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Abstract
This paper examines the effect of macroeconomic releases on stock market volatility through
a Poisson-Gaussian-GARCH process with time varying jump intensity, which is allowed to
respond to such information. It is found that the day of the announcement, per se, has
little impact on jump intensities. Employment releases are an exception. However, when
macroeconomic surprises are considered, inflation shocks show persistent effects while mon-
etary policy and employment shocks show only short-lived effects. Also, the jump intensity
responds asymmetrically to macroeconomic shocks. Evidence that macroeconomic variables
are relevant to explain jump dynamics and improve volatility forecasts on event days is pro-
vided.
Keywords: Conditional jump intensity, conditional volatility, macroeconomic announce-
ments.
JEL Classification: C22, G14.

Resumen
Este art́ıculo examina el efecto de los anuncios macroeconómicos en la volatilidad del merca-
do de valores utilizando un proceso Poisson-GARCH Gaussiano con intensidad de saltos que
vaŕıa en el tiempo, a la cual se le permite reaccionar a dicha información macroeconómica.
Se encuentra que el d́ıa del anuncio, per-se, tiene un impacto pequeño en la intensidad de
los saltos. Los anuncios de empleo son una excepción. Sin embargo, cuando se consideran
sorpresas macroeconómicas, los choques inflacionarios muestran un efecto persistente, mien-
tras que los choques de poĺıtica monetaria y empleo muestran únicamente efectos de corto
plazo. También, la intensidad de los saltos responde de manera asimétrica a las sorpresas
macroeconómicas. Se proporciona evidencia de que las variables macroeconómicas son rele-
vantes para explicar la dinámica de los saltos y para mejorar los pronósticos de volatilidad
en d́ıas de eventos.
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1 Introduction

The responses of asset prices and market volatility to information releases concerning

fundamental variables are of key interest for relevant financial and economic decisions,

such as risk management, asset pricing, and portfolio allocation. Since changes in prices

and volatility primarily occur through trades motivated for reasons of information, then

the form of those responses can be related to the nature of the process of information

arrival, as suggested in Clark (1973) and Ane and Geman (2000).1 Discontinuities in

information flow drive jumps in the price process, which are generally associated with

periods of intense market activity.2 The empirical evidence has rejected continuous

models, and has favored those with discontinuities (e.g., Chernov, Gallant, Ghysels,

and Tauchen (2003), Eraker, Johannes, and Polson (2003), Eraker (2004), and Maheu

and McCurdy (2004)). In addition, recent literature also confirms the importance of

jumps, not only in characterizing a feature of the information process driving returns at

high frequencies, but also in describing the transmission mechanism of policy decisions.

For instance, Das (2002) and Johannes (2004) analyze interest rates and find that

jumps are a primary conduit through which macroeconomic information enters the

term structure.

All the above mentioned studies agree with the close connection among jumps in

1In these studies, the cumulated arrival of relevant information is a reasonable measure of time
changes at high frequencies.

2The simplest version of models incorporating jumps is the popular “jump-diffusion”, which is
obtained when the cumulated arrival of information has a finite number of discontinuities in a finite
horizon. Geman, Madan, and Yor (2000) motivate more general purely discontinuous processes relating
time changes to measures of economic activity at high frequencies.
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the returns process, large changes in market volatility, and the arrival of events (such

as macroeconomic releases) that might take the market by surprise. However, less is

known about the specific form of this connection, or about whether the impacts on

volatility dynamics are heterogeneous with respect to the type of news event. This

paper addresses these two concerns by focusing on events associated with the disclosure

of public information regarding fundamental macroeconomic variables. In particular, I

consider a set of releases that are disclosed in regularly scheduled announcements and

convey information about monetary policy, inflation, and growth (employment). In

this context, I explore the effects of announcements and news events on the conditional

volatility of returns through a non-linear channel associated with jumps in the return

process. Specifically, I focus on the conditional jump intensity of stock market returns.

