i only consumes his

personal output goods, and not the output goods of the other agents. In particular,

this means for the 3rd group of n commodities x̂
(3)i
j = 0 for j 6= i.

First look at the consumption of the 3rd group of n goods when half of the wealth,

λa · a{i}, is used for these goods.

If agent i spends the wealth only for his personal output commodity, he consumes

x̂(3)i = a{i}. Then we have p̂(3) · x̂(3)i = λa · a{i}. Suppose now agent i changes

his consumption plan for the 3rd group of n commodities to a plan x̃(3)i, where he

consumes as well one of the other agents output goods, meaning x̃
(3)i
j > 0 for one

j 6= i. To do this agent i needs to decrease the consumption in his personal output

good and hence x̂
(3)i
i > x̃

(3)i
i . Set δ = x̂

(3)i
i − x̃

(3)i
i . Then this δ he consumes less

gives him an available budget of λa
i δ, that he can now use to spend for the other

agents commodity j. If agent i now spends λa
i δ for good j, he can purchase

λa
i

λa
j

δ
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units of good j which gives him an additional level of “utility” in good j of the 3rd

group of n goods.

Look at

x̂
(3)i
i + ε

∑

j 6=i

x̂
(3)i
j −



x̃
(3)i
i + ε

∑

j 6=i

x̃
(3)i
j





= x̂
(3)i
i −

(

x̂
(3)i
i − δ + ε

λa
i

λa
j

· δ

)

= δ − ε
λa
i

λa
j

· δ

= δ

(

1− ε
λa
i

λa
j

)

.

The above expression is positive since ε <
λa
j

λa
i

for all i, j ∈ N and hence ε
λa
i

λa
j

<

λa
j

λa
i

λa
i

λa
j

= 1. Thus we have

x̂
(3)i
i + ε

∑

j 6=i

x̂
(3)i
j > x̃

(3)i
i + ε

∑

j 6=i

x̃
(3)i
j .

The potential loss of utility from consuming less of his personal output commodity

is higher than the potential gain from consuming agent j’s output commodity given

a fixed wealth.

A similar argument also holds true, when agent i changes the consumption in a

way such that he consumes output goods of several other agents.

Thus agent i cannot increase his utility by changing his consumption plan for the

3rd group of n commodities from x̂(3)i to x̃(3)i and consuming output commodities

of the other agents j 6= i instead of his own output commodities.

Now it is easy to see, that spending half of the total wealth for each of the two

groups of output commodities leads to the same amount of utility in both arguments

of the min-type utility function and is hence utility maximizing.

Furthermore, the market clearing condition

∑

i∈N

x̂i =
∑

i∈N

ωi +
∑

i∈N

ŷi

is satisfied.
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Thus, we have found a competitive equilibrium with equilibrium payoff vector

(

ui
(

x̂i
))

i∈N
= a.

In the above proof the competitive equilibrium price vectors are linked to the transfer

rate vectors of points in the set A similarly as in the proof of Proposition 1. The output

goods are directly priced by the transfer rate vectors and the input goods are priced by

the transfer rate vectors weighted by the according point of the set A (multiplied by 2
3 ).

It remains to show, that vectors not belonging to the set A cannot be competitive

payoff vectors. The crucial point is to show, that p(3) is strictly positive.

Lemma 4. Let ((xi)i∈N , (yi)i∈N , p) be any competitive equilibrium for the induced A-

market. Then p(3) is strictly positive.

Proof. Let ((xi)i∈N , (yi)i∈N , p) be a competitive equilibrium for the induced A-market.

By the market clearing condition we have

∑

i∈N

xi =
∑

i∈N

yi +
(

0, eN , 0, eN , eN
)

and by profit maximization p · yi = 0 for all i ∈ N . By the definition of the production

set for each i ∈ N there exist γi1
S , γi2

S , γi3
S ≥ 0 for all S ∈ N , ui1

S , ui2
S , ui3

S ∈ CS for all

S ∈ N \ {N} and ũi1
N , ũi2

N , ũi3
N ∈ C̃N such that

yi =
∑

S∈N\{N}





3
∑

j=1

γij
S uij

S , −γi1
S eS ,

3
∑

j=1

γij
S uij

S , −
(

γi1
S + γi2

S

)

eS , −
(

γi1
S + γi3

S

)

eS





+





3
∑

j=1

γij
NPA

(

ũij
N

)

, −γi1
N eN ,

3
∑

j=1

γij
N ũij

N , −
(

γi1
N + γi2

N

)

eN , −
(

γi1
N + γi3

N

)

eN



 .

