A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Carling, Kenneth; Rönnegård, Lars; Roszbach, Kasper #### **Working Paper** Is Firm Interdependence within Industries Important for Portfolio Credit Risk? Sveriges Riksbank Working Paper Series, No. 168 #### **Provided in Cooperation with:** Central Bank of Sweden, Stockholm Suggested Citation: Carling, Kenneth; Rönnegård, Lars; Roszbach, Kasper (2004): Is Firm Interdependence within Industries Important for Portfolio Credit Risk?, Sveriges Riksbank Working Paper Series, No. 168, Sveriges Riksbank, Stockholm This Version is available at: https://hdl.handle.net/10419/82472 #### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. SVERIGES RIKSBANK WORKING PAPER SERIES 168 # Is Firm Interdependence within Industries Important for Portfolio Credit Risk? Kenneth Carling, Lars Rönnegård and Kasper Roszbach AUGUST 2004 #### WORKING PAPERS ARE OBTAINABLE FROM Sveriges Riksbank • Information Riksbank • SE-103 37 Stockholm Fax international: +46 8 787 05 26 Telephone international: +46 8 787 01 00 E-mail: info@riksbank.se The Working Paper series presents reports on matters in the sphere of activities of the Riksbank that are considered to be of interest to a wider public. The papers are to be regarded as reports on ongoing studies and the authors will be pleased to receive comments. The views expressed in Working Papers are solely the responsibility of the authors and should not to be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank. ## Is firm interdependence within industries important for portfolio credit risk? Kenneth Carling, Lars Rönnegård, and Kasper Roszbach Sveriges Riksbank Working Paper Series No. 168 August 2004 #### Abstract A drawback of available portfolio credit risk models is that they fail to allow for default risk dependency across loans other than through common risk factors. Thereby, these models ignore that close ties can exist between companies due to legal, financial and business relations. In this paper, we integrate the insights from theoretical models of default correlation into a commonly used model of default and portfolio credit risk by allowing for dependency between firm default risk through both common factors and industry specific errors in a duration model. An application using pooled data from two Swedish banks' business loan portfolios over the period 1996-2000 shows that estimates of individual default risk are little affected by including industry specific errors. However, accounting for these industry effects increases VaR estimates by 50-200 percent. A traditional model with only systematic factors, although able to fit the broad trends in credit losses, cannot match these fluctuations bacuse it fails to capture credit losses in bad times, when banks are typically hit by large unexpected credit losses. The model we propose manages to follow both the trend in credit losses and produce industry driven, time-varying, fluctuations in losses around that trend. Consequently, this model will better aid banks and regulators in determining the appropriate size of economic capital requirements. Capital buffers derived from our model will be larger for periods with large "aggregate" disturbances and smaller in better times, and avoid both overcapitalization in good times and undercapitalization in bad times. JEL classification: C34, C35, D61, D81, G21 Keywords: value-at-risk, credit risk, portfolio credit risk, duration model, default correlation, industry dependency, cluster errors. <sup>\*</sup>IFAU, Uppsala, Sweden, and Dalarna University, SE 781 88 Borlange, Sweden; kca@du.se <sup>&</sup>lt;sup>†</sup>Dalarna University, SE 781 88 Borlange, Sweden; lrn@du.se <sup>&</sup>lt;sup>‡</sup>Research Department, Sveriges Riksbank, SE 103 37 Stockholm, Sweden; kasper.roszbach@riksbank.se <sup>§</sup>The views expressed in this paper are solely the responsibility of the authors and should not interpreted as reflecting the opinon of the Executive Board of Sveriges Riksbank. #### 1 Introduction Banks play an important role in the economy as savings institutions and as providers of credit and capital. Beside government supervision, deposit insurance and other regulatory conditions, capital requirements limit risks for depositors and reduce the likelihood of individual bank defaults and systemic risk. However, they also form important restrictions on the workings of banks. Excessive capital requirements restrain credit provision needlessly, whereas inadequate capital buffers may lead to unacceptable levels of portfolio credit losses and undesirable bank defaults and systemic risk. A common way for banks to determine the required amount of economic capital is to employ a portfolio credit risk model and calculate the loss distribution for a specific time horizon. Gordy [22][23] shows, however, that even frequently used models of portfolio credit risk can vary widely in their estimates of economic capital due to parameter sensitivity. According to Mingo [37], such variation will naturally incite regulatory capital arbitrage by banking institutions, making it harder to both achieve regulatory goals and improve financial market efficiency. Jacobson, Lindé and Roszbach [28] find empirical evidence with Swedish banks that supports the theoretical results of Gordy and the predictions of Mingo. Given these difficulties in accurately measuring risk and the apparent conflict between regulatory objectives and efficiency in financial markets, the further development of statistical models that can appropriately estimate portfolio credit risk seems of great importance. One way in which regulatory authorities have attempted to further this goal is through the new Basel Capital Accord [11]. The Accord includes both more sophisticated rules for determining minimum capital requirements and guidelines for the type of models that banks can employ internally for purposes of credit risk analysis. In part due to these guidelines, research on portfolio credit risk modeling has made substantial advances in recent years. The literature on default risk is extensive and starts in the late 1960's with Altman [4] [5]. Other authors that estimated default risk models on cross-sectional data are Altman [6], Altman [7], Frydman, Altman and Kao [19], Li [30], and Shumway [44]. These papers all analyze default risk at the firm level and assume that default correlations are adequately captured by a set of common risk factors. Portfolio credit risk models have predominantly been developed during the last decade. Broadly viewed, there are four groups of models.<sup>1</sup> The first group is 'structural' and based on Merton's [36] model of firm capital structure: individual firms default when their assets' value fall below the value of their liabilities. Examples of such a microeconomic causal model are CreditMetrics and KMV's PortfolioManager. The second group consists of econometric factor risk models, like McKinsey's CreditPortfolioView and Carling, Jacobson, Lindé and Roszbach <sup>&</sup>lt;sup>1</sup>This is by no means the only or an exhaustive way to describe the directions in which this literature has evolved. [16]. The former employs a logistic (cross-sectional) model where a macroeconomic index and a number of idiosyncratic factors together determine default risk in 'homogeneous' subgroups, while the latter builds on a duration (panel data) model of default risk. Both groups apply similar Monte Carlo simulations to calculate portfolio risk, as both are 'bottom-up' models that compute default rates at either the individual firm level or at sub-portfolio level. Both thus require a similar kind of aggregation. The third group contains 'top-down' actuarial models, like Credit Suisse's CreditRisk+, that make no assumptions with regard to causality. The last group consists of non-parametric approaches, as in Carey [15], who estimates credit loss distributions by means of a Monte Carlo resampling method. Calem and LaCour-Little [14] combine the second and fourth method and estimate a survival time model for mortgage loan data and apply Carey's method to simulate default risk distributions. Only a small number of models actually incorporates both microeconomic and macroeconomic effects on default and/or credit risk. Carling et al. [16], Nickell, Perraudin and Varotto [40] and Wilson [48] are exceptions.<sup>2</sup> CreditPortfolioView incorporates a set of macroeconomic variables in a multifactor country/sector logit model, with each factor modeled as an ARIMA process. Nickell et al. include macro dummies in an ordered probit model of rating changes. Carling et al. include firm specific panel data and macroeconomic time series as explanatory variables in a duration model of bank loan survival time. Other approaches involve transition matrices to generate a linkage between underlying macroeconomic conditions and asset quality (e.g. Bangia, Diebold, Kronimus, Schagen and Schuermann [10]) or Monte Carlo resampling methods to generate unconditional portfolio credit loss distributions (e.g. Carey [15]). Koyluoglu and Hickman [29] note that the first three of the above modeling approaches, despite their differences, are built on three more or less general components to calculate portfolio loss distributions. First, they contain some process that generates conditional default rates for each borrower in each state of nature and a measure of covariation between borrowers in different states of nature. Second, their set-up allows for the calculation of conditional default rate distributions for sets of homogeneous subportfolios (e.g., rating classes) as if individual borrower defaults are independent, since all joint behavior is accounted for in generating conditional default rates. Third, unconditional portfolio default distributions are obtained by aggregating homogeneous subportfolios' conditional distributions in each state of nature; then conditional distributions are averaged using the probability of a state of nature as the weighting factor. Gordy's [22] comparison of two commercially developed and frequently used models of portfolio credit risk, CreditMetrics and CreditRisk+, confirms the general insights of Koyluoglu and Hickman. He concludes that both models have very similar mathematical structures and that discrepancies in their predictions originate in different distributional assumptions and functional forms. Among other things, he concludes that the models are highly sensitive to both the average <sup>&</sup>lt;sup>2</sup>Wilson describes the principles behind McKinsey's portfolio credit risk model CreditPortfolioView. default correlations in the model - that in turn determine default rate volatility - and the shape of the implied distribution of default probabilities. $^3$ An issue that has received special attention is the modeling of asset correlations and default correlations. A variety of approaches has been used to model and estimate default correlations. As nearly all authors have done, the small, econometric, cross-sectional and panel data models of firm level default risk we referred to above capture default correlations by assuming the presence of a set of common risk factors. Although CreditRisk+ and CreditMetrics assume different distributions and functional forms, both impose similar correlation structures by assuming that the comovement between individual obligors' risk of default is driven entirely by a number of common risk factors (see Gordy [22]). Lucas et al. [32] also assume common factors and independent errors. Carey's [15] nonparametric approach doesn't need any assumptions about asset correlations. It is thus very useful for deriving loss distributions, but has as a downside that it gives no insight into the driving forces behind tail outcomes. The restrictive assumptions about the dependency between counterparties form an unattractive property of most credit risk modeling done until now. Assuming common factors and independent disturbances may lead to both underestimation and overestimation