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Multi-layered Interbank Model for Assessing
Systemic Risk

Mattia Montagna∗, Christoffer Kok†‡

Abstract
In this paper, we develop an agent-based multi-layered interbank net-

work model based on a sample of large EU banks. The model allows for
taking a more holistic approach to interbank contagion than is standard in
the literature. A key finding of the paper is that there are non-negligible
non-linearities in the propagation of shocks to individual banks when tak-
ing into account that banks are related to each other in various market
segments. In a nutshell, the contagion effects when considering the shock
propagation simultaneously across multiple layers of interbank networks
can be substantially larger than the sum of the contagion-induced losses
when considering the network layers individually. In addition, a bank “sys-
temic importance” measure based on the multi-layered network model is
developed and is shown to outperform standard network centrality indi-
cators.

JEL Classification: C45, C63, D85, G21

Key words: Financial contagion, interbank market, network theory

Non-technical summary

In this paper, we develop an agent-based multi-layered interbank
network model based on a sample of large EU banks. The model
allows for taking a more holistic approach to interbank contagion
than is standard in the literature where bank-to-bank spillover ef-
fects are typically confined to specific segments. However, in reality
banks are interrelated in several dimensions of their business activi-
ties. The basic notion promoted in the paper is that unless contagion
risk across the many layers of interrelations between banks are taken
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‡The authors would like to thank Thomas Lux for valuable comments and Grzegorz Hałaj

for making available the data and for fruitful discussions. The authors are also grateful to
Jērõm Henry, Balázs Zsámboki, Ivan Alvezs, Simon Dubecq, and the other participants at an
internal ECB seminar for useful comments.
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into account, it is likely that contagion effects will be substantially
underestimated.

Specifically, in this paper we consider three different layers of
interbank relationships. These include a network of short-term in-
terbank loans (i.e. less than 3-months maturity) to reflect liquidity
risk and a network of longer-term bilateral exposures (i.e. above
3-months maturity) to reflect counterparty risk. In addition, we
consider a third network layer of common exposures in banks’ secu-
rities portfolios where contagion can spread when one bank is forced
to sell those securities that may give rise to sharp revaluation effects.

On top of the multi-layered system we put an agent-based model
where agents can interact with each other through the network struc-
ture. The introduction of agents enables us to investigate specific
network structures in combination with plausible bank behavior.
In particular, in the model banks only adjust their balance sheets
when endogenous or exogenous shocks bring their liquidity or their
risk-weighted capital ratio below the minimum requirements.

Our dataset include a sample of 50 large EU banks. For each
bank, we include information about capital, short-term and long-
term interbank borrowing, deposits, short-term and long-term in-
terbank loans, aggregate securities holdings, and cash. We do not
have data on individual banks bilateral exposures, neither on the
details of financial securities portfolios. Instead, we use this uncer-
tainty as degree of freedom of the model, in order to investigate
which multi-layered network structures are particularly prone to a
systemic breakdown. In principle, every possible network in each of
the three layers represents a plausible configuration for the multi-
layered network structure; in order to focus only on the interbank
networks which are the most probable in the real financial system
we extract the network topologies for the short and long-term in-
terbank exposures according to a probability matrix, with the only
restriction that each bank is exposed to other entities at most for the
20% of its total interbank assets. The probability matrix is based
on the methodology developed by Hałaj and Kok (2013a). The net-
work of common securities exposures is in turn randomly generated,
since we do not have sufficiently granular data or statistics concern-
ing the securities portfolio structures of the banks in the sample,
but we only have information, for each bank, about its aggregate
amount of securities.

A key finding of the paper is that there are non-negligible non-
linearities in the propagation of shocks to individual banks when
taking into account that banks are related to each other in various
market segments. In a nutshell, the contagion effects when consid-

2



ering the shock propagation simultaneously across multiple layers of
interbank networks can be substantially larger than the sum of the
contagion-induced losses when considering the network layers indi-
vidually. In addition, a bank “systemic importance” measure based
on the multi-layered network model is developed and is shown to
outperform standard network centrality indicators.

1 Introduction

During the financial crisis that emerged in 2007 a large part of the
global financial system came under stress with severe repercussions
on the real economy. The sequence of events which unfolded from
the summer of 2007 forced public sectors to intervene in order to re-
store financial stability which in turn put pressure on public finances
in many EU Countries. The costs associated with those interven-
tions highlighted the importance of safeguarding in a stable financial
system.

A stable financial system should not propagate or magnify shocks
to other part of the system itself, nor to the real economy. Systemic
risk, in the view of this paper, exactly refers to the possibility that
the financial system evolves in a configuration which makes it partic-
ularly prone to global breakdowns in case of an initial local shock.
The reasons why the system can arrive to such unstable configu-
rations are probably rooted in the duality among local and global
properties of the financial system. In other words, each financial
institution takes its decisions with the aim of maximizing its own
profits and interests, but it does not internalize the impacts of its
actions on the stability of the system as whole. Moreover, as we will
show in this paper, also if banks were willing to minimize systemic
risk when they take decisions, they would need to have sufficient
information regarding the financial situations of the other banks,
including the exposures each bank have on each other. As an exam-
ple, one can consider the direct exposures in an interbank market.
If one bank wants to evaluate the riskiness associated with a loan
to another bank, it should be able to know the exposures of its
counterparty, which probability of default depends on its own coun-
terparties, and so on. No bank is able to peer so deeply into the
interbank credit network to evaluate the probability of defaults due
to contagion effects.

A crucial role in ensuring financial stability is therefore played
by information. If the ultimate goal is to reduce systemic risk, it
is necessary to have a global view of the financial system in order
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to identify and monitor possible sources and channels of contagion.
A robust framework for monitoring and assessing financial stability,
and for managing it with interventions able to prevent the system
from entering into critical configurations, must be able to evaluate
the continuously evolving structure of the financial system. Another
important lesson emerging from the recent financial crisis that we try
to account for in this paper is that the possible sources of systemic
instability are multiple. For instance, direct bilateral exposures can
create domino effects and propagate idiosyncratic (or local) shocks
to the wides (global) financial system. In addition, forced firesales of
financial assets can lead to strong asset price declines and can trans-
mit losses through banks with common exposures and overlapping
portfolios. Furthermore, news about a firm’s assets can signal that
others with similar assets may also be distressed and thus create
widespread market uncertainty. Moreover, the sudden interruption
of a service provided by a bank to the financial system can constitute
a threat in case other banks are not able to immediately substitute
it.

Against this background, the aim of this paper is to study sys-
temic risk in highly interconnected financial systems. A natural
way to represent and study an interbank market is network the-
ory, nowadays commonly used in finance. In order to encapsulate
the different kinds of possible connections among banks, we use a
multi-layered network model. A multi-layered network is a system
where the same set of nodes belong to different layers, and each
layer is characterized by its own kind of edge (representing a par-
ticular kind of financial connection), by its own topology (so each
node may have different neighbors in different layers), and its own
rules for the propagation of eventual shocks. This holistic view of
the financial system should enable us to study systemic risk in a
more encompassing perspective, than typical single-layered network
structures focusing on individual segments.

On top of the multi-layered system we put an agent-based model
where agents can interact with each other through the network struc-
ture. The standard approach in the literature to study systemic
risk using network theory is to assume passive banks as nodes in
the network1. Those kinds of models are good at estimating the
resilience of particular network structures against shocks, but they
lack real dynamic effects, since shocks propagate through the system
without incorporating the (likely) reaction of banks to those shocks.
The introduction of agents enable us to investigate specific network

1A pioneering work in this direction was initially proposed by Nier et al. (2009), while a
summary of the results coming from this branch of literature can be found in Upper (2011).
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structures in combination with a plausible bank behavior. In par-
ticular, in our model banks will only adjust their balance sheets
when endogenous or exogenous shocks bring their liquidity or their
risk-weighted capital ratio below the minimum requirements. In
fact, if we assume that prior to the shock the system was in equi-
librium, banks would just try to keep the same structure of their
balance sheets also during the propagation of the shock. The failure
of a financial institution usually implies several repercussions on the
system. As already highlighted, the liquidation of a failed bank can
push prices down, its counterparts can book losses from direct bilat-
eral exposures, the financial services provided by the bank cannot
always be replaced, at least not immediately, and the combination
of such reactions can significantly amplify shocks and lead to dan-
gerous spirals which could potentially collapse substantial parts of
the financial system (Brunnermeier (2009)). The complete dynam-
ics of such events is difficult to capture with analytical models and
from this perspective an agent-based model is more suitable, since
it enables studying also systems out of equilibrium.

The agent-based model combined with the multi-layered network
is subsequently used to design measures for the systemic importance
of each bank in the system. Those measures rely on information
regarding direct and indirect interbank connections, which can be
inferred from network theory, and banks balance sheet information.
The basic notion is that standard network centrality measures alone
cannot explain the systemic importance of individual financial in-
stitutions, since the high level of heterogeneity in banking systems
can bring central capitalized nodes to stabilize the system, whereas
only network measures would just judge nodes depending on their
centrality. Instead, it is necessary to combine information regarding
the balance sheet structure of institutions with measures of central-
ity in order to understand the impact of each bank failure on the
system.

This paper is organized as follows: section 2 reviews the main
literature linked to our work, highlighting both the contributions
in the multi-layered network theory and the agent-based interbank
models; section 3 introduces the multi-layered interbank market and
explains how the structure is calibrated on a real dataset; section
4 explains the model we use for investigating systemic risk; section
5 presents details about the implementation of the model and the
results from our simulation engine; section 6 introduces our measures
for the systemic importance banks, and shows how the measures can
be used to monitor systemic risk in the system; section 7 concludes
and provides some policy implications.
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2 Literature Review

In the past years, especially after the last financial crisis, a large
amount of studies have emerged analyzing the financial system,
and in particular the banking sector, from a network perspective.
An early, seminal contribution to this literature is Allen and Gale
(2000). Starting from the model of Diamond and Dybvig (1983),
the authors introduce an interbank liquidity market which enables
banks to insure each other against liquidity shocks. Although in nor-
mal conditions such an interbank market can improve the stability
of the financial system, in case a large shock hits one of the banks,
the bank may fail and induce losses to its counterparties. These
losses can subsequently potentially cause other defaults, therefore
creating a domino-effect. The authors show that when the underly-
ing network structure is complete (each bank is connected to all the
other) the system is much more resilient due to risk sharing, while
incomplete networks are much more fragile since banks find it more
difficult to diversify their portfolio structure against idiosyncratic
shocks.

