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Abstract

This paper discusses the evaluation problem using observational
data when the timing of treatment is an outcome of a stochastic
process. We show that, without additional assumptions, it is not pos-
sible to estimate the average treatment effect and treatment on the
treated. It is, however, possible to estimate the effect of treatment on
the treated up to a certain time point. We propose an estimator to
estimate this effect and show that it is possible to test for an average
treatment effect.
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1 Introduction

The prototypical evaluation problem is cast in a framework where treatment
is offered only once. Thus treatment assignment is a static problem and the
information contained in the timing of treatment is typically ignored; see
Heckman et al. (1999) for an overview of the literature. This prototype
concurs rather poorly with how most real-world programs work. Often it
makes more sense to think of the assignment to treatment as a dynamic
process, where the start of treatment is the outcome of a stochastic process.
There are (at least) two important implications of taking the timing of

events into account. First of all, the timing of events contains additional
information which is useful for identification purposes. Indeed, Abbring and
van den Berg (2002) have shown that one can identify a causal effect non-
parametrically in the Mixed Proportional Hazard model from single-spell
duration data without conditional independence assumptions.1 Second of
all, the dynamic assignment process has serious implications for the validity
of conditional independence assumptions usually invoked to estimate effects
such as treatment on the treated.
The main objective of this paper is to substantiate the second of the

above claims. In particular we discuss program evaluations when (i) there
are restrictions on treatment eligibility, (ii) no restrictions on the timing
of the individual treatment, and (iii) the timing of treatment is linked to
the outcome of interest. For instance, this evaluation problem arises when
unemployment is a precondition for participation in a labor market program,
programs may start at any time during the unemployment spell, and we are
interested in employment outcomes. Employment outcomes have increasingly
become the focus of the labor market evaluation literature so our analysis
should have wide applicability.2 We choose to focus on employment outcomes
for illustrative purposes but our analysis has implications for all situations
when points (ii) and (iii) apply. For instance, it follows immiediately that
the points we raise should be taken into consideration in analyses of earnings
outcomes.
A second objective of the paper is to bridge some of the gap that exists

1At this stage, we are deliberately vague on what causal effect this really is.
2The prime candidate for the shift in emphasis is that the ultimate goal of many

labor market programs is to raise the reemployment probability rather than increasing the
productivity of the participants. Also, the targets that government agencies responsible
for, e.g., training, should fulfill are usually formulated in terms of employment rather than
wages. For instance, one of the key targets for evaluating the performance of the Swedish
labor market board is that at least 70 percent of participants in labor market training
should be regularly employed one year after the end of treatment.
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between the literature on matching and the literature using hazard regres-
sions. In the matching literature one typically considers, e.g., the probability
of employment some fixed time period after treatment; Gerfin and Lechner
(2002) is a recent example. By assumption, unobserved heterogeneity is not
an issue. In the hazard regressions literature, the focus in on the timing
of the outflow to a state of interest (e.g. employment). Usually, there is
more structure imposed on the form of the hazard but there is also greater
concern about unobserved heterogeneity; van den Berg et al. (2004) is an ex-
ample. Clearly, these outcomes are intimately related and to us the division
of the literature seems rather superficial. For instance, with rich data, one
might well think of applying a matching approach to estimate the hazard to
employment.
Here we assume that we can construct the counterfactual outcome using

the method of matching. We take this approach for illustrative purposes —
not because we are strong believers in the matching approach. To convey
our basic messages as clearly as possible we want to avoid the complications
arising from unobserved heterogeneity. Moreover, we want to refrain from
making assumptions about the appropriate bivariate distribution for the tim-
ing of events. If one is prepared to make assumptions about the functional
form of the bivariate distribution, this is an alternative way of attacking the
particular evaluation problem that we are considering.
We show that even if we have monozygotic twins and one participates

in the program, while the other does not, this is not in general sufficient to
obtain unbiased estimates of conventional treatment parameters such as the
average treatment effect or treatment on the treated. It is, however, possible
to estimate the program effect for those being treated up to a certain time
point. Notice that this is the appropriate interpretation of the causal effect
estimated in the framework of Abbring and van den Berg (2002). We also
show that it is possible to test whether there is an average treatment effect.
The reason why it is difficult to estimate the conventional treatment ef-

fects is that in order to get at them one would like to define a comparison
group that was never treated. But finding individuals who were never treated
involves conditioning on the future since treatment can start at any point in
time. By defining the comparison group in this way one is implicitly condi-
tioning on the outcome variable since those who do not enter in future time
periods to a large extent consist of those who have had the luck of finding a
job.3 Therefore, the conditional independence assumptions required to esti-
mate the average treatment effect and treatment on the treated do no hold
and studies that define the comparison group in this way will generate es-

3There is an informal discussion along these lines in Sianesi (2001).
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timates that are biased towards finding negative treatment effects when, in
fact, none exist.
The rest of this paper is structured in the following way. In section 2,

we present the evaluation framework. We discuss the potential outcomes of
interest, possible estimands, and the specific problem associated with random
program starts. Section 3 considers alternative estimators. We propose an
estimator of treatment on the treated up to certain point in time. In section
4 we conduct a small Monte Carlo experiment to illustrate the small sample
properties of our estimator and to compare it to different estimators available
elsewhere in the literature. Section 5, finally, concludes.

2 The framework

We have the following world in mind. Consider a set of individuals who
enter unemployment at time 0. At the time of unemployment entry these
individuals are identical. Alternatively, we could assume that matching on
the observed covariates at unemployment entry is sufficient to take care of
any heterogeneity influencing outcomes. We make the assumption that indi-
viduals are identical for expositional convenience.
During the unemployment spell they are exposed to two kind of risks:

either they get a job offer with instantaneous probability λ̃0(t) or an offer
to participate in a program with probability γ̃(t) per unit time. The instan-
taneous probability of being offered a job is λ̃1(t) for treated individuals.
Let I(·) denote the indicator function and υk(t), k = 0, 1, 2, the (life-time)
utilities associated with open unemployment, program participation and em-
ployment, respectively.4 The hazard rates to employment are then given
by

λ0(t) = λ̃0(t)I(υ2(t) ≥ υ0(t))

λ1(t) = λ̃1(t)I(υ2(t) ≥ υ1(t))

for treated and untreated individuals respectively.5 The hazard rate to pro-
gram participation is given by

γ(t) = γ̃(t)I(υ1(t) ≥ υ0(t))

4The openly unemployed refers to the unemployed who do not participate in a labor
market program.