As PA

(

C̃N
)

= CN there exist uij
N ∈ CN such that PA

(

ũij
N

)

= uij
N for j = 1, 2, 3. Thus,

we have for all i ∈ N

yi =
∑

S∈N\{N}





3
∑

j=1

γij
S uij

S , −γi1
S eS ,

3
∑

j=1

γij
S uij

S , −
(

γi1
S + γi2

S

)

eS , −
(

γi1
S + γi3

S

)

eS





+





3
∑

j=1

γij
Nuij

N , −γi1
N eN ,

3
∑

j=1

γij
N ũij

N , −
(

γi1
N + γi2

N

)

eN , −
(

γi1
N + γi3

N

)

eN



 .
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By the definition of the consumption set we need to have x(2)i = x(4)i = x(5)i = 0 for

all i ∈ N . Hence, for all i ∈ N , we obtain, using the market clearing condition and the

definition of the production sets, for all coalitions S ∈ N

∑

T⊆N

γi1
T eT = eS ,

∑

T⊆N

(

γi1
T + γi2

T

)

eT = eS ,

∑

T⊆N

(

γi1
T + γi3

T

)

eT = eS .

It follows that γi2
S = γi3

S = 0 for all i ∈ N and for all S ∈ N and that for some i ∈ N and

some S ∈ N we have γi1
S > 0.

Suppose now, that p
(3)
i = 0 for at least one i ∈ N . We show, that this leads to a contra-

diction.

First observe: If p
(3)
i = 0 for one i ∈ N , then p

(3)
k = 0 for all k ∈ N .

To see this suppose p
(3)
k > 0 for some k ∈ N . For every individual j ∈ N the

consumption bundle xj maximizes his utility function over his budget set {x̂j ∈

Xj |p · x̂j ≤ p · ωj}. This implies, if p
(3)
i = 0 that agent j does not consume

any good that has a positive price. If he did so, this would decrease his available

budget whereas he can reach the same utility from consuming good i that is for

free. Precisely p
(3)
i = 0 implies x

(3)j
k = 0 for all j ∈ N and for all k ∈ N such that

k 6= i and p
(3)
k > 0.

However, the market clearing condition and the definition of the production set

require
∑

j∈N

x(3)j =
∑

S∈N\{N}

γi1
S ui1

S + γi1
N ũi1

N � 0,

since ui1
S ∈ CS ⊆ R

S
++ and ũi1

N ≥ ui1
N ∈ CN ⊆ R

N
++. Hence, we obtain a contradic-

tion and thus p(3) = 0.

Since uj(x̌j) > uj(x̄j) whenever x̌
(1)j
j > x̄

(1)j
j and x̌(3)j > x̄(3)j , it follows from p(3) = 0

that p
(1)
j must be positive. This holds for all j ∈ N , thus p(1) � 0.

Since CS ⊆ R
S
++, it follows that p(1) · ui1

S > 0. Since the maximal profits are equal to

zero because of the convex-cone-technology, it must be true that

p(1) · ui1
S − p(2) · eS − p(4) · eS − p(5) · eS = 0. (?)
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For any j ∈ N choose u ∈ C{j} ∩ R
{j}
++ and γ > 0. Then

(

γu, 0, γu,−γe{j}, 0
)

∈ Y j

and

p ·
(

γu, 0, γu,−γe{j}, 0
)

= γ
(

p
(1)
j u− p

(4)
j

)

.

Since p(1) � 0, p
(4)
j must be positive, because otherwise this would contradict the fact,

that maximal profits are 0. Thus, p(4) � 0. Similarly p(5) � 0. Therefore, from the

equation (?) above we obtain using −p(5) · eS < 0 and −p(2) · eS ≤ 0

p(1) · ui1
S − p(4) · eS > 0.

Hence, we have

p ·
(

ui1
S , 0, ui1

S ,−eS , 0
)

= p(1) · ui1
S + p(3) · ui1

S − p(4) · eS = p(1) · ui1
S − p(4) · eS > 0.

But
(

ui1
S , 0, ui1

S ,−eS , 0
)

∈ Y i as it is of the form as points in the set A2
S . This is a

contradiction to the fact, that the maximal profits are zero. Thus p(3) � 0.

We use this result to show the remaining Proposition that completes the proof of the

theorem:

Proposition 4. Any payoff vector of a competitive equilibrium of the market EV,A,ε is

an element of the set A.

Proof. Suppose there exists a competitive equilibrium
(

(

xi
)

i∈N

(

yi
)

i∈N
, p
)

, such that
(

ui
(

xi
))

i∈N
= cN with cN /∈ A.