Nier et al (2009) show in their work how the topological features
of the interbank network can be related to the financial stability of
the system. Surprisingly, the results highlight that the higher the
risk-sharing among banks, the higher the size of the domino effect
(up to a certain threshold value for the connectivity between banks)
in case of a shock hits one of the banks in the system. Furthermore,
they show that increasing the level of capitalization will reduce the
number of defaults in case a shock hits the system, and this effect
is strongly non linear. Other studies concerning the interbank net-
work, e.g. Gai and Kapadia (2010), clearly show the dualism of
interbank connections: on one side, they are necessary in order to
pool idiosyncratic risk of single institutions and improve the effi-
ciency of the banking sector. In Iori et al (2006) a dynamic model
of the banking system, where banks can interact with each other
through interbank loans, is used to show the stabilizing role of the
interbank lending. On the other side, interbank connections turn to
be channels for the propagation of local shocks through the whole
system. A summary of the results coming from this branch of the
literature can be found in Upper (2011).

From a supervisory and macroprudential viewpoint, it therefore
is necessary to measure and monitor the stability of the banking
system as a whole, in parallel to the situation of the single finan-
cial institutions. In this respect, different measures of systemic risk
have been developed, and a taxonomy of these measures is provided
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for example in Bisias et al (2012). In this non-exhaustive summary
of the interbank contagion literature we focus here only on mea-
sures based on network analysis and systemic financial linkages. In
Eisenberg and Noe (2001) a recursive algorithm to find the clearing
payment vector that clears the obligations of a set of financial firms
is provided. In addition, the authors provide information about the
systemic risk faced by each institution. In Battiston et al (2012)
a measure based on network feedback centrality is introduced, the
so-called DebtRank; this measure is used to analyze a dataset con-
cerning the FED emergency loans program to global financial in-
stitutions during the period 2008-2010. The results show how, at
the peak of the crisis, all the largest institutions served by the FED
program became systemically important at the same time. In Hałaj
and Kok (2013a) an approach to generate interbank networks with
realistic topologies is presented. Furthermore, the authors expand
the Eisenberg and Noe (2001) algorithm to include firesales effect.
Delpini et al (2013) study the Italian electronic trading system (e-
MID) with tools borrowed from statistical physics to find the key
players on a liquidity overnight market. Interestingly, the drivers
of the market (ie the nodes which are crucial for the functioning
of the interbank market) are often not the hubs neither the largest
lenders in the system. We highlight that in all these contributions,
results are always restricted to contagion or spillover effects related
to one particular segment of the interbank market, which usually is
the interbank claims banks have on each other.

The branch of the literature closer to our contribution is probably
the one concerning dynamic interbank models. These discrete-time
models usually allow to include some realistic microeconomic be-
havior for the banks on top of the network structure. An example
can be found in Bluhm and Krahnen (2011). The authors study
systemic risk in a banking system where financial institutions are
linked to each other through interbank lending, and firesales by one
institutions affect the capital of all the others, since the price of
the (mark-to-market) assets in the secondary market is endogenous
in the model, and driven by the liquidity needs of the banks. The
authors also introduce a game-theoretical approach to identify the
contribution of each bank to systemic risk, and use this measure
to develop an optimal charge to reduce financial instability. Georg
(2011) develops a dynamic banking system where banks are allowed
to optimize their portfolios of investments and they receive random
fluctuation in their deposits. With this agent-based model, the au-
thor shows how the topology of the interbank market affects the
stability of the system. In particular, he shows that contagion ef-
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fects are larger in random network than in scale-free network, the
classical structure of real world networks. He also investigates the
role of the central bank in the interbank market, and in partic-
ular how the level of collateral which is accepted by the central
bank affects financial stability. The results show that an abundant
provision of liquidity by the central bank leads to a reduction of
the liquidity banks exchange each other on the interbank market.
Ladley (2011) develops a model of a closed economy composed of
households which can deposit their funds in a banking system and
require loans for their private investments, and banks which learn
through genetic algorithm how to better allocate their resources in
order to maximize their expected returns. Since banks can lend also
among each other, bad investments taken by households can trigger
domino effects among the banks in the system. Banks in the model
are subject to regulation, and the aim of the model is to qualita-
tively show the link among regulation, interbank network structure,
and the likelihood of a contagion. The results show that for high
levels of connectivity the system is more stable when the shock is
small, while the spillover effects are amplified in case of larger initial
shocks. Hałaj and Kok (2013b) similarly introduce an agent-based
model where banks optimize their risk-adjusted returns. The model
is used to study the emergence of network structures when adjusting
some key (macro-prudential) policy parameters.

Despite the huge number of contributions in network theory aimed
at the identification of important nodes in a graph, a lot of work still
has to be done for what regards multi-layered (ML) network which is
the topic of this paper. In different fields, from telecommunication
engineering to sociology, ML system are a natural representation
of the reality. Examples are the Open Systems Interconnections
(OSI) model, used to abstract the real internal structure of a com-
munication system into different functionality layers, or the several
ML social network models which encapsulate in different layers the
different natures of possible social connections among people. Fi-
nancial systems are another example of multi-layered network, given
the several kinds of connections that can exist among banks balance
sheets. Recently, Gomez et al (2012) showed that a diffusion pro-
cess, modeled as a flow traveling on the network from node to node,
can be extremely amplified in case the same set of nodes is con-
nected through multiple layers. The linear equations they propose
in order to analyze the model are hardly applicable to cases when
the nodes have a non trivial internal structure and the contagion
mechanisms change from layer to layer, but the results clearly claim
the necessity to study ML systems from a different perspective than
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their single-layered counterparty.
We contribute to the literature in two main dimensions. First, we

study how different segments of the interbank markets, and the re-
lated risks arising from them, interact with each other in an holistic
view of the financial system. Second, we introduce a new measure
for systemic importance institutions which embodies information
regarding both the network structure of the multi-layered financial
system, which can be extracted with classical tools from network
theory, and the balance sheets of the banks.

3 Multi-Layered Financial Systems

A natural way to study highly interconnected systems is network
theory. Network theory provides a rich set of tools to assess the
centrality (or systemic importance) of the members of a network
of nodes. In this paper, each node in the network represents a
bank; importantly each node will be equipped with a non-trivial
internal structure, representing the banks’ balance sheets. This is
crucial, since abstracting from a realistic internal structure for the
node means to disregard the realistic and interesting effects linked
to limited liabilities and capital absorption. Moreover, a key aspect
of this paper is to analyze the interconnectedness between banks in
a multi-dimensional space. Banks in reality are connected through
several kinds of relationships, directed and undirected, with different
maturities. In order to encapsulate this level of complexity, we use
a multi-layered instead of a single-layered network. We formally
denote a multi-layered network by a triple G = (V , W,L), where
V is a set of nodes, common to all the layers, L is a set of labels
indicating the different layers, W =

(
W 1,W 2, . . . ,W l

)
is a set of

weighted matrices, with the same cardinality of L, representing the
network topologies in the different layers.

We want to concentrate in particular on three layers, which rep-
resent three different kinds of dependencies among banks that were
reveled to be fundamental during the last financial crisis: (i) long-
term, direct bilateral exposures, reflecting the lending-borrowing
network; (ii) short-term direct bilateral exposures, reflecting the
liquidity network; and (iii) common exposures to financial assets,
measuring the network of overlapping portfolios2. Consequently, we
will label layers l1 and l2 for the long-term and short-term bilat-

2It should be noted that several other layers can be added to the multi-layered framework,
for example the layers representing the network of collaterals and the network of derivatives
exposures. Naturally, the inclusion and calibration of other layers require more data, not
available to us, that would increases the correctness of the results.
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Figure 1: An exam-
ple of triple-layered net-
work, where the same
set of nodes belong to
each of the three lay-
ers, characterized by its
own topology. The first
two layers contain di-
rected networks, mean-
while the last one is undi-
rected. The different
neighbors in the differ-
ent layers give the multi-
layered networks com-
pletely different system
dynamics during shock
propagation, since the
number of affected nodes
can drastically be in-
creased due to the multi
dimensional structure of
the system.

eral exposures, respectively, which are weighted and directed, and
the layer l3 for the common exposures which is an undirected and
weighted network.

In layer l1 a link from node i to node j represents a long-term
loan from bank i to bank j, and the load W 1

ij on the edge repre-
sents the amount of the loan. If bank i defaults, losses in this layer
are transmitted through the counterparty channel: the creditors of
bank i are directly affected, since its failure can potentially results
in the inability of the bank to pay back (partially or totally) its
outstanding loans. The losses thus incurred would directly affect
the capital of the creditor banks. Layer l1 therefore embodies in-
terbank counterparty risk; differently from the case in which banks
lend to isolated firms, when the borrower is a bank that immerses
in a network of credit relationships, its probability of defaults de-
pends also on its own counterparties, which in turn depends on the
conditions of their debtors, and so on. Interbank counterparty risk
therefore is more complicated to estimate than risks related to non-
bank counterparties, especially because banks usually do not have
the complete information about the full network of exposures.

For what concerns layer l2, the 2007-9 financial crisis illustrated
that the short-term interbank funding market can play a crucial
role in the propagation of shocks. Even well-capitalized financial
institutions, which heavily rely on some form of short-term debt
for financing their balance sheets, can get into trouble when the
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liquidity in the interbank markets suddenly disappears. This hap-
pens if banks start (for whatever reason) to hoard liquidity instead
of making it available on the market. The introduction of layer l2
aims at capturing this funding risk. A link from node i to node j
represents a short-term loan from bank i to bank j. The risk for
bank j is that the debt will not be rolled over, and therefore layer
l2 embodies funding risk. We note the necessity to use different
layers in order to encapsulate different maturities in the interbank
connections, which bring to different contagion mechanisms during
a shock propagation.