of portfolio credit losses and the required (marginal) capital charges. Policies based on summary statistics that are derived from the current portfolio credit risk models may therefore inadvertently indicate too high or too low a level of financial stability. They are also likely to result in inefficiencies, due to either bankruptcy costs or unnecessarily large capital buffers. A more fundamental approach is followed by Zhou [51], who analyzes the occurrence of multiple defaults theoretical model. Zhou's model succeeds in matching a number of stylized facts and produces a number of insights with relevance for risk management. Among other things, default correlations are found to be generally very small over short horizons - they first increase and then slowly decrease over time. For given horizons, high credit quality is associated with a low default correlation. Zhou concludes that diversification can generate substantial reductions in risk over short horizons because defaults are very weakly correlated within such time ranges. But for long term investments (5-10 years), default correlations can become a factor to take into account if the underlying values are highly correlated. Concentration in one specific industry or region can therefore be very risky. Also, changes in the underlying values that lead to movements in credit quality can lead to substantial changes in credit risk, thereby <sup>&</sup>lt;sup>3</sup>Gordy [23] and Szegö [46] discuss the properties of Value-at-Risk (VaR) and compare it with other summary statistics of distributions as an instrument to evaluate capital requirements. Portfolio invariance for individual exposures' contribution to VaR is obtained only if the dependence across exposures is driven by a single (systematic) risk factor. <sup>&</sup>lt;sup>4</sup>Lucas, Klaassen, Spreij and Straetmans [32][33] derive an analytical approximation to the credit loss distribution in a CreditMetrics/Merton model, and show that such a model can even be used when one only has portfolios with relatively small numbers of counterparts at ones disposal. requiring appropriate adjustments of the capital buffer. Giesecke [20] suggest yet another way to model the correlation between firm defaults. He argues that defaults are correlated between firms because the default thresholds, the points where assets exceed debts, are not exogenously given, but endogenous and linked between firms. Except for being exposed to common (national, regional and sectorial) factor fluctuations, firms are tied to each other through both legal (e.g. parent-subsidiary), financial (e.g. trade credit) and business relations (e.g. buyer-supplier). Therefore, the economic distress of one firm can have an adverse effect on the financial health of other businesses, beyond the measurable effect of macroeconomic and other common factors. Default thresholds are thus also thought to be (partly) driven by common or systematic factors. This paper integrates the insights from theoretical models of default correlation into the currently available small econometric models of default risk by allowing for dependency through both common factors and dependent error terms. The specific model we use is a duration model as the one used by Carling et al. [16], but we allow for both idiosyncratic disturbances and industry specific disturbances. The model we use is thus much like a panel duration model with random effects. The paper contains a theoretical section and an example of how the model can be applied in practice. In the empirical example, we pool data from two Swedish banks to estimate the model and calculate the potential losses and compare them to actual losses during the 90s. The rest of this paper is organized as follows. In Section 2 we present a standard duration model of default risk and show how it can be extended to include dependency between disturbances. Section 3 briefly discuss the empirical data. In Section 4 we display the estimation results. Section 5 summarizes the paper and discusses potential extensions. #### 2 The credit risk model Our objective in this paper is to develop a model of business default risk that can be used not only to adequately predict individual firms' default but also to accurately estimate expected and unexpected loan losses for a portfolio of credit exposures. A key property of such a model will have to be its ability to capture the comovement of default risk among businesses. Typically, this kind of reasoning leads to a binary regression model, of which the logistic regression model and the probit model are two examples with frequent use in credit-risk modelling. In extending the model to allow for potential interdependence in the portfolio, we incorporate random effect components in the binary regression model. Such a model is commonly referred to as GLMM (Generalised Linear Mixed Models) in the statistical literature. We begin however by outlining the model in the framework of linear models and postpone the complication that the binary variable default implies a non-linear model to the last subsection that discusses estimation issues. #### 2.1 Independent disturbances Conceptually, we think of the loans as being governed by a duration process where loans eventually default. This way of modelling default duration differs from the approach in Shumway [44], since we allow the probability of default to depend on the length of the time period that the loan has been "active" and default has been avoided. Nevertheless, to keep focus we assume for now that the duration process has no memory. Consider the latent-variable $y_i^{\tau}$ the propensity, for the *i*:th loan in the portfolio at calendar time $\tau$ , to default in a pre-determined time-unit ahead of $\tau$ . That is $y_i^{\tau}$ is an index taking on any real-value. Clearly, the propensity might vary between loans in the portfolio and over time and the question is what explains this variation. With each exposure we associate a set of characteristics $x_i$ (at the time-point $\tau$ ), being the unique properties of the firm at this time point as well as common properties to all firms, or a subset of them. We will denote the characteristics $x_i(\tau)$ to make it explicit that they are unique to the firm and/or to the calendar time $\tau$ . The model can be expressed as a relationship between the propensity to default and a set of characteristics (the systematic part) $x_i$ as $$y_i^{\mathsf{T}} = x_i(\tau) \,\beta + \varepsilon_i^{\mathsf{T}} \tag{1}$$ where $\beta$ is a parameter-vector measuring the effect of the explanatory variables on the propensity to default and $\varepsilon_i^{\tau}$ is an unsystematic exposure specific component. The unsystematic component is perhaps best thought of as the bundle of all characteristics, not in the systematic part, that might influence the propensity of default for a loan. The model is much simplified if it is assumed that $x_i(\tau)$ and $\varepsilon_i^{\tau}$ are stochastically independent. Such assumption will have to be verified for the empirical specification that is chosen, but in general a richer specification of the systematic part is likely to make the assumption more realistic and tolerable. We also assume independence of the errors between both loans and time points, i.e. $f\left(\varepsilon_i^{\tau}, \varepsilon_j^{\tau}\right) = f\left(\varepsilon_i^{\tau}\right) f\left(\varepsilon_j^{\tau}\right)$ for $i \neq j$ and $f\left(\varepsilon_i^{\tau}, \varepsilon_i^{\tau+l}\right) = f\left(\varepsilon_i^{\tau}\right) f\left(\varepsilon_i^{\tau+l}\right)$ for $l \neq 0$ . #### 2.2 Disturbances with dependency across industries In the model in equation (1), the outcome of a single loan is uncertain because of the loan specific error-term. A portfolio that consist of just one loan would have a potential loss that exceeds greatly the expected loss. However, for large portfolios with loans of equal size, the potential loss would be roughly equal to the expected loss since the error-terms would average out, even if the unexplained cause of default for a single loan would be substantial. This property of the model and the implied assumption of independence across loans in the portfolio is not particularly appealing considering the likely interdependency of some companies. As an extension of the model, we think of the companies in the portfolio as belonging to only one out of K clusters. As Giesecke [20] mentioned, it is likely that there are a strong business relations between companies within clusters and that some common shock may hit all companies in a cluster. Typically, firms are tied to each other through both legal, financial and business relations, as a result of which the economic distress of one firm can have an adverse effect on the financial health of other businesses beyond the measurable effect of macroeconomic conditions and other systematic fluctuations. Alternatively, both can be the result of simultaneous exposure to a common shock. We denote the cluster specific shock by $\varepsilon_k$ and assume it follows the normal distribution with expectation equal to zero, while the clusters are labeled k=1,...,K. We now take the unexplained cause of default to depend on the loan specific shock, $\varepsilon_i^{\tau}$ , and the common shock, $\varepsilon_k^{\tau}$ , to the cluster the loan belongs to, where, by construction, $\varepsilon_i^{\tau}$ and $\varepsilon_k^{\tau}$ are independent. In addition, we assume a cluster-specific shock is independent of the cluster-specific shocks for other clusters, i.e. $\varepsilon_k^{\tau}$ is independent of $\varepsilon_{k+j}^{\tau}$ for all $j \neq 0.5$ The model in equation (1) is thus extended to $$y_i^{\tau} = x_i(\tau) \beta + \varepsilon_i^{\tau} + \varepsilon_k^{\tau}. \tag{2}$$ The variance in the loan-specific shock is denoted $\sigma_i^2$ , whereas $\sigma_k^2$ represents the variance in the cluster-specific shocks for the k:th cluster, where the latter variance will be zero if there is no dependency between loans within the cluster. The empirical identification of $\sigma_k^2$ can make use of two dimensions. The first dimension, which is applicable if data are only cross-sectional, is the variation in $\varepsilon_k^{\tau}$ for the K clusters in the portfolio. This identification strategy works only if one assumes equal cluster variances for all clusters, and hence for cross-sectional data one can only hope to identify $\sigma_k^2$ when it is assumed (by necessity) to be the same for all clusters. The second dimension is the variation in $\varepsilon_k^{\tau}$ over time, which of course requires longitudinal data, i.e. loans are followed over time. In this case $\sigma_k^2$ is identifiable for each cluster and one can allow for unequal strength in the cluster dependence. This property makes using longitudinal data a superior means of identification. Given the panel nature of our data set, we assume the availability of such data below. If a common shock hits a cluster of loans, there are good reasons to suspect that the shock may persist over time. For instance, a shock might hit a cluster of steel-producing companies because of an unanticipated increase in energy taxes. It will take the companies some time to adjust to this shock and during this time period they will be more vulnerable than they were before the increase. Such a pattern can be expected to show up by means of serially correlated <sup>&</sup>lt;sup>5</sup>As in other empirical work on portfolio credit losses, we do not model the loan loss given default (LGD), $s_i$ , because of a lack of data on recovery rates. Acharya, Barath and Srinivasan [2] is one of the few papers that studies the determinants of recovery rates (1-LGD) - for a sample of corporate bonds. It does not model default behavior, however. Whether loan-specific probabilities of default, $\pi_i$ and LGD are governed by the same factors, and thus should be modeled simultaneously, is an empirical question that remains to be answered. errors and it may therefore