From Lemma 1 we know that cN is in the inner core.

That Lemma 1 is applicable can be seen as follows: We know that p · ωi > 0.

Otherwise agent i would have a budget of 0 and we needed to have p
(2)
i = p

(4)
i =

p
(5)
i = 0. This would mean that the production plan

(

c{i},−e{i}, c{i},−e{i},−e{i}
)

with c{i} ∈ C{i} has strictly positive profits. This would be a contradiction. Thus,

for all individuals i ∈ N we have p · ωi > 0.

By Lemma 4 we know p(3) � 0. Furthermore we know

y =
∑

i∈N

yi =
(

PA

(

c̃N
)

,−eN , c̃N ,−eN ,−eN
)

for some c̃N ∈ C̃N satisfying PA

(

c̃N
)

= cN as any other production would contradict the

market clearing condition in the 1st group of n coordinates. From the profit maximization
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we know that c̃N has to be chosen on the boundary of C̃(N) and hence, since cN /∈ A,

we have c̃N � cN . By the market clearing condition (for the 3rd group of n coordinates)

we have

∑

i∈N

x(3)i = c̃N . (??)

Furthermore, by utility maximization we obtain

cNi = x
(3)i
i + ε

∑

j 6=i

x
(3)i
j . (? ? ?)

As cN � c̃N , equation (? ? ?) implies, that we have x
(3)i
i < c̃Ni for all i ∈ N .

Hence, for every i ∈ N we have
∑

j 6=i x
(3)j
i > 0. Thus, for every i ∈ N there exists

j 6= i satisfying x
(3)j
i > 0. Define a mapping M : N −→ N in the following way: Every

i ∈ N is mapped to one j 6= i satisfying x
(3)j
i > 0. Then, we can find k ∈ N and t ∈ N

such that M t(k) = k.

We use these results to show some constraints on the equilibrium prices: As x
(3)M(k)
k >

0, the utility maximization of agentM(k) implies, that we have p
(3)
k ≤ εp

(3)
M(k). Otherwise,

agent M(k) would not consume good k, but instead more of good M(k). In the same

way, we can show similar equations for other prices and obtain

p
(3)
k ≤ εp

(3)
M(k) ≤ ε2p

(3)
M2(k) ≤ ... ≤ εtp

(3)
Mt(k) = εtp

(3)
k .

But εt < 1. This is a contradiction.

As already mentioned before, assuming SPS is more restrictive than actually needed.

Requiring the strict separation property for all points in the set A can be weakened

to requiring it only for the boundary points of the set A. In fact, we need for the

construction of the auxiliary game (N, Ṽ ) that outside the set A the efficient boundary

is strictly enlarged. This means the property that if we take x ∈ V (N) \ A, then x

being in the interior of Ṽ (N) is the crucial property to eliminate equilibria with a payoff

vector outside the set A. Using this weaker assumption allows a choice of the set A as in

Example 7. An example, where even this weaker version of the strict positive separability

property is violated, and where our approach cannot be applied can be found in Figure
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5. Assume as before that we have always two players and that the coalitional function is

given by V ({1}) = V ({2}) = {0} − R+ and V ({1, 2}) is given as indicated in Figure 5.

V ({1, 2})

A

u2

u1

�
�

0

V ({1, 2})

A

u2

u1

� �
�

 

0

Example 7 Example 9

Figure 5: Examples where SPS is not satisfied.

In contrast to Example 7, in Example 8 the set A is chosen in such a way that it is a

closed interval of a line segment connecting two neighboring corner points, but not the

whole line segment. Because of the polyhedral structure none of the points in the set A

can be strictly separated from the set V ({1, 2}) without the point.

Another important aspect of our result is the fact that the induced A-market is not

determined uniquely. We have some freedom in different aspects of our construction and

obtain a whole class of markets, that can be used to prove our main theorem:

• First, to define the induced A-market we use the auxiliary NTU game (N, Ṽ ) where

we enlarge the given NTU game (N,V ). For this enlargement we use for every inner

core point one of its normal vectors. This normal vector is not always unique.

• Second, for the auxiliary game (N, Ṽ ) we define the mapping PA which can be

chosen in different ways. The important property is that for the points outside

the given subset of the inner core, A, we have PA(z) � z for all z ∈ IC(A) \ A.

Moreover, for points in the given set A we require PA(z) = z for all z ∈ A.

• Third, we add to the utility function of the induced A-market an ε-term, that needs

to be between certain bounds and hence is not determined uniquely. Moreover, we

can choose different ε for different players.