The third layer l3 is meant to reflect the situation where two
banks invest in the same financial product(s). This would imply
that their balance sheets can be correlated, in the sense that asset
price induced problems of one bank can increase the probability of
financial stress of the other bank. Losses can induce one or more
banks to firesale that particular financial product, and the resulting
decline in its price will affect the balance sheets of the indirectly
connected banks which hold the same asset marked to market. Layer
l3 aims at reproducing such interdependencies among banks’ balance
sheets, and therefore embodies the liquidity risk banks face. A link
between bank i and bank j exists if the two have some common
mark-to-market assets in their balance sheets, and the load on the
edge represents a measure of the strength of the correlation among
them. In this layer, as already highlighted, shocks are transmitted
through an indirect channel.

Funding risk and liquidity risk are instead intrinsically related to
each other. Funding risk refers to the condition for which a bank
is suddenly unable to raise liquidity, in this framework exemplified
by the short-term interbank market. This can happen for several
reasons: bad news about the financial institution leads to a dete-
rioration of its creditworthiness, a common hoarding behavior by
banks due to the fear of bad times ahead, or a real deterioration of
the quality of the assets of the bank. If the bank is used to fund
its assets through short-term loans, the inability of the bank to roll
over its debt can force it to firesale some of its financial assets, which
would have negative implications on the price of those assets. When
assets prices fall down, deteriorating balance sheets may force firms
which face capital ratio requirements to adjust their portfolios, per-
haps by trying to hoard liquidity and capital. This mechanism can
create liquidity spirals which amplify shocks (Brunnermeier (2009)).
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4 Model for the Interbank Network

The model described in this section will be used for the analysis of
systemic risk in this paper, and it is designed to capture important
features of a real financial system. The system is composed of N
interconnected financial institutions (hereafter, banks) andM finan-
cial securities. Banks’ balance sheets are here composed of securities
ei, long-term interbank loans lli, short-term interbank loans lsi , cash
ci, and other assets including all the other banks activity that will
not be used in our model, oai ; i.e. total assets can be expressed as
follow: ai = ei + lli + lsi + ci + oai . Liabilities include long-term in-
terbank borrowing bli, short-term interbank borrowing bsi , deposits
di, and other liabilities not used in the model, oli. i.e. total liabili-
ties can be expressed as: li = bli + bsi + di + oli. The balance sheets
equality holds:

ai = li + eqi (1)
where we call eqi the equity of bank i. The securities of each bank
are composed of a certain number of financial securities sµ, µ =
1, 2, . . . ,M . So we can formally write ei =

∑M
µ=0 s

i
µ · pµ, where pµ is

the price of the security µ and siµ ≥ 0 is the amount of security µ in
the portfolio of bank i. Banks’ portfolios are assumed to be marked
to market, and the price of the securities is endogenously determined
in the model. The financial system can be mapped through the three
weighted matrices described in section 3: W 1 describes the long-
term interbank exposures, W 2 the short-term interbank exposures
and W 3 the common exposures among banks.

Banks have to keep their risk-weighted capital ratio above a cer-
tain threshold value, and they have to fulfill a liquidity requirement.
The risk-weighted capital ratio is computed as:

γi =
ai − li

wib · (lli + lsi ) +
∑M
µ=0w

µ · siµpµ +CRWAi
(2)

where wib represents the weight for interbank assets, fixed here at
0.2, and wµ are the weights for the financial assets, which are inferred
from our data set; CRWAi represents the part of the risk-weighted
assets which is not used in our model, and therefore is a constant.
The first constraint banks have to fulfill is:

γi ≥ γ̄ (3)
where γ̄ is the minimum capital requirement. The second constraint
banks have to fulfill is:

ci ≥ β · (di + bsi ) (4)
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where β is the parameter representing the liquidity buffer.
In this model, a bank can suffer losses for two reasons: (i) some

of its counterparts fail and are unable to pay back the debt, or (ii)
the price of some of its securities declines. The price of each security
is endogenously determined in the model, and it is described by the
following equation:

pµ = p0
µ · exp

−αµ ·
∑N
i sell

i
µ∑N

i s
i
µ

 (5)

where 0 ≤ selliµ ≤ siµ is the amount of security µ sold by bank i, and
αµ is a positive constant representing the deepness of the market for
that security.

If the bank’s capital ratio in eq. (2) becomes lower than γ̄ after
it books some losses, the bank can increase it in two ways: reducing
its short-term interbank exposure, or selling securities. Since the
cheapest way of increasing the risk-weighted capital ratio is to reduce
interbank exposures, as long as lsi > 0 each bank first prefers to
follow this way3. Similarly, if the bank has to raise liquidity in
order to fulfill the requirement expressed in eq. (4), it will first
withdraw liquidity from the short-term interbank market, and if
this is not enough, it will liquidate part of its portfolio. If a bank
is not able to fulfill the capital requirement, it defaults. When a
bank defaults, it is first liquidated, so all its securities are sold (if
any) and it withdraws all its funds from the short-term interbank
market, and then it tries to pay back its creditor banks. The default
of a bank involves three risks for the other banks: (i) counterparty
risk, associated with the possible losses form the interbank market,
(ii) funding risk, associated with the possibility of losing funds from
the short term interbank market, and (iii) liquidity risk, associated
with firesales of marked to market financial securities.

4.1 Model Dynamics

The model dynamics is reported in Fig. 2. Starting from a par-
ticular configuration of the multi-layered network G of banks with
heterogeneous balance sheets, we shock the system and then repeat

3In this model, withdrawing funds from the short-term interbank market is the cheapest
way to raise liquidity, since it does not involve any capital losses like the ones associated
with firesales. Nevertheless, in reality a bank might prefer to sell assets if the market is deep
enough to absorb the sales without resulting in large depreciation of the value of the assets.
In any case, the dynamics reproduced in this model represents a possible series of events in
case banks stop trusting each other inducing them to hoard liquidity rather than retain funds
in the interbank market.
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Figure 2: The Figure represents the dynamics of the model. Starting from the
system at equilibrium, we shock it, usually by letting default one or more banks at
the same time. Subsequently, the sequence of events in the shaded area of the figure is
iterated till the number of defaults stops increasing; at the beginning of each (short-
term financial) period, banks book losses coming from the default of their creditors
during the previous period, if any; in a second step, they decide the percentage of debt
to roll-over to their borrowers in the short-term interbank market; in the last step,
banks which have liquidity needs liquidate part of their securities holdings.

the same sequence of events, representing a short-term financial pe-
riod, until when the number of defaults stops increasing.

At the beginning of each period, banks book eventual losses from
the interbank market due to the bankruptcy of their debtors in
the previous period. Those losses immediately affect the capital of
banks, and therefore their risk-weighted capital ratio described in
eq. (2). If a bank’s risk-weighted capital ratio remains above the
threshold value γ̄, then it will not react to the losses. Otherwise, it
will first try to reduce its short-term interbank exposures. Indeed,
during each period, banks have to decide which percentage of the
short-term debt they want to roll-over to their debtors. This choice
depends both on the internal needs of banks, due for example to
losses coming from the long-term interbank market, which causes a
reduction of the risk-weighted capital ratio of the bank under the
threshold value γ̄, or due to the fact that its own funding from other
creditors bank is reduced, forcing it to withdraw money from the
short-term market. This loop is properly described by the following
map:

~f · ~ls
ᵀ
= min

(
~r+max

(
W 2 ~f − ~cbuf ; 0

)
; ~ls

ᵀ)
(6)

where ~f = (f1, f2, . . . , fN ) is the percentage of funds withdrawn by
each bank from the short-term interbank market (fi ∈ [0, 1], i =
1, 2, . . . ,N); ~r = (r1, r2, . . . , rN ) is the amount each bank wants to
withdraw for liquidity and capital reasons; ~ls = (ls1, ls2, . . . , lsN ) is the
total short-term exposure of each bank; and ~cbuf = (cbuf ,1, cbuf ,2, . . . , cbuf ,N )
is the total amount of cash each bank has out of its liquidity buffer,
if any: cbuf ,i = max [ci − β(di + bsi ); 0]. The capital and liquidity
needs are computed in order to restore the required level of cash and
risk-weighted capital ratio according to the bank’s constraints. We
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have from equation (4):

rliqi = min

(
lsi ;
β(di + bsi )− ci

1 + β

)
(7)

which is larger than zero as far as ci < β · (di+ bsi ). If ci ≥ β · (di+
bsi ) the banks has no liquidity needs to fulfill, and therefore rliqi = 0.
In the same spirit, we compute the amount to withdrawn due to the
risk-weighted capital ratio constraint; from equation (3) we have:

rcapi = min

lsi − rliqi ;
γi(CRWAi +

∑M
µ=0w

µ · siµpµ) + γiw
ib · (lli + lsi − r

liq
i )− eqi

γiwib


(8)

rcapi is larger than zero as far as γi < γ̄. If γi ≥ γ̄, then rcapi = 0.
The final amount to withdraw will be so ri = rliqi + rcapi ∈ [0, lsi ].
All in all, equation (6) simply states that each bank withdraw funds
from the short-term interbank market only in case it has to fulfill
its liquidity or risk-weighted capital ratio requirement, and in case
other banks decide to withdraw their funds from its liabilities and
the cash it has is not enough to pay back those creditors.

Once banks decide about how much to withdraw from the inter-
bank market, they may still need to sell securities in order to pay
back eventual creditors and to restore the required levels of liquidity
and capital buffers. As described by eq. (6), banks first use their
available liquidity to pay back creditors, and if this is not enough
they withdraw funds from the short-term interbank market. In case
they still need liquidity, they have to liquidate some securities. We
can indicate with Z ∈ RN×M the matrix whose entries Ziµ ≥ 0
indicate how many securities of kind µ bank i has to sell in order
to fulfill its needs. Since the securities prices are adjusting accord-
ing to eq (5), we use a modified version of the map introduced by
Eisenberg and Noe (2001) in order to compute both matrix Z and
the clearing vector ~p which resolves the system. We have:

~p = min
[
~l; Πᵀ · ~p+ ~c+ Z · ~v

]
(9)

where we denoted with Π the matrix with the relative obligations
among banks, that is:

Πij =
w2
jifj∑

j w
2
jifj

(10)

The vector ~l represents the total obligations of the banks towards
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the other institutions, that is:

li =
∑
j

w2
jifj (11)

and ~v is the vector indicating the value of each security, according
to eq. (5).