In addition, I examine the extent to which heterogeneity among scheduled announce-

ments explains differences in the dynamic behavior of such jump component, shedding

more light on the sources of persistence in the conditional second moment of market re-

turns, and providing a criterion to distinguish between permanent and transitory effects

of particular types of shocks.

A number of studies have analyzed the effect of macroeconomic announcements on

the volatility of asset returns using daily and intradaily data (e.g., Jones, Lamont, and

Lumsdaine (1998), Andersen and Bollerslev (1998), and Flannery and Protopapadakis

(2002)). The common parametric approach has used a multiplicative filter to model

a structural volatility change on event days. However, this strategy does not allow
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direct interactions between surprises and jump dynamics. Non-parametric approaches

have exploited recent developments in measuring the quadratic variation of an sto-

chastic process using intradaily data. For instance, Huang (2007) separates financial

market responses into continuous volatility effects and jumps on news days. He finds

evidence that there are more days with large jumps on announcement days than on non-

announcement days for several types of macroeconomic announcements. Moreover, he

finds larger proportions of news days in jump days than in the whole sample. This

evidence suggests that the jump intensity may be affected by macroeconomic news and

the present study proposes a parametric strategy to model such impacts in a dynamic

setup that allows macroeconomic releases to have direct effects (with different types of

persistence) on the conditional jump intensity of market returns.

The framework of this paper follows the approach of Maheu and McCurdy (2004)

in terms of modeling the returns process through a mixture of a GARCH model with

a compound Poisson jump process in a discrete time setting at a daily frequency.3

I follow such a model by allowing the jump intensity to be time varying with serial

correlation; although, on the one hand, I model differentiated impacts of heterogeneous

news linking parametrically the jump arrival intensity with announcement and news

variables and, on the other hand, I allow for asymmetric effects of shocks on the jump

volatility component, which introduces an additional source of good/bad news effects

on the conditional volatility of returns.

3Oomen (2002) motivates the use of the compound Poisson process as a flexible model to characterize
dynamic properties of returns at high frequencies.
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Using daily returns on the S&P500 and measures of real time U.S macroeconomic

news, the results suggest that incorporating fundamental news variables into the spec-

ification of the jump intensity is relevant to characterize the effect of such news on

conditional volatilities and to improve measures of jump occurrence. Indeed, hetero-

geneous news effects are found. Inflation surprises show asymmetric effects on the

jump intensity and on the conditional mean of market returns. In addition, while Pro-

ducer Price Index (PPI) inflation shocks have a persistent effect on jump intensities,

and therefore on conditional volatilities, monetary policy and employment shocks show

only short-lived effects. The results of this paper suggest that introducing macroeco-

nomic surprises is relevant for explaining and predicting the dynamic behavior of jump

probabilities on monetary policy and employment announcement days. To address

the issue of in-sample overfitting, common in heavily parameterized non-linear models,

this paper also performs out-of-sample forecast comparisons.4 In this regard, I provide

evidence that the in-sample results are not an artifact of overfitting and that using

jump intensity specifications with news variables leads to out-of-sample improvements

in forecasting volatility on event days.

The paper is organized as follows: Section 2 presents a review of the literature re-

garding the effect of macroeconomic news on market volatility. Section 3 introduces the

model characterizing the conditional return distribution. Section 4 provides a descrip-

tion of the data used in the empirical analysis, and defines the measures of surprises

4Clark (2004) shows that out-of-sample forecast comparisons are effective to avoid data mining-
induced overfitting.
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used in this paper. Section 5 reports estimation results for different jump model speci-

fications. Finally, a comparison with competing GARCH models is presented in section

6, and section 7 concludes.

2 News Effects on Financial Volatility

The relation between stock market volatility and uncertainty about fundamentals has

been the focus of an active research agenda oriented to understand and test the eco-

nomic factors that cause stock market volatility. At low frequencies, Schwert (1989)

finds weak evidence that macroeconomic volatility can explain stock return volatility.