be appropriate to consider an autoregressive process for the clusterspecific errors. For example, in the empirical application that follows we are expecting a positive first-order auto-correlation. Introducing an AR(1) error structure into the model is relatively easy to do. If one extends the model by expanding 2 as $$y_i^{\tau} = x_i(\tau) \beta + \varepsilon_i^{\tau} + \varepsilon_k^{\tau} + \delta_k \varepsilon_k^{\tau - 1}, \tag{3}$$ then no conceptual problem arise as long as $|\delta| < 1$ . If $\varepsilon_i^{\tau}$ follows the normal distribution, then the dependence between two loans in the same cluster can be expressed in terms of a correlation measure, $\rho_k = \left[\sigma_k^2/\left(\sigma_k^2 + \sigma_i^2\right)\right]$ . The specification of the model in equation (2) and the definition of $\rho_k$ above make it clear that only positive dependence is considered. This is not a necessary restriction and the estimation procedure we discuss below and apply in the empirical example can be used to estimate models with negative types of interdependence. There are reasons why the dependence between firms can be negative. For instance, if the failure of a company within the cluster makes the competition among surviving companies less harsh, then it is sensible to expect a negative dependence. It is likely that such an effect would show up in the data with some delay and the negative dependence would thus be captured by a negative autocorrelation (i.e. $\delta_k < 0$ ). We consider it counterintuitive and unlikely that a cluster specific shock could lead to negative correlation (i.e. $\rho_k < 0$ ) within the cluster, if well defined. However, if the data has a longitudinal character and the time-span between observations is long, for example annual, then pooling events from different months or quarters may possibly raise the issue of negative correlation. For the type of applications we work here, i.e. credit risk modelling, we believe this will not occur. Moreover, based on simulations we did, we established that the estimated correlation will be zero if the actual dependence is negative and the "misspecified" model in equation (2) is estimated. Hence, because a zero correlation estimate may imply either independence or a negative dependence within a cluster, we recommend that the specification be modified to allow for negative dependence whenever a zero correlation is found, in particular when the data has a low frequency. #### 2.3 Estimation For the model in equation (2) estimation of the parameter vector $\beta$ and $\sigma_k^2$ is standard practice in econometrics if the response variable is continuous and the (iterative) Generalized Least Squares procedure can be used (see e.g. Greene [24]). Unfortunately, when studying default risk, one only observes the events that a loan or firm defaults or survives, and never the continuous index $y_i^{\tau}$ . Therefore, we need threshold model for which we define an indicator variable $D_i^{\tau}$ that takes on unity if default occurs for the *i*:th loan at $\tau$ and equals zero otherwise: $$D_i^{\tau} = \begin{cases} 1, & \text{if } y_i^{\tau} \ge 0\\ 0, & \text{if } y_i^{\tau} < 0 \end{cases}$$ (4) If the error is assumed to follow the standard normal distribution, then equations (1) - (4) describe a simple probit model. The predicted probability of default, $\hat{\pi}_i^{\tau} = \Pr\left[D_i^{\tau} = 1 \mid x_i(\tau)\right]$ , is $\Phi\left[x_i(\tau)\beta\right]$ for the probit model, where $\Phi$ denotes the cumulative standard normal distribution, i.e. the link-function for the probit model. If the non-systematic part is assumed to follow the logistic distribution then $\hat{\pi}_i^{\tau} = \exp\left[x_i(\tau)\beta\right](1 + \exp\left[x_i(\tau)\beta\right])^{-1}$ . An unattractive feature of these specifications is the fact that they do not easily transform into a hazard rate. In fact, the shape of the hazard rate depends on the systematic part. This makes it hard to empirically examine the presence of duration dependence, i.e. whether the time a loan or firm has survived affects the probability of default. If the unsystematic part is assumed to follow the extreme value distribution, then the specification (1) - (4) is equivalent to Cox's proportional hazard model (Narendranathan and Stewart [38]). In this case, the predicted probability of default is obtained from the threshold model as $$\widehat{\pi}_{i}^{\tau} = 1 - \exp\left[-\exp\left(x_{i}\left(\tau\right)\beta + \gamma_{t}\right)\right] \tag{5}$$ where $\gamma_t$ measures the effect of a t-1 duration of the loan without defaulting. The threshold model turns the specification into a non-linear one that makes standard econometric procedures for estimating linear random effects models inadequate. Much progress has been made, however, in the development of statistical procedures for the estimation of these types of models. Probit models with random effects have been widely used in econometrics. See Heckman and Willis [26] for an early example and Guilkey and Murphy [25] for details. This line of research has mainly considered panel data with a small number of repeated measurements on the same subject, often less than 10. The parameters in such models with small cluster sizes can be estimated by maximizing the likelihood of the multivariate normal distribution using numerical integration (See Butler and Moffitt [13] and Greene [24]). Because numerical integration has a pivotal role in this approach, the methods are badly suited for problems where the size of the clusters is large and application is unfortunately infeasible for the data we work with.<sup>6</sup> Another approach, that is more useful in our setting has been developed in the work on Generalized Linear Models (GLM). McCullagh and Nelder [35] contains an introduction. The random-effect probit model as well as the model in (5) is a special case of the Generalized Linear Mixed Models (GLMM) and can thus be estimated with such techniques. The general idea in GLM is to linearize the non-linear models such that conventional least-squares estimation can be conducted. The penalized quasi-likelihood (PQL) technique that we use first takes the first order Taylor expansion of the non-linear function, i.e. $\ln \left( \ln \left( 1 - \pi_i^{\tau} \right) \right)$ , and then regresses it on $x_i(\tau)$ with a procedure similar to (iterative) Generalized Least Squares. Details of the procedure <sup>&</sup>lt;sup>6</sup>The problem of numerical integration is overcome in Bayesian approach by use of importance sampling or Gibbs sampling techniques, and Bayesian methods thus present an alternative (Breslow and Clayton [12]). are given in Zhou, Perkins and Hui [50].<sup>7</sup> The iterative scheme of the PQL-approach makes the properties of the estimator inherently dependent on the actual computer code in use. But it is well-known that the approach suffers from small-sample bias while an extensive simulation study of the estimator in various program packages, which would contribute greatly to the understanding of the estimator's properties, is still lacking. Nevertheless, Zhou, Perkins and Hui [50] contains an extensive discussion of the pros and cons of various software packages' implementation of PQL. Moreover, at least to our knowledge, PQL has not yet been rigorously proved to give consistent estimators. But, estimation of parameters in a GLM (i.e. without random effects) is consistent (McCullagh and Nelder [35]). As estimation of linear models with random effects is equivalent to estimation of fixed effects when the number of observations goes to infinity<sup>8</sup>, and thus the PQL estimators ought to be consistent. To show how the model can be applied in practice, we investigate in the next section whether a pattern of cluster correlation can be found in the non-systematic variation of default probabilities, that has been disregarded in other, earlier, models of bank loan default. #### 3 Data In this paper we analyze loan survival and firm data from two Swedish banks. Each bank has a nationwide branch network serving both private and business customers and none of them has any well-known specialization profile. The data set has been examined before in Carling et al. [16], that use the data from bank A, and Jacobson et al. [28] that employ data from bank B. In order to focus on the modeling of the error terms, we will formulate the systematic part in the same way as in Carling et al. [16] and abstract from issues like choosing the explanatory variables. For the first bank, bank A say, we have detailed loan information for all 54,603 aktiebolag, the approximate Swedish equivalent of US corporations and UK limited businesses, that had one or more loans outstanding at the bank on the last day of at least one quarter between March 31, 1994 and March 31, 2000. For the second bank, bank B say, we have quite similar information for 46,323 companies. However the data comes from a slightly different time-period, <sup>&</sup>lt;sup>7</sup>In the actual implementation we have choosen to use the GLIMMIX macro (Wolfinger and O'Connell [49]) that is provided by SAS. In this macro, one can implement different link functions including the probit and complementary log-log, which is the relevant in the case of the model in (5). See for example Olsson [39]. <sup>&</sup>lt;sup>8</sup>In a mixed linear model, the fixed and random effects are estimated using iterative GLS (Greene [24]). The estimation of the random effects is corrected for the uncertainty caused by a finite number of observations within each cluster in the equations of the iterative GLS. When the number of observations within clusters goes to infinity the correction factor is flooded and the estimations are equivalent to those obtained from a fixed effects model. between Jan 1, 1996 and June 30, 2000. Although we have annual report data on small firms such as general partnerships, limited partnerships and sole proprietors, these will be disregarded because we could not dispose of the relevant credit histories. However, a large part of the sample still consists of relatively small enterprises: respectively 65% and 53% of the banks' observations concern businesses with 5 or fewer employees. The average (censored) duration of a counterpart's presence in a bank's portfolio is almost identical in both banks: 8.6 quarters in bank A versus 8.7 in B. The average exposure is, however, over 50% larger in B: SEK 11.4 mn., compared with SEK 6.8 mn. in A. The median credit line in bank A has a size between SEK 250k and SEK 500k, while bank B has a median credit facility between SEK 1 mn. and SEK 2.5 mn. B generally has a bigger share of its counterparts in industries with bigger credit lines, such as real estate, energy & water, and forestry & paper. Figure 1 shows the quarterly default rates among the counterparts of banks A and B over the time-period 1994Q2 - 2000Q2. In our data a defaults is defined to take place whenever (i) payments on the principal or interest are at least 60 days overdue and (ii) a bank official has made a judgement and concluded that any such payment is unlikely to occur in the future. The general trend over time is one of a decreasing default rate, a pattern that is largely consistent with the overall improving state of the Swedish economy. Throughout the 1990s, the Swedish economy was slowly recovering from the deep recession that struck the country in 1991, with two notable downturns in economy activity, in 1995 and 1997. At the end of the sample period, we can observe the beginning of the persistent slump in the new millennium. The annual accounting data we use, is obtained by Upplysningscentralen (UC), the main credit bureau in Sweden, from the National Patent Office, Patent och Registreringsverket (PRV), to which firms are required to submit their annual report, and includes all typical balance sheet and income statement data, such as inventories, short and long term debt, total assets and a whole range of earnings