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Abstract

This paper considers the social costs implied by inefficient allocation of

contracts in a first price, sealed bid procurement auction with asymmetric

bidders. We adopt a constrained (piecewise linear) strategy equilibrium

concept and estimate the structural parameters of the bidders’ distribu-

tion of costs. We estimate social costs defined as the predicted cost dif-

ference between the winning firm and the most efficient bidding firm. We

also compare the expected procurement costs under two different auction

formats. The data is collected from procurement auctions of road painting

in Sweden during 1993-99. The results indicate that the social costs of

inefficient contract allocation is about 1.7 per cent of total potential social

cost and that an efficient second price auction would lower the expected

procurement cost by 2.8 per cent.
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1 Introduction

Each year the Swedish Road Adminstration (SRA) procures goods and services

to maintain large parts the public road net. The procurements are decentralized

to seven autonomous regions and organized as first price, sealed bid auctions

with a relatively moderate number of potential contractors. At each separate

procurement, the bidding contractors differ in size, location, and workload, and

they consequently face different costs to complete the contract put out for ten-

der. These differences are observable for all participants in the market.

Commonly known asymmetries across bidders implies that the first price

auction procedure may fail to allocate the contract to the most efficient (low

cost) firm. That is, the first price auction is not efficient if the bidders draw

their values (costs) from asymmetric distributions (Hansen 1984, Milgrom &

Weber 1982).An intuitive definition of the social costs associated with ineffi-

cient allocation is thus the cost difference between the contracted and the most

efficient bidding firm. However, changing the identity of the contracted firm

in one auction may alter the identities of winning firms in proceeding auctions

due to dynamic effects caused by capacity constraints. In a complete analysis

such effects should be accounted for. In this paper, we only consider the first

order, static effects of inefficient contract allocation. Further, if participation is

endogenous, changing the auction design may also change the decision to par-

ticipate. We believe that this is of less importance in this case since the firms

with relatively low cost draws are likely to participate irrespective of the auction

format. The endogenous participation decision is probably more important in

the right tail of the cost distribution. Hence, we abstract from this feature.

There is also an issue about expected procurement cost, i.e., the cost financed

by taxation in the case of public procurements. Assuming private values, and

risk neutral, ex ante symmetric bidders, the standard auctions are all revenue

equivalent and efficient (Vickrey 1961). In the asymmetric case, the revenue

equivalence breaks down and the revenue ranking becomes ambiguous (Maskin
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& Riley 2000a). Hence, it is an empirical question of which auction format

minimizes the procurement costs. Therefore we also perform a Monte Carlo

analysis that simulates the procurement costs under different auction formats.

One should also note that we are only concerned about first order social costs.

There is of course a second order effect stemming from the cost of financing the

public contract. Changing the auction mechanism may also change the expected

procurement costs, and thereby the cost of funding.

In recent research, the assumption on symmetric bidders in first price auc-

tions has been relaxed by several authors (Pesendorfer 2000, Maskin & Riley

2000a, Lebrun 1999). In the independent private value model with continuous

types, the results illustrate that the Nash equilibrium can be stated as a solution

to a system of first order ordinary differential equations. However, the empiri-

cal work on structural estimation with asymmetric bidders has been obstructed

by the computational difficulties associated with the solution of the Nash equi-

librium with asymmetric bidders (Bajari 2000, Bajari & Ye 2000, Marshall,

Meurer, Richard & Stromquist 1994) Also, the Nash equilibrium itself has been

the subject of some criticism due to the high degree of rationality that is imposed

on the players and their mathematical capabilities. This criticism has motivated

the development of an alternative solution concept where the players strategies

are constrained to some predefined set of feasible strategies (Armantier, Florens

& Richard 2000). These feasible strategies could be interpreted either as Nash

equilibrium approximations or as rules-of-thumb.

This paper evaluates the social costs induced by the inefficient allocation

procedure the first price, sealed bid auction constitutes if the bidders are ex

ante asymmetric. We adopt a constrained strategy equilibrium approach in

which the players are constrained to simplified, piecewise linear strategies. This

allows us to estimate the structural elements of the bidders’ private values,

i.e., the parameterized distribution of the bidders’ costs. Conditionally on these

distributions, we evaluate the social costs of inefficient contract allocation in the

sample. We finally perform some simulations to assess the expected procurement
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costs for a second price procurement design that is efficient in the presence of

asymmetries.

Our preliminary findings are that about 17 per cent of the contracts are

inefficiently allocated and that the implied social costs is about 1.7 per cent of

potential costs. Switching to an efficient second price auction would in addition

yield a 2.6 per cent decrease in procurement costs.

The paper is organized as follows. In section 2, we briefly discuss concept of

constrained strategy equilibrium in the asymmetric first price, sealed bid auc-

tion with independent private values. The appendix gives the corresponding

discussion on the Nash equilibrium. Section 3 gives a description of the pro-

curement market and the available data. The econometric model is presented

in section 4, and the results are presented in section 5. Section 6 concludes.

2 Constrained strategy equilibrium

This section presents the Constrained Strategy Equilibrium (CSE) in a first

price auction with independent private values and ex ante asymmetric bidders.

This brief presentation draws heavily from the original work by Armantier et al.

(2000). A discussion on the corresponding Nash equilibrium is relegated to

appendix.

The auction format considered here is a standard first price, sealed bid pro-

curement auction. The format implies that the bidders simultaneously submit

sealed bids and the low bidder wins the contract and is compensated by her

bid. At a single game (auction), the set of players are denoted by N, and the

players are indexed by i = 1, . . . , n. The continuous set of the players’ types

are denoted by T ∈ Rn with elements t = (t1, . . . , tn). The players’ types are

drawn from T =
∏n

i=1 Ti, using a joint distribution F (t) with support on [t, t].

The set of unconstrained feasible strategies is denoted by S =
∏

i∈N Si with el-

ements s = (s1, . . . , sn), (an unconstrained strategy profile), which map types

into the set of feasible actions X =
∏n

i=1 Xi with elements x = (x1, . . . , xn).
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The vector of individual von Neumann-Morgenstern utility functions is denoted

by Û(s, t) = (Û1(s, t), . . . , Ûn(s, t)), such that

Ûi(s, t) = (si(ti)− ti)1(si(ti) < sj(tj), ∀j 6= i) (1)

The structure of the game is thus defined by Γ = (N,T, F,S, Û), which is as-

sumed common knowledge.