Instead, he suggests that it is more likely that stock market volatility causes macroeco-

nomic volatility. He also finds that the average level of volatility is considerably higher

during recessions. From a theoretical standpoint, David and Veronesi (2008) develop an

equilibrium asset pricing model in which positive inflation and/or negative earnings sur-

prises induce additional uncertainty of switching to high inflation and/or low earnings

regimes, which are associated with a raise in the overall stock return volatility. Engle

and Rangel (2008) find a strong relationship between the low frequency component of

market volatility and macroeconomic variables such as inflation, growth, and macro-

economic volatility. These papers only examine a long-term relation between returns

volatility and fundamentals.

From a short-run prospective, other studies have addressed the market volatility

reaction to fundamental news released on announcement days. Most of this research
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has focused on the dynamics of conditional volatility based on the ARCH/GARCH

framework introduced by Engle (1982) and Bollerslev (1986). For example, Li and

Engle (1998) examine the degree of persistence heterogeneity associated with sched-

uled macroeconomic announcement days and non-announcement days in the Treasury

futures market. They introduce a filtered GARCH model that takes care of cyclical

patterns of time-of-the-week effects and announcement effects by decomposing returns

volatility into a transitory and a non-transitory component. They find heterogeneous

patterns in persistence when comparing announced versus non-announced macroeco-

nomic releases. Specifically, announced releases are associated with less volatility per-

sistence. They also reject risk premia on announcement days.

Jones, Lamont, and Lumsdaine (1998) present a similar analysis for the Treasury

bond market. They find evidence of existence of “U” shaped day-of-the week effects

and “calm before the storm” effects for bond returns volatility. In contrast to Li and

Engle (1998), they find that announcement day shocks do not persist at all; they are

purely transitory. This fact supports the Mixture of Distribution Hypothesis of Clark

(1973), which implies that volatility persistence is due only to serial correlation in the

information process. In addition, they suggest risk premia on announcement days,

which favors a GARCH-M specification.

Andersen and Bollerslev (1998) study potentially different effects on volatility of

scheduled versus unscheduled announcements using intradaily foreign exchange returns

data (five-minute returns). Their results suggest that macroeconomic announcements
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have a large impact on five-minute returns when they hit the market, although the

induced effects on volatility are short-lived. At a daily level, the significance of these

announcements for volatility is tenuous.

In terms of stock returns, Flannery and Protopapadakis (2002) use a GARCHmodel

to detect the effect of macro announcements on different stock market indices. They

consider as a potential “risk factor” any macro announcement that either affects returns

or increases conditional volatility. Their results suggest that inflation measures (CPI

and PPI) affect only the level of stock returns, and three real factor candidates (Balance

of Trade, Employment/Unemployment, and Housing Starts) affect only the return’s

conditional volatility.

Bomfim (2003) examines the effect of monetary policy announcements on the volatil-

ity of stock returns. His work is based on the framework by Jones et al. (1998), and his

results suggest that unexpected monetary policy decisions tend to boost significantly

the stock market volatility in the short run. As expected, positive sign surprises tend

to have a larger effect on volatility than negative sign surprises.

The basic setup considered by all of these studies is based on a multiplicative filter

with announcement dummies. This suggests that, on announcement days, there is a

deterministic shift in the standard diffusion component describing the news process. In

other words, announcement effects are basically modelled as seasonal effects. Recent

research has pointed out that it is not the occurrence of an announcement that matters
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per se, but the surprise content of the release.5 Naturally, the surprise component is

unexpected, and it is typically associated with a jump in the return process. With

the recent availability of high-frequency data, new econometric developments around

the realized volatility framework of Andersen, Bollerslev, Diebold, and Labys (2003)

have been suggested to filter the contribution of jumps to the realized variance mea-

sure (see Andersen, Bollerslev, and Diebold (2007) and Barndorff-Nielsen and Shephard

(2004)). In this context, Huang (2007) finds a larger proportion of days with jumps

within macroeconomic announcement days and, among the group of days with jumps,

the largest proportion corresponds to days in which macroeconomic surprises were ob-

served. Following this intuition, I present an alternative approach to characterize the

volatility effect of surprises on announcement days by modeling such impact using a

jump component in the return process and characterizing the response of the jump

intensity to macroeconomic events.