5Throughout we assume that the effect of treatment occurs directly upon enrollment.
As long as there is no pre-treatment effect this assumption is not important for the sub-
stance of the paper.
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Potentially, the utilities associated with each state are random (i.e. υk(t) =
υk + ϕk(t)), but in the spirit of the assumption of no heterogeneity, we will
assume that the random components (ϕk(t)) are purely idiosyncratic.
A convenient special case is when the processes determining offer arrival

rates have no memory (i.e. they are Poisson). Then unemployment durations
are exponentially distributed (with parameter exp(λ0)) and we can represent
the potential duration if not treated as

lnT (0) = λ0 + ε0, (1)

where ε0 is Type I extreme value distributed.
Further the log of the duration until treatment start (T s) has an analogous

representation, i.e.,
lnT s = γ + (2)

where is also Type I extreme value distributed. Notice that unemployment
duration post treatment entry is simply given by T p

ts = max(T − ts, 0) =
T p
ts(1). Thus, equations (1) and (2) imply a specification for the potential
duration over the distribution of ts if the individual had not been treated at
time ts, T p

ts(0).
Now that we have introduced some notation let us define the notational

convention that we will adopt throughout the paper. Stochastic variables are
denoted by upper-case letters (e.g. T and T s), realizations of the stochastic
processes are lower-case (e.g. t and ts), and potential outcomes are indicated
by 0 and 1 (e.g. T (0) and T (1)).
Equations (1) and (2) are written in the form of accelerated duration

models (ADM); see e.g. Kalbfleisch and Prentice (1980). Of course, the
representations in (1) and (2) are unduly restrictive. We have no reason to
postulate a particular distribution for ε0 and , for instance. Therefore, we
will sometimes work with more general forms of the ADM

lnT (0) = β0 + σ0ε0 (3)

lnT s = β1 + σ1ε1 (4)

without making distributional assumptions about εj. Only if εj is extreme
value distributed do (3) and (4) imply a proportional hazard representation.
In particular, if εj is extreme value distributed the durations are Weibull dis-
tributed. Other distributional assumptions about εj will generate hazards of
the non-proportional variety. While it is true that the duration distributions
implied by (3) and (4) have considerable generality, we also note that none
of our results depend on the additive structure (3) and (4). In fact all of our
results hold true so long as the durations are monotonic in εj.
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It is sometimes convenient to have a particular specification of the data
generating process (dgp) to work with. However, most of the time it is
sufficient to work with the following dgp

D = I(T > ts) (5)

i.e. individuals are observed to take treatment if their unemployment dura-
tion (T ) is longer than their duration till program start (ts).

2.1 Objects of evaluation

We would either like to estimate the average treatment effect

∆p = E(T p(1))− E(T p(0)) (6)

or treatment on the treated

∆p
1 = E(T p(1)|D = 1)− E(T p(0)|D = 1) (7)

where ∆p = ∆p
1 in the ideal experimental setting. One of the potential

durations in (6) or (7) is of course a missing counterfactual outcome. For
example, we observe T p(1) for a treated individual but we do not observe
T p(0). This is always true, even in experiments.
What makes this problem somewhat special is that in many realistic sit-

uations we lack starting dates for those not treated and hence we can not use
the post treatment duration for the untreated to estimate the counterfactual
means E(T p(0)|D = 1) or E(T p(0)). This is different than in the experimen-
tal situation, where treatment is offered at some fixed point in time, and the
fairly uncommon situation where a program starts after a fixed duration.6

For later purposes it is useful to define two potential survival functions

Sp
1(t) = exp(−

Z t

ts
λ1(τ))dτ

Sp
0(t) = exp(−

Z t

ts
λ0(τ))dτ

Then we can define the treatment effect in terms of the difference in the
survival functions

∆p(t) = Sp
1(t)− Sp

0(t), t ∈ (ts,∞)
6Of course there are some treatments that start after a fixed point in time. The

expiration of UI benefits is a prototypical example. By definition, random program starts
is not going to be an issue in an analysis of the effects of a time limit in UI benefit receipt.
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Defining the treatment effect in this way is useful as the difference in survival
functions integrates to the difference in mean duration, i.e.,Z ∞

0

∆p(t)dt = E(T p(1))−E(T p(0)) = ∆p

Conditioning on D = 1 we can calculate treatment on the treated in an
analogous fashion.
To estimate (7) the potential outcome of the non-treated should be con-

ditionally (or mean) independent of treatment; using the notation of Dawid
(1979), it must be true that

T p(0) ⊥⊥ D (8)

For the evaluation parameter (6) both potential outcomes should be inde-
pendent of the treatment, i.e.,

(T p(1), T p(0)) ⊥⊥ D

2.2 The random start problem

Consider a treated individual. For this individual we observe a realization
of the treatment start (ts). Using the ADM framework we can represent the
log of the potential durations if treated and not treated at ts as

lnT p
ts(0) = δ0 + σ0η0 and lnT

p
ts(1) = δ1 + σ01η1,

where δ0 = β0 − ts and η0 is the censored (at T > ts) distribution for ε0.
The data generating process is thus such that “unlucky” individuals are more
likely to enter treatment.7 This feature of the problem is what complicates
the evaluation.
Now, consider the individual treatment effect. It is given by

δ = (δ1 − δ0) + (σ01η1 − σ0η0)

If δ1 6= δ0 and/or σ01η1 6= σ0η0 this implies that the outflow rates differ by
treatment status. Moreover, if η0 6= η1 the treatment effect varies stochasti-
cally over individuals. If there is no treatment effect, i.e. λ1(t) = λ0(t), then
σ0η0 = σ01η1 and δ1 = δ0.
It is important to realize that the post treatment duration is stochastially

dependent on the pre treatment duration even if there is no treatment effect.
This follows since η0 is the censored distribution of ε0. Thus, given the data

7This is of course true even if we postulate that the distribution of εj is extreme value
such that we have a proportional hazards model with no time dependence.
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generating process, we need that T (0) ⊥⊥ D in order for T p
ts(0) ⊥⊥ D. In

turn, this implies that to estimate an average treatment effect one may have
to invoke additional identifying assumptions. One option is to postulate
a bivariate distribution for the durations T and T s. Instead of relying on
functional form we would like to consider a less structural approach to resolve
the problem of inference. One possible way may be to create a duration
matched comparison sample to those flowing into treatment, i.e., to condition
on all realizations of ts. We consider this and other approaches in the next
section.