Player i’s type, ti, is interpreted as the player’s cost to complete the contract,

which is drawn independently from a marginal distribution Fi(ti). Hence, the

joint distribution of types is

F (t) =
n∏

i=1

Fi(ti) (2)

A strategy si is interpreted as a bid function that transforms cost ti into bid

xi. Given the distribution of types F and a strategy profile s, the induced

joint distribution of bids is denoted by G(x; s, F ) with marginal distributions

Gi(xi; s, F ).

An individual’s type ti is assumed private information. Hence, letting the

distribution of yi = minj 6=i{sj(tj)}, i.e., the lowest of the rivals’ bids, be denoted

by G∗−i(yi; s−i, F ), where s−i = (s1, . . . , si−1, si+1, . . . , sn), a bidder’s expected

utility conditional on the strategy profile can be written as

Ui(si; s−i, F ) =
∫

Ti

(si(ti)− ti)(1−G∗−i(si(ti); s−i, F ))dFi(ti) (3)

As discussed in the appendix, the Nash equilibrium is defined as the solu-

tion to a system of ordinary differential equations. The solutions can not be

expressed in closed form unless we impose severe restrictions on the distribution

of types. Hence, solving the unconstrained Nash equilibrium may be considered

a rather complicated procedure in the eyes of the bidders. Not only do the

bidders need to know the cost parameters of the competitors, they would also

need to solve a system of ordinary differential equations. As an alternative
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solution concept, Armantier et al. (2000) propose a Constrained Strategy Equi-

librium (CSE) concept. This concept only considers a constrained set of feasible

strategies, e.g. polynomials of low order or piece-wise linear splines, and lets

the bidders maximize their expected utilities over a few parameters that define

the strategies. (For a discussion of “Rules of Thumb” and NE approximation,

see Armantier, Florens & Richard (1999)).

Consider a compact set of constrained feasible strategies S(P )
i ⊂ Si, where Si

is the unconstrained set of feasible strategies and (P ) reflects the “dimension-

ality” of the constrained set. A constrained strategy equilibrium (CSE) is a set

of strategies

s(P ),CSE = {s(P ),CSE
i }i∈N ∈ S(P ) =

∏n
i=1 S

(P )
i (4)

where the s
(P ),CSE
i ’s satisfy the “mutually best response” condition in the

strategic form game, i.e.,

U(s(P ),CSE
i ; s(P ),CSE

−i , F ) ≥ U(s(P )
i ; s(P ),CSE

−i , F ), (5)

∀s(P )
i ∈ S(P ),∀i ∈ N

Since Si is compact, the constrained strategies can be parameterized such

that

s
(P )
i (ti;F ) = s(P )(ti;di,d−i, F ) (6)

where d = {di}i∈N ∈ Rmn denotes the collection of the parameters. The optimal

constrained strategy for firm i, conditional on the strategies of the other firms

is then defined by the optimal parameters di as a function of the other firms’

parameters d−i

d∗i (d−i, F ) = arg max
di

Ui(s
(P )
i (t;di,d−i, F ); s(P ),CSE

−i (t;d, F ), F ) (7)
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The CSE profile is then defined by the solution to the fixed point problem

dCSE
i (F ) = d∗i (d

CSE
−i (F ), F ) (8)

and s(P ),CSE(ti;di,d−i, F ) = s(P )(ti;dCSE
i ,dCSE

−i , F ).

The calculation of the CSE involves a number of numerical issues. Dropping

the CSE superscript, bidder i’s expected utility can be expressed as

Ui(s
(P )
i ; s(P )

−i , F ) =
∫ t

t

(s(P )
i (ti)− ti)(1−G∗−i(s

(P )
i (ti)))dFi(ti) (9)

The first numerical problem stems from the fact that the distribution of the

rivals low bid G∗−i is a non-trivial transformation of the rivals’ type distributions.

It is, however, straightforward to make random draws from that distribution,

given the vector of CSE parameters d−i.

Let yi = minj 6=i{s(P )(tj ;dj , F )}, then we can make a random draw (t̃i, ỹi)

from the joint distribution (ti, yi) by simply making a random draw t = (ti, t−i)

from the joint distribution F , transform the t−i using the defined strategy

s
(P )
−i (t−i;d−i, F ), and setting ỹi = minj 6=i{s(P )(t̃j ;dj , θ)}. 1 Using R such ran-

dom draws, indexed by the superscript r, an estimator of the expected utility

is then

Ui(s
(P )
i ; s(P )

−i , F ) ≈ 1
R

R∑
r=1

(s(P )
i (t̃ri )− t̃ri )1(s(P )

i (t̃ri ) < ỹr) (10)

This approximation is not smooth in di since the indicator function equals

either 0 or 1 depending on its argument. In order to use standard numerical

methods to solve the maximization problem, we substitute the indicator function

for a smooth c.d.f. kernel estimator Kh(x) where h denotes the bandwidth that

determines the “smoothness” of the kernel.2 Hence, the approximative expected
1In the empirical analysis we use Halton draws instead of standard random number gen-

erators. This should reduce the variance of the integral estimator.
2As h → 0, Kh() → 1()
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utility function can be written as

Ui(s
(P )
i ; s(P )

−i , F ) ≈ 1
R

R∑
r=1

(s(P )
i (t̃ri )− t̃ri )Kh(ỹr

i − s
(P )
i (t̃ri )) (11)

Taking the first derivatives w.r.t. di yields the first order conditions, a

system of mn non-linear equations (m is the number of parameters in the con-

strained strategies) that are smooth in d,

0 =
1
R

R∑
r=1

∂s
(P )
i (t̃ri )
∂di

{
Kh(ỹr − s

(P )
i (t̃ri ))−

(s(P )
i (t̃ri )− t̃ri )K

′
h(ỹr

i − s
(P )
i (t̃ri ))

}
, ∀i ∈ N (12)

In general, the ∂s
(P )
i (t̃r

i )

∂di
is a simple function of t̃ri and di. Choosing a kernel

K such that the derivative K ′ can be expressed in closed form, further decreases

the computational burden.

In Figures 1 and 2, we illustrate the constrained strategy equilibriums for

a set of asymmetric firms and their relation to the Nash equilibrium. We use

a set of three asymmetric bidders, where the distribution of types is assumed

truncated normal N(µi, 3) where µ = (14, 14.5, 15) and 5 ≤ t ≤ 25. The Nash

equilibrium is numerically calculated using a Runge-Kutta algorithm combined

with the search algorithm discussed in appendix with ε = 1e − 10. Due to

numerical issues, the solutions presented in the figure are poor in the right tail

hand of the cost distributions. The horizontal axis shows the costs and the

vertical axis shows the optimal bid.