3 Description of the Model

First, I consider a stock return process in discrete time that is affected by heteroge-

neous information shocks. Following the framework of Maheu and McCurdy (2004),

the return process innovations are driven by a latent news process that has two sepa-

rate components distinguished by their news impact: a) ε1t represents “normal” news

events, which are assumed to drive smooth price changes; b) ε2t denotes “surprising”

5See Johannes (2004) for further discussion.
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news events, which cause relatively infrequent large price changes.6 Thus, under the

information set Ωt−1 conveying the information of past returns (and possibly exogenous

variables known before time t), the returns process can be specified as follows:

rt = µt + ε1t + ε2t (1)

where,

ε1t = σtzt, zt ∼ iidN(0, 1) for any t,

ε2t =
NtP
j=1

cjt, cjt ∼ iidN(0, δ2) for j = 1, 2, ..., Nt,

Nt | Ωt−1 ∼ Poisson(λt),

λt =time varying arrival intensity= E(Nt | Ωt−1),

µt = µ(Xt) =time varying conditional mean (Xt denotes a vector of ex-

planatory variables).7

Note that ε1t|Ωt−1 ∼ N(0, σ2t ) provided σt ∈ Ωt−1. Under this assumption, the

dynamics of σt can be described by a GARCH process, and therefore the return process

follows a mixed GARCH-Jump model. Otherwise, when σt|Ωt−1 is random, we have a

stochastic volatility model with jumps, and ε1t|Ωt−1 is not Gaussian.8

6This framework is also introduced in Chan and Maheu (2002).
7The jump intensity is assumed to be measurable with respect to Ωt−1, and the innovations zt and

cjt are assumed to be independent. However, the conditional autoregressive jump intensity dynamics
considered later does not depend on this condition (see Chan and Maheu (2002))

8In this case ε1t|Ωt−1 is a subordinated stochastic process, which can be seen as a Gaussian process
with random variance. See Clark (1973) and Andersen (1996) for details.
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Why jump models with time varying intensities? Models that account for large

market movements or fat tails have been of academic interest for several years. In this

regard, stochastic volatility (SV) models and jump models with stochastic jumps have

been widely explored. From an empirical point of view, Eraker (2004) argues that none

of these models have proved to be entirely successful. SV models have problems in

explaining market crashes since they would require an implausible high volatility level

both prior and after the crash. On the other hand, standard jump models assume

that the jump intensity is constant. This assumption makes it difficult to explain the

tendency of large movements to cluster over time. The framework taken in the present

study combines these two approaches in a discrete time framework, and relaxes the

assumption of a constant jump intensity.9 The result is a model with high flexibility in

describing the dynamics of the return process. Indeed, time varying arrival intensities

makes also higher order moments time varying, which easily captures changes in the

shape of the tails of the conditional distribution associated with periods of financial

distress.

A number of plausible specifications for the jump intensity have been proposed in

the literature. For instance, Jorion (1988) considers a constant jump intensity; Das

(2002) proposes a model with different regimes for both the jump intensity and the

unconditional volatility; Eraker (2004) models the jump intensity as an affine function

of a stochastic volatility component; Maheu and McCurdy (2004) specify the jump

9GARCH(1,1) models can be seen as discrete approximations of diffusions used in continuous SV
models (see Nelson (1990)).
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intensity as a mean reverting autoregressive process. This approach is appealing because

it gives high flexibility to capture dynamic features of the jump intensity, such as

persistence and sensitivity to the arrival of new information. For this reason, I follow

Maheu and McCurdy’s specification for λt augmented with other explanatory variables

associated with macroeconomic announcements and surprises. Notice also that the

specification of the jump intensity has direct implications for the conditional volatility.