variables. Payment remarks data are reported by banks and other businesses and stored by UC and comprise information on the events related to the remarks and payment behavior for both the company and its principals. The data provided by UC was available at different frequencies, varying from daily for payment remarks to annually for accounting data. We will discuss the specifics of both data sources in greater detail below. The banks have provided us with the complete credit history and the unique, government provided, company identification number of each company. From this data we have constructed a number of credit variables, such as the size of the loan, actual exposure, and loan types. The second part of the data has been supplied by UC and contains information on most standard balance sheet and income statement variables. Some examples of balance sheet entries are cash, accounts receivable and payable, current assets and liabilities, fixed and total assets, total liabilities and total equity. Some examples of the income statement entries that were available are total turnover, earnings before interest, depreciation and amortization, depreciation, financial Figure 1: Quarterly default rates among counterparts in banks' portfolios during 1994Q2-2000Q2 A defaults is defined as the event where (i) payments on the principal or interest are at least 60 days overdue and (ii) a bank official has made a judgement and concluded that any such payment is unlikely to occur in the future. income, extraordinary income, and taxes. By means of the company identification number, we have been able to match the banks' data with UC's database. In addition to these annual report entries that are collected by the Swedish Patent and Registration Office and stored by UC, we have information on the companies' track records regarding payment behavior as summarized through remarks for 61 different credit and tax related events. The third group of data consists of macro-variables. Earlier work [16] has shown that the output gap, the yield curve and consumers' expectations about the economy are important variables. <sup>&</sup>lt;sup>9</sup>Broadly, remarks belong to one of two categories: non-payment remarks or bank remarks. Storage and usage of the first group are regulated by the Credit Information Act, the Personal Data Act and overseen by the Swedish Data Inspection Board. Examples of events that are registered are: delays in tax payments, the repossession of delivered goods, seizure of property, resettlement of loans and actual bankruptcy. In practice, with a record of non-payment remarks individuals will not be granted any new loans and small businesses will find it very difficult to open new lines of credit. The second type of remarks provide information on firms' payment behavior at banks. All Swedish banks participate in this scheme and report any abuse of a bank account or a credit card and slow loans (repayment is considered questionable) to the credit bureau, that maintains these records. Storage and usage of these remarks is regulated merely by the Personal Data Act. Whereas a bank remark may have the same consequences as having a non-payment remark, this is not the case in general. Their effect on individual applications for credit presumably works mainly through the accumulation of negative indicators. Table 1: Descriptive statistics for variables used in the model. Table shows some selected descriptive statistics for merged data from bank A and B. All variables are obatained from the credit bureau. Statistics are split up for defaulted and (censored) surviving counterparts. All original variables are in nominal terms and in million SEK. Ratios and the remark variables are expressed as fractions. | | | Defaulted | | | Surviving | | | | |---------------------|-------|-----------|-------|-------|-----------|-------|-------|-------| | Variable | Mean | StDev | Min | Max | Mean | StDev | Min | Max | | Bankdata | | | | | | | | | | Bank A | 0.69 | 0.46 | 0 | 1 | 0.61 | 0.49 | 0 | 1 | | Short-term credit | 0.65 | | | | 0.42 | | | | | Long-term credit | 0.14 | | | | 0.23 | | | | | Mixed credits | 0.21 | | | | 0.35 | | | | | Credit bureau data | | | | | | | | | | Sales (log) | 13.94 | 3.32 | 0 | 24.20 | 14.79 | 2.87 | 0 | 25.10 | | Sales missing | 0.14 | 0.34 | 0 | 1 | 0.02 | 0.15 | 0 | 1 | | Earnings/Assets | -0.29 | 0.80 | -2 | 2 | 0.06 | 0.42 | -2 | 2 | | Inventory/Sales | 0.12 | 0.15 | 0 | 0.50 | 0.10 | 0.13 | 0 | 0.50 | | Loans/Assets | 0.86 | 0.52 | 0 | 2 | 0.73 | 0.31 | 0 | 2 | | Remarks 8,11,16,25 | 0.23 | 0.42 | 0 | 1 | 0.01 | 0.10 | 0 | 1 | | Remark 25 | 0.12 | 0.33 | 0 | 1 | 0.00 | 0.04 | 0 | 1 | | Accounting data | | | | | | | | | | Complete | 0.50 | | | | 0.96 | | | | | Reported previously | 0.42 | | | | 0.02 | | | | | Reported afterwards | 0.00 | | | | 0.01 | | | | | Never reported | 0.00 | | | | 0.01 | | | | | Partially missing | 0.08 | | | | 0.01 | | | | | Macrodata | | | | | | | | | | Output gap | -4.90 | 1.89 | -7.78 | -0.50 | -4.20 | 2.04 | -7.78 | -0.50 | | Yield curve | 1.21 | 0.81 | -0.41 | 2.80 | 1.25 | 0.74 | -0.41 | 2.80 | | Nobs | 5196 | | | | 945497 | | | | Notes: Earnings are before interest, taxes, depreciation and amortization. Remarks indicate that the firm had a payment remark due to one or more of the following events in the preceding four quarters: a bankruptcy petition, issuance of a court order to pay a debt, seizure of property. Earnings/Assets are truncated at -2 and 2, any value below and above these limits is set to the limit. Truncation was also done for Inventory/Sales and Loans/Assets with limits given by Min/Max in the table. Table 1 contains descriptive statistics for the variables that enter the credit-risk model and provides us with some further insight into the counterparts of both banks. This simple univariate analysis is worth some comments. The type of credit seems to matter for default behavior as short-term credits, as opposed to exposure with longer maturities, make up a larger share of defaulted loans than of surviving loans. As regards the accounting data, we focus on four financial ratios, that are commonly used to study bankruptcy risk <sup>10</sup>. One may note some differences between defaulting and surviving counterparts. On average, surviving firms have lower average debt ratios, i.e. smaller debts relative to their assets, and higher earnings. Defaulting firms are persistently worse off than healthy businesses when measured by the earnings ratio, while their <sup>&</sup>lt;sup>10</sup>Examples of authors that employ financial ratios are Altman [5] [6][7], Frydman, Altman and Kao [19], Li [30], Shumway [44] and Carling, Jacobson, Lindé and Roszbach [16]. inventory turnover is higher. Total sales are also generally, but not always, lower for defaulting firms. Another interesting difference is that we do not have complete accounting data for a large fraction all defaulting companies, due to their failure to submit an annual report: about half of them had either never supplied a report or done so only for a preceding year. Payment remarks are also much more common amongst the defaulting companies. For our specific empirical application, the way in which the clusters are identified is an important step. We use the Statistics Sweden's (SCB) Standard Industrial Classification (SNI) [43]. The SNI classification is based on the EU's recommended classification standard NACE (Nomenclature Generale des Activités Economiques dans les Communautes Européennes). SNI is primary an activity classification. Production units as companies and local units are classified after the activity which is carried out. The SNI system allows one company or a local unit to have several activities (SNI-codes). In the data base available to us, however, only the most important SNI-code was stored. There are more than a thousand sectors, although the coding is organized in such a manner that it is easy to see how similar the activity of two companies are. We have collapsed the sectors into seven main clusters: public companies, wholesale, retail, transport and communication, manufacturing and construction, forest and other industries, and real estate and finance.<sup>11</sup> The exact mapping is displayed in the table in the Appendix. For further details about the data we refer to Carling et al. [16] or Jacobson et al. [28]. #### 4 Applying the model In this section we discuss how the duration model with cluster specific errors is implemented in practice. First, in Section 4.1 we estimate a model of business default or loan default. Next, in Section 4.2 we apply the default risk model to generate credit loss distributions and present some relevant VaR percentiles. We also discuss how adding the cluster error structure affects our estimates of credit losses. #### 4.1 Estimating a duration model of default risk with cluster specific errors We begin with a short discussion of the systematic part of the default risk model. Because estimation of the full model in equation (3) did not reveal any significant autoregression in the <sup>&</sup>lt;sup>11</sup>We also considered splitting the seven clusters into 14 subclusters. This gave slightly greater correlations, but essentially no difference is the VaR-measure. On the one hand, a too broad classification of the cluster might lead to the interdependency of some companies within a cluster being obscured by the fact that no relation exists with other companies in the broader cluster. On the other hand, too many clusters will lead to a single cluster having very little effect on the VaR-measure. Our choice of seven clusters seemed to adequately balance the two conflicting interests. **Table 2. Estimates of the systematic part of the default risk duration model.**Model 1 is estimated with cluster specific errors, model 2 with a common error for all clusters. Correlations may differ for clusters but no auto-correlation is assumed. The link function is the complementary log-log. | | M o d | Model 1 | | e l 2 | | |---------------------|----------|----------|----------|----------|--| | Variable | Estimate | StdError | Estimate | StdError | | | Bankdata | | | | | | | Bank A | -0.041 | 0.048 | -0.010 | 0.034 | | | Short-term credit | 0.514 | 0.037 | 0.488 | 0.038 | | | Long-term credit | 0.000 | - | 0.000 | - | | | Mixed credits | -0.295 | 0.048 | -0.287 | 0.049 | | | Credit bureau data | | | | | | | Sales (log) | -0.033 | 0.005 | -0.033 | 0.005 | | | Sales data missing | 0.764 | 0.111 | 0.787 | 0.111 | | | Earnings/Assets | -0.208 | 0.036 | -0.201 | 0.037 | | | Inventory/Sales | 0.546 | 0.097 | 0.526 | 0.097 | | | Loans/Assets | 0.896 | 0.038 | 0.911 | 0.039 | | | Remarks 8,11,16,25 | 0.960 | 0.049 | 0.964 | 0.051 | | | Remark 25 | 0.824 | 0.063 | 0.783 | 0.064 | | | Accounting data | | | | | | | Complete | -2.624 | 0.082 | -2.538 | 0.083 | | | Reported previously | 0.596 | 0.078 | 0.637 | 0.079 | | | Reported afterwards | -4.756 | 0.497 | -4.620 | 0.514 | | | Never reported | -2.662 | 0.259 | -2.636 | 0.267 | | | Partially missing | 0.000 | - | 0.000 | - | | | Macro data | | | | | | | Output gap | -0.170 | 0.022 | -0.187 | 0.010 | | | Yield curve | -0.216 | 0.054 | -0.245 | 0.020 | | | Duration | | | | | | | 1:st year | 0.000 | 0.162 | 0.000 | - | | | 2:nd year | 0.232 | 0.128 | 0.218 | 0.128 | | | 3:rd year | 0.327 | 0.129 | 0.330 | 0.131 | | | 4:th year | 0.464 | 0.127 | 0.392 | 0.128 | | | 5:th year | 0.478 | 0.138 | 0.381 | 0.129 | | | > 5 years | 0.172 | 0.172 | 0.191 | 0.169 | | | Intercept | -4.291 | 0.197 | -4.250 | 0.170 | | Bold style coefficients are at least significant at the 5% level. errors, we report only parameter estimates for the specification without such an autoregressive component. The first and second column of Table 2 contain the parameter estimates and standard errors for the model in (2), with cluster specific errors, while the third and fourth column display the parameters and their standard errors for the "conventional" model, with a Figure 2: Default rates (predicted vs. actual) and average loss rate. The figure compares actual default and loss rates during the sample period with the default rate implied by our preferred model and a model without explananatory variables common error for all clusters, from equation (1). A comparison of the significant parameters in columns 1 and 3 clearly shows that adding the industry specific common error structure only marginally affects the size of the coefficients and standard errors for the systematic part - as one would anticipate.