The constrained strategy set here consists of 3-piecewise linear splines with

fixed nodes.3 The CSE could be interpreted as an approximative solution to

the NE equilibrium, which is highlighted in figure 2. Including more splines

would decrease the “distance” between the NE and the CSE. However, at this

stage, we will adopt a 3-piece spline.
3We discuss the construction of the splines in the empirical section.
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Figure 1: Constrained strategy equilibrium with three asymmetric bidders and
3-piecewise linear splines.
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Figure 2: CSE and NE with three asymmetric bidders.
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3 Market characteristics and Data

Every year, normally in spring, the Swedish Road Administration (SRA hence-

forth) contracts firms for maintenance of road markings in Sweden.4 The firms

are contracted through a first-price sealed-bid auction. The SRA’s seven re-

gional offices, where a regional office is responsible for the procurement in its re-

gion, conduct the auctions. A region consists of three or four provinces. In each

province, there are normally three types of road marking contracts subjected to

procurement bidding: thermoplastic, spray-plastic, and hand-applicated road

markings. Each contract is sold in a separate auction. The local office requires

in general that a bidding firm submit its sealed bids for the desired contracts si-

multaneously for all the provinces in their region. Also, each local office decides

on its own when to announce the contracts for the procurement of road mark-

ings in its region, when the sealed bids must at the latest be tendered, and when

to announce the results. Therefore, the outcome of the auctions in one specific

region may or may not be common knowledge before the firms must submit

their bids in another region. During the studied period 1993-1999, twelve firms

have been active in bidding. Some of them are nationwide, meaning that they

can operate in every province in Sweden, whereas other firms operate in just a

few provinces. The contracted firms normally fulfill their undertaking during

the summer (May-September).

The local office invites firms to tender bids for contract of road markings by

advertising the project and, on request, by sending out an inquiry document

to potential bidding firms. Among other things, this document contains infor-

mation about the demanded quantity of marking color, technical requirements

of the road marking material, required thickness and width of road markings,

instructions how the bids are to be evaluated, and the latest day to tender bids.

The tendered bids are denoted in price per kilo or price per meter. A bidding

firm is also usually required to enclose a description of its organization, the type
4On average the Swedish Road Administration yearly 1993-1999 spent about 100 Million

SEK on the procurement of different types of road markings.
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of material, and the road marking equipment it intends to use.

To collect the data we went to the SRA’s local offices and got extracts from

minutes of the results from the auctions. We have focused upon the procurement

of thermoplastic road markings, which represents about 50 % of the SRA’s total

cost for procurement of road markings. The data set covers all procurement

auctions of thermoplastic road markings in every province for the period 1993-

1999. The data set consists of 138 auctions with a total number of 621 bids.5

All bids are tendered in terms of price per unit (kilo or meter).6 Further, the

data set contains information about the date and province of each auction, the

quantity of tons of road marking material demanded, the number of firms that

has received the inquiry document and the identity of all bidders. We have

converted all bid data into real terms (1999 price level), using a branch price

index.7

The data that we have collected refers solely to contract characteristics,

such as size, location, etc. However, in the analysis, it is important to capture

any difference across the firms that may explain the variation in bids. At this

stage we focus on two different dimensions. Since road markings require heavy

equipment (trucks, boilers, etc.), a firm’s distance to the contract site may

influence its costs. Further, the production also requires some special skills of

the work force. Hence, given that a firm has limited access to these specialists,

a firm’s costs may be characterized by increasing marginal costs. We construct
5In a couple of auctions we lack some of the rejected bids.
6A contract for thermoplastic road marking implies painting both thick and thin lines. For a

given quantity of road marking material, the thicker the line, or the broader the line, the lower
the contractor’s cost per kilo. In the inquiry document the local office very roughly specifies
on what types of road marking lines the demanded quantity material is to be distributed. As
a general rule, the bidding firms do not submit their bids in terms of a total sum for carrying
out the contract, but in terms of price per kilo or price per meter for each type of road marking
line. Once all the bids are submitted, the SRA computes each firm’s competitive bid as a
weighted average of its prices for the various types of lines. The weight put on each price
is given in the inquiry document, i.e. it is common knowledge prior to the deadline. The
firm that submits the lowest weighted average bid, gets the contract. For the years 1993-
1995, the tendered bid has been a weighted average price per kilo, and since 1996 a firm’s
bid is expressed as a weighted average price per meter. Having knowledge of the relationship
between price per meter and the quantity road marking material that is needed to produce
one meter road marking of a given type of line, we have converted all bids into price per kilo.

7The branch index is “Entreprenadindex E84 2162 Vägmarkeringar” which includes wage
rates, material costs, etc.
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two variables that measures these dimensions.

From the minutes, we observe the bidding firms’ headquarter locations (and

production plants in the relevant cases). We assume that a firm must transport

its equipment from this location to the contract site. We do not have access to

the true distance. Therefore we construct a pseudo distance defined as follows.

First, we create a proportional map of Sweden in the xy -plane. Next, we

calculate the coordinates of each province’s centra and denote these (xs
t , y

s
t ). For

each firm i, we locate its headquarter(s) on the map and denote the coordinates

as (xf
i , yf

i ). The distance, DISTit, between the firm i and the contract t site

is then measured as
√

(xs
t − xf

i )2 + (ys
t − yf

i )2 ∗ scale, where scale is a scaling

factor to convert the pseudo distance into (approximative) kilometers. If a firm

has more than one production plant, we automatically define the distance as

the distance between the closest plant and the contract province.