In turn, the matrix Z is computed as the sum of three compo-
nents, which are the liquidity needs driven by obligations towards
other banks in the system, the liquidity needs driven by the require-
ment expressed in eq. (4), and the liquidity needs driven by the
capital requirement expressed in eq. (3). In more details, they can
be formalized as follows: suppose there is only one security in the
system, the generalization to the case of several securities is then
straightaway; in this case, the matrix Z becomes a vector, again
composed by three parts; the first part is:

Zib = min

max
0;

~l−~c−Πᵀ · ~p
pµ

 ;~s
 (12)

where we indicated with ~s = (s1, s2, . . . , sN ) the amount of secu-
rities each bank still have in its portfolio. This is the component
driven by the credit line reduction in the short-term interbank mar-
ket.

The second components is:

Z liq = min

max
[
0;~c− α(~d+ ~bs)

]
pµ

;~s
 (13)

This component takes into account for the liquidity requirements of
banks.

Eventually, there is the component due to the necessity of fulfill-
ing capital requirements, which is larger than zero if also by with-
drawing all their funds from the short-term interbank market they
still need to increase their risk-weighted capital ratio:

Zcap = min

wib ~lib +wµpµ − ~eq
γ̄

wµ
;~s

 (14)

The sum of these three components represents the total amount
which appears in eq. (9) : Z = Zib + Z liq + Zcap. The general-
ization to the case of multiple securities is simply derived as follow:
each bank tries to sells the first type of security in its portfolio; if
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the bank sell all those securities, it moves to the second type of se-
curity, and so on, up to the point when it fulfills its liquidity needs.
Alternatively if its liquidity needs cannot be fulfilled, the bank will
have to sell all its securities.

After the payment vector ~p is computed, banks which are not able
to pay back their creditors or to fulfill their Risk-Weighted Capital
Ratio (hereafter RWCR) are declared in default, they are liquidated
and eventual losses are transmitted through the long and short-term
interbank market at the beginning of the next period. The dynamic
is repeated till the number of defaults stops increasing. It should
also be noted here that in our framework a bank can default for two
different reasons: first, it can be unable to fulfill liquidity or capital
requirements, second, it may be illiquid and become unable to pay
back its debtors.

4.2 Data Set

Our dataset consists of a sample of 50 large EU banks. For each
bank, we include information about capital, short-term and long-
term interbank borrowing, deposits, short-term and long-term in-
terbank loans, aggregate securities holdings4, and cash. The dis-
tinction between short and long-term interbank assets reflects the
maturity of the loan which can be below or above three months.
We also know the RWCR of banks, from which we can reconstruct
the mean weights for the financial securities of each bank. The
data sources are the banks’ annual financial reports, and Bureau
van Dijk’s Bankscope; the balance sheets data refer to the end of
2011. Figure 3 shows the total capital across the banks in the sam-
ple, and their Risk-weighted Capital Ratios, revealing a high level
of heterogeneity. The horizontal red line in the lower panel of the
figure represents the standard Risk-Weighted Capital Ratio require-
ment equals to 8%, as specified in the Basel standards. The aggre-
gate short-term interbank exposures in the system amount to about
e1.2tn and the aggregate long-term interbank assets amounts to
e900bn.

We do not have data on individual banks’ bilateral exposures,
neither on the details of financial securities portfolios. Instead, we
use this uncertainty as degree of freedom of the model, in order to
investigate which multi-layered network structures are particularly
prone to a systemic breakdown. In principle, every possible network
in each of the three layers represents a plausible configuration for

4As securities holdings, we use the sum of Securities Held for Trading, Securities Held at
Fair Value and Available for Sale Securities.
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Figure 3: In the upper panel, the equities of the 50 banks in our sample, in millions.
In the bottom panel, the Risk-weighted Capital Ratio of the banks; the horizontal red
line represents the standard Basel capital requirement of 8%. The figure highlight a
high level of heterogeneity in the sample, both in term in total equity and in term of
Risk-weighted Capital Ratio.

the multi-layered network structure; in order to focus only on the
interbank networks which are the most probable in the real financial
system, we extract the network topologies for the short and long-
term interbank exposures according to a probability matrix, with
the only restriction that each bank is exposed to other entities at
most for the 20% of its total interbank assets. A probability matrix
PG is a matrix which entries pGij specify the probability of exist-
ing of the directed link i → j, representing a loan from bank i to
bank j. The probability matrix is built upon the European Bank-
ing Authority (EBA) disclosures on the geographical breakdown of
individual banks’ activities as disclosed in the context of the EU-
wide roll stress test. The methodology is based on Hałaj and Kok
(2013), and networks in layers l1 and l2 are generated as follow:
banks are randomly extracted from the sample, and for each bank
we generate links according to the probability matrix; for each link,
a random number from a uniform distribution on [0, 1] is extracted,
indicating what percentage of the interbank assets of the first bank
is deposited in the interbank liabilities of the second (the amount
is properly truncated to take into account the limited liabilities of
the second bank, and the constraint that each bank is exposed to
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Figure 4: The LHS figure shows a realization of the interbank network, extracted
from the distribution specified by the probability map PG; each color represents a
different Country. The RHS figure, the degree distribution of the networks generated
according to PG shows a high level of heterogeneity among nodes’ topological features
in layers l1 and l2.

no more than 20% of its total interbank assets to each other bank);
networks produced in this way show a mean density equals to 14%.
An example of a network generated in this way is reported in Fig.
4, together with the total-degree distribution for layer l15.

In contrast, the network in layer l3 is randomly generated, since
we do not have sufficiently granular data or statistics concerning
the securities portfolio structures of the banks in the sample. We
only have information about individual banks’ aggregate amount of
securities. This random network generation is conducted by first
choosing the number M of securities to use in the simulations, and
subsequently building a random bipartite network between the N
nodes and theM securities: in this network a link from a bank i and
a security µ means that the bank has in its portfolio that particular
security, and the amount of the shares is represented through the
weight of the edge. Each link in this bipartite network has the same
probability p to exist. In the baseline setting we assume that, for
each bank, all the out-coming links have the same weight. Starting
from this random bipartite network S, which entries sµi represent
the amount of security µ in bank i’s portfolio (i = 1, 2, · · · ,N ,
µ = 1, 2, · · · ,M), there are different ways to build the network of
the overlapping portfolios, and an example is:

W 3
ij =

M∑
µ=1

sµj
stotj
·
[
max

[
1; s

µ
i

sµj

]]
(15)

In this setting, the weight of the directed link from bank i to bank
5Also if we use the same probability matrix PG for the two layers l1 and l2, the final

topologies can be different due to the differences in the aggregate short and long-term inter-
bank exposures.
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j is the proportion of the portfolio of bank i that overlaps with the
portfolio of bank j.

We note that the topology of the multi-layered network is the only
degree of freedom in the simulations, since banks’ balance sheets are
always kept fixed and calibrated according to our data. Therefore,
all the degrees of randomness would be completely removed in case
of full knowledge of direct bilateral exposures for the long-term in-
terbank market, exposures on the short-term interbank market, and
more granular information on banks’ portfolios.

5 Simulation Results

Systemic risk in interbank markets depends on numerous factors
regarding both the financial status of the members of the bank-
ing system, their balance sheets, and the disposition of the linkages
among them. In this paper, we keep a defined and realistic structure
of banks’ balance sheets, as described in section 4, and we investi-
gate how the different structures for the interconnections among the
agents affect the financial stability of the whole system. This is in-
teresting for various reasons. First, it gives indications about the
impact of different network structures on financial stability; second,
by using classical tools from network theory, it enables us to assess
each bank’s contribution to systemic risk; third, it sheds light on
the role of banks’ capitalization on the resilience of the system.

In the baseline specification of the model, parameters are set in a
way to reproduce realistic regulatory requirements on banking sys-
tems and a plausible price elasticity for the securities market. The
minimum risk-weighted capital ratio requirement is fixed, according
to the Basel standard, to γ̄ = 8%. The minimum required liquidity
buffer is fixed through the parameter β = 5%.

The price of all M securities is initially fixed at 1: p0
µ = 1 (µ =

1, 2, · · · ,M). The elasticity factors, αµ, are fixed at 0.2, and the
number of securities is M = 30. In this way, banks do not have
preferences about which securities to liquidate first in case of need,
and the bipartite network banks-securities, which represents banks’
securities holdings, is built with a Erdös-Rényi index p = 0.2. We
will investigate later how the number of securities and the topology
of the network in layer l3 affect the results.

The initial shocks are assumed to derive from the failure of one
of the 50 banks in the sample. The failure of the bank implies the
liquidation of all its securities holdings, the transmission of losses
on the long-term interbank market, if any, and the withdrawn of
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all the funds it provides in the short-term interbank market. The
risk for the system hence materializes via the lack of the funding
services provided by the targeted bank, together with the risk of
losses transmitted through the exposure channel and the securities
market. How the system reacts to this initial shock strongly depends
on the topological structure of the underlying multi-layered network.

5.1 Systemically Important Banks

The importance of a bank in a banking system does not depend
only on its financial situation. In fact, contagion is a process involv-
ing two main steps: the default of one or more components of the
system, which in turn depends on the financial situation of the en-
tities, and the propagation of the shock through interbank linkages.
In this paper, we are interested in this second effect, namely how
the network structure can affect the stability of the system after an
idiosyncratic shock hits one of the banks, and part of our task is to
determine which structures are more prone to financial breakdowns.

A first result from our simulation engine is a test of the impact
of each bank’s failure on the whole system. For this purpose, we
first shock one initial bank, we call it bank b0, and then we let
the system evolve according to the scheme in Fig. 2 up to when
the number of defaults stops increasing. The impact of each bank
on the financial stability of the system is measured through the
total number of defaults it produces. This number of defaults is the
random variable we want to estimate the distribution of. In fact,
even if the banks’ balance sheets are always the same, including
also the aggregate exposures of each bank towards all the others,
the degree of randomness left in the structure of the financial multi-
layered system produces a level of uncertainty on the number of
defaults following the bankruptcy of bank b06.

In order to highlight the role of each bank in the system, we
present the disentangled effects from the three layers, together with
the effects coming from the complete multi-layered network’s struc-
ture. To this end, we first run the simulations when all the banks
are only connected through the long-term interbank market, mean-
ing that the only layers presenting some edges is l1; the only risk
present in this system is therefore the counterparty risk. Then we
run the same simulations with only layer l2 activated, meaning that

6It should be recalled that when the bank b0 defaults at the beginning of the simulation, it
is liquidated, implying that it withdraws all its funds from the short-term interbank market,
it sells all its available for sale securities, and it tries to pay back its creditors on the short
and long-term interbank market.
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the only risk present in the system is the funding risk7. In the third
scenario, we run the simulations with layer l3 as the only active
layer8, representing the case where the only risk banks face is liq-
uidity risk. Finally, we present the case where all the three layers
are activated simultaneously.