<sup>12</sup> The signs of all parameters are in line with what one would expect from the descriptive statistics in Table 1. Short-term credits, any sort of incomplete provision of accounting data, having any kind of "payment" remark, higher debt ratios and large inventories relative to turnover are all associated with a higher risk of default. Conversely, longer maturities, higher sales, and higher earnings relative to total assets reduce the likelihood of default. As one would expect favorable economic conditions, like a positive output gap and a steeper slope of the yield curve, reflecting an anticipated strengthening of the economy by the market, reduce counterparty risk. The increasing size and the significance level of the duration coefficients also suggest there is some support for the existence of a positive duration dependence, that is: of default risk increasing with the age of the loan.<sup>13</sup> Before starting with a discussion of the cluster variances, it is useful to inspect the basic <sup>&</sup>lt;sup>12</sup>We also found that our parameter estimates from our complementary log-log specification were very similar to those in a probit specification. The correlation of the predicted probability derived from the two specifications is found to be 0.989. <sup>&</sup>lt;sup>13</sup>Because we only have information on the age of exposures within the limits of the sample period, and not for the period preceding the sample period, this result should be interpreted with care. Table 3. Definition of clusters and their distribution in the data. Estimation of the cluster-variance. The second column with parameter estimates refers to our preferred specification and therefore 95% confidence intervals are presented for the parameters. | | Equally-sized cluster | Clu | luster specific errors | | | | | |-------------------------------------------|--------------------------|-----------------------|------------------------|---------------------|--|--|--| | Variable | error w. systematic part | with systematic part | only macro variables | w/o systematic part | | | | | Public or subsidized sector | 0.254 | 0.289<br>(0.1690.606) | 0.919 | 1.101 | | | | | Wholesale | " - " | 0.228<br>(0.1220.570) | 0.269 | 0.225 | | | | | Retail | " - " | 0.292<br>(0.1710.612) | 0.309 | 0.421 | | | | | Transport and communication | " - " | 0.217<br>(0.1270.457) | 0.280 | 0.394 | | | | | Manufacturing | " - " | 0.111<br>(0.0510.402) | 0.123 | 0.254 | | | | | Construction, forest and other industries | " - " | 0.213<br>(0.1190.487) | 0.174 | 0.254 | | | | | Estate and finance | " - " | 0.411<br>(0.2300.935) | 0.400 | 0.613 | | | | Note: To convert the cluster-variance estimates to estimates of correlations, one takes the ratio of the cluster-variance and 1.645 (i.e. the residual-variance for the complementary log-log specification) plus the cluster-variance. properties of the estimated model. For this purpose, we have plotted the actual default rate against the default rate predicted by model 1 in Figure 2. For reference, we have also added the average default rate and the actual loss rate over the sample period. By visual inspection we can see that the predicted default rate, shown as a broken line, closely tracks the actual average rate of firm default; the $R^2$ of a simple regression is 0.995. Disregarding for the meanwhile the impact of loan size on portfolio credit losses, our preferred model is thus well suited to replicate the portfolio's default behavior. As the bold line in Figure 2 illustrates, the default rate and the loss rate do broadly follow the same pattern, but idiosyncratic variation in the loan size does tend to create short-lived discrepancies between them. For this reason, we will discuss both portfolio default rate - and portfolio loss rate distributions in Section 4.2. In Table 3, we report the estimated cluster specific error variances and compare them with the error variances (i) from a model specification that assumes equally-sized cluster variances, and from "cluster" models that contain (ii) only macro explanatory variables or (ii) no systematic factors at all. As the second column shows, all industries ("manufacturing" being an exception) have error variances that differ significantly from zero. In "wholesale", "transport and communication" and "construction, forest and other industries" non-systematic, cluster specific changes in business default risk are of comparable size. Somewhat bigger cluster specific shocks to default risk are experienced in the retail industry and the "public and subsidized" sector. The industry with by far the largest cluster specific error variance is the "real estate and finance" cluster, with a variance of 0.411. Since the variance of the unsystematic part is fixed at $\sigma_i^2 = 1.645$ for our choice of specification in eq. (5), the implied correlation is 0.2. Column 1 shows that the estimated variance if equality across clusters is assumed, is 0.254. However, a likelihood-ratio test easily rejects the restriction of a common correlation across all clusters is strongly rejected: $LR = 122.7 > \alpha_{0.05} \left(\chi_{(6)}^2\right)$ . The clusters should be thus be examined separately, and not as one group. Although we have no formal explanation of the differences between clusters, there may be some heuristic explanations. The financial sector and real estate sector, were exposed to fundamental changes during the 1990s, after financial markets had been deregulated during the late 1980's and early 1990's. In the early 1990's Sweden also experiences a banking crisis, the effects of which may have been dissipated only slowly. The deep recession that struck Sweden more or less simultaneously also had a big impact on the government budget and its contributions to various (semi-)governmental organizations. Although there are good theoretical reasons for the inclusion of close business relations within certain industries into models of default or credit risk [50][20], economic theory does not help us much in forming a prior for the size of the industry specific error variances. We presume that an (unconditional) correlation of 0.5 - the equivalent to a cluster variance of 1.645 - or even higher are plausible and that most of such correlation will be related to variation in macroeconomic variables. When we compare the three models, the most substantial increase in cluster variances comes about when the systematic part is excluded completely (column 4) - although the exact magnitude of the effect varies somewhat between industries. The industry errors now capture part of the variation in the default rate that macro - and firm specific covariates can no longer explain. For obvious reasons, we would like to know if and to what extent this result is solely a consequence of a common impact that the macro-variables have on companies. To cast more light on this issue, we re-estimated the model and included the macro variables while keeping out the other explanatory variables. In the third column of Table 3, the estimates of the cluster variances with this specification are displayed. Once again, the effect varies between sectors, with the macro variables being able to explain more of the cluster variances for the "government" sector and "real estate and finance". Overall, including macro variables and excluding firm specific covariates reduces the estimated variances somewhat, but does not bring them back to the level of the model with a full systematic component. So contrary to our prior belief we find that a substantial part of the difference in the conditional and the unconditional correlations should be attributed to the firm specific variables in the systematic part. In the estimation procedure, it was assumed that the random-effect component, i.e. $\varepsilon_k^{\tau}$ , follows the normal distribution with expectation equal to zero. To check the validity of this assumption, we re-scaled the estimated random-effects to let them have a unit standard deviation by dividing the estimates of the 175 random-effects components by the relevant cluster Figure 3: A QQ plot for the estimated random effect components. The figure compares the empirical distribution of estimated random-effect components to the normal distribution. The scale of the vertical axis is determined by the dispersion of observations for the normal distribution. The actual empirical distribution is depicted by dots. If the empirical distribution were to follow the normal curve exactly, the dots would overlap with the straight line in the plot. The concave/convex lines provide 95 % confidence limits. variance. Under the above mentioned assumption the standardized estimates should in fact follow the standard Normal distribution. Figure 3 shows, by means of a Q-Q-plot, to what extent the distribution of the standardized estimates match the percentiles of the standard Normal distribution. If the correspondence between these two is perfect, the points will be placed along the straight line that lies in between the accompanying lines that reflect the upper and lower 95% confidence limits. The Q-Q-plot suggests that normality assumption is quite acceptable. From the discussion in Section 2 we recall that the cluster specific shocks may well be persistent and that one thus may observe patterns of autocorrelation, for example an AR(1) structure as outlined in eq. (3). Therefore, we also used the estimated random-effects to check for the presence of any autoregressive structure in the correlations, by examining the autocorrelation function for the series of 25 observations we have available for each cluster. The strongest (and in fact only) sign of such a pattern was found for the "retail" industry, that has a first-order autocorrelation of about 0.25. However, even this estimate was insignificant and we thus conclude that no autoregressive structure is present in this data.<sup>14</sup> #### 4.2 Estimating portfolio credit risk distributions and VaR Having estimated a duration model of default risk with cluster specific effects, we now turn to applying this model to the estimation of a portfolio credit loss distribution. In order to get a better understanding of the extent to which our modeling approach leads to improved estimates of credit loss distributions, we will compare the Value-at-Risk (VaR) estimates, the statistics we use to summarize the loss distribution, with those derived from two simple benchmark models. We calculate VaR based on the portfolio at $\tau$ for a one quarter ahead horizon by mean of the following algorithm: - 1. Let $\hat{\beta}$ and $\hat{\sigma}_{\varepsilon_k}$ be consistent estimates of $\beta$ and $\sigma_{\varepsilon_k}$ in the model in equation (2).