The second variable measures a firm’s utilization rate at any given point in

time. This variable is constructed in two steps. First, we calculate the total

contract size (measured as tons) each firm has won in any single year. Firm

i’s capacity, CAPi, is then defined as the maximum total contract size firm i

has won in any year. Next, a firm’s utilization rate at the letting of contract

t, UTILit, is defined as the ratio between the sum of previously won contracts

(in tons) in auctions within the same year but prior to the letting of auction t

and the firm’s capacity. We measure the potential maximum utilization rate,

PUTILit, as the ratio between the sum of won and unannounced contracts (in

tons) at the letting date of contract t and the firm’s capacity.8 One should

note that the SRA is not the single buyer of these services. Also municipalities

procure road markings. Therefore, a firms utilization rate may be hidden since

we only observe a part of the market for any firm. It is also the case that some

of the firms are involved in other types of construction projects which may
8A firm has “won a contract at time t” if the winner (the firm) of the contract has been

publicly announced. A firm’s “open contracts” are those on which the firm has submitted
bids, but no winner has been announced. In many cases, several contracts has the same letting
date. In those cases, we have included the bids submitted to the other contracts in the open
contracts.
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Table 1: Descriptive statistics on contracts and winning bids

Mean Std Min Max Valid
(a) (b) (c) (d) (e)

TON 160.29 115.34 10.00 600.00 133.00
NYLAGG 80.85 93.81 1.00 500.00 74.00
NBIDS 4.64 1.22 1.00 7.00 138.00
BID 14.76 0.98 11.85 17.53 133.00
DIST 110.23 104.93 5.43 652.68 138.00
UTILR 0.07 0.14 0.00 0.65 138.00
PUTILR 1.81 4.59 0.00 39.80 138.00

Table 2: Descriptive statistics on bidders

Mean Std Min Max Valid
(a) (b) (c) (d) (e)

BID 15.57 1.29 11.85 21.23 597.00
DIST 166.46 141.30 5.43 806.50 621.00
UTILR 0.13 0.22 0.00 1.00 615.00
PUTILR 1.41 2.49 0.00 39.80 615.00

affect the firm’s utilization rate. However, at this stage we abstract from these

features. We also construct an indicator variable INCUMit that equals 1 if firm

i was the incumbent bidder on contract t. Furthermore, we construct variables

that control for some of the competitors costs. For each firm we construct the

variables CMIND and CMINU that are defined as the minimum distance and

utilization rate of the bidding competitors.9

Below we give some descriptive statistics of the sample. There are 138

observed auctions in the sample. Table 1 presents some statistics on these

contracts. The firm specific variables, {BID, DIST , UTILR, PUTILR}, refer

to the contracted firm. Table 2 presents some descriptive statistic on the bidding

firms, i.e., the statistics are based on the sample including all 621 bidding firms.

The sample statistics indicates that the winning firm is closer and has a

lower utilization rate than a bidding firm on average. We also look at the

firms’ bidding patterns. In Table 3, we present the activity of each firm in

each region, measured as the fraction of the total number of contracts in that
9Note that we use the bidding, not the potential, competitors’ observable costs.
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Table 3: Firm activity rate across regions
CLE EAB EKC FOG JOC NCC NOR PRO SAN SVA TIE Total

NORR 1.00 1.00 0.00 0.82 0.64 0.91 0.00 0.82 0.00 0.00 0.45 11.00
MITT 1.00 0.79 0.13 0.50 0.63 0.75 0.00 0.88 0.00 0.04 0.00 24.00
STOC 1.00 0.43 0.00 0.50 0.79 0.36 0.00 0.86 0.07 0.50 0.00 14.00
MALA 1.00 1.00 0.15 0.59 0.85 1.00 0.00 1.00 0.00 0.00 0.00 27.00
VAST 0.88 0.32 0.03 0.00 0.56 0.88 0.03 0.91 0.00 0.00 0.00 34.00
SYDO 0.95 0.57 0.00 0.00 0.76 0.76 0.00 0.81 0.05 0.05 0.00 21.00
SKAN 1.00 0.14 0.00 0.14 0.57 0.86 0.00 1.00 0.00 0.00 0.00 7.00

Table 4: Market shares across years
CLE EAB EKC FOG JOC NCC PRO SAN SVA

93 0.59 0.14 0.00 0.00 0.11 0.10 0.06 0.00 0.00
94 0.35 0.12 0.00 0.05 0.06 0.08 0.33 0.00 0.00
95 0.17 0.21 0.00 0.06 0.15 0.10 0.24 0.07 0.00
96 0.25 0.09 0.00 0.17 0.22 0.08 0.18 0.00 0.01
97 0.22 0.16 0.00 0.37 0.00 0.03 0.21 0.00 0.00
98 0.10 0.19 0.00 0.07 0.27 0.13 0.23 0.00 0.00
99 0.11 0.37 0.26 0.08 0.00 0.14 0.02 0.00 0.02

Average 0.27 0.18 0.03 0.10 0.12 0.09 0.19 0.01 0.01

region during the sample period a firm has submitted bid on. The order of

the rows corresponds roughly to the geographic location from north to south

of the regions. Column Total reports the total number of contracts procured

during the sample period 1993-1999. The results in Table 3 indicate that some

firms are active over the whole country, whereas other firms are concentrated

to specific regions.10

The market shares in terms of won contracts (in tons) in our sample is

presented in Table 4.11 Only firms that has a non-zero market share in any year

are included in the table. The bottom line (Total) reports the average market

share during the sample period. The results from Table 4 show that the market

shares vary substantially across years and firms. The largest firm, CLE, has an

average market share of 27 per cent, followed by PRO, and EAB.
10Firm EKC entered the market in 1999.
11A few contracts where the ton variable is missing are deleted from the sample.
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4 Econometric specifications

This section presents the econometric specifications of a reduced form analysis

and the structural form analysis based on CSE. The reduced form analysis is

mainly done to reveal the “amount of asymmetry” across firms and the relevant

explanatory variables to these asymmetries.

4.1 Reduced form analysis

In order to assess the level of asymmetry across bidders and decide upon the

relevant set of explanatory variables, we estimate a reduced form model of the

level of bids. We account for potential selection bias via a selection model

procedure (Heckit). We have seen in the solution of the NE that a firm’s bid

is a function of all observable characteristics of the rival firms. However, in

order to reduce the number of explanatory variables we will only consider the

bidding firm’s observable characteristics and some observable characteristics

that summarize the bidding rivals’ characteristics.

Specifically, we assume that the decision of submitting a bid is governed by

a latent variable as follows

SUBM∗
it = z′itβ

s + ds
it
′δs + εs

it (13)

where zit is a vector of firm and contract specific variables, ds
it is a set of

firm and region dummies and εs
it ∼ N(0, 1). Hence, firm i submits a bid on

contract t iff SUBM∗
it > 0 and this event is indicated by the observable variable

SUBMit = 1. The parameters of equation (13) are estimated using maximum

likelihood (i.e., a standard Probit model).