4 Concluding Remarks

In this paper we have continued the work of Shapley and Shubik (1975) and Qin (1993)

to investigate competitive payoff vectors of markets that represent a cooperative game
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and their relation to solution concepts for cooperative games.

We extend the results of Qin (1993) to a large class of closed subsets of the inner core:

Given an NTU market game we construct the induced A-market depending on a given

closed subset of its inner core. This market represents the game and further has the given

set as the set of payoff vectors of competitive equilibria. More precisely, inspired by the

construction of the induced market of Billera and Bixby (1974) and by the markets that

Qin (1993) uses to prove his two main results, we define a market in an appropriate way

to generalize the results of Qin (1993) to a large class of closed subsets of the inner core.

It turns out that this market is not determined uniquely and thus we obtain a whole class

of markets that has the given closed subset of the inner core as the set of payoff vectors

of competitive equilibria.

In the literature it was already known that one game can be represented by several

markets, see Billera and Bixby (1974) or Qin (1993). Our work confirms that going from

NTU games to markets some structural information is added that is not present in the

NTU game. To a given NTU market game we can associate a huge class of markets that

represents the NTU game. In particular, by choosing the structure, that we add, we can

control the set of payoffs of competitive equilibria.

Another point of view on our results is to analyze situations where we start with given

markets and consider the induced games. Looking at competitive equilibria and how they

appear in the game, we observe that almost everything is possible. Depending on the

specific market the set of competitive equilibrium payoff vectors might fill up the whole

inner core or be almost any closed subset, in particular any single point. Hence, our

result demonstrates that we can not expect to observe more game theoretic properties of

competitive equilibria than knowing that competitive payoffs are in the inner core. Only

by imposing additional structural assumptions on the markets, for example restricting

the class of utility functions, we may observe additional game theoretic properties.

We establish a link between closed subsets of the inner core and competitive payoffs of

certain economies. Extending the results of Qin (1993) to closed subsets of the inner core

means in particular to establish a link for all solution concepts selecting closed subsets

of the inner core. Therefore, our results can be seen as a market foundation of game

theoretic solution concepts that select closed subsets of the inner core. For the particular

class of bargaining games a more precise presentation of the idea of a market foundation

can be found in Trockel (1996, 2005) and Brangewitz and Gamp (2011).

The result presented here includes the result of Qin (1993) for a single point in the

inner core. This holds also in a very general setup by using monotone transformations of

utilities in the same way as it was done in Qin (1993). Nevertheless, if we consider closed

subsets of the inner core that contain more than a single point, the idea to transform the

utilities seems not to work. Due to this fact we assume some separation properties on
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the game and the given closed subset of its inner core.

Furthermore, by investigating the NTU case we realized that a simple generalization

of the approach of Shapley and Shubik (1975) in the framework of Qin (1993) does not

work and we need to stay closer to the results on NTU games. More precisely, changing

the utility function in the market, that Qin (1993) uses to prove his second result, in

analogy to the TU case of Shapley and Shubik (1975) to

ui(xi) = min

{

x
(1)i
i , min

u∗∈A

{

(

λu∗

◦ u∗
)

· x(5)i

λu∗

i

}}

does not lead to markets with the desired properties.

Having our result in mind there remains the open question if we can further weaken

our assumptions such that the results can be proved for more general cases. Another

interesting related line of research is to continue to look at the class of games that are

linked to coalition production economies as analyzed by Inoue (2010b). Given a balanced

NTU game Inoue (2010b) defines a coalition production economy such that this economy

represents the game and has moreover the whole inner core as the set of competitive

equilibrium payoff vectors. It remains an open question if one can find analogously to

Qin (1993) and to this work a coalition production economy such that one inner core

point or a certain subset of the inner core are competitive equilibrium payoff vectors

in this coalition production economy. Moreover, it is interesting to compare the set of

competitive equilibrium allocations of different market representations of a given NTU

market game. Does there exist a general and more simple method to obtain desired

competitive payoffs? Can we characterize a class of NTU games where this is possible?

What happens if we restrict our attention for example to bargaining games?
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A Appendix

A.1 Proof of Lemma 1

For the proof of Lemma 1 we follow the idea of de Clippel and Minelli (2005).

Proof. Let
(

x̂i
)

i∈N
and

(

ŷi
)

i∈N
be a competitive equilibrium allocation at a price p̂ ∈

R
`
+ \ {0}. For each individual i ∈ N define the set

Ci =
{

(u,m) ∈ R
2|∃zi ∈ Xi : u ≤ ui

(

zi
)

− ui
(

x̂i
)

,m ≤ p̂ ·
(

ωi + ŷi − zi
)}

.