<sup>15</sup> - 2. Draw $\varepsilon_k^{\tau}$ from the normal distribution with expectation equal to zero and variance equal to $\hat{\sigma}_k^2$ - 3. Draw $\varepsilon_i^{\tau}$ from either the standard normal distribution or the extreme-value distribution (depending on the estimated model) <sup>&</sup>lt;sup>14</sup>This approach does not estimate the autoregressive part jointly with other parameters in the model. The GLIMMIX macro in SAS provides this option but the implementation failed due to lack of memory. The procedure of estimating the AR(1)-part, conditional on the estimates for $\beta$ , $\sigma_i^2$ and $\sigma_k^2$ , gave no indication of an auto-regressive structure in the data. Most likely, a joint estimation procedure would have produced similar results, and thus we did not pursue the effort to solve this technical problem. <sup>&</sup>lt;sup>15</sup>Here we assume that the model has been estimated without an autoregressive part. In the case of unequal variance it is necessary to adjust (i) such that the draws from the normal-distribution is taken with the appropriate standard deviation for the cluster. If there is an autoregressive part in the model, then the draws in (i) should be taken from the corresponding autoregressive process. Figure 4: Percentiles of the default rate distributions implied by three models. The boxes display the mean and three percentiles from the credit loss distributions that have been generated using three different models of default risk. In Box 1, the default rate distribution has been generated with a conventional duration model. A cluster specific error structure has been added to arrive at the model used in Box 2. In Box 3 all explanatory variables have been deleted from the cluster error model. - 4. Repeat steps (2) and (3) for k = 1, ..., K - 5. Calculate $\hat{\pi}_{i}^{\tau} = \Phi\left[x_{i}\left(\tau\right)\hat{\beta} + \varepsilon_{i}^{\tau} + \varepsilon_{k}^{\tau}\left[i \in k\right] + \gamma_{t}\right]$ or $\hat{\pi}_{i}^{\tau} = 1 \exp\left[-\exp\left(x_{i}\left(\tau\right)\hat{\beta} + \varepsilon_{i}^{\tau} + \varepsilon_{k}^{\tau}\left[i \in k\right] + \gamma_{t}\right)\right]$ (depending on the estimated model) - 6. Let $Loss^{\tau} = \sum_{i=1}^{n^{\tau}} \hat{\pi}_{i}^{\tau} s_{i}^{\tau} / \sum_{i=1}^{n^{\tau}} s_{i}^{\tau}$ , where $s_{i}^{\tau}$ is the size of loan i at time $\tau$ and $n^{\tau}$ is the number of loans in the loan portfolio at time $\tau$ . - 7. Repeat (2)-(5) R times and order the R observations of $Loss^{\tau}$ by increasing size, where R should be large enough to guarantee that the loss distribution has converged. - 8. Let $VaR_z^{\tau}$ equal the z-percentile in the distribution of $Loss^{\tau}$ Because our statistical model does not incorporate a description of (any possible relation between default risk and) the loan size or recovery rates, a comparison of loss distributions will not strictly give us an evaluation of the suitability of our statistical model for generating portfolio credit loss distributions. Sample specific, non-stochastic variation in the loan size may add noise to the portfolio default rate distribution generated by the model. For this reason, we start out by studying how the distribution of quarterly default rates is affected by using model (2) instead of a conventional specification. We can do this by following the procedure described in steps (1)-(7) above, but replacing the $Loss^{\tau}$ rate by a defaultrate $\bar{\tau} = \sum_{i=1}^{n^{\tau}} \hat{\pi}_i^{\tau}$ in step (5). This will give us a purer picture of the merits of the model specification. Having done this, we Table 4: The effect of including industry specific errors on the estimation of default risk distributions. Table shows the mean and various percentiles of the portfolio default risk distribution that is generated by (i) the model with industry specific common errors, and (ii) the model without common industry specific errors. Normally styled figures refer to the model with industry specific errors, italics to the model witout industry errors. | | | SIM | | • | defaul | t rates | | | |-----------------------------|------|------|------|------|--------|---------|------|------| | at distribution percentiles | | | | | | | | | | Quarter | mean | mean | 95 | 95 | 97.5 | 97.5 | 99.9 | 99.9 | | 1994Q2 | 1,28 | 1,19 | 1,81 | 1,23 | 1,95 | 1,23 | 2,55 | 1,27 | | 1994 <b>Q</b> 3 | 0,69 | 0,63 | 0,99 | 0,65 | 1,06 | 0,66 | 1,39 | 0,67 | | 1994Q4 | 0,74 | 0,68 | 1,07 | 0,70 | 1,16 | 0,71 | 1,54 | 0,73 | | 1995Q1 | 1,07 | 0,99 | 1,50 | 1,03 | 1,61 | 1,03 | 2,07 | 1,06 | | 1995Q2 | 0,62 | 0,56 | 0,87 | 0,58 | 0,94 | 0,59 | 1,21 | 0,60 | | 1995Q3 | 0,68 | 0,62 | 0,93 | 0,64 | 0,99 | 0,65 | 1,24 | 0,66 | | 1995Q4 | 1,88 | 1,72 | 2,53 | 1,76 | 2,71 | 1,77 | 3,41 | 1,79 | | 1996Q1 | 0,78 | 0,70 | 1,08 | 0,72 | 1,16 | 0,72 | 1,49 | 0,73 | | 1996Q2 | 0,74 | 0,68 | 1,01 | 0,70 | 1,08 | 0,70 | 1,41 | 0,72 | | 1996Q3 | 0,69 | 0,63 | 0,95 | 0,64 | 1,02 | 0,64 | 1,31 | 0,65 | | 1996Q4 | 0,32 | 0,29 | 0,45 | 0,30 | 0,48 | 0,30 | 0,62 | 0,30 | | 1997Q1 | 0,44 | 0,39 | 0,61 | 0,41 | 0,65 | 0,41 | 0,85 | 0,42 | | 1997Q2 | 0,65 | 0,59 | 0,88 | 0,61 | 0,94 | 0,61 | 1,22 | 0,62 | | 1997Q3 | 1,17 | 1,07 | 1,58 | 1,09 | 1,68 | 1,10 | 2,06 | 1,11 | | 1997Q4 | 0,50 | 0,45 | 0,69 | 0,46 | 0,74 | 0,46 | 0,94 | 0,47 | | 1998Q1 | 0,46 | 0,41 | 0,63 | 0,42 | 0,67 | 0,43 | 0,85 | 0,43 | | 1998Q2 | 0,43 | 0,38 | 0,59 | 0,39 | 0,64 | 0,40 | 0,84 | 0,40 | | 1998Q3 | 0,29 | 0,26 | 0,40 | 0,27 | 0,43 | 0,27 | 0,55 | 0,27 | | 1998Q4 | 0,30 | 0,27 | 0,41 | 0,28 | 0,43 | 0,28 | 0,55 | 0,29 | | 1999Q1 | 0,33 | 0,30 | 0,45 | 0,30 | 0,48 | 0,31 | 0,64 | 0,31 | | 1999Q2 | 0,47 | 0,42 | 0,64 | 0,43 | 0,68 | 0,44 | 0,91 | 0,44 | | 1999Q3 | 0,26 | 0,23 | 0,35 | 0,23 | 0,37 | 0,24 | 0,47 | 0,24 | | 1999Q4 | 0,19 | 0,17 | 0,27 | 0,18 | 0,29 | 0,18 | 0,38 | 0,18 | | 2000Q1 | 0,35 | 0,31 | 0,49 | 0,32 | 0,52 | 0,32 | 0,67 | 0,33 | | 2000Q2 | 0,70 | 0,63 | 0,96 | 0,65 | 1,04 | 0,65 | 1,38 | 0,66 | will calculate the credit loss distributions, to complete the illustration of how the model could be used by banks for in risk-management applications and by regulatory authorities for monitoring purposes. Figure 4 displays, for each of the 25 quarters in the sample period, the mean and three commonly used percentiles from the default rate distribution generated by three different models of firm default risk. Table 4 provides some further numerical details on the default rate distributions. The first box contains the distribution that results when model (4) is used, the middle box the distribution for our model with cluster errors, and the percentiles in the third box are derived using a cluster error model without any explanatory variables. A first glance at the three boxes reveals both similarities and important differences. Both the first and second model appear to capture the broad movements in default rates over the sample period. The peaks in 1995 and 1997 are clearly captured and even the general downward trend up to the end of 1999 is Figure 5: Percentiles of the loss rate distribution implied by three models. The boxes display the mean and three percentiles from the credit loss distributions that have been generated using three different models of default risk. In Box 1, the loss distribution has been generated with a conventional duration model. A cluster specific error structure has been added to this model in Box 2. In Box 3 all explanatory variables have been deleted from the cluster error model. identified and the mean default rate is more or less identical for models 1 and 2. The model without industry specific errors has default rate distributions, for each point in time, that are highly concentrated though. The lower and upper percentiles almost coincide, while for the model with industry specific errors, default rate percentiles are at least 50 percent and up to 100 percent larger. To be able to single out the contribution of the cluster error structure to the shape of the loss and default rate distributions, it is useful to consider how other factors will affect these. Firstly, there's the size of the portfolio: larger portfolios, with more borrowers, will produce loss distributions that tend to converge to the mean and have smaller tail losses. Secondly, the *skewness* of the distribution of loan sizes will influence the location of the tails: portfolios in which the biggest loans are exceptionally large in relation to the remainder, will tend to generate bigger tail losses. Finally, there's the cluster errors, that capture the interdependency between firms within industries. A closer look at the boxes in Figures 4 and 5 makes what their impact is and that they, in this particular case, are the single driving force behind the larger default rates in the tail percentiles of the cluster model (Box 2). To see this, consider that in Figure 4 the single factor causing differences between Boxes 1 and 2 is the addition of the cluster errors. Hence, it is the existence of an interdependence between companies within industries that causes the higher percentiles of the default rate distribution to exceed the mean default rate by up to one and a half percent points. When we instead look at the loss distributions, in Figure 5, Table 5: The effect of including industry specific errors on the estimation of Value-at-Risk. Table shows the mean and various percentiles of the loss distribution that is generated by (i) the model with industry specific common errors, and (ii) the model without common industry specific errors. Normally styled figures refer to the model with industry specific errors, italics to the model witout industry errors. | at loss distribution percentiles | | | | | | | | | |----------------------------------|------|------|------|------|------|------|------|------| | Quarter | mean | mean | 95 | 95 | 97.5 | 97.5 | 99.9 | 99.9 | | 1994 <b>Q</b> 2 | 0,59 | 0,54 | 0,90 | 0,60 | 1,00 | 0,62 | 1,51 | 0,67 | | 1994Q3 | 0,30 | 0,27 | 0,47 | 0,32 | 0,52 | 0,32 | 0,73 | 0,36 | | 1994Q4 | 0,34 | 0,30 | 0,55 | 0,35 | 0,62 | 0,36 | 1,04 | 0,40 | | 1995Q1 | 0,39 | 0,35 | 0,56 | 0,38 | 0,60 | 0,39 | 0,85 | 0,43 | | 1995Q2 | 0,33 | 0,29 | 0,54 | 0,33 | 0,61 | 0,33 | 1,05 | 0,36 | | 1995Q3 | 0,38 | 0,33 | 0,61 | 0,37 | 0,70 | 0,38 | 1,18 | 0,41 | | 1995Q4 | 1,66 | 1,44 | 2,88 | 1,65 | 3,32 | 1,70 | 5,91 | 1,93 | | 1996Q1 | 0,36 | 0,31 | 0,57 | 0,34 | 0,65 | 0,35 | 1,11 | 0,38 | | 1996Q2 | 0,37 | 0,32 | 0,56 | 0,37 | 0,62 | 0,39 | 0,87 | 0,44 | | 1996Q3 | 0,36 | 0,31 | 0,57 | 0,34 | 0,65 | 0,35 | 1,16 | 0,38 | | 1996Q4 | 0,17 | 0,15 | 0,27 | 0,16 | 0,31 | 0,17 | 0,57 | 0,18 | | 1997Q1 | 0,25 | 0,21 | 0,42 | 0,23 | 0,48 | 0,24 | 0,81 | 0,25 | | 1997Q2 | 0,35 | 0,30 | 0,55 | 0,32 | 0,63 | 0,33 | 1,11 | 0,35 | | 1997Q3 | 0,68 | 0,59 | 1,10 | 0,64 | 1,24 | 0,66 | 2,00 | 0,71 | | 1997Q4 | 0,28 | 0,24 | 0,43 | 0,26 | 0,48 | 0,27 | 0,73 | 0,29 | | 1998Q1 | 0,25 | 0,22 | 0,40 | 0,24 | 0,45 | 0,24 | 0,79 | 0,26 | | 1998Q2 | 0,26 | 0,22 | 0,44 | 0,24 | 0,50 | 0,25 | 0,78 | 0,27 | | 1998Q3 | 0,16 | 0,14 | 0,26 | 0,15 | 0,30 | 0,16 | 0,47 | 0,17 | | 1998Q4 | 0,19 | 0,16 | 0,30 | 0,18 | 0,33 | 0,18 | 0,52 | 0,20 | | 1999Q1 | 0,21 | 0,18 | 0,37 | 0,19 | 0,42 | 0,20 | 0,77 | 0,21 | | 1999Q2 | 0,22 | 0,19 | 0,32 | 0,20 | 0,36 | 0,20 | 0,57 | 0,22 | | 1999Q3 | 0,12 | 0,10 | 0,17 | 0,11 | 0,19 | 0,11 | 0,30 | 0,12 | | 1999Q4 | 0,10 | 0,09 | 0,16 | 0,09 | 0,18 | 0,09 | 0,31 | 0,10 | | 2000Q1 | 0,17 | 0,14 | 0,25 | 0,16 | 0,28 | 0,16 | 0,47 | 0,18 | | 2000Q2 | 0,39 | 0,34 | 0,58 | 0,39 | 0,65 | 0,40 | 0,97 | 0,45 | taking account of the cluster error structure appears to lead to increases in the VaR percentiles during most quarters that are comparable to those in the default rate distribution in Figure 4 and Table 4. Depending on the percentile and the quarter one considers, the model without cluster errors underestimates tail losses by 50-200 percent. Clearly, the exceptional peak in the loss distribution in the beginning of 1996, that exceeds the jump in the default rate distribution, has to be attributed to fact that, coincidentally, large exposures were being lost at a time when the average rate of default was also high. Table 5 provides numerical details for the boxes in Figure 5. When we compare Box 2 in Figures 4 and 5 to the model with cluster errors but without explanatory variables in Box 3, one observes clearly that, through time, the difference between expected risk and tail risk in the outer tails increases when the mean default rate rises. Aggregate or "macro" risk, beyond affecting expected default rates, thus appears to be important for portfolio credit risk in the sense that periods with high rates of default among businesses are associated with more than proportional increases in unexpected defaults. The third model is, however, in both its