The bid level, conditional on submission, is parameterized as

ln bit = x′itβ
b + db

it

′
δb + εb

it (14)

where xit is a vector of firm and contract specific variables, and εb
it ∼ N(0, σ2

b ).
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A set of dummy variables is collected in db
it,which includes firm, region, and

time dummies. If the error terms in these equations are correlated, then the pa-

rameters of the bid level equation are biased. This correlation can be accounted

for by adding the regressor λ̂it = φ(z′itβ̂
s+ds

it
′δ̂s)

Φ(z′itβ̂s+ds
it
′δ̂s)

to the bid level model. Hence,

the estimated reduced form is

ln bit = x′itβ
b + db

it

′
δs + βλλ̂it + eit (15)

where eit ∼ N(0, σ2
t ). The coefficient, βλ = σbρ, where ρ is the correlation

coefficient of (εs, εb). The parameters are initially estimated using OLS on

different sub-samples of active firms with White’s heteroscedasticity consistent

standard errors.

4.2 Structural form analysis

In the structural form analysis, we assume that the costs per kilo are normal

distributed where the mean is a linear function of a set of observable firm and

contract specific variables and a set of region and firm dummies. The vector

of observables includes the (log) size of contract measured in tons, the (log)

distance between the firm’s headquarter and the contract province (LNDIST ),

the firm’s utilization rate at the time of the contract letting (UTILR), the

potential utilization rate (PUTIL), and a dummy for incumbent bidding firm

(INCUM). The variance of the stochastic term is assumed constant across

firms and contracts. Thus, the cost of firm i for contract t is

tit = z′itγ + ξit (16)

ξ ∼ N(0, σ2)

If the cost draws tti were observable the estimation would be completely

standard. For example, we could use a OLS estimator to estimate the vector
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of model parameters Ω = (γ, σ).12 However, the costs are unobserved so this

simple estimator is not feasible. Therefore, a feasible estimator of the model

with unobserved costs is then defined as the solution to the fixed point problem

(Florens, Protopopescu & Richard 1997)

γ̂ =

(∑

it

zitz
′
it

)−1 ∑

it

zitt̂it (17)

σ̂ =
1
T

T∑
t=1

1
nt

nt∑

i=1

(t̂it − z′itγ̂)2 (18)

where t̂it = s−1(xit;d(z···, γ̂, σ̂)) is the estimated types conditional on the CSE

equilibrium based on the distribution of types given by γ̂, σ̂, and zit.

The constrained strategy set is defined as a 3-piecewise linear spline such

that

s
(3)
ti (t;dti) = t̄ +

2∑
p=0

dtip1(t < τp)(t− τp) (19)

where τp denotes the high endpoint of the pth segment, i.e., the nodes.13 The

nodes are constructed from the values of z′tiγ̂ and σ̂ such that the first node

is one standard deviation below the overall mean of types in the auction, i.e.,

τ0 = 1
nt

∑nt

i=0 zti
′γ̂ − σ̂, the second node lies σ̂

2 above the overall mean, and the

third node at the upper boundary of the support of the types, i.e., τ3 = t̄.14

This formulation implies that sti(t̄) = t̄ as suggested by the Nash equilibrium.

In the optimization algorithm we continuously check that the slopes are positive

and that the bid function stays above the 45◦-line. These restrictions implies

restrictions on the coefficients dti. If the restriction is violated, we restart the
12In the theoretic model the support of types is assumed on [t, t]. In practice these trun-

cations appears so far out in the tails that they do not affect the estimator where we assume
untruncated support.

13We have also investigated higher order polynomials and splines, but we have no reliable
results to present in this version.

14In previous versions we tried to have the same nodes for all auctions. This implied that
we observed a relative small number of random draws on the first segment, which caused the
optimization of the strategy parameters to collapse (no effects of changing the slope on this
segment for high-cost firms). This was due to the formulation of the splines where the first
element of the strategy parameter vector only affects the slope in the first segment. Another
formulation of the splines might reduce this problem.
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process with new start values.

Thus, we solve the CSE fixed point problem over the 3nt constrained pa-

rameters dt = (dt10, . . . , dtntP ). The first order conditions are

0 =
1
R

R∑
r=1

∂s
(3)
i (t̃ri )
∂d′i

{
Kh(ỹr − s

(3)
i (t̃ri ))−

(s(3)
i (t̃ri )− t̃ri )K

′
h(ỹr

i − s
(3)
i (t̃ri ))

}
, i = 1, . . . , n (20)

where

∂s
(3)
i (ti)
∂d′tip

=
2∑

p=0

1(ti < τp)(ti − τp) (21)

We have chosen to use a logarithmic kernel Kh(x) = 1
1+exp(−x/h) and K

′
h(x) =

1
h

exp(−x/h)
(1+exp(−x/h))2 with bandwidth h = t−t

100 .

(Armantier & Richard 2000) propose the following algorithm to implement

the feasible estimator.

Step 1 Initialize the iterative process to find the fixed point by guessing some

values for the bidders’ types t̂0, e.g., the type t̂0ti equals some linear trans-

formation of the the observed action xti. Set k = 0.

Step 2 Estimate the structural parameters Ω̂k = (γ̂k, σ̂k) using the chosen esti-

mator, e.g. the OLS estimator in (17) using the vector of guessed types

t̂k. Check convergence if k > 0. In order to assess convergence, we

adopt a relative difference criteria. In practice, we stop the iteration if
∥∥∥ Ω̂k+1−Ω̂k

Ω̂k

∥∥∥ < 1e− 4 and
∥∥∥ t̂k+1−t̂k

t̂k

∥∥∥ < 1e− 4, where ‖x‖ denotes the max-

imum of the absolute values of x. Hence, we check convergence w.r.t. the

structural parameters and the implied types. If convergence, STOP and

report Ω̂k, otherwise continue to Step 3.

Step 3 Use Ω̂k to construct the distribution parameters of the bidders’ costs in

each auction using θ̂k
ti = (z′tiγ̂

k, σk).

Step 4 Solve the CSE using the procedures presented in section 2, yielding the
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CSE strategies s(3)(tt;dk
t , Ω̂k) and update the “guess” of the types as

t̂k+1
t = s−1(xt; d̂k

t , Ω̂k).15

Since we iterate over different values of Ω, we want the CSE solutions, i.e.,

(dt)T
t=1, to be smooth in Ω. This is achieved by using common random numbers.

This means that outside the iterative algorithm we draw a set of uniform random

numbers, which are transformed to normal variables as a function of the Ω’s and

the zti’s.

At this stage we ignore the effect of MC simulations on the standard errors

of the estimates and treat the simulated types as perfectly observable. This will

under-estimate the true covariance matrix.16

The expected social cost of inefficient allocation of contracts, denoted by S,

can be defined as the expected difference between the contracted firm’s contract

cost and the lowest contract cost in the set of bidding firms.17 In an efficient

auction, this difference is always zero. We approximate this expectation using

the average of a large number of simulated outcomes of the observed procure-

ments. In the simulations, we adopt the estimated distributions of bidders cost

and the CSE profile.