3 Potential estimators

In this section we consider alternative strategies to estimate the parameters
of interest. Before discussing potential estimators let us introduce some no-
tation that we will use throughout. The sample consists of n and N c treated
and non-treated individuals, respectively. We will index a treated individual
by i, a non-treated individual by c, and whenever indexing the total sample
we will use m; hence, i = 1, ..., n, c = 1, ..., N c and m = 1, ..., N, where
N = n+N c.

3.1 Duration matching

Here we follow the typical approach to evaluating an on-going program.
As indicated above, researchers usually impose a “binary framework” even
though the timing of events varies. To implement the idea that the assign-
ment to treatment occurs only at a “single point in time” there is typically a
classification window of some length (C). Individuals that take up treatment
within, say, the first six months of the unemployment spell are defined as the
treated (D(C) = 1) while those that do not are defined as the non-treated
(D(C) = 0). Then the typical outcome would be something like the employ-
ment status one year after treatment entry (ts). Thus the starting point for
measuring the effect of treatment occurs before the end of the classification
window (ts < C).
A practical problem is that those who had the luck of finding a job quickly

are more likely to be found in the non-treated group. Thus some trimming of
the left-tail of the duration distribution seems to be called for. Here we follow
an approach that is akin to the one suggested by Lechner (1999). Before
matching on the covariates he proposes a procedure to trim the duration
distribution of the non-treated such that he obtains a duration matched
comparison sample.
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To illustrate the aproach as clearly as possible, let us consider the extreme
case where C →∞. Now, duration matching is an attempt to estimate (7).
This requires the CIA (8). The expectationE(T p(1)|D = 1) can be estimated
as

t̂p =
1

n

nX
i=1

(ti − tsi )

An estimator of the counterfactual outcome, E(T p(0)|D = 1), is based on
random sampling from the inflow distribution, F (T s|D = 1). For a random
draw, tsi , an individual from the comparison sample is matched if the un-
employment duration for this randomly assigned individual satisfies tc > tsi .
Applying this procedure we get a duration matched comparison sample (con-
sisting of n matches) and may calculate

t̂pc =
1

n

nX
i=1

tpci , (9)

where tpci = tc− tsi is the observed unemployment duration after tsi for a (ran-
domly assigned) matched individual. The treatment effect is then estimated
as b∆p

1 = t̂p − t̂pc (10)

Proposition 1 The conditional independence assumption (8) does not hold.

Proof. To prove this proposition let us consider (3) and (4). Let T p

t
(0)

be the potential post treatement unemployment duration if not treated up
to a fixed time period t. Consider an individual treated at ts = t. For this
individual we know that T > t. For a potential comparison individual we
have t < T < T s since this individual was never treated. Thus

lnT p

t
(0)|(D = 1) = lnT (0)|(D = 1, T > t)− t̄ = β0 − t̄+ σ0ε0|(T > t) (11)

lnT (0)|(D = 0, T > t)− t = β0 − t+ σ0ε0|(T s > T > t) (12)

and hence T p

t
(0) 6⊥⊥ D|(T > t).

Proposition 2 When there is no treatment effect, the duration matched es-
timator (b∆p

1) is positively biased

Proof. To prove this proposition take the expectations of (11) and (12).
Since E(ε0|(T s > T > t) < E(ε0|(T > t)) we get E(lnT p

t
(0)|D = 1) >

[E(lnT (0)|D = 0, T > t)− t̄] = E(lnT p

t
(0)|D = 0).
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Notice that these two results hold for all specifications of the error terms.
In particular, the duration matched estimator is biased even though the
hazards to employment and treatment are constant.
Proposition 1 follows from the observation that for all classification pe-

riods such that ts < k there is some conditioning on the future involved
when defining the potential comparison group for an individual treated at ts.
Given that there is no treatment effect we can also determine the sign of the
bias involved in applying this procedure; see Proposition 2. The intuition for
the latter result is simply that for the comparison group we know that (since
the individual is not treated) the spell ends with employment, while for the
treated group we do not know if the spell ends in employment. Therefore,
there is a positive bias in the effect of treatment on post-treatment durations
(i.e. there is a bias towards finding negative treatment effects). Let us also
make the (perhaps obvious) remark that Propositions 1 and 2 hold if the
observations on unemployment durations are censored at, say, L̄, although
one would expect the bias to be reduced in magnitude.
To sum up, it is not possible to create a sample of matching individual

who do not receive treatment at any point in time. In defining the treated
and the comparisons, the sampling is on ε0, which in turn determines, for
any t, the (potential) outcome T p

t
(0). Thus for those treated we have large

ε0 and hence large T
p

t
(0) while the opposite is true for the untreated. We

wish to emphasize that the crux of the problem with this estimator lies in the
use of a classification window; it is not due to the trimming procedure. It is
the strive to transform a world where treatment assignment is the outcome
of two dependent stochastic processes to an idealized world where treatment
assignment and outcomes occurs at single points in time that causes the
problems.

3.2 The proportional hazard model

A popular approach to estimate the treatment effect is to use the propor-
tional hazard model; see, e.g., Crowley and Hu (1977), Lalive, van Ours and
Zweimüller (2002), and Richardsson and van den Berg (2002). Here we ex-
amine what happens when we impose a proportional hazard model in our
context.
Suppose that the hazard after treatment is given by

λ1(t) = h0(t) exp(δD)

where D = I(T > ts).8 If δ estimates the average treatment effect then
λ0(t) = h0(t). So if the model has a proportional hazard specification, the

8Note that this representation has an analogue in the ADM model (1).
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outflow of the treated relative to the non-treated identifies the treatment
effect: λ1(t) = λ0(t) exp(δD).
Can we estimate the average treatment effect using this framework? The

following proposition provides part of the answer.