As a benchmark example, we report the results for one particu-
lar bank. The four panels in Fig. 5 show the distributions of the
number of defaults in the four scenarios described above. It is ev-
ident that bank DE023 is in general a non-systemic bank, in the
sense that in most of the simulations its bankruptcy does not pro-
duce any contagion (in the form of additional bank defaults). In
particular, the contagion through common exposures is almost ab-
sent, as illustrated in the top right panel of the figure9. The red
line in the bottom right panel represents the quantitative convolu-
tion of the three single-layered network distributions: it basically
represents the linear superimposition of the three effects, and it is
interesting to compare it with the distribution for the total number
of defaults in the case of three active layers. As one can see from
the picture, and also from the left-hand side panel in Fig. 6, the
two distributions differ in the way that the three layers working to-
gether produce more mass in the tail. In particular, the linear sum
of the effects produced by the three layers separately never increases
9 defaults, while the probability to have more than 10 defaults in
the complete multi-layered network is roughly about 5%. This find-
ing clearly highlights the non-linearity in multi-layered systems: the
three channels of contagion working together usually produce many
more defaults than the sum of the defaults when the single layers
are active separately.

In the right-hand side panel of Fig. 6 one can see the dynamics
of the contagion process when bank DE023 defaults for one specific
configuration of the multi-layered network. In particular, the red
bold line represents the evolution of the number of defaults when all
the three layers are working together. The other lines represent all

7In those two scenarios, each bank is assumed to have a portfolio which is completely
independent from all the other banks’ portfolio in the system. Nevertheless, price is still
driven by eq. (5), and therefore firesales can still be costly for the banks, also if there are no
contagion effects due to common exposures.

8In this third scenario, all the interbank assets of the institutions in our sample are supposed
to be directed to an external node, and all the liabilities in the interbank market are provided
by this node, which does not play any other role in our financial simulator, in the sense that
it never withdraws funds and it cannot fail or transmit any losses.

9We are using as measure of contagion the total number of defaults following an initial
bankruptcy. Of course, other choices are possible. One could instead use, for example, the
aggregate reduction of capital in the system. Also if this measures is not very indicative, since
it does not specify which banks incurred the losses and if the losses produced defaults, in that
case also the panel in the top right would produce some non-null results.
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Figure 5: In the top left panel, the distribution of the total number of defaults when
the bank DE023 defaults in our simulation engine in the first scenario, namely when
the only active layer is l1. The distribution shows the counterparty risk that the bank
represents to the whole system. In the bottom right panel, the distribution of the
number of defaults when the only active layer is l2. In the top right panel the same
distribution is presented for the case of layer l3, which represents the contribution of the
bank to the liquidity risk of the system. In the bottom right panel, the distribution
of the total number of defaults in the case of all the three layers are active at the
same time. The red line represents the quantitative convolution of the other three
distributions, representing the linear sum of the three effects. Each graph is the result
of 50000 realizations of the banking system.

the possible combinations of the contagion channels. Simply by eye-
balling, it is easy to discern that the sum of the number of defaults
in the single-channel scenarios never reaches the total number of
defaults for the whole system. A deeper examination reveals that
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Figure 6: On the left, the distribution of the total number of defaults when bank
DE023 fails and all the three layers are activated at the same time. The inner panel
highlights the fat tail of the distribution compared with the convolution of the three
separate layer effects. On the right, the dynamic process when the bank fails for one
particular realization of the multi graph. The horizontal axes represents the time, and
the vertical axes represents the total number of defaults.

this phenomenon is actually due to spiral effects: in case only one
of the three layers is active, the contagion process is dampened (see
Fig. 6). Yet when more than one channel of contagion is present,
the contagion process is much more probable, and liquidity needs of
one bank can result in a capital reduction of others, which have to
increase their capital ratio by withdrawing further short-term funds
or by liquidating their liquidity portfolio.

Two other interesting examples from the simulation engine are
worth noting, where the non-linear nature in which counterparty,
funding and liquidity risk combine each other is much more marked.
In Fig. 7, the default of bank DE019 is the initial shock inflicted
to the system. It is observed that the default of this particular
bank results in contagion effects via only one channel, namely the
long-term interbank exposures represented in the top left panel of
the figure. Interestingly, however, the systemic importance of the
bank is amplified by the presence of the other two layers in the
multi-layered network. In fact, when the single layers are considered
separately, the largest number of defaults is 8, reported when only
layer l1 is activated. No defaults are reported in the other two
layers. Yet, when we consider the three layers working together, the
largest number of defaults reported in the simulations is 37, and
the distribution is much more fat tailed. Similarly, Fig. 8 shows
an example of a bank which is very important in the short-term
interbank market, therefore as provider of short-term funding to
the other banks in the system, and how this importance is amplified
in the case of three layers activated at the same time.
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Figure 7: Refer to Fig 5 for more details.
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Figure 8: Refer to Fig 5 for more details.

In the Appendix we report the same graphs for the most impor-
tant banks in the sample. Overall, for the great majority of the
banks there is no substantial contagion effects when they fail, in-
dicating a certain resilience of the financial system against random
defaults of its members. At the same time, there are a few banks
whose default could have considerable contagion effects in at least
one of the three layers, and this importance is extremely amplified
when considering all the three layers in conjunction.

The main lesson from these results is the limitations of mea-
sures of systemic risk based on single-layered networks’ configura-
tions. Single-network measures run the risk of heavily underesti-
mating the systemic importance of banks, since they usually take
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into account only the counterparty risk associated with a particular
segment of the interbank relations. The simulations performed with
only layer l2 activated, on the other hand, show the importance of
funding risk in banking activities, as also highlighted during the last
financial crisis, and how it can materialize if banks start hoarding
liquidity instead of making short-term funds available on the inter-
bank market. Moreover, the amplification of the shock due to fire
sales and to non-perfectly liquid markets can greatly amplify local
shocks, leading to much more dangerous configurations in which a
large portion of the banking system can break down. We also note
that with the selected parameters, the layer l3 representing common
exposures usually just works as amplifier for the propagation of an
initial shock.

5.2 Systemically Important Topologies

The previous subsection showed that, given an initial defaulting
bank, different topologies for the multi-layered network imply dif-
ferent results with respect to the stability of the financial system.
And in particular, for some banks there exist critical configurations
for the system such that it becomes prone to systemic breakdowns.
Those configurations are the ones which populate the fat tails of
the distributions of the total number of defaults highlighted in the
previous subsection.

An interesting question which can be addressed with the simu-
lation engine is weather there exist some configurations which are
critical for all the banks at the same time. This is not a trivial issue.
In fact, also if a topology of the multi-layered graph can make the
system very vulnerable to the failure of one particular institution,
we cannot so far say anything about the systemic importance of the
other banks in exactly the same network structure. In case a very
important bank for the system in terms of the financial services it
provides to the other banks, assumes a central position in the net-
work structure, systemic risk is high, since the bankruptcy of this
bank can create contagion effects which affects a large number of
other financial institutions. If substantial contagion occurs only in
some of the simulated network structures we generate in our simu-
lations, it means that, in those cases, the idiosyncratic risk assumed
by the defaulting bank was badly distributed among the other insti-
tutions in the system. We therefore speak about systemic risk, and
systemically important institutions. Moreover, the possibility that
more large banks become systemically important at the same time is
a much riskier situation for the entire system, since the probability
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of a triggering event to happen, such as the default of an institution
which can produce dangerous spillover effects on the whole system,
is much larger. Given the probability matrix PG, we are interested
in investigating the possibility of existence of systemically important
topologies; formally, given a certain multi-layered graph G, we can
compute the systemic risk associated with the structure as follow:

RG =

∑N
i=1 d(i)

N
(16)

where we indicate with d(i) the number of defaults caused by the
bankruptcy of bank i, computed as the result of our simulation
engine.

In order to explore the possibility and the frequency of extremely
critical configuration for the banking system, we generate 106 multi-
layered network topologies, and for each of these configurations we
compute the mean value of the number of defaults produced by the
initial failure of each of the 50 banks in the system, according to eq.
(16). In this way, we associate to each network structure produced
its systemic relevance, indicating the mean level of systemically im-
portance across the banks. Obviously, since most of the banks do
not produce any contagion effects upon their failure (see Appendix),
the mean number of defaults will be relatively low. Figure 9 shows
the results of this exercise. In the left panel of the picture the distri-
bution of the systemic relevance RG of 106 multi graphs produced
following the methodology described in section 4 is shown. It can
be observed from the figure that, most of the network structures
are only relevant in the case where one of the largest banks default.
There exist, nevertheless, some topologies which make the finan-
cial system particularly prone to a financial breakdown. To clearly
illustrate this idea, in the right-side panel of Fig. 9 two extreme
cases are shown: in the multi network structure represented by the
blue crosses, the initial bankruptcy of almost all the banks does not
produce any contagion effects, a part of the case of bank 34 which
triggers other 2 defaults. The systemic relevance for this structure
will therefore be close to zero. By contrast, the red triangles in the
same picture show a very risky configuration for the system, since
the initial failure of 11 financial institutions would trigger a lot of
other defaults, highlighting the financial weakness of the entire sys-
tem.

Hence, fig. 9 illustrates that network structures matter for the fi-
nancial resilience and the proper functioning of the banking system.
It should be recalled that in all the simulations the banks’ balance
sheets are kept constant, and therefore also the aggregate short and
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Figure 9: On the left panel, the distribution of the systemic relevance is plotted
for 106 different network topologies. Each systemic relevance parameter is built by
generating the same network N times, where in our case N = 50, and for each of
this realizations we shock one of the banks in the system and we count the number
of defaults: the mean value of those numbers is then used as systemic relevance for
that configurations. The tail of the distribution highlights the existence of some critical
configurations for the financial system. As example, we present in the right panel of the
figure two cases: the network described by the blue crosses is a resilient configuration,
since the defaults of all the banks does not produce any considerable effects. The
network described by the red triangles, on the other, is extremely unstable, since the
failure of one of the largest bank trigger a lot of subsequent defaults.

long-term interbank exposures. It is clear that configurations like
the one in the tail of the distribution in the left side panel of Fig. 9
have to be avoided. In this framework, the multi-layered networks
are extracted according to a particular distribution specified by the
probability matrix PG for layer l1 and l2 and by a random portfo-
lios generator for layer l3, and they are all plausible networks, in the
sense that there is a certain probability for the real system to be in
those configurations. In reality, however, the multi-layered network
structure arises as the result of the local behaviors of a multitude
of economic agents, which (supposedly) have as target the maxi-
mization of their personal interests. The experiments we performed
highlights once again the necessity of having more granular data
regarding banks’ direct and indirect interconnections, in order to
monitor the system from a global perspective and avoid it to evolve
through configurations extremely prone to large breakdowns.