In fact, if the model is correctly specified, the conditional variance takes the following

form:

var(rt|Ωt−1) = σ2t + λtδ
2 (2)

Hence, surprises can influence conditional volatility either through their effect on

the jump arrival intensity or through the GARCH process describing σ2t . Moreover,

under this specification, the impact of news on market volatility might be driven by the

effect of previous surprises on the conditional probability of observing a jump arrival

in the price process. This dynamic behavior is able to describe the excess of volatility

associated with a “peso problem situation”. Equation (2) is key for the interpretation

of my empirical results since any effect on λt will also govern the conditional volatility

provided δ is significantly different from zero.

The following proposition characterizes the conditional density of a return process

described by (1), as well as a filter that describes the conditional expected number of

jumps in the process.10

10Equations (3) and (4) are referred as equations (23) and (24) in Maheu and McCurdy (2004).
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Proposition 1 If returns follow a process described in expression (1) with 0 < σt <∞

and 0 < λt < ∞, ∀t. Then the conditional density of returns given a relevant set of

parameters Θ takes the form:

f(rt|Ωt−1,Θ) =
∞X
j=0

exp(−λt)λjt
j!

1q
2π(σ2t + jδ2)

exp

µ
− (rt − µt)

2

2(σ2t + jδ2)

¶
(3)

Moreover, the conditional density of the number of jumps observed at time t, given the

updated information, can be expressed as:

p(Nt = j|Ωt) =

⎛⎜⎝ exp(−λt)λjt
j!

1√
2π(σ2t+jδ

2)
exp

³
− (rt−µt)2
2(σ2t+jδ

2)

´
f(rt|Ωt−1,Θ)

⎞⎟⎠ (4)

The proof is given in Appendix A1.

Note that these densities involve an infinite sum that makes infeasible their analy-

sis for estimation purposes. However, finite order approximations based on Taylor’s

expansions can be taken in practical applications. This is a common practice for the

analogous continuous time jump-diffusion models.11 In fact, the first order approxima-

tion of Equation (3), which seem to work well when λt is “small”, is given by12:

f1(rt|Ωt−1,Θ) =
(1− λt)p
2πσ2t

exp

µ
−(rt − µt)

2

2σ2t

¶
+

λtq
2π(σ2t + δ2)

exp

µ
− (rt − µt)

2

2(σ2t + δ2)

¶
(5)

11See Ait-Sahalia (2004) and Yu (2007) for conditions for existence and uniqueness of the approxi-
mate densities in continuous time jump-diffusion models and maximum likelihood estimation.
12Previous studies have found values for λt varying between 0.01 and 0.30. See for example Jo-

hannes (2004), and Maheu and McCurdy (2004). Therefore, this assumption does not seem to be very
restrictive and simplifies the likelihood in a convenient way.
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Equation (5) takes a quite convenient form given by a mixture of Gaussian densities

driven by the time varying arrival intensity. The expression can also be associated

with a process with jumps governed by a Bernoulli random variable with time varying

parameter, which corresponds to the conditional probability of observing a jump at time

t given the past information. Instead, Maheu and McCurdy (2004) use a truncated sum

as an approximation of Equation (3). I follow this approach in the empirical part of

this paper13.