Proposition 3 The data generating process D = I(T > ts) implies that
the baseline hazard for the treated is not equal to the baseline hazard in the
population, i.e., h0(t) 6= λ0(t).

Proof. Proposition 1 implies that E(T (0)|D = 1) > E(T (0)|D = 0).
Since this is true for any censoring point t = c > 0 the survival function
for the treated is larger than the survival function for the non-treated, i.e.
S(t|D = 1) > S(t|D = 0). Now,

S(t|D = 1) > S(t|D = 0)⇔
lnS(t|D = 1) > lnS(t|D = 0)⇔Z t

0

d lnS(s|D = 1)

ds
ds >

Z t

0

d lnS(s|D = 0)

ds
ds⇔

−
Z t

0

λ(s|D = 1)ds > −
Z t

0

λ(s|D = 0)ds⇔Z t

0

[λ(s|D = 1)− λ(s|D = 0)]ds < 0

Thus, the mirror image of the fact that those we observe taking treatment
have longer expected unemployment duration is that the hazard is lower for
treated individuals than non-treated individuals.
We can always write the appropriate baseline hazard as

h0(t) = λ0(t|D = 1)Pr(D(t) = 1) + λ0(t|D = 0)Pr(D(t) = 0)

Proposition 3 implies that λ0(t|D = 1) 6= λ0(t|D = 0). Further, if δ > 0
it is not possible to identify all components of the baseline hazard using ob-
servational data. So estimates of the treatment effect using the proportional
hazards specification will, in general, neither estimate the average treatment
effect nor treatment on the treated. Can we say anything about the sign of
the bias relative to the true parameter, δ? Proposition 4 outlines the results

Proposition 4 a) If there is no treatment effect (δ = 0), the proportional
hazards estimator (δ̂PH) has the property that plim δ̂PH = 0. b) If δ 6= 0,

then plim
¯̄̄
δ̂PH

¯̄̄
< |δ|.
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Proof. See appendix.
The intuition for Proposition 4b) is the following. With observational

data, the risk set used for estimation includes individuals who are not treated
at time t but will be treated at some future time point s > t. The inclusion
of these individuals (in addition to those who have been treated prior to t
and those who are never treated) will lead to attenuation bias.
However, the inclusion of those treated in the future in the risk set is a

virtue when δ = 0. The inclusion of these individuals balances the bias that
would arise if only the never treated were used as comparisons.
The thrust of Proposition 4 is that the proportional hazards specification

is a fertile ground for testing. However, the estimate will be smaller in
absolute value than the average treatment effect when a treatment effect
exists. Notice also that standard (Wald) tests will not give correct inference
since the true model is non-proportional; see DiRienzo and Lagakos (2001).
Abbring and van den Berg (2002) show that the variation in the timing of

treatment identifies a causal treatment parameter in the proportional hazard
model. This is also true in our case since the model in this sub-section is
really a stylized version of their more general model. Suppose instead that we
define a time-varying treatment indicator D(s) = I(s > ts). Thus D(s) = 1
for individuals who have been treated prior to s and D(s) = 0 for individuals
who remain untreated at s (but may be treated in the future). Now, consider
estimating δ(s) in

λ1(s) = h0(s) exp(δ(s)D(s))

It is clearly possible to estimate the causal treatment effect, δ(s), since h0(s)
is also the baseline hazard for those who have not been treated at s. Thus,
taking the timing of treatment seriously allows the identification of a causal
parameter. But the interpretation of this parameter is perhaps not standard
as we are about to illustrate.

3.3 Matching with a time-varying treatment indicator

The lesson from the above sub-section is that one should take the timing of
treatment seriously. However, if we believe in the assumptions that justify
matching we have no reason to postulate a proportional hazard. Instead we
will introduce a non-parametric matching estimator that takes the timing of
events into account but does not rely on proportionality.
For the purpose of introducing this estimator let us move to discrete

time. Let us define the time-varying treatment indicator D(t) such that
D(t) = I(T ≥ t ≥ ts).
It is straightforward to show that

11



Lemma 1 Potential unemployment duration is independent of the treatment
indicator D(t).

Proof. Consider the ADM model (3). Then

lnT p

t
(0) = lnT (0)|(D(t) = 1)− t̄ = β0 − t̄+ σ0ε0|(T ≥ t)

lnT (0)|(D(t) = 0, T ≥ t)− t̄ = β0 − t̄+ σ0ε0|(T ≥ t)

and hence T p

t
(0) ⊥⊥ D(t).

Thus, the gain of introducing the time-varying treatment indicator, D(t),
is immediate: potential unemployment duration is conditionally independent
of D(t).9 However, the cost of this procedure is that we estimate a different
treatment effect than, e.g., (7). The analogue to treatment on the treated is
in this case the effect of entering at t or earlier relative to not having done
so for individuals who have taken treatment before t; (see Sianesi, 2001, for
an analogous definition of the estimand of interest):

∆p
1t̄ = E(T p

t
(1)
¯̄
D(t) = 1)−E(T p

t
(0)
¯̄
D(t) = 1) (13)

If the effect of entering at t is constant over time, estimates of ∆p
1t̄ is lower

in absolute value than the original object of evaluation (∆p
1).