5.3 The Systemic Importance of the Securities Portfolios

In the previous sections the initial shock to the financial system was
always the bankruptcy of one single bank. In this section, we inves-
tigate how the system reacts when instead the shock consists of the
depreciation of the value of one or more securities. It should be re-
called that in the model banks are endowed with random portfolios.
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All the securities, moreover, are characterized by the same price at
the beginning of the simulations, which for sake of simplicity is fixed
to pµ(0) = 1, and the same elasticity factor αµ = 0.2. In the pre-
vious subsections, the number of securities was fixed to M = 30.
Keeping fixed this initial configuration, we first investigate how the
banking system absorbs a price reduction of one or more securities.
Fig. 10 shows the results. In the left side panels the number of
defaults following a certain percentage of reduction of the securi-
ties’ price is shown, respectively when the price reduction affects
only one security (top left panel), two securities (top right panel),
three securities (bottom left panel) and ten securities (bottom right
panel). In each of the graphs are reported the mean number of
defaults corresponding to different shock sizes, where the solid line
represents the situation when all the three layers are activated, while
the dashed line represents the situation when the only active layer
is l3. It is observed that if banks were completely independent from
each other in the layers l1 and l2, there would be very few defaults,
especially for price shocks which are not abnormally large10. Con-
sider, for example, the case when 10 securities are shocked at the
same time by reducing their value of 15%. Without any other con-
nections among banks apart from the common exposures, the mean
number of defaults is around 7. Meanwhile this number drastically
increases to 38 if banks are also connected through layers l1 and l2.
We note that since all the securities have the initial same price, and
are all characterized by the same elasticity factor, in this random
portfolio scenario it does not play a role which securities are shocked,
since the effects are averaged out when the number of simulations is
large enough. Eventually, as one can see from the figure, for values
of the shock smaller than 5% no defaults are observed, indicating
an adequate capital buffer level for small losses in banks’ securities
portfolios.

On the right-side panel of Fig. 10 we report the tails of the
distributions of the number of defaults for a shock to the securi-
ties equal to 15%, for the cases of one, two, three and ten initial
shocked securities respectively. The blue areas highlighted in the
graphs represent the last fifth quantile of the distributions. In the
cases of one, two and three shocked securities, the great part of the
mass of these distributions is concentrated in values close to zero,
highlighting a considerable financial resilience of the banking sys-
tem for random assets depreciations. Nevertheless, one can see in

10We report in the graphs all the possible values for a shock, so from 0% to 100% of reduction
of the asset’s value; of course, this is only an illustrative simulation exercise, since in reality
depreciations larger than 20% are extremely rare.
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the graphs that, also in the scenario of one security shocked by 15%
of its initial value, the shock can be amplified to destroy a large
part of the banking system11. These findings highlight that also if
the initial shock derives from a depreciation of the mark-to-market
banks’ portfolios, the multi-layered network structure is playing the
crucial role of shock amplifier.

Figure 10: On the left side of the figure, the four panels show the number of defaults
when one, two three and ten securities are shocked; the solid lines represent the number
of defaults when all the three layers are active at the same time, while the dashed lines
represents the same results when only the layer l3 is activated (firesales contagion
effects). On the right side, the tails of the distributions of the total number of defaults
are reported, when the percentage of securities’ reduction is equal to 15%; results are
here reported for the case of one, two, three and ten initially shocked securities. The
blue areas highlighted represent the last fifth quantile of the distributions.

A particular aspect related to the banks’ portfolio structures
should be highlighted. In all the previous results, the securities
portfolios were built according to the random algorithm described
in section 4.2. It should be noted however, that since all the securi-
ties in our framework are equivalent, banks maximize their utilities
by simply allocating their funds in equal measure in all the pos-
sible available securities. In this configuration the system results
in a maximum degree of overlap of banks’ portfolios, which implies
a fully connected (i.e. complete) network in the layer l3. The di-
ametric opposite of this configuration happens when banks invest
all in different securities, which translates in an empty network in
the layer l3. In order to illustrate the impact that the degree of
overlapping portfolios has on systemic risk, we use now a number of
securities M equal to N , the number of banks. This allows for com-
paring situations ranging from banks having maximum overlapping

11We note that those fat tails disappear as far as the layers l1 and l2 are deactivated. We
do not report here here also those distributions, but one can see from Fig. 10 that the mean
values of the number of defaults is exactly zero for shocks equal to 15% (dashed lines in the
left side panels), a part of the case when ten securities are shocked at the same time.
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portfolios (precisely, when all the banks equally share their funds
among all the possible M securities), to situations where banks in-
vest their funds in only one security and there are no common expo-
sures among them. The results of this exercise are shown in figure
11. We assume that the shock is a reduction of the value of all the
M securities in the system, respectively of 5% (black line), 7% (red
line), 10% (blue line) and 15% (green line). In this way, for a given
shock size, all the banks have to book the same losses (in percentage
points) in all the portfolios’ configuration we examine. The horizon-
tal axes of the graph reports the number ns of securities each bank is
investing in, and the portfolios are built in a way to always minimize
the degree of overlap among different banks. When ns is equal to
one, each bank has only one security in its portfolios, each different
from all the others (so there is a correspondence one-to-one between
the N banks and the M = N securities in the system). When ns is
equal to N , each bank invest its funds in all the possible securities,
and all the banks have the same portfolio structure. It is interest-
ing to note that moving along the horizontal axes from left to right
maximizes banks’ portfolio diversification (and hence reduces their
vulnerability to idiosyncratic risk) but at the same time minimizes
financial stability (it maximizes the number of defaults, and there-
fore, roughly speaking, the systemic risk). Our model highlights the
interesting duality between maximization of banks’ utility and min-
imization of systemic risk, a concept already highlighted in Beale et
al (2011) who argue that banks’ portfolios optimization can lead to
higher level of systemic risk, thereby emphasizing the necessity to
supervise systemic risk from a more global perspective12.

6 Systemic Importance Measure

A multi-graph financial structure reveals its fragility only in case a
shock hits the system; part of our task is to show when the system
is in a critical configuration, namely a configuration which is able to
amplify a local shock to the entire financial system. We recall that,
in this paper, systemic risk reflects the possibility that a single ma-
jor events triggers a series of defaults among financial institutions
within a short time period. Among the different methodologies de-
veloped in the last years to identify systemically important banks
and their contribution to systemic risk13, network-based measures
are receiving more and more attention, although there is no a stan-

12See also Tasca and Battiston (2012) for similar fundings.
13See e.g. Upper (2011) and Bisias et al (2012).
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Figure 11: The horizontal axes represents the number of securities in banks’ port-
folios; banks portfolios are built in a way to minimize their overlapping. The vertical
axes represent the mean number of defaults when all the securities are shocked by 5%
(black line), 7% (red line), 10% (blue line) and 15% (green line). The vertical ticks
represent the standard deviations computed over 105 simulations.

dard measure so far which can be considered universally accepted
in the literature. The main reason for the inconsistency among sys-
temic risk measures is that they rely on different microeconomic
models for the specification of banks’ behavior and the mechanisms
through which a shock can propagate within the financial system.
At the same time, network-based measures have the advantage of
compressing a lot of information regarding direct and indirect bank
interconnections, which appeared to be crucial during the last finan-
cial crisis. A network-based representation of the banking system
is therefore crucial to understand how the single institutions share
their idiosyncratic risks with the others, and to which extent this
risk-pooling is dangerous for the system.

It is important to note that a comprehensive study of the sys-
temic risk generated from the presence of interbank connections can-
not rely only on the network structure of the financial system. The
interconnections in an interbank market provide a way for banks
to pool the unavoidable risks linked to their activities, and the in-
terbank market should in principle play a stabilizing role for the
banking system. A bank which is very connected to a major part of
the others can have a crucial positive role in this scenario if its level
of capitalization is large enough, as it can be able to absorb the local
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Figure 12: The panels show a comparison between some classical network centrality
measures, and the number of defaults reported in our simulation engine following the
defaults of one particular financial institution. Each tick in the panels represents a
bank in a random-generated multi-layered network structure; the vertical axes rep-
resents a measure of centrality of that bank in layer l1 (first row of panels), layer l2
(second row of panels), layer l3 (third row of panel) and the superimposition of the
three layers (last row of panels); the horizontal axes represents the number of defaults
triggered by the bankruptcy of that particular bank, according to our simulation en-
gine. All the value are normalized to one, and the panels also show the correlation
among the two indexes. Results are reported for 105 random replications of the system.
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shocks of its neighbors. Such a bank will be considered as central
in terms of spillover potential to other part of the system, but from
the economic point of view its presence is beneficial for the system,
since it reduces idiosyncratic risks of other institutions. Figure 12
clearly illustrates this notion. The panels in the figure represents a
comparison between some classical network centrality measures and
the number of defaults reported in our simulation engine following
the bankruptcy of one bank. The number of defaults can be used
as a proxy for the systemic importance of a bank in the system.
Since we are dealing with a multi-layered framework, we compute
four different centrality measures (which are closeness, betweennes,
eigenvector centrality and PageRank) for all the three layers sepa-
rately, and the same measures when the three layers are projected
in a single one. As can be seen from the panels, there is basically
no correlation among those network measures and the number of
defaults we obtain from our simulations. This result highlights the
necessity to develop more sophisticated measures to asses the sys-
temic contribution of each institution to the financial system, and
those measures have to take into account the articulated internal
structure of the nodes in the network (in other words, banks’ bal-
ance sheets) as well as the different mechanisms of contagion and
risk-sharing present in the banking system.