A full characterization of the likelihood requires parameterizations for λt and σt. In

the present study, I consider two main specifications for the jump intensity that extend

the model of Maheu and McCurdy (2004) by incorporating the effects of exogenous

explanatory variables in two different ways: one is persistent, and the other is short-

lived. I characterize these specifications as:

a) Jump Intensity with Persistent Effects:

λt = c+ ρλt−1 + γζt−1 + Λ(a0xt) (6)

b) Jump Intensity with Transient Effects:

λt = c+ ρ(λt−1 − Λ(a0xt−1)) + γζt−1 + Λ(a0xt), (7)

13An earlier version of this study considered the first order approximation of the likelihood in Equa-
tion (5), as well as a second order approximation. It is found that the empirical results associated with
announcement and news effects are not affected by this choice.
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where Λ(·) = 2∗
h

exp(·)
1+exp(·) −

1
2

i
, xt is a vector of exogenous explanatory variables, known

before time t, |ρ| < 1, and ζt is a revision or jump intensity residual term defined as

follows14:

ζt−1 = E(Nt−1|Ωt−1)−E(Nt−1|Ωt−2). (8)

The logistic functional form of Λ retains the attractive intuition of a logit model where

the probability of observing a jump is partially explained by exogenous regressors, which

will be defined in the next section. It is important to note that the information set has

been extended to include not only past returns but also exogenous news variables that

are known before the realization of rt.15 In addition, this specification turns out to be

convenient for estimation since it smooths the effects of extreme values of such regres-

sors. Regarding the revision term, note that E(Nt−1|Ωt−2) = λt−1, and E(Nt−1|Ωt−1)

gives the expected number of jumps given the current information. Indeed, this last

term is obtained by updating the conditional expectation using Bayes rule and a finite

order approximation of the density in (4). For instance, considering a truncated version

of the likelihood, this conditional expectation can be approximated as follows:

E(k)(Nt|Ωt) =

kP
j=1

exp(−λt)λjt
j!

1√
2π(σ2t+jδ

2)
exp

³
− (rt−µt)2
2(σ2t+jδ

2)

´
f (k)(rt|Ωt−1,Θ)

(9)

14This revision term forms a martingale difference sequence.
15Even though such variables are labeled as contemporaneous, the empirical exercise considers vari-

ables that are known before the closing of the market. For instance, CPI, PPI, and employment
announcements are released early in the morning (before the market opens), and monetary policy
announcements occur in general a few hours before the market closes.
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and,

ζt = E(k)(Nt|Ωt)− λt (10)

Additionally, I parameterize the diffusive volatility component as a standard GARCH(1,1):

σ2t = w + gε2t−1 + bσ2t−1, (11)

where σ2t = E (ε21t|Ωt−1) , εt = ε1t+ε2t, and the parameters satisfy standard stationarity

assumptions (g, b ≥ 0, g + b < 1).16

4 Description of the Data and Measures of

Surprises

In this study, I use daily data of the S&P500 index, which was obtained from the CRSP

database. The sample period goes from January 2, 1992 to August 29, 2008. The data

is divided into in-sample and out-of-sample portions. The first portion is used in the

specification search and includes data from January 2, 1992 to December 31, 2003. The

out-of-sample part is used for forecast comparisons and includes data from January 2,

16In terms of higher moments, the assumptions described in (1) imply zero conditional skewness and
time varying conditional kurtosis, which is given by:

Kt+1 =
E(r4t+1|Ωt)¡
E(r2t+1|Ωt)

¢2 = 3
Ã
1 +

λt+1δ
4¡

σ2t+1 + λt+1δ
2
¢2
!

(12)
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2004 to August 29, 2008.17 Relevant macroeconomic variables include the Consumer

Price Index (CPI), the Producer Price Index (PPI), the Federal Funds Rate (FFR),

Nonfarm Payroll Employment (NFP) and the Unemployment Rate (Ump).18 With the

exception of the short-term interest rate, data on the other macroeconomic releases are

obtained from the Bureau of Labor Statistics.19 Macroeconomic forecasts are obtained

from the Money Market Services (MMS) survey for the in-sample period 1992-2003.