To obtain a single number one would potentially like to average over the
distribution of program starts, i.e., calculate

E(T s|D=1)(∆
p
1t̄) = E(T s|D=1)

£
E(T p

t
(1)|D(t) = 1)−E(T p

t
(0)|D(t) = 1)¤ (14)

where E(T s|D=1)(.) is the expectation with respect to the unemployment du-
ration until program start for those treated. It is important to emphasize
that this is not an estimate of treatment on the treated — it is just a way of
calculating an average of ∆p

1t̄.
If there is no censoring in the data the arguments in (13) or (14) can

be estimated with the mean duration for the treated and non-treated at
9It may be useful to relate this result to the theory of point processes (see e.g. Lancaster,

1990, ch. 5). If we randomly select an individual at t from the stock of unemployed
individuals, then the stock sampling hazard is equal to

χ(t) = λ0(t)
t

e(t)
≤ λ0(t), t ≥ t̄

where e(t) is the expected total duration for an eligible individual given survival up to
t̄. This result is denoted length biased sampling in the literature. What we have accom-
plished by defining the treatment indicator D(t̄) is that the hazard, χ(t), is independent
of treatment status. This result does not hold with duration matching.
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t = 1, ...,max(ts). But how should we go about estimating an objective such
as (13) if the data are right-censored (at the exogenous date L̄)? A natural
estimator is to compare the empirical hazard of the D(t) = 1 group with the
D(t) = 0 group.10

For an individual who has been treated at t or earlier the empirical hazard
at time t is given by

λ(t,D(t) = 1) =
n1(t)

R1(t)
=

1

R1(t)

R1(t)X
i=1

yi(t),

where yi(t) = 1 if individual i that starts a program in period t or earlier
leaves unemployment at t and R1(t) is the number of individuals with ts ≤ t

at risk in t. Hence, n1(t) =
PR1(t)

i=1 yi(t) is the number of individuals in the
risk set leaving in t. For the comparison group we calculate

λ(t,D(t) = 0) =
n0(t)

R0(t)

Here R0(t) is the set of individuals that has not joined the program at t
and are at risk of being employed in t; n0(t) is the number of individuals in
the risk set leaving in t. Under the null hyposthesis of no treatment (H0),
λ(t,D(t) = 0) is an unbiased estimator of the hazard rate to employment for
a randomly chosen individual who did not receive treatment at t.
The survival function conditioning on D(t) = 1 is then

S(t|D(t) = 1) =
tY

s=l

(1− λ(s,D(s) = 1)), t = l, ..., L (15)

and similarly for individuals in the comparison group. The effect of joining
the program at t or earlier can then be calculated as the difference between
the two survival functions, i.e.

b∆(t) = S(t|D(t) = 1)− S(t|D(t) = 0), t = l, ..., L (16)

The change in mean unemployment duration up to L can now be calculated
as b∆L =

PL
t=l
b∆(t).

Let S1(t|D(t) = 1) be the survival function for the treated population and
let S0(t|D(t) = 1) be the counterfactual survival function for this population.
Observe that S(t|D(t) = 1) is the maximum likelihood estimator (MLE)

10In the following we discuss unbiasedness and consistency neglecting the problem as-
sociated with discretizing data when t is truly continuous.
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of S1(t|D(t) = 1); see Kalbfleich and Prentice (1980) ch. 4. Therefore,
plimS(t|D(t) = 1) = S1(t|D(t) = 1). We can now make a statement about
the virtue of (16)

Proposition 5 plim b∆(t) = S1(t|D(t) = 1)− S0(t|D(t) = 1).

Proof. Since T (0) ⊥⊥ D(t)|(t ≥ t), S(t|D(t) = 0) is the MLE of
S0(t|D(t) = 1). Hence, plim S(t|D(t) = 0) = S0(t|D(t) = 1) and the propo-
sition follows.
It should be clear that both estimators S(t|D(t) = 1) and S(t|D(t) = 0)

are biased estimators of the population survival functions S1(t) and S0(t)
as well as the survival functions for the selected population S1(t|D = 1)
and S0(t|D = 1). From the above analysis we know that the hazard rate of
those entering treatment is lower than the hazard rate for randomly assigned
individuals; thus, S0(t|D = 1) > S0(t) and S1(t|D = 1) > S1(t). It is difficult
to make a statement about the relationship between S0(t|D(t) = 1) and, e.g.,
S0(t|D = 1) or S1(t|D(t) = 1) and, e.g., S1(t|D = 1) or S1(t). Accordingly
we cannot generally determine how (16) relates to the average treatment
effect and treatment on the treated. If the treatment effects do not change
sign over time, the sign of b∆(t) is equal to the sign of the average treatment
effect and treatment on the treated at t.

3.3.1 A fixed evaluation period

In the evaluation literature, it is common to use the probability of employ-
ment after a fixed time period C (e.g. one year) after the start of the program
(cf. Gerfin and Lechner, 2002, and Larsson, 2000). The advantage of this
approach is that treatment is allowed to affect the separation margin as well.
The drawback is that there is some arbitrariness in determining C.11

Since this evaluation problem is analogous to the one we have considered
above, it should be obvious that it is impossible to estimate the average treat-
ment effect (and treatment on the treated) without additional assumptions
on the process governing the inflow into treatment. The insights from the
above analysis apply directly.
To illustrate the analysis a problem featuring a fixed evaluation period let

us introduce the following notation. Let Y = 1 if the individual is employed
C periods after program start and Y = 0 otherwise. Define Y (1) and Y (0)

11We would argue is inherently more informative to estimate the survival functions,
since we can always complement the analysis by looking at, e.g., the probability of reentry
into the unemployment pool.
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to be the associated potential outcomes. The estimand of interest is:

µ(t) = E(Y (1)− Y (0)|D(t) = 1)
Consider the estimation of the components of µ(t̄). The estimator of the

job finding probability if ts ≤ t is

yC(D(t) = 1) =
nC(t)

n(t)
=

1

n(t)

n(t)X
i=1

yi, t = l, ..., L− C

where yi = I(ti − t ≤ C). The number of treated individuals at t leaving
before C is nC(t) =

Pn(t)
i=1 yi. For the comparison group we calculate

yC(D(t) = 0) =
NC(t)

N(t)
,

for individuals such that t ≥ t. Here, NC(t) =
PN(t)

j=1 yj is the number of
individuals not in treatment at t leaving to employment before C. Note that
yC(D(t) = 0) is an unbiased estimator of E(Y (0)|D(t) = 1). We can then
calculate the average of these effects as

b∆C =
LX
t=l

£
yC(D(t) = 1)− yC(D(t) = 0)

¤
Pr(ts = t)

=
1

n

LX
t=l

yC(D(t) = 1)
n(t)

n
−

LX
t=l

yC(D(t) = 0)
n(t)

n

= π1 −
LX
t=l

NT (t)

N(t)

n(t)

n
, (17)

where Pr(ts = t) = n(t)/n is the empirical distribution of the inflow into
treatment and π1 is the proportion of treated individuals employed C periods
after treatment.