mean and the lower percentiles, much less successful at capturing the trend in the average default rate. Only the 99.9th and, to a lesser extent, the 99th percentile, manage to produce a peak at the start and a slight downward movement over the remainder of the sample period. But the peak at the start is disproportionately high, while other increases in the default rate in the middle of the sample period, especially the one in 1997 are more or less fail to be captured. So although a model without a systemic part can generate peaks and troughs in the relevant range of the VaR percentiles, it is quite uninformative about when a bank should hold a large economic capital stock. In other words: a model with systematic factors but without a cluster error structure is well able to fit the broad trends in mean portfolio default rates and credit losses, but fails to appropriately capture the credit losses in bad times. Typically these are the times when banks are hit by large "unexpected" credit losses. <sup>16</sup> This model thus performs best when it is least needed. A model that accounts for the dependencies within each industry but lacks a systematic part produces quite some variation in the tails, but the shifts in the estimated loss distribution don't match those in the bank's actual loss experience. It would thus force the bank to hold an unnecessarily large economic capital stock for most of the time. Only the model that includes both a systematic part and cluster specific variances manages to follow both the trend in credit losses and produce industry driven fluctuation in losses around that trend. Consequently, the economic capital requirements that are derived from it are larger for periods when times of large "aggregate" disturbances occur and smaller when the economy is doing well. #### 5 Discussion Currently available portfolio credit risk models fail to allow for default risk dependency across loans other than through common risk factors. As a consequence they ignore the close ties that usually exist between companies, due to legal, financial and business relations, and tend to lead to clustering of bankruptcies. As a result, many models commonly used by regulators and financial institutions are likely to underestimate credit risk peaks in periods when industry specific shocks, as opposed to firm specific (idiosyncratic) and country wide factors, manifest themselves. To address this shortcoming, we have attempted to integrate the insights from theoretical models of default correlation, like Giesecke [20] and Zhou [51], into a conventional duration model of default risk and the implied portfolio credit risk estimates by explicitly introducing a relation between firms' default risk through industry specific errors. In this paper, we also <sup>&</sup>lt;sup>16</sup>When studying credit losses, authors generally refers to the difference between the credit loss at a specific percentile of the loss distribution minus the mean losses as "unexpected" credit losses. illustrate how this model of default risk can be operationalized by practitioners by applying it to a pooled data set from two Swedish banks' business loan portfolios over the period 1996-2000. The results from the application are encouraging. Our estimates reveal substantial differences in the intra-industry inter-firm correlation of defaults. The retail industry and the "public and subsidized" sector display substantially higher cluster variation than most other industries, while the "real estate and finance" business demonstrates by far the largest correlation. While accounting for dependencies within industries does not affect estimates of individual default risk to any large extent, intra-industry dependencies are shown to be quantitatively important for credit risk. Estimates of VaR can increase by 50-200 percent, depending on the point in time and the aggregate economic conditions. Most commonly used credit risk models, that ignore these intra-industry effects, will thus substantially underestimate actual portfolio risk - by a degree that varies over the business cycle. "Conventional" models that include only systematic factors, although able to fit the broad trends in credit losses, fail to capture the fluctuations in unexpected credit losses, particularly in bad times, when banks typically are confronted with larger "unexpected" credit losses. The model we propose does manage to follow both the trend in credit losses and produce industry driven, time-varying fluctuations in losses around that trend. Our model will thus be a better aid for banks in determining the appropriate size of economic capital buffers. What do these findings imply for financial institutions, financial supervisors and financial regulators? As we noted, the economic capital requirements that result from our model will be larger compared with the those implied by "conventional" models, especially in periods with large "aggregate" disturbances. All other equal, this should imply costlier lending for banks as they will be in need of larger capital buffers than one has thought until now. Another way to look at these results is that the trade-off banks face when determining how much to diversify is different. Manove, Padilla and Pagano ([34]) and Acharya, Hasan and Saunders ([3]) have, for example, discussed the costs that diversification bring about for banks and the trade-off they may face when balancing these against the gain from reducing tail credit losses. In this contaxt, our results seem to imply that the optimal degree of diversification is higher for banks than they inferred until now from less accurate models. From a regulatory perspective, our findings will not have any immediate consequences, since regulatory capital requirements in the Basel II framework only depend on average probabilities of default. This paper is one in a larger literature that shows that the Basel risk weight mappings may not capture the actual risk properties of credit portfolios and that the success of implementing the Basel II framework will hinge on the specific characteristics (parameters) of banks' portfolios. For supervisors, it does mean, however, that the fragility of banks, and thus most likely the banking system, has been underestimated. In the long run, our findings ought to be a reason to make capital requirements contingent on portfolios' industrial composition, i.e. degree of diversifiaction. As any model, ours assumes a specific structure. Obviously, there may be other ways to model intra-industry comovements between firms. We imposed that shocks to default risk are i.i.d. and firm default risk within an industry was positively correlated. One could think of some firms (within one or several industries) with a horizontal relation to display negative comovements, for example because a one firm's default creates new business opportunities for another. Another avenue may be to impose more structure on the cluster errors by using "input-output" data or other information documenting the intensity of contacts between firms and/or clusters. We believe that future research could explore these channels of inter-firm interaction. #### References - [1] Allen, Linda and Anthony Saunders, (2004), Incorporating systemic influences into risk measurements: A survey of the literature, Forthcoming in: *Journal of Financial Services Research*. - [2] Acharya, Viral, Sreedhar Bharat and Anand Srinivasan, (2004), Understanding the recovery rates on defaulted securities, manuscript. - [3] Acharya, Viral, Iftekhar Hasan and Anthony Saunders, (2004), Should Banks Be Diversified? Evidence from Individual Bank Loan Portfolios, Forthcoming in: *Journal of Business*. - [4] Altman, Edward I., (1968), Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, *Journal of Finance* 23 (4), pp. 589-611. - [5] Altman, Edward I., (1971), Railroad bankruptcy propensity, *Journal of Finance* 26 (2), pp. 333-345. - [6] Altman, Edward I., (1973), Predicting railroad bankruptcies in America, Bell Journal of Economics 4 (1), pp. 184-211. - [7] Altman, Edward I., (1984), The success of business failure prediction models, *Journal of Banking and Finance* 4 (X), pp. 171-198. - [8] Arminger, Gerhard, Daniel Enache and Thorsten Bonne, (1997), Analyzing credit risk data: a comparison of logistic discrimination, classification tree analysis and feedforward networks, *Computational Statistics* 12, 293-310. - [9] Ashby, M., Neuhaus, J. M., Hauck, W. W., Bacchetti, P., Heilbron, D. C., Jewell, N. P., Segall, M. R. and R. E. Fusaro, (1992), An annotated bibliography of methods for analysing correlated categorical data, *Statistics in Medicine* 11:67-99. - [10] Bangia, Anil, Francis X. Diebold, André Kronimus, Christian Schagen and Til Schuermann, (2002), Ratings migration and the business cycle, with application to credit portfolio stress testing, *Journal of Banking and Finance* 26, pp. 445–474. - [11] Basel Committee, (2003), The New Basel Capital Accord, Third Consultative paper, www.bis.org/publ/bcbsca.htm. - [12] Breslow, N. E. and D. G. Clayton (1993), Approximate inference in generalized linear mixed models, *Journal of American Statistical Association*, 88:421, pp. 9-25. - [13] Butler, J. S. and Moffitt, R., (1982), A computational efficient quadrature procedure for the one-factor multinomial probit model, Econometrica 50(3):761-764. - [14] Calem, Paul and Michael LaCour-Little, (2004), Risk-based capital requirements for mort-gage loans, Journal of Banking and Finance, 28 (3), pp. 647-672 - [15] Carey, Mark, (1998), Credit risk in private debt portfolios, *Journal of Finance*, 52 (4), pp. 1363-1387. - [16] Carling, Kenneth, Tor Jacobson, Jesper Lindé and Kasper Roszbach (2002), Capital charges under Basel II: Corporate credit risk modeling and the macroeconomy, Working Paper Sveriges Riksbank No. 145. - [17] Carling, Kenneth, Tor Jacobson, Jesper Lindé and Kasper Roszbach (2003), Exploring relationships between Swedish firms' balance sheets and the macroeconomy, manuscript, Sveriges Riksbank. - [18] Carey, Mark and Mark Hrycay, (2001), Parameterizing credit risk models with rating data, Journal of Banking and Finance 25, pp. 197-270. - [19] Frydman, Halina, Edward I. Altman, and Duen-Li Kao, (1985), Introducing recursive partitioning for financial classification: the case of financial distress, *Journal of Finance*, Vol. XL No. 1, pp. 269-291. - [20] Giesecke, Kay, (2004), Correlated default with incomplete information, Forthcoming in: Journal of Banking and Finance. - [21] Giesecke, Kay, and Stefan Weber, (2004), Cyclical correlations, credit contagion, and portfolio losses, Forthcoming in: *Journal of Banking and Finance*. - [22] Gordy Michael B., (2000), A comparative anatomy of credit risk models, *Journal of Banking and Finance*, 24 (1-2), pp. 119-149. - [23] Gordy, Michael B., (2003), A risk-factor model foundation for ratings-based bank capital rules, *Journal of Financial Intermediation* 12, pp. 199-232. - [24] Greene, W. H., (1991), Limdep version 6, Econometric Software, New York. - [25] Guilkey, D. K. and Murphy, J. L., (1993), Estimation and testing in the random effects probit model, *Journal of Econometrics* 59, pp.301-317. - [26] Heckman, J. J. and Willis, R., (1976), Estimation of a stochastic model of reproduction: An econometric approach, in: N. Terleckyj, ed. Houshold production and consumption, National Bureau of Economic Research, New York. - [27] Honjo, Yuji, (2000), Business failure of new firms: an empirical analysis using a multiplicative hazards model, *International Journal of Industrial Organization* 18, pp. 557-574. - [28] Jacobson, Tor, Jesper Lindé and Kasper Roszbach, (2003), Internal ratings systems, implied credit risk and the consistency of banks' risk classification policies, Sveriges Riksbank Working Papers No. 155. - [29] Koyluoglu, H. Ugur, and Andrew Hickman, (1998), A generalized framework for credit risk portfolio models, Working paper, Oliver, Wyman & Company and Credit Suisse Financial Products. Published inn abridged version