They include data from telephone surveys conducted normally one week or less before

any macroeconomic news release.20 Based on this information and following Balduzzi,

Elton, and Green (2001), a standardized surprise for release k on day t is calculated as

follows:

Skt =
Ykt − bYktbσk (13)

where Ykt is the realization of variable k, bYkt is the corresponding median consensus
forecast, and bσk is the standard deviation of the forecast error. Surprises are computed
in this way for announcements where the consensus forecast is obtained explicitly from

the surveys mentioned above.

17Clark (2004) and Ashley, Granger, and Schmalensee (1980) have favored the approach of splitting
the sample in two non-overlapping in-sample and out-of-sample portions to evaluate the predictive
power of models and prevent overfitting.
18Previous studies including shocks of several macroeconomic variables have concluded that only

few of them are significant for equity returns. In particular indicators of inflation and output seem
to be the most important. See Andersen, Bollerslev, Diebold, and Vega (2003) for exchange rates; Li
and Engle (1998), and Gurkaynak, Sack, and Swanson (2005) for interest rates; and Schwert (1981)
for stock market returns.
19These releases are usually made at 8:30 am on regularly scheduled announcement days by the

Department of Labor
20This data was kindly provided by Informa Global Markets/MMS. Balduzzi, Elton, and Green

(2001) concluded that the MMS survey data is an accurate representation of the consensus expectation
in the market. Pearce and Roley (1985) find MMS forecasts unbiased and efficient.
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Regarding monetary policy shocks, recent literature has pointed out that the fed-

eral funds futures dominate all other instruments for predicting near-term changes in

the federal funds rate (FFR). Therefore, these instruments can be used to compute

monetary policy surprises surrounding Federal Open Market Committee (FOMC) an-

nouncements as follows:

Sit ≡ it − Et−1it =

µ
D

D − d
∆fft

¶
(14)

where it denotes the federal funds rate, ∆fft is the change in the rate of the current

month’s futures contract, D represents the number of days in the month, and d indicates

the day of the month in which the FOMC meeting occurs.21

Figure 1 shows dynamic patterns of S&P500 returns and volatility over the in-sample

period. This volatility measure is based on the high-low range volatility introduced by

Parkinson (1980). Both panels illustrate the presence of several extreme events that

tend to cluster in some periods. Table 1 illustrates the distribution of announcements

by day-of-the-week. This distribution suggests that day-of-the-week effects might be

present in this sample. For instance, almost all of the employment releases occur on

Fridays, most of the FOMC meetings are concentrated on Tuesdays and Wednesdays,

and very few releases occur on Mondays. However, using the high-low range volatility

measure, Table 2 shows that the day-of-the-week effects are not significant during this

sample period.

21See Kuttner (2001) and Gürkaynak, Sack and Swanson (2002, 2003) for further details.
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Table 3 describes the distribution of this volatility proxy by kind of announcement.

From this description, we can observe that volatility seems to increase on announcement

days, particularly on those associated with monetary policy (FFR) and employment

(NFP and Ump) releases. A t-test for equality of means suggests that these effects

are significant. In addition, the average volatility exhibits a level below the average on

the days before announcements of FFR and NFP/Ump information. This phenomenon

is known as the “calm before the storm”. However, the t-tests indicate the effect is

not significant.22 Overall, this description confirms the importance of disentangling

heterogeneous effects associated with different kinds of news events.

5 Estimation and Results

This section discusses estimation results for the jump model described in section 3.

The estimation is based on the truncated approximation of the likelihood given in (3)

(up to the 10th term of the sum), the specification of the diffusive volatility given

in (11), and a number of models for the jump intensity. First, I consider a model

without announcement/news effects using the jump intensity specification of Maheu and

McCurdy (2004). Later, I estimate equations (6) and (7), where the announcement and

news variables defined in the previous section are included as explanatory variables.23

22For a shorter sample period, Bomfim (2003) finds significant “calm before the storm” effects for
monetary policy announcements.
23An earlier version of this study considered the first order approximation in Equation (5). Overall,

the empirical results presented in this section are not sensitive to this change.