By the concavity of ui, this set is convex. On the other hand, Ci ∩R
2
++ = ∅, as x̂i is

optimal for individual i in his budget set.

Suppose (u,m) ∈ Ci and (u,m) � 0, then there exists zi ∈ Xi with u(x̂i) < u(zi)

and p̂ · zi < p̂ · (ωi + ŷi) which means zi gives individual i a higher utility as x̂i and

is affordable under the price system p̂. This is in contradiction to the optimality of

x̂i.

By the separating hyperplane theorem there exists a non-zero, non-negative vector
(

αi, βi
)

∈

R
2
+ such that we can separate 0 from Ci and obtain

αiui
(

x̂i
)

≥ αiui
(

zi
)

− βip̂ ·
(

zi − ωi − ŷi
)

for all zi ∈ Xi.

As p̂ · ωi > 0, it follows from the above inequality that we have αi > 0.

To see this suppose αi = 0 (βi > 0). Then, as in equilibrium p̂ · ŷi = 0, we obtain

from the above inequality

0 ≤ p̂ ·
(

zi − ωi − ŷi
)

for all zi ∈ Xi,

which is not true, as 0 ∈ Xi and p̂ · ŷi = 0. Thus αi > 0.

We can assume αi = 1 without the loss of generality. Moreover, monotonicity and locally

non-satiation of the utility function imply that βi > 0. Let λi = 1
βi . Summing up over

all i ∈ S we obtain

∑

i∈S

λiui
(

x̂i
)

≥
∑

i∈S

λiui
(

zi
)

− p̂ ·
∑

i∈S

(

zi − ωi − ŷi
)

for all S ⊆ N and for all zi ∈ R
`
+ with i ∈ S.
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If a coalition S could λ-improve on x with
(

x̄i
)

i∈S
(with the production plan ȳi ∈ Y i),

then the previous inequality would be violated, because we have, due to feasibility,

∑

i∈S

(

x̄i − ωi − ȳi
)

≤ 0

and thus we obtain a contradiction by

∑

i∈S

λiui
(

x̄i
)

>
∑

i∈S

λiui
(

x̂i
)

≥
∑

i∈S

λiui
(

x̄i
)

− p̂ ·
∑

i∈S

(

x̄i − ωi − ŷi
)

≥
∑

i∈S

λiui
(

x̄i
)

− p̂ ·
∑

i∈S

(

x̄i − ωi
)

≥
∑

i∈S

λiui
(

x̄i
)

− p̂ ·
∑

i∈S

ȳi

≥
∑

i∈S

λiui
(

x̄i
)

.
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A.2 Proof of Claim 1

Proof. We show

x
(1)i
i = x

(3)i
i

by contradiction. Then it immediately follows from ui(xi) = cNi that

x
(1)i
i = x

(3)i
i = cNi .

Suppose x
(3)i
i > x

(1)i
i . This cannot be utility maximizing in the presence of strictly

positive prices. If player i consumes a little bit less of the ith good of the 3rd group of n

goods and invests the - not anymore used - additional budget in the ith good of the 1st

group of n goods, then he can strictly increase his utility.

Precisely, from the assumption ui(xi) = cNi and x
(3)i
i > x

(1)i
i it follows that x

(1)i
i = cNi .

For δ sufficiently small, i.e. 0 < δ < x
(3)i
i − x

(1)i
i , player i can increase his util-

ity by consuming δ less of the ith good of the 3rd group of n goods and increasing

the consumption in the ith good of the 1st group of n goods by
p
(3)
i

p
(1)
i

δ. To consume
(

x(1)i +
p
(3)
i

p
(1)
i

δe{i}, 0, x(3)i − δe{i}, 0

)

is still budget feasible for player i, because

p(1)

(

x(1)i +
p
(3)
i

p
(1)
i

δe{i}

)

+ p(3)
(

x(3)i − δe{i}
)

= p(1)x(1)i + p(3)x(3)i ≤ p · ωi.

Hereby, the last inequality follows from the budget feasibility of xi. Moreover, the utility

of consumer i strictly increases, since

ui

(

x(1)i +
p
(3)
i

p
(1)
i

δ, 0, x(3)i − δ, 0

)

> x
(1)i
i = ui

(

x(1)i, 0, x(3)i, 0
)

by the choice of δ. This is a contradiction to the assumption that xi is utility maximizing.

Hence, we have x
(3)i
i ≤ x

(1)i
i .

By exchanging the roles of x
(1)i
i and x

(3)i
i we can analogously show x

(3)i
i ≥ x

(1)i
i .

Therefore, we have x
(3)i
i = x

(1)i
i .
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