4 Monte Carlo simulation

Here we illustrate the method suggested above and contrast this with the
traditional duration matching approach. To add some realism to this exercise
we also consider heterogeneity at this stage. In the appendix we give a brief
account of the required CIA assumption and the matching protocol.
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For the purpose of the Monte Carlo simulation we generate both T and
T s as

ln ti = b0 + xi + δI(ti > tsi ) + σ0ε0i

and
ln ts = a0 + xi + σ1ε1i,

where the density function of ηh = exp(εh), h = 0, 1, is the standard ex-
ponential distribution, f(ηh) = exp(−ηh). Hence both t and ts are Weibull
distributed. The hazards to employment and programs are then equal to

λ0(t) = α0t
α0−1e−α0(b0+xi) and γ(ts = t) = α1t

(α1−1)e−α1(a0+xi),

where σ−10 = α0 and σ−11 = α1. x is taken to be uniformly distributed and
fixed in repeated samples. σ0 = 1.2 and σ1 = 3, a0 = b0 = 3, and δ =
(0, 0.2, 0.4).12 The sample size is set at three levels N = 500, 1000 and 1500.13

Throughout, the number of replications is set to 1000. In this setting, 28
percent of the sample is treated. Since σ0 = 1.2 we have a decreasing hazard
to employment. The expected length of unemployment is approximately 27
months.
We begin by studying the properties of the survival function estimator.

Then we move on to consider estimators based on a fixed evaluation period.14

Throughout we discretize data to monthly intervals (j) as follows: j = j ≤
t < j + 1, j = 1, ..., L.

4.1 The survival function estimator

Here we calculate the difference between the Kaplan Meier survival functions,
i.e., b∆(t) = S(t|D(t) = 1)− S(t|D(t) = 0), t = l, ..., L− 1 (18)

The results from these experiments are displayed in Figure 1-3. In Figures
1 and 2 we also display the average treatment effect (ATE) and treatment

12The Monte Carlo simulation when δ > 0 is performed in the following manner: If
ln ti = b0 + xi + σ0ε0i > ln ts then ln ti is increased with δ units.
13The parameters have been chosen with an eye towards the situation in Sweden during

the early 90’s (see Fredriksson and Johansson, 2002, for an application). In these data,
about three quarters of the treated enroll during the first year of an unemployment spell
and approximately 26 percent take part in training during the maximum of five years that
we observe the individuals.
14In previous versions of the paper we have also considered a proportional hazard spec-

ification. These results basically confirm what we have already established in section 3.2.
The proportional hazards estimate of δ is biased downwards in absolute value if δ > 0.
Moreover, the Wald test is severely undersized. These results are available on request.
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on the treated (TT). ATE is calculated as

∆(t) = S1(t)− S0(t), t = l, ...L− 1,
where the survival function if not treated is given by S0(t) = exp(−(t exp(b0+
x1))

α0) and the survival function if treated by S1(t) = exp(−(t exp(b0+ x1−
δ))α0). TT is calculated as the average difference in the conditional survival
functions over the 1000 replications.
Figure 1 shows the bias of the estimators under H0, i.e., δ = 0, in the case

with an evaluation period of L = 240. The figure shows that the matching
estimator b∆(t) is an unbiased estimator of ATE. We have also examined the
bias with a shorter evaluation period. The degree of bias is independent of
the censoring date, L.
Figure 2 displays the result when δ = 0.2 and L̄ = 240. Since δ > 0,

program participation prolongs durations. b∆(t) is almost always larger than
ATE. Moreover, b∆(t) is larger than TT during the initial quarter of the
evaluation and lower thereafter. The change in mean unemployment duration
up to L (b∆L =

PL
t=l
b∆1(t)) is 10.7 “months”. The TT and ATE up to L are

respectively equal to 14.1 and 7.6 “months”. Thus for this specific application
the b∆L estimate is in between these two measures.
Figure 3 presents the power and size (nominal level 5%) of the Wald test

for the matching estimator b∆(t). The Wald test is calculated as
b∆(t)/qVar(b∆(t)),

where Var(b∆(t)) is calculated as Var(b∆(t)) =Var(S(t|D(t) = 1)+Var(S(t|D(t) =
0) and the variance for the estimated survival function is equal to (see, e.g.,
Lancaster, 1990)

Var(S(t|D(t) = j) = S(t|D(t) = j)2
tX

s=l

nj(s)

(Rj(s)− nj(s))Rj(s)
. (19)

Figure 3 shows that the size of the test is satisfactory. The shape of the
power functions do not cause concern.

4.2 The outcome at a fixed evaluation period

The outcome variable is the average probability of employment one ”year”
after the start of treatment. The matching estimator is given by

b∆C(x) =
LX
t=l

 1

n(t)

n(t)X
i=1

£
yi − ycit

¤ n(t)

n
, (20)

17



0 50 100 150 200 250
Duration

0.000
0.005

0.000
0.005

0.000
0.005

N: 500

N: 1000

N: 1500

TT
ATE
D(t,x)

Figure 1: The bias of the survival function estimators b∆(t) = D(t, x), ATE
and TT with no treatment (δ = 0) and an evaluation period of L = 240
months.
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Figure 2: b∆1(t) = D(t, x), ATE and TT with a treatment effect (δ = 0.2)
and an evaluation period of L = 240 months.
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Figure 3: The power of the Wald test based on the b∆(t) estimator with an
evaluation period of L = 240 months.

where cit is obtained from (26) and ym = I(tm − t ≤ C), m = i, cit.
The variance is estimated as

Var(b∆C(x)) =
π1(1− π1) + π0(1− π0)

n

where π0 = 1
n

Pn
i=1 ycit .