as: "Reconcilable Differences", Risk (October 1998), pp. 56-62. - [30] Li, Kai, (1999), Bayesian analysis of duration models: an application to Chapter 11 bank-ruptcy, *Economics Letters* 63, pp. 305-312. - [31] Littell, R. C., Milliken, G. A., Stroup, W. W. and R. D. Wolfinger, (1996), *The SAS system for mixed models*, SAS Inst. Inc., Cary, North Carolina. - [32] Lucas, André, Pieter Klaassen, Peter Spreij and Stefan Straetmans, (2001), An analytic approach to credit risk of large corporate bond portfolios, *Journal of Banking and Finance* 25, (9), pp. 1635-1664. - [33] Lucas, André, Pieter Klaassen, Peter Spreij and Stefan Straetmans, (2002), Erratum to: "An analytic approach to credit risk of large corporate bond portfolios", *Journal of Banking and Finance* 26, (1), pp. 201-202. - [34] Manove, Michael, Jorge Padilla and Marco Pagano, (2001), Collateral vs. Project Screening: A Model of Lazy Banks, *RAND Journal of Economics*, 32 (4). - [35] McCullagh, P. and Nelder, J. A., (1989), Generalized linear models, London: Chapman and Hall. - [36] Merton, Robert C., (1974), On the Pricing of Corporate Debt: The Risk Structure of Interest Rates", *Journal of Finance* 29, pp. 449-470 - [37] Mingo, John J., (2000), Policy implications of the Federal Reserve study of credit risk models at major U.S. banking institutions, *Journal of Banking and Finance* 24, (1-2), pp. 15-33. - [38] Narendranathan, W. and Stewart, M., (1993), Modelling the probability of leaving unemployment: Competing risks models with flexible baseline hazard, *Applied Statistics* 42, pp. 63-83. - [39] Olsson, U, (2002), "Generalized Linear Models: an applied approach", Studentlitteratur, Lund. - [40] Nickell, Pamela, William Perraudin and Simone Varotto, (2000), Stability of rating transitions, *Journal of Banking & Finance* 24, pp.203-227. - [41] Platt, Harlan D., and Marjorie B. Platt, (1991), A note on the use of industry-relative ratios in bankruptcy prediction, *Journal of Banking and Finance* 15, pp. 1183-1194. - [42] Roszbach, Kasper, (2004), Bank lending policy, credit scoring and the survival of loans, forthcoming in: *Review of Economics and Statistics*. - [43] Statistics Sweden, (2002), Industry code SNI2002, Stockholm, Sweden. www.scb.se/templates/Listning2\_\_\_\_35025.asp - [44] Shumway, Tyler, (2001), Forecasting bankruptcy more accurately: a simple hazard model, Journal of Business 74 (1), pp. 101-124. - [45] Song, J. X. and C. W. Ahn, (2003), An evaluation of methods for the stratified analysis of clustered binary data in community intervention trials, *Statistics in Medicine* 22:2205-226. - [46] Szegö, Giorgio, (2002), Measures of risk, Journal of Banking and Finance 26, pp. 1253-1272. - [47] Treacy, William and Mark Carey, (2000), Credit risk rating systems at large US banks, Journal of Banking and Finance 24 (1-2), pp. 167-201. - [48] Wilson, Thomas, (1997), Portfolio credit risk (I), Risk 10 (9), pp. 111-116 - [49] Wolfinger, R. and M. O'Connell, (1993), Generalized linear mixed models: A pseudo-likelihood approach. *Journal of Statistical Computation Simulation* 48, pp. 233-243. - [50] Zhou, X.-H., Perkins, A. J. and Hui, S. L., (1999), Comparisons of software packages for generalized linear multilevel models, *The American Statistician* 53(3), pp. 282-290. [51] Zhou, Chunsheng, (2001), An analysis of default correlations and multiple defaults, *Review of Financial Studies* 14 (2), pp. 555-576. #### A Appendix Table 6. Definition of clusters and their distribution in the data. | Variable | Included SNI-codes | | | | | | |-------------------------------------------|--------------------|-------------|-------------|-------------|-------------|------| | Public or subsidized sector | 0-9999 | 22100-22330 | 40000-41000 | 75000-91330 | 99000-99999 | 13.3 | | Wholesale | 51000-51700 | | | | | 12.7 | | Retail | 50000-50500 | 52000-55529 | 71000-71100 | 71400-71402 | 92000-98999 | 19.4 | | Transport and communication | 60000-64203 | 71200-71340 | 72000-74849 | | | 23.5 | | Manufacturing | 27000-35999 | | | | | 7.8 | | Construction, forest and other industries | 10000-22000 | 23000-26829 | 36000-39999 | 45000-45500 | | 14.9 | | Estate and finance | 65000-70329 | | | | | 8.4 | ### Earlier Working Papers: | Inflation Forecast Targeting: the Swedish Experience by Claes Berg | 2000:100 | |----------------------------------------------------------------------------------------------------------------------------------------------|----------| | Wage Effects of Mobility, Unemployment Benefits and Benefit Financing by Hans Lindblad | 2000:101 | | A Bivariate Distribution for Inflation and Output Forecasts by Mårten Blix and Peter Sellin | 2000:102 | | Optimal Horizons for Inflation Targeting by Nicoletta Batini and Edward Nelson | | | Empirical Estimation and the Quarterly Projection Model: An Example Focusing on the External Sector | | | by Robert Amano, Don Coletti and Stephen Murchison | 2000:104 | | Conduction Monetary Policy with a Collegial Bord: The New Swedish Legislation One Year On by Claes Berg and Hans Lindberg | 2000:105 | | Price-level targeting versus inflation targeting in a forward-looking model by David Vestin | 2000:106 | | Unemployment and Inflation Regimes by Anders Vredin and Anders Warne | | | An Expectations-Augmented Phillips Curve in an Open Economy by Kerstin Hallsten | | | An alternative interpretation of the recent U.S. inflation performance | | | by Mikael Apel and Per Jansson | | | Core inflation and monetary policy by Marianne Nessén and Ulf Söderström | 2000:110 | | Estimating the Implied Distribution of the Future Short-Term Interest Rate Using the Longstaff-Schwartz Model by <i>Peter Hördahl</i> | 2000:111 | | Financial Variables and the Conduct of Monetary Policy by Charles Goodhart and Boris Hofmann | 2000:112 | | Testing for the Lucas Critique: A Quantitative Investigation by Jesper Lindé | | | Monetary Policy Analysis in Backward-Looking Models by Jesper Lindé | | | UIP for short investments in long-term bonds by <i>Annika Alexius</i> | | | Qualitative Survey Responses and Production over the Business Cycle by Tomas Lindström | | | Supply stocks and real exchange rates by Annika Alexius | | | Casuality and Regime Inference in a Markov Switching VAR by Anders Warne | | | Average Inflation Targeting by Marianne Nessén and David Vestin | | | Forecast-based monetary policy in Sweden 1992-1998: A view from within by Per Jansson and Anders Vredin | | | What have we learned from empirical tests of the monetary transmission effect? by Stefan Norrbin | | | Simple monetary policy rules and exchange rate uncertainty by <i>Kai Leitemo</i> and <i>Ulf Söderström</i> | | | Targeting inflation with a prominent role for money | | | by <i>Ulf Söderström</i> | 2001:123 | | and the United States by Ann-Charlotte Eliasson | | | An Alternative Explanation of the Price Puzzle by Paolo Giordani | | | Interoperability and Network Externalities in Electronic Payments by Gabriela Guibourg | | | Monetary Policy with Incomplete Exchange Rate Pass-Through by Malin Adolfson | 2001:127 | | Micro Foundations of Macroeconomic Price Adjustment: Survey Evidence from Swedish Firms by Mikael Apel, Richard Friberg and Kerstin Hallsten | 2001:128 | | Estimating New-Keynesian Phillips Curves on Data with Measurement Errors: A Full Information Maximum Likelihood Approach by Jesper Lindé | 2001:129 | | The Empirical Relevance of Simple Forward- and Backward-looking Models: A View from a Dynamic General Equilibrium Model by Jesper Lindé | 2001:130 | | Diversification and Delegation in Firms by Vittoria Cerasi and Sonja Daltung | | | Monetary Policy Signaling and Movements in the Swedish Term Structure of Interest Rates by Malin Andersson, Hans Dillén and Peter Sellin | | | Evaluation of exchange rate forecasts for the krona's nominal effective exchange rate by Henrik Degrér, Jan Hansen and Peter Sellin | | | Identifying the Effects of Monetary Policy Shocks in an Open Economy by Tor Jacobsson, Per Jansson, Anders Vredin and Anders Warne | | | | | | Implications of Exchange Rate Objectives under Incomplete Exchange Rate Pass-Through by Malin Adolfson | 2002:135 | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------| | Incomplete Exchange Pass-Through and Simple Monetary Policy Rules by Malin Adolfson | | | Financial Instability and Monetary Policy: The Swedish Evidence by <i>U. Michael Bergman</i> and <i>Jan Hansen</i> | | | Finding Good Predictors for Inflation: A Bayesian Model Averaging Approach by Tor Jacobson and Sune Karlsson | | | How Important Is Precommitment for Monetary Policy? by Richard Dennis and Ulf Söderström | | | Can a Calibrated New-Keynesian Model of Monetary Policy Fit the Facts? by Ulf Söderström, Paul Söderlind and Anders Vredin | | | Inflation Targeting and the Dynamics of the Transmission Mechanism by Hans Dillén | | | Capital Charges under Basel II: Corporate Credit Risk Modelling and the Macro Economy by Kenneth Carling, Tor Jacobson, Jesper Lindé and Kasper Roszbach | | | Capital Adjustment Patterns in Swedish Manufacturing Firms: What Model Do They Suggest? by Mikael Carlsson and Stefan Laséen | | | Bank Lending, Geographical Distance, and Credit risk: An Empirical Assessment of the Church Tower Principle by Kenneth Carling and Sofia Lundberg | | | Inflation, Exchange Rates and PPP in a Multivariate Panel Cointegration Model by Tor Jacobson, Johan Lyhagen, Rolf Larsson and Marianne Nessén | | | Evaluating Implied RNDs by some New Confidence Interval Estimation Techniques by Magnus Andersson and Magnus Lomakka | | | Taylor Rules and the Predictability of Interest Rates by Paul Söderlind, Ulf Söderström and Anders Vredin | | | Inflation, Markups and Monetary Policy by Magnus Jonsson and Stefan Palmqvist | | | Financial Cycles and Bankruptcies in the Nordic Countries by Jan Hansen | | | Bayes Estimators of the Cointegration Space by Mattias Villani | | | Business Survey Data: Do They Help in Forecasting the Macro Economy? by Jesper Hansson, Per Jansson and Mårten Löf | | | The Equilibrium Rate of Unemployment and the Real Exchange Rate: An Unobserved Components System Approach by Hans Lindblad and Peter Sellin | | | Monetary Policy Shocks and Business Cycle Fluctuations in a Small Open Economy: Sweden 1986-2002 by Jesper Lindé | | | Bank Lending Policy, Credit Scoring and the Survival of Loans by Kasper Roszbach | 2003:154 | | Internal Ratings Systems, Implied Credit Risk and the Consistency of Banks' Risk Classification Policies by <i>Tor Jacobson, Jesper Lindé</i> and <i>Kasper Roszbach</i> | 2003:155 | | Monetary Policy Analysis in a Small Open Economy using Bayesian Cointegrated Structural VARs by Mattias Villani and Anders Warne | | | Indicator Accuracy and Monetary Policy: Is Ignorance Bliss? by Kristoffer P. Nimark | 2003:157 | | Intersectoral Wage Linkages in Sweden by Kent Friberg | | | Do Higher Wages Cause Inflation? by Magnus Jonsson and Stefan Palmqvist | 2004:159 | | Why Are Long Rates Sensitive to Monetary Policy by Tore Ellingsen and Ulf Söderström | | | The Effects of Permanent Technology Shocks on Labor Productivity and Hours in the RBC model by Jesper Lindé | 2004:161 | | Credit Risk versus Capital Requirements under Basel II: Are SME Loans and Retail Credit Really Different? by <i>Tor Jacobson, Jesper Lindé</i> and <i>Kasper Roszbach</i> | | | Exchange Rate Puzzles: A Tale of Switching Attractors by Paul De Grauwe and Marianna Grimaldi | 2004:163 | | Bubbles and Crashes in a Behavioural Finance Model by Paul De Grauwe and Marianna Grimaldi | | | Multiple-Bank Lending: Diversification and Free-Riding in Monitoring by Elena Carletti, Vittoria Cerasi and Sonja Daltung | | | Populism by Lars Frisell | | | Monetary Policy in an Estimated Open-Economy Model with Imperfect Pass-Through by Jesper Lindé, Marianne Nessén and Ulf Söderström | | | | | Sveriges Riksbank Visiting address: Brunkebergs torg 11 Mail address: se-103 37 Stockholm Website: www.riksbank.se Telephone: +46 8 787 00 00, Fax: +46 8 21 05 31 $\hbox{E-mail: registratorn@riksbank.se}$