St =
1
R

R∑
r=1

(trtc −min{trti}i∈Nt)TONt (22)

S =
T∑

t=1

St (23)

where the subscript c holds the index of the contracted firm in replication r and

Nt denotes the set of bidding firms on contract t. The predicted social cost in

the sample, denoted by ŝ, is calculated using the predicted types and observed
15Note that Ω parameterizes the distribution function F ().
16The covariance matrix could be evaluated using bootstrap methods. This is, however, not

done in this version.
17Note that we weight the bids measured in SEK per kilo by the reported size of the contract

in tons.
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winner, i.e.,

ŝ =
T∑

t=1

(t̂tc −min{t̂ti}i∈Nt
)TONt (24)

The expected excessive procurement cost, denoted by P , is defined as the

difference between the total procurement cost given the prevailing first price

auction procedure, and the potential total cost under a second price auction

procedure,

Pt =
1
R

R∑
r=1

(xr
tc −min{trti}i∈Nt\c)TONt (25)

P =
1
T

T∑
t=1

Pt (26)

The predicted excessive procurement cost in the sample is calculated as

p =
T∑

t=1

(xtc −min{t̂ti}i∈Nt\c)TONt (27)

i.e., the difference between the observed bid and the predicted second low cost

of the bidding firms.

5 Results from auctions of road marking con-

tracts

Some of the firms included in the data set were not present in the market until

1999, and some firms participated only in a few auctions. In order to identify

the firm specific dummies, and to get convergence in the iterative process we

have, at this stage, been forced to drop these firms from the final reduced form

data set. The reduced form data set thus contains 133 auctions including about

570 bids. In the structural analysis, dropping a firm invalidates the use of the

auctions where the dropped firm has been bidding. Further, we drop auctions
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Table 5: Estimates on submission and bid levels of active firms. Dependent
variable: ln Bid

Coeff. Probit All bids Winning bids Non-winning bids
(a) (b) (c) (d)

const 4.08 ∗ ∗ 2.72 ∗ ∗ 2.60 ∗ ∗ 2.73 ∗ ∗
(0.83) (0.04) (0.07) (0.04)

lnton 0.16∗ −0.02 ∗ ∗ −0.01 −0.02 ∗ ∗
(0.08) (0.00) (0.01) (0.00)

nbids −0.01 −0.00 −0.01∗
(0.00) (0.01) (0.00)

lndist −0.64 ∗ ∗ 0.02 ∗ ∗ 0.02∗ 0.02∗
(0.12) (0.01) (0.01) (0.01)

utilr 0.55 0.01 −0.08 ∗ ∗ 0.01
(0.34) (0.02) (0.03) (0.02)

putilr 0.05∗ −0.01 ∗ ∗ −0.00 ∗ ∗ −0.01
(0.02) (0.00) (0.00) (0.00)

lncmind −0.07 0.01 0.02 0.01
(0.14) (0.01) (0.01) (0.01)

cminu 2.79 ∗ ∗ 0.09∗ 0.17 ∗ ∗ 0.07
(0.92) (0.04) (0.05) (0.05)

incum 1.28 ∗ ∗ −0.01∗ −0.02 0.01
(0.34) (0.01) (0.01) (0.01)

lambda 0.06 ∗ ∗ −0.03 0.07 ∗ ∗
(0.02) (0.02) (0.02)

Note: In column (b)-(d), White’s standard errors are presented in parenthesis. ’*’ and ’**’
denotes significance on 10 and 1 per cent level (double sided), respectively.

with less than 3 bidders and contracts in the province Gotland.18 Thus, the

final data set used in the structural analysis thus contains 90 auctions including

444 bids in total.

5.1 Results from reduced form analysis

In Table 5, we present the estimated parameters of equation (13) in column

(a) and (14) in columns (b)-(d). In this initial analysis, we have used OLS to

estimate the parameters of the bid level functions. We also present estimates

on bid levels based on winning bids.

The results in Table 5 exhibit some interesting features. The probit model in-

dicates that the probability of submitting a bid decreases with distance (LNDIST ),
18Gotland is an island located some distance from the main land. There is one single firm

operating on this island and the costs for shipping equipments for the other firms is probably
much larger as compared to the transportation costs on the main land.
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and increases with the potential utilization rate (PUTILR) and the minimum

utilization rate of competitors (CMINU). We also notice that incumbent firms

are more likely to submit a bid. The contract size (LNTON) is positively sig-

nificant on 10 per cent level, which indicates that larger contracts receive more

attention from the potential suppliers. There are also significant differences

across firms and regions (not reported in the table) indicating that firms are

potentially asymmetric. The results are in general consistent with economic in-

tuition, with the exception that a firms potential utilization rate was expected

to be negatively correlated with the submission decision due to capacity con-

straints. This could be perhaps explained by a U -shaped cost function w.r.t.

the utilization rate, where most firms are situated on the downward sloping

interval. However, it is interesting to find that the minimum utilization rate

of competitors enters the decision significantly. One potential interpretation of

this is that a firm acknowledges that the competitors are ”busy” and therefor

expects them to submit higher bids. This would increase the firms expected

possibility to win the contract.19

The parameters of the bid level model based on all bids (578 observations)

exhibit in general the expected signs; larger contracts receive lower bids per

unit (bids are in SEK per kilo), whereas distance and the competitors minimum

utilization rate increase the bid levels. The number of bidders, and the distance

of the competitors do not enter in a significant way, although the signs are

the expected. The exception is (again) the potential utilization rate, which

enters in a negatively significant way, i.e., higher utilization rates implies lower

bid levels, all else equal. Finally, the βλ parameter (LAMBDA) is significant

positive, indicating that the error terms in the submission and bid level functions

are positively correlated. One (counter-intuitive) interpretation of this is that a

firm that is more likely to submit a bid is also more likely to submit a high bid.