This notwithstanding, considering only banks’ balance sheets in-
formation to assess the level of systemic risk in the banking sector
is extremely restrictive. Prior to the recent financial crisis micro-
prudential supervision was based on the notion that it was sufficient
to ensure the stability of the banking sector to require institutions
to have operate with an adequate level of capitalization. The recent
financial crisis, if anything, revealed that focusing only on individ-
ual banks’ soundness is a necessary but not sufficient condition for
safeguarding the financial system. In fact, as we will show later, the
risk-pooling mechanism, which is at the core of an interbank market,
can increase the chances of multiple failures to occur following an
initial shock. Since the process of contagion among financial insti-
tutions, as we already highlighted, is composed of two parts, which
are an initial triggering events (for example the failure of one single
institution), and the propagation of losses and distress in the finan-
cial system, the extent to which a local shock can propagate and be
amplified from bank to bank greatly depends also on the structure
of the banking system as a whole. To illustrate this point, figure
13 shows a comparison between some balance sheet-related quanti-
ties and the number of defaults following the bankruptcy of a single
institution. The figure shows that classical quantities like banks’
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total assets, total interbank liabilities, total interbank assets and
risk-weighted capital ratios do not necessarily provide useful infor-
mation regarding the systemic importance of the bank, as measured
by the number of defaults its bankruptcy can trigger. In particular,
one can see from the picture that the failure of small-sized banks
usually does not trigger too many other defaults. On the other hand,
regarding large-sized banks we find mixed results in the sense that
some of them trigger domino effects, while others do not. Eventu-
ally, the last panel on the right-hand side shows that there is no link
between the banks risk-weighted capital ratios and their systemic
importance.

To account for the fact that neither classical centrality measures
nor balance sheet indicators are sufficient for assessing the systemic
importance of an institution, the next subsection introduces an al-
gorithm to derive the systemic contribution of each bank to the
financial system. The framework will take into account both net-
work and balance sheets information, with the final aim of (i) re-
producing the results we obtained with the simulation engine; and
(ii) visualizing the network structure in a way to highlight how the
idiosyncratic risk of each bank is distributed among the other insti-
tutions, and when this risk-sharing brings the system to an unstable
configuration.

6.1 The aggregation algorithm

The algorithm we propose in this section to study the multi-layered
financial network is based on the concept of critical link. In each
of the three layers we introduced, a link starting from node i and
pointing to node j is said to be critical if the bankruptcy of bank
i results in the bankruptcy of bank j. We note immediately that,
without critical links in the three layers, no contagion effect is pos-
sible, although losses can be transmitted to the direct neighbors of
the failed bank. In fact, in case the default of a single bank does not
imply any other failures, the direct and indirect counterparties of
that bank were assuming an acceptable amount of risk with respect
to their own capital buffer, and we speak about counterparty risk
(or liquidity risk) but not about systemic risk. We can distinguish
the conditions for a link to be critical in the three different layers14:

• Layer l1: given the matrixW 1 whose entries represent the long-
14The computation of the thresholds necessary to identify critical links represents the tricky

part of the algorithm. In fact, a part of layer l1 for which one can easily compute the maximum
losses each bank can absorb without going below the capital requirements, for the other layers
approximations are necessary.
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Figure 13: The four panels show a comparison between some banks balance sheets
trait, (namely banks total assets, banks interbank liabilities, bank interbank assets,
and banks risk weighted capital ratios) and a contagion index, computed as the mean
value of the number of defaults triggered after the bankruptcy of the bank with that
particular trait. Mean values, taken over 105 realizations of the multi-layered network,
are here used as proxy for the systemic importance of the single institutions. The values
are normalized to the maximum number of defaults reported in simulations.
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term direct exposures among banks, there exists a critical link
in layer l1 between two banks i and j if:

W 1
ji ·LGDi >

eqj − γ̄
[
RWEAj +

∑M
µ=0 pµw

µsjµ +wibllj
]

1− γ̄wib
(17)

Despite the complicated form of eq. (17), its meaning is simple:
a critical link between nodes i and j exists if node j is not
able to absorb the losses transmitted in case of the defaults of
node i. In the above equation we introduce the losses-given-
default (LGD) of bank i, computed as an estimation of the
percentage of loans that bank i is not able to repay in case of
its default15. We note that the use of LGD is fundamental in
order to replicate a more realistic scenario in the simulations,
and the quality of its estimation depends on the available data.

• Layer l2: given the matrix W 2 whose entries represent the
short-term direct exposures among banks, there exists a critical
link in layer l2 between two banks i and j if:

W 2
ij >

cj + lsj +
M∑
µ=0

s̄jµ · exp
{
−αµ

s̄jµ
stotµ

} (19)

The sequence
{
s̄j1, s̄j2, · · · , s̄jM

}
are the roots of the equation:

eqj +
∑M
µ=0 s̄

j
µ ·
[
1− exp

{
−αµ

s̄jµ
stotµ

}]
CRWAj +wibllj +

∑M
µ=0

(
sjµ − s̄jµ

)
exp

{
−αµ

s̄jµ
stotµ

} − γ̄ = 0

(20)
Those roots have to found numerically since we have to im-
pose the pecking order, as in the simulator engine, and the non
linearities appearing both in the numerator and in the denom-
inator of eq. (20) make impossible to find analytical solutions.
Equation (19) states that a critical link between i and j exists
if bank i can force bank j to liquidate an amount of assets,
by withdrawing all its short-term funding, which will reduce

15In our framework, this amount to:

LGDi = 1 − min

[
max

[
ci +

∑M

µ=0 siµpµ + lsi − bsi

lli
; 0

]
; 1

]
(18)

Of course, better calibrations are possible depending on data availability and the dynamics
used in the model.

38



the RWCR of bank j beyond the threshold value γ̄. In other
words, bank j is relying too heavily on the funding services
provided by bank i. We note that the link between illiquidity
and insolvency, in the simulator engine, was properly expressed
through the map in eq. (9).

• Layer l3: given the matrix of the portfolios SN×M , whose en-
tries siµ represent the securities µ in the portfolio of bank i,
there exists a critical link in layer l3 between two banks i and j
if the liquidation of the whole bank i’s portfolio results in the
default of bank j, namely when:

eqj −
∑M
µ=0(1− p∗µ)sjµ

CRWAj +wib(lsj + llj) +
∑M
µ=0w

µp∗µs
j
µ

< γ̄ (21)

Where we indicated with p∗µ the price of the security µ after
bank i liquidates its portfolio, according to eq. (5).

Before introducing the algorithm for the simplification of the
multi-layered financial network, we need to introduce the follow-
ing notation: given a square-real-matrix AN×N and a set of indexes
I = {i1, i2, · · · , iK} (0 < i1 < i2 < · · · < iK ≤ N), we indicate with
AI the (N −K + 1) × (N −K + 1) square-real-matrix obtained
by summing the rows and columns indicated in the set I, and by
putting the row and column arising from the sum first in the new
matrix. If the matrix A is the weighted matrix of a network, the
reduction operation just described is the aggregation of the nodes in
the set I = {i1, i2, · · · , iK} in one single node; this new super-node
has links to all other nodes that were connected to the original sub-
set absorbed into the super-node, and the weights on the links are
summed accordingly.

We can finally introduce the aggregation algorithm for the sim-
plification of a multi-layered financial network. We start with a
multi-layered structure G and an initial bank b0 for which we want
to compute its systemic importance. In the first step, s = 0, we
consider the node b0 as the only one in the super-node, and in each
step s = 1, 2, · · · we perform the following operations:

1. We build up the matrices W 1
Is−1 , W

2
Is−1 and W 3

Is−1
16, where

Is−1 are the nodes belonging to the super-node the step before.
16More precisely, the matrix W 3

Is−1
cannot bet aggregated through a simple sum; instead,

the matrix SIs−1 has to be aggregated first (which is equivalent to aggregate the balance
sheets of the banks in Is−1 in a single bank), and then the matrix W 3

Is−1
can be computed

according to eq. (15). Nevertheless, in order to keep a simpler notation, we prefer to formally
write W 3

Is−1
.
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We note that this is equivalent to introduce a new bank in the
system, instead of the banks in the set Is−1, whose balance
sheet is the aggregation of the K suppressed banks’ balance
sheets, and whose links are the aggregation of the in-coming
and out-coming links of the nodes in Is−1.

2. We identify the critical links in each of the three layers l1, l2
and l317 and we build up three new matrices A1

s, A2
s and A3

s
which entries are:

Als,ij =

{
1 if there is a critical link from i to j in layer l
0 otherwise

3. We find the directed tree in the unweighted, directed network
characterized by the adjacency matrix As = A1

s + A2
s + A3

s
starting from the super-node; the nodes belonging to this tree
will constitute the set Is, while its edges are recorded in the set
Cs.

The algorithm ends when the size of the super-node stops in-
creasing and it happens in at most N steps, since in the worst case
each node is absorbed in the super-node in a different step. The first
output of the algorithm is a series of sets of nodes Is (s = 1, 2, · · · )
which can be used to extremely simplify the network structure. In
fact, nodes absorbed in the super-node in step s are all characterized
by the following property: they will fail if all the nodes belonging
to the set Is−1 fail simultaneously, but not if any single node in
Is−1 fails separately. The second output of the algorithm is the se-
ries Cs of links belonging to the spanning trees starting from the
super-nodes. This series of critical links helps us in the identifica-
tion of critical paths in the system, namely multidimensional paths
which can bring the losses from one node in the network to a remote
region of the same network. A multidimensional critical path has
actually a meaning which is deeper than only being a channel for
the transmission of losses through the financial system. The pres-
ence of multidimensional paths in interbank network represents a
way of risk sharing that goes beyond the knowledge of the single
banks. The idiosyncratic risk of one single institution is shared not
only with its direct counterparties, which are aware of the risk taken,
but also with other players not directly connected to the institution,
and which cannot be fully conscious of the risk-transfer represented
by the critical paths in the network. Without a full knowledge of the

17We note that the aggregation of multiple nodes can create new critical links in the system,
which don’t exist if losses from different counterparties are not aggregated.
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multi-layered network structure no banks can really estimate its ex-
posure to the idiosyncratic risk of the other banks. This is illustrated
in the following subsection where we shows how the aggregation al-
gorithm can be used to identify systemic important banks.