This estimator is contrasted with the estimator in Lechner (1999, 2000),
Gerfin and Lechner (2002) and Larsson (2000).15 The estimator in, e.g.,
Gerfin and Lechner (2002) is based on the approach sketched in section 3.1.
First an adjusted sample of N c

i individuals, mimicing the duration distribu-
tion of the treated, is created by randomly drawing individuals in the com-
parison sample. For a random draw, tsr, from the distribution F (T

s|D = 1),
a randomly drawn individual in the comparison sample is retained if t > tsr,
otherwise (s)he is removed from the sample

15Lechner (1999) specifies three estimators, partial, random and inflated. He states that
the random estimator (described below) performs best.
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Given a unique match16 for a treated individual, the estimator is

b∇C(x) = y − yc (21)

where y = n−1
Pn

i=1 yi, yc = n−1
Pn

i=1 yci and ym = I(tm − t ≤ C), m = i, c.
The variance is estimated as (y(1− y) + yc(1− yc))/n.
The results from the Monte Carlo simulation with a classification window

of C = 12 and a maximum observation length of L = 48 are shown in Table
1.17 In columns 2-4, the results from the experiment with no treatment effect
is given while columns 5-7 gives the result for the δ = 0.2 treatment.
We start by commenting on columns 2-4 where we present the bias, vari-

ance, and the size (nominal level 5 percent) of the Wald test of a treatment
effect. The b∆C(x) estimator performs satisfactory while the b∇C(x) estimator
suggests that employment is reduced (the estimate is significant in about 10
percent of the cases) by three percent as a result of treatment.
We now turn to the experiment with a negative treatment effect displayed

in columns 5-7. Here we present the estimate, variance, and the power of the
Wald test. In addition we present estimates (based on the 1000 replications)
of the average treatment effect (ATE) and treatment on the treated (TT). It
seems like the b∇C(x) estimator does comparatively well in terms of estimating
TT. However, we would argue that this is a fluke. If we would consider the
case with an evaluation period of L = 240, then TT equals −13.26. In
this case, b∆C(x) equals −11.61, while b∇C(x) equals −21.74. Moreover, if we
would consider the case of a positive average treatment effect (δ < 0) the
power of b∇C(x) would be substantially lower.

4.3 Summary

So let us sum up what we have learned from the Monte Carlo simulation.

• The estimator we propose to estimate the effect of treatment on the
treated up to t seems to be reliable in terms of testing for a treatment
effect. But it does not seem to give much guideline about the size of
the treatment effect. This is by construction, however, as we estimate
a different parameter.

16Gerfin and Lechner (2002) base their inference on matching with replacement. When
CIA holds matching with replacement reduces the bias but increases the variance in com-
parison to an estimator not based on replacement. We do not match with replacement
but this has no baring on the results.
17We focus on a shorter evaluation period in this instance since this is closer to the

typical empirical application.
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Table 1: Bias, estimate, variance, size (nominal level, 5 percent) and power
in percent. Maximum observation period L = 48.

δ = 0 δ = 0.2
Bias Variance Size Estimate Variance Power

N = 500
ATE and TT −4.48 and −13.35b∆C(x) -0.21 0.36 3.7 -8.00 0.35 27.7b∇C(x) -3.39 0.41 9.3 -12.81 0.39 56.9

N = 1000
ATE and TT −4.48 and −13.31b∆C(x) 0.28 0.20 5.5 −7.69 0.17 45.6b∇C(x) -2.97 0.20 10.0 −12.66 0.19 84.0

N = 1500
ATE and TT −4.48 and −13.29b∆C(x) 0.11 0.12 4.6 −7.91 0.11 64.0b∇C(x) -3.02 0.13 10.9 −12.82 0.12 96.1

• Under the null hypothesis of no treatment, there is a substantial nega-
tive bias in the matching approach applied by, e.g., Gerfin and Lechner
(2002) to estimate the average treatment effect. The bias is, as ex-
pected, increasing in L. Also, the sizes of the Wald tests are too large.
Therefore, we reject the null hypothesis too often and may even find
statistically significant negative treatment effects. The estimator that
we propose suffers from no bias (under H0) and the small sample per-
formance of the Wald test gives the correct size.

5 Discussion

In this paper we have considered the evaluation problem using observational
data when the program start is the outcome of a stochastic process. We
have shown that without strong assumptions about the functional form of
the two processes generating the inflow into program and employment it
is only possible to estimate the effect of treatment on the treated up to a
certain time point. It is, however, possible to test for the existence of an
average treatment effect. The test can, e.g., be implemented by assuming
a proportional hazards model. Another approach is to test for a treatment
effect using the non-parametric survival matching estimator proposed in this
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paper.
We have assumed that selection is purely based on observables (the Con-

ditional Independence Assumption, CIA). Whether CIA is reasonable as-
sumption depends crucially on the richness of the information in the data.
Even if we assume that unobserved heterogeneity is not an issue, the evalua-
tion problem is demanding on the data. In order to construct the comparison
population we need longitudinal data where we can observe the duration path
up to a fixed censoring time. Knowing the entire path is crucial as we need
to screen it during the evaluation time in order to define the non-treated
population up to a certain time period, t.
We think that the issues we have raised applies fairly generally to eval-

uations of on-going labor market programs. The problems associated with
estimating the average treatment effect and treatment on the treated af-
fect all outcomes that are functions of the outflow to employment. Hence,
it applies directly when the outcome of interest is employment (or annual
earnings) some time after program start. Moreover, if skill loss increases
with unemployment duration, as suggested by the recent analysis in Edin
and Gustavsson (2001), one should be careful when estimating the effect of
treatment on wages. Although it may be tempting to screen the future in
order to find individuals who did not take part in the program during some
window there is a definite risk associated with doing this. It is more probable
that individuals who, by the luck of the dice, found employment are included
in the comparison group. But if there is skill loss, this lucky draw will in
turn spill over onto wages yielding a negative bias in the estimates of the
treatment effects. Thus the issues we have raised here may be important
also for studies examining the treatment effects on wages.
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Appendix: Proof of proposition 4

It is helpful to first consider the experimental estimate δ̂E. Suppose we were
to conduct an experiment where at t = 0 individual are randomly assigned
to a treatment (D = 1) and a comparison (control) group (D = 0). To
simplify the exposition, assume that we observe k unique durations after
randomization. Order the k survival times such that t(1) < t(2) < .... < t(k).
Associate a treatment indicator with each unique duration such thatD(j) = 1
if the individual has been treated in period t ≤ t(j) and D(j) = 0 otherwise.
Now, consider the partial likelihood

L(δ) =
kY

j=1

 exp(δD(j))P
l∈R(t(j))

exp(δDl)

 =
kY

j=1

µ
exp(δD(j))

R(j)(1) exp(δ) +R(j)(0)

¶

where R(j)(1) and R(j)(0) denote the number of treated and non-treated
in the risk-set respectively. The maximum likelihood estimator of δ under
random sampling is given as

δ̂E = ln

Ã
kX

j=1

D(j)R(j)(0)

!
− ln

Ã
kX

j=1

R(j)(1)(1−D(j))

!
.