Column (c) presents the results based on the winning bids (124 observations)

and column (d) relates to the non-winning bids (454) bids. Some interesting

19This is unfortunately inconsistent with the result that higher utilization rate implies lower
bids (see below).
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results emerge from these estimates. The utilization rate and the potential

utilization rate reduce the bid level for winning firms. Furthermore, a higher

utilization rate of competitors implies higher bids. In column (d) we present

the corresponding estimates based on the non-winning bids. They main dif-

ferences between the results in (c) and (d) are i) contract size and number of

bidders enters with a negative significant coefficient in non-winning bids, ii) the

utilization rate, the potential utilization rate, and the competitors’ utilization

rates are not significant for non-winning bids, and iii) the estimated parameter

βλ is insignificant for winning bids (almost negatively significant), but signifi-

cantly positive for non-winning bids. Hence, there is a negative (insignificant)

correlation between submission and the level of the winning bid, but a positive

correlation between submission and non-winning bids.

We conclude from the results in this section that the firms’ bids are related

to firm specific characteristics such as distance to contract site, the potential

utilization rate, incumbency, and perhaps even the utilization rate (significant

for winning bids). These will therefore be included in the structural analysis as

control variables for the observable shifts in the firms’ cost distributions. We

will also include the (log of) contract size to control for economies of scale.

5.2 Results from structural analysis

The data set used for the structural CSE analysis consists of 90 auctions and

444 bids. We assume that the cost draws made for each firm in each auction are

conditionally independent. Hence, we abstract from the more plausible situation

with synergies across auctions. The fixed point problem in the CSE algorithm

is generally solved using initially 1000 Halton draws.20

In Table 6, we present the results from the estimations based on the nested

fixed point algorithm. We have chosen to include those variables that turned

out significant in the reduced form analysis. For comparison, we also present es-
20If the algorithm fails to find a zero point of the vector of FOCs, we sequentially increase

the number of random draws to 3000 and 4500 Halton draws, respectively. In equilibrium all
auctions converge with 1000 draws.
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timates based on a simplified reduced form model where the dependent variable

is the observed bid in SEK per kilo.21

In Table 6, coefficients relating to the firm specific variables distance and

incumbency are significant whereas the coefficients relating to the poorly mea-

sured utilization rate are insignificant. Further, some of the firm and regional

specific dummies are significant indicating that there are some more unobserved

heterogeneity across firms and regions.

Comparison across columns, indicates that the costs are more “sensitive”

to variations in firm specific variables than bids. E.g. the effect of distance

is higher on costs than on bids, which seems intuitive since the bids can not

fully compensate for cost increase due to strategic considerations. For example,

the effect of being the incumbent firm reduces the cost per kilo by 0.42 SEK,

whereas the bid is only reduced by 0.23 SEK. This effect is also almost exclu-

sively observed for the firm specific dummies. Finally, the estimated standard

deviation of the stochastic cost draw is 1.16.

Based on the estimated distribution of the costs, we can assess the impor-

tance of inefficiently allocated contracts. We find that 16 (out of 90) contracts

may be allocated to another than the low cost firm. This inefficiency is assessed

to about 1.8 per cent out of potential social costs of completing the contracts.

The expected value of the social costs is simulated to about 0.04 per cent.22

Furthermore, if a second price auction mechanism was used, the predicted pro-

curement costs for the observed sample would be reduced by approximately

2.8 per cent and by 1.1 per cent in expectations with 4.5 per cent inefficiently

allocated contracts on average.

Finally, the average markup, i.e., the per cent increase in bids above costs,

is about 3.5 per cent for non-winning bids and 4.5 per cent for the winning

bids. This means that the winning firm actually pads their costs more than the

average non-winning firm.
21We have not controlled for selection bias in this version. Further, in contrast to the results

presented in Table 5, we have not used the logarithmical bid here.
22Based on R = 2000 replications of the data set,
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Table 6: Estimates on structural parameters.

Var Costs Bids
CONST 15.002** 16.675**

(0.844) (0.602)
LNTON -0.568** -0.674**

(0.119) (0.085)
Firm specific variables:
LNDIST 0.570** 0.408**

(0.108) (0.077)
UTILR -0.466 -0.206

(0.323) (0.230)
PUTILR -0.028 -0.015

(0.068) (0.049)
INCUM -0.421** -0.231*

(0.161) (0.115)
Firm dummies:
NCC 0.699** 0.510**

(0.226) (0.161)
JOC 0.721** 0.690**

(0.197) (0.140)
CLE 0.090 0.114

(0.205) (0.146)
FOG -0.588* -0.011

(0.252) (0.180)
SAN -0.438 -0.389

(0.866) (0.617)
PRO 0.446* 0.388**

(0.211) (0.150)
Regional dummies:
STOC -0.260 -0.161

(0.271) (0.193)
SKAN -0.252 -0.161

(0.538) (0.383)
SYDO -0.344* -0.257*

(0.194) (0.138)
NORR 0.582 1.282**

(0.407) (0.290)
VAST -0.168 0.015

(0.181) (0.129)
MITT -0.498* -0.478**

(0.216) (0.154)

Sigma 1.159 0.827

Note: Reference firm is EAB, reference region is MALA. Standard errors in
parenthesis. * and ** denotes significance on 10 and 1 per cent levels (double
sided)
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6 Conclusions

This paper investigates the social costs induced by inefficient allocation of con-

tracts in a first price, sealed bid auction with ex ante asymmetric bidders. We

adopt a constrained strategy equilibrium (CSE) approach where the players are

constrained to simplified strategies in order to estimate the structural elements

of the players private values. Conditional on these estimates, we investigate the

importance of inefficiently allocated contracts.

The empirical analysis is based on procurements of road marking services in

Sweden during 1992 through 1999. We observe bids that are assumed to be gen-

erated via profit maximizing firms with private and conditionally independent

costs.

The market is spatially dispersed with relatively high transportation costs.

The potential suppliers, i.e., the bidding firms, are located at various places

and consequently the costs for transportation varies across firms and contracts.

These asymmetries are observable for all participants in the market. Hence,

the firms are assumed ex ante asymmetric. This asymmetry implies that the

first price sealed bid auction design no longer guarantees that the low cost firm

receives the contract. If the low cost firm fails to win the contract we say that

there is an social cost due to inefficient procurement design. We find that, for

the present sample, the social costs of inefficient allocations are a little less than

2 per cent of total costs.