6.2 Results

To better clarify the working and the outputs of the aggregation
algorithm, we analyze one particular scenario, and we show how it
is possible to simplify the financial structure of the banking network.
This benchmark example also illustrates the origins of the non-linear
behavior in such propagation within the network.

Let’s consider a multi-layered financial network G, and a bank b0
for which we want to know the systemic importance in G. The two
outputs of the algorithm, {Is} and {Cs}, can be used to simplify
the network structure as illustrated in Fig. 14. The figure shows the
three steps involved in the algorithm for this particular configuration
G (the first step s = 0, where the super-node is composed only
by the initial failed node, is not reported in the figure). In each
step, the super-node is highlighted in red color, and it contains all
the nodes already aggregated in the previous steps. The Figure
represents also the critical links reported by the algorithm (blue
links represent critical links in layer l1, green links in layer l2 and
cyan links in layer l3). The algorithm reports a final number of
defaults equal to 18. In the left part of the figure one can see the
initial failing bank, b0 = 11, which is the only member of the super-
node in step s = 0; in step s = 1, one can see the multi-dimensional
tree on the three layers involving additional 8 defaults as a result of
the default of b0 = 11. In step s = 2, the super-node aggregates all
the 9 nodes already defaulted, whose simultaneous failures in turn
produce 5 further defaults. Finally, in the last step, one can see how
the simultaneous failures of the previous 14 banks results in 4 more
defaults.

Figure 14 clearly shows the non-linear nature of the contagion
problem when accounting for multiple layers of interconnectedness.
It is clear from the picture that if we repeat the same algorithm but
only with layer l1 activated, the total number of defaults triggered
by the failure of bank 11 will be 5 (namely banks 9, 10, 13, 21 and
7), meanwhile no defaults at all would be triggered in case of only
layer l2 or l3 are active. Therefore, the non-linearity which appears
for example in Fig. 7 is due to the creation of critical paths in the
multi-dimensional space, which amplifies the range of propagation of
the initial shock. This highlights also the fact that when considering
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Figure 14: The figure shows a representation of the outputs of the aggregation
algorithm for one particular multi-layered financial system G and the initial defaulting
bank b0 = 11. The color of the edges reflects their nature (blue edges belong to layer
l1, green edges to layer l2 and purple edges to layer l3). Three steps are involved
in this process; in the first one on the left, the tree shows how the failure of bank
11 can bring to default of banks 9, 10, 13 and 21 because of the losses transmitted
through layer l1, banks 26, 29 and 31 fail become illiquid, and bank 33 fails because
of its common exposures with bank 21. All these 9 nodes are then aggregated into
the super-node of step 2 (red node); the defaults of this super-node triggers other 5
failures. In the last step (last tree on the right) the 5 banks (5,7,12,14,18), aggregated
into the super-node, bring to the failure of other 4 banks.

the three single layers in isolation the systemic risk in the banking
system would be heavily underestimated. As the large number of
defaults in the complete scenario (when all the three layers are acti-
vated simultaneously) is due to multi-dimensional critical paths that
can reach also remote banks in the system, the removal of one layer
can interrupt these critical paths and so underestimate the number
of banks involved in the propagation process. Moreover, the identi-
fication of critical paths is necessary in order to understand how the
idiosyncratic risk taken by the single institutions can affect the sta-
bility of the system. It is evident that there is a strong interaction
among the different risks embedded in our model: a well working
interbank market has to be able to properly share these risks among
the different financial institutions in such a way that the system can
absorb local shocks without propagating them to the entire system.

A natural measure of systemic importance for a bank in the sys-
tem is immediately achieved through the aggregation algorithm. A
bank becomes systemically important if its failure materializes in
substantial losses for the other institutions, leading to other de-
faults and eventually a significant impact on the real economy. The
aggregation algorithm has the advantage that it does not take into
account the reasons why a bank fails: once it does, it is aggregated

42



into the super-node. The size of the super-node when the algorithm
converges therefore reflects the order of magnitude of the spillovers
produced by that particular bank, which in turn depends both on the
composition of the banking system (i.e. balance sheet information
are included when computing the threshold values for the critical
links) and on the multi-layered network structure itself. The size of
the super-node, which should reproduce the number of defaults ob-
tained from the simulation engine, is an approximation in two main
respects: (i) losses directly affecting the capital from different layers
(for example layer l1 and layer l3) are not summed up together to
trigger the default of a bank, but the bank will fail only if losses
from separate layers trigger the threshold for that particular layer.
This shortcut can be avoided at the price of a more complicated al-
gorithm, while we prefer to keep a good trade-off between simplicity
and interpretability, and correctness. (ii) Liquidity spirals are only
partially reproduced with the algorithm: if a bank fails at some
point in the algorithm, its borrowers in the short-term interbank
market will experience a liquidity shock, that can in turn trigger
their defaults, and so on. However, in reality (and also in our simu-
lations) banks start withdrawing liquidity before they fail, because
of liquidity needs or because they have to fulfill their Risk-weighted
Capital Ratio. This mechanism of precautionary withdrawal of liq-
uidity is not captured by the algorithm, and it is difficult to include
if we want to keep its iterative nature, which has the advantage to be
easily understandable. In the light of these observations, we cannot
expect that the number of defaults in the simulations will be ex-
actly reproduced by the size of the super-node. Nevertheless, to its
advantage, the algorithm is able to simplify the network structure
and to reproduce the non-linearity we find in the simulations.

To assess the validity of the aggregation algorithm, Fig. 15
show the comparison between the results from the simulation en-
gine (number of defaults) and the size of the super-node computed
with the aggregation algorithm. In particular, on the left-side panel
there is the comparison when only two layers are activated (namely
layer l1 and l2), and in the right-side panel the same comparison
is reported when all the layers are activated simultaneously. In
both cases, there is a significant level of correlation among the two
measures, highlighting the good performance of the aggregation al-
gorithm, especially if compared to the classical network measures
reported in Fig. 12, or the balance sheet-based measures shown in
Fig. 13. The larger accordance in the case of just two active layers
has already been explained in point (i) above. In fact, the differ-
ences in the number of defaults can be attributed to those banks
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Figure 15: In the left-side panel of the figure we report the comparison between
the number of defaults obtained from the simulation engine (horizontal axes) and the
size of the super-node as output of the aggregation algorithm (vertical axes), for 105

random realizations of the multi-layered interbank network. For each realization, we
randomly select one of the 50 banks as initial defaulting bank. The red line is the
unitary slope dependency y = x. On the right-side panel of the figure, we report the
same results when all the three layers are activated simultaneously, and the blue line
is the best linear regression y = a · x, where a = 0.59. All the values are normalized
to the maximum number of defaults reported in the simulations.

who fail because they receive losses from different layers, a mech-
anism which is absent in the aggregation algorithm, that instead
aggregates losses from different counterparties only within the same
layers.

It should be noted that the main scope of the aggregation algo-
rithm is not to reproduce the number of the defaults we obtain in the
simulation engine, but approximate it with the advantage of having
some more clues about how the network structure propagates local
shocks to a global scope. Given the correlation between the simula-
tion results and the recursive algorithm, and given that there is no
other way for the algorithm to produce non-linear effects a part of
the creation of multi-dimensional paths, we can conclude that also
in the simulations the non linear effects are generated through the
same mechanism. We note, moreover, that the algorithm is easily
customizable to take into account different choices for the banks
micro-behavior; in fact, the good performance of the algorithm re-
ported in Fig. 15 is also due to the choice of the criticality condi-
tions appearing in eq.s (17)-(21), which reflect the micro behavior of
banks in the system. Changing the banks micro-behavior, or includ-
ing other, will reflect in different condition for the links criticality,
but the algorithm can still be used to simplify the financial network
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structure.

7 Conclusions and policy implications

The agent-based, multi-layered interbank network model presented
in this paper illustrates the importance of taking a holistic approach
when analysing the contagion risks related to the interconnections
between banks. The main finding is that looking at segments of
banks’ interconnections in isolation, without considering the inter-
actions with other layers of banks’ interrelationships, can lead to a
serious underestimation of interbank contagion risk. In other words,
by taking into account the various layers of interbank relations and
the interactions between them the contagion effects of a shock to
one layer can be significantly amplified, compared to the situation
where contagion risks are assumed to be confined within the specific
layer where the initial shock arose. This finding points to the ex-
istence of important non-linearities in the way bank-specific shocks
are propagated throughout the financial system.

Another important finding of the paper is that the structure of
the network and the underlying balance sheet positions of the banks
(nodes) in the network matter in terms of resilience to shocks. In
many, in fact the majority, of our simulated network structures fi-
nancial contagion is likely to be limited. However, in certain network
constellations, also depending on the financial soundness of the cen-
tral players in those networks, contagion risk is substantially more
pronounced.

Furthermore, by considering not only contagion via direct bilat-
eral exposures but also via banks’ common exposures (through their
securities holdings) we are able to demonstrate a trade-off between
risk diversification decisions and financial stability. In other words,
due to the potential contagion risks related to banks’ common expo-
sures decisions to diversify their investments in securities that may
be optimal at the individual bank level can in fact imply higher
contagion risks for the system as a whole.

In view of these findings, the paper proposes a “systemic im-
portance” measure that accounts for the multi-dimensional aspect
of banks’ interrelations. That is, based on our multi-layered net-
work model and taking into account individual banks’ balance sheet
structure the approach provides a single measure of banks’ systemic
importance that outperforms standard network centrality measures
as well as typical balance sheet indicators.

The observation that unless a holistic view of banks’ interrela-
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tions is taken the analysis of interbank contagion risk is likely to
underestimate the true contagion risk has major policy implications.
From both a micro-prudential and in particular a macro-prudential
perspective the findings of this paper suggest that it is insufficient to
analyse contagion within specific market segments in isolation. In-
deed, according to the findings presented here, a major component
of the propagation mechanism that transmits losses in one bank to
the rest of the system derives from the interactions between the mul-
tiple layers of interactions that banks have with each other. On this
basis, an immediate policy prescription emerging from this analy-
sis is the importance of collecting adequate supervisory data that
allows for assessing in a holistic way the interconnectedness of the
banking system and thus account for the non-linearities that the
existence of multi-layered interbank networks may induce.
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A Simulation results

In this section we report the distribution of the number of defaults
for the most important banks in the system.
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