If there is no treatment effect then

E(D(j)R(j)(0)) = E(R(j)(0)|D(j) = 1)Pr(D(j) = 1)

= E(R(j)(0)) Pr(D = 1) (22)
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and

E((1−D(j))R(j)(1)) = E(R(j)(1)|D(j) = 0)Pr(D(j) = 0)

= E(R(j)(1)) Pr(D = 0) (23)

and hence δ̂E
p→ 0. If δ > 0 then, R(j)(1) and D(j) are no longer independent

and Pr(D(j)) 6= Pr(D).
Now consider the partial likelihood in the observational setting

L(δ) =
kY

j=1

Ã
exp(δD(j))P

l∈R(t(j)) exp(δDl)

!
(24)

=
kY

j=1

µ
exp(δD(j))

R(j)(1) exp(δ) +R(j)(0) +R(j)(0|1)
¶

The difference compared with the partial likelihood in the experimental set-
ting is the inclusion of R(j)(0|1), which is the number of individuals that have
not been treated at t ≤ t(j) but will be treated in the future. The estimator
for the observational data is equal to

δ̂PH = ln

Ã
kX

j=1

D(j)(R(j)(0) +R(j)(0|1))
!
− ln

Ã
kX

j=1

R(j)(1)(1−D(j))

!
,

If there is no treatment effect (i.e. δ = 0) then, as above, Pr(D(j)) = Pr(D);
that is, the probability to enter treatment at duration t(j) is the same at the
probability to enter treatment for a randomly chosen individual at t = 0.
This means that the probability to belong to the comparison group is not
dependent on the order (j) of the durations and as a result we get the same
expressions as above; hence, plimδ̂PH = 0. The inclusion of those treated in
the future in the risk-set, i.e. R(j)(0|1), balances the bias that would result
if only the never treated are used as comparisons.
If δ 6= 0 then plimδ̂E = δ. This estimator is only based on the rank orders

of the treated relative to the rank orders for those not treated.18 In the
observational setting the only change (from the case without a treatment
effect) in rank order is for the individuals who are never treated and the
estimator δ̂PH will be biased downwards in absolute terms; hence plim|δ̂PH | <
|δ|.
18Note that the rank statistic is sufficient to yield consistent estimates of the parameters

in the proportional hazards model without knowledge of λ0(·). This is also true if the true
model is of the non-proportional variety (see DiRienzo and Lagakos, 2001). Wald tests of
a treatment effect are biased, however.
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Appendix: Matching with heterogeneity

We consider only the conditions for unbiased estimation in a time invariant
setting (i.e., xmt = xm ∀t ≤ t,m = i, c).
The required conditional independence assumption (CIA) is

T p

t
(0) ⊥⊥ D(t)|x (25)

This assumption guarantees that

E(T s|D=1)
£
T p

t
(0)|D(t) = 1¤ = E(T s|D=1)EX[E(T

p

t
(0)|D(t) = 0,x)]

= E(T s|D=1)EX[E(T
p

t
(0)|D(t) = 1,x)],

where EX is the expectation with respect to X. Thus conditional on t and
x we can use unemployment duration for individuals not treated at t to
estimate E(T s|D=1)

£
T p

t
(0)|D(t) = 1¤.

Let the conditional probability of being treated at t given x be given by
e(x) = Pr(D(t) = 1|x)and let 0 < e(x) < 1 for all x.19 By (25) it then holds
that (see Rosenbaum and Rubin, 1983)

x ⊥⊥ D(t)|e(x).

So, under the CIA (25), the counterfactual can be estimated as

E(T s|D=1)
£
T p

t
(0)|D(t) = 1¤ = E(T s|D=1)Ee[E(T

p

t
(0)|D(t) = 0, e(x))]

= E(T s|D=1)Ee[E(T
p

t
(0)|D(t) = 1, e(x))],

where Ee is the expectation with respect to e(x).

A matching algorithm We use a one-to-one matching procedure based
on etimated propensity scores bωm = e(xm, bβ), where bβ is an estimated para-
meter vector from, e.g., a logit maximum likelihood estimator. Let treated
individuals at t be indexed by i and individuals in the comparison group at
t by c. The unique match (for each t) is found by minimizing the distance
between the estimated propensity scores:

cit = arg min
c∈N(t)

|bω(i)− bω(c)|, (26)

where bω(c) is the (N(t) × 1) vector of estimated propensity scores at time
t. After finding a match for individual i, the process starts over again until

19This means that for each x satisfying the CIA there must be individuals in both states.
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ncs(t) comparable individuals is found in the comparison sample. Here ncs(t)
is the number of individuals on the common support.
The process is started by randomly drawing an individual in the treatment

sample, then one should make another random draw from the remaining
ncs(t)− 1 treated individuals and so on until ncs(t) matching individuals are
found.
With a complete set of pairs of treated and non-treated individuals the

estimators (14) and (17) are given by

b∆p

1t
(x) =

L̄X
t=1

 1

ncs(t)

ncs(t)X
i=1

£
ti − tcit

¤ , t = l, ..., L

b∆C(x) =
LX
t=l

 1

ncs(t)

ncs(t)X
i=1

£
yi − ycit

¤Pr(T s = t), t = l, ..., L

while the estimator (16) is given by

b∆(t, x) = Sx(t|D(t) = 1)− Sx(t|D(t) = 0), t = l, ..., L

where Sx(t|D(t) = 0) =
Qt

s=l(1− λx(s,D(s) = 0)) and

λx(s,D(s) = 0) =
1

R1
t
(s)

R1
t
(t)X

i=1

yc
it
(s),

where R1
t
(s) is the risk set for the matched individuals at t still at risk in

time period s.
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