The second price auction is efficient even if the bidders are asymmetric. The

expected procurement costs in the second price auction is different from the

expected costs in the first price auction (Hansen (1984) and Milgrom & Weber

(1982)). In simulations based on the estimated structural parameters, we find

that a second price format reduces the predicted procurement cost in the sample

by about 2.8 per cent of total procurement costs.
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A Nash equilibrium in asymmetric private value

auctions

The Nash Equilibrium (NE) is defined as the strategy profile sNE = (sNE
1 , . . . , sNE

n ) ∈
S, that satisfies

U(sNE
i (ti); sNE

−i , F ) ≥ U(si(ti); sNE
−i , F ), (28)

∀ti ∈ Ti, ∀si ∈ Si,∀i ∈ N

Maskin & Riley (2000b) proves that, i) if the bidders’ utilities are monotonic in

ti, and ii) if the bidders’ are risk neutral or risk averse, then the there exists a

NE in monotonic strategies. This implies that an existing NE strategy sNE
i (t)

is invertible for all i ∈ N and t ∈ T. Denoting the inverse by s−1,NE
i (xi)(= ti),

and assuming risk neutrality and independence w.r.t types (which we have done

in (2) and (3)), we can define the NE as the solution to the fixed point problem

sNE
i (ti; sNE

−i , F ) = arg max
xi

(xi − ti)
∏

j 6=i

(1− Fj(s
−1,NE
j (xi))), ∀i ∈ N (29)

The first order conditions (FOC) of this optimization problem are, for all
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i ∈ N (suppressing the dependence on F and the superscript NE),

0 =
∏

j 6=i

(1− Fi(s−1
j (xi)))

−(xi − ti)
∑

j 6=i

fi(s−1
j (xi))

ds−1
j (xi)
dxi

∏

k 6=j

(1− Fi(s−1
k (xi))) (30)

Rearranging (30) in terms of
ds−1

j (xi)

dxi
illustrates that the FOCs constitute a

system of first order ODEs,

∂s−1
i (xi)
∂xi

=
1− Fi(s−1

i (xi))
(n− 1)fi(s−1

i (xi))
×

(
∑

j 6=i

1
xi − s−1

j (xi)
− n− 2

xi − s−1
i (xi)

), ∀i ∈ N (31)

Hence, the issue of existence of a Nash equilibrium in this game is equivalent

to the existence of a solution to the system of ODEs. Assuming that

A.1. F the distribution of types, is continuous, and

A.2. F and its probability density function f = F ′ are bounded away from zero

over the support of [t, t],

Lebrun (1999) and Bajari (2000) prove that there exists a unique Nash equi-

librium in pure strategies that is continuous and strictly increasing in ti. The

solution is characterized by the system of ODEs in (31) with 2 × n boundary

conditions such that ∀i ∈ N, and for some ξ∗ ∈ Xi(F )

s−1
i (ξ∗) = t (32a)

s−1
i (t) = t (32b)

The boundary conditions state that Gi, the induced marginal distributions

of bids, have connected supports on X(F ) = [ξ∗, t] ∈ R, ∀i ∈ N, which depends

on the distribution F . It can also be shown (see e.g. ((Bajari & Ye 2000)) that

the limit of the first derivative at the upper bound is given by ∂s−1(x)
∂x →

x→t
−

n
n−1 .
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Under some circumstances we can solve a system like (31) either analytically

or by standard numerical ODE solving procedures. However, the system in (31)

has some features that makes it hard to solve analytically as well as numerically.

The system is characterized by a singularity at xi = t since the system tends

towards 0
0 as xi → t

−. Therefore, one can not use the upper boundary to solve

the system of ODEs. If the constant ξ∗ were known, we could solve the system

using standard numerical methods (e.g. a Runge-Kutta algorithm).

Bajari (2000) shows that the inverse bid function is monotonic in ξ in the

sense that if ξ < ξ′ then s−1
i (t; ξ) > s−1

i (t; ξ′), ∀t ∈ T. This property can be used

to find a ξ arbitrarily close to ξ∗. Let sξ(t) = (si(t; ξ))i∈N denote the collection

of solutions of (31) conditional on the boundary condition s−1
i (ξ) = t ∀i where

ξ ∈ Xi(F ). If F is the set of all functions such that F ≡ {f : f ∈ C1, f : T →
T, f(t) ≥ t,∀t ∈ T}, then

i) sξ
i (t) ∈ F, ∀ξ ≥ ξ∗, ∀i = 1 → nt, and

ii) sξ
i (t) /∈ F, ∀ξ < ξ∗, and some i = 1 → nt

Hence, an algorithm that seeks over ξ ∈ Xi(F ) and checks if the elements of

the implied strategy profile sξ belongs to F, and satisfies si(t) = t, could be

implemented to find an arbitrarily small interval ξ∗ ± ε, ε > 0 that contains the

true value ξ∗.23

In an attempt to illustrate the NE, Figure 3 gives the approximative shape

of the solutions to the ODEs. We use a set of three asymmetric bidders,

where the distribution of types is assumed truncated normal N(µi, 9) where

µ = (14, 14.5, 15) and 5 ≤ t ≤ 20. The bid functions are approximated using

a Runge-Kutta algorithm combined with the search algorithm discussed above

with ε = 1e− 10. Due to numerical issues, the solutions presented in the figure

are rather poor in the right tail hand of the cost distributions. The horizontal

axis shows the costs and the vertical axis shows the optimal bid.
23Bajari & Ye (2000) also propose an alternative algorithm based on a convergent sequence

of best responses.
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Figure 3: Nash Equilibrium strategies with three asymmetric bidders.

In this example, the value of ξ∗ is approximately 12.8, and the connected

support of bids is consequently X(F ) ≈ [12.8, 25]. It can also be noted that the

Firm 1, the “low cost” firm, bids higher than the other firms conditionally on

the cost draw. Lebrun (1999) and Pesendorfer (2000) provide proofs that if Fi is

statistically dominated by Fj , then Gi is statistically dominated by Gj . In our

example with identical variances across firms, this means that the firm with the

lowest expected costs is also the most probable winning firm. It is also notable

that in contrast to the complex structure of the system of ODEs, the solutions

seem to be quite smooth and “well-behaved”.

The issue of inefficiency is also illustrated in the figure. Let L denote the firm

with the most preferable cost distribution, i.e., N(14, 9) and let H denote the

firm with the least preferable distribution N(15, 9). Let tL and sL(tL) denote

the cost draw and profit maximizing bid of firm L, respectively. Define tH and

sH(tH) correspondingly. For H to ”beat” L in the auction, it is required that

sH(tH) < sL(tL), that is, tH < s−1
H (sL(tL)), where s−1() denotes the inverse

strategy function. Since s−1
H (x) > s−1

L (x)∀x, tH is not necessarily less than
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tL, i.e., H may win the auction even though tH > tL. In the figure, this is

illustrated by the horizontal distance between the strategy functions of firm L

and H.
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