18



Figure 1: S&P Returns and High-Low Range Volatility
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5.1 Results for a baseline model without explanatory variables

In the baseline model, the jump intensity is defined as λt = c + ρλt−1 + γζt−1, where

ζt−1 is defined in (8).
24 In this case, the set of parameters is {µ, δ, c, ρ, γ, w, g, b}.25 This

model is estimated using the in-sample portion of the data (from January 2, 1992 to

December 31, 2003). Table 4 shows the estimation results, which suggest that all the

coefficients are highly significant. The estimate of ρ indicates a highly persistent jump

intensity, which is consistent with the findings of Maheu and McCurdy (2004) about

jump clustering in returns for market indices.26 The impact of a revision in the expected

number of jumps, described by γ, implies an adjustment of about 47% of its magnitude

on the jump intensity. This confirms the flexibility of the model to adjust quickly to

large price changes that affect the conditional probability of jumps. The parameter δ,

associated with the variance of the jump size, is also highly significant, which supports

the relevance of the jump term in the conditional volatility of returns. Similarly, the

GARCH parameters of the diffusive volatility component are significant and, as it is

usual, the GARCH term is very persistent, and the ARCH effect is small. This indicates

that including jumps does not affect the significance of the terms characterizing the

dynamics of the smoother volatility term. Panel A of Figure 2 illustrates the conditional

variance and Panel B shows the contribution of its two components (the GARCH term

24This is a simplified version of the model of Maheu and McCurdy (2004) since in this case the
GARCH variance component does not include asymmetric effects.
25The baseline model assumes a constant conditional mean µ.
26In Maheu and McCurdy (2004) the estimates for ρ are 0.948, 0.831, and 0.979 for the Dow Jones

Industrial Average (DJIA), Nasdaq 100, and the CBOT Technology Index (TXX), respectively. Their
results suggest larger persistency for indices than for individual firms.
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and the jump variance).

Figure 2: Conditional Variance Components

Using this baseline specification that does not include any news/announcement vari-

ables, we can explore some patterns of conditional jump probabilities on event days and

non-event days. This is useful to evaluate whether the pure autoregressive structure

is able to capture on average the dynamics of the jump component. Figure 3 shows

the average of the ex-post conditional expected number of jumps across different types

of event days. These conditional expectations are estimated from Equation (9). The
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Figure 3: Jump Components
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results suggest that the expected number of jumps is higher on announcement days,

especially on those associated with monetary policy and employment releases, where

the average number of expected jumps is about 11% higher than on non-announcement

days. Figure 3 also presents the average jump prediction error defined in (8).The results

confirm that the baseline model tends to underestimate the expected number of jumps

on event days since the prediction error shows a positive bias, especially on monetary

policy and employment announcement days.
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5.2 Jump models with announcement and news effects

The previous results suggest that jump intensities show different patterns on macro-

economic announcement days. To explain such empirical findings, I incorporate the

effect of macroeconomic announcement and news variables on jump intensities. Based

on equations (6) and (7), a number of specifications are examined. First, I incorporate

pure announcement effects by replacing Λ(a0xt) by η1I
A
t,K in these two equations. I

A
t,K

is an indicator of a type-K announcement. The model where the announcement effects

are persistent (see Equation 6), due to the autoregressive form of the baseline jump

intensity, is labeled as Model A-1. On the other hand, the model that has transient

announcement effect (see Equation 7) is labeled as Model A-2. In addition, I allow the

conditional mean in Equation (1) to incorporate directly news effects in order to control

for changes in the conditional mean on event days. This term is specified as:

µt = µ+ b1|St,K|+ b2I
−
t,K |St,K |, (15)

where St,K is a type-K news variable, as defined in Equation (13), and I−t,K is an

indicator of a negative news event (St,K < 0). The specification is empirically appealing

because it separates not only jumps in conditional mean but also asymmetric effects

associated with bad news.

Models A-1 and A-2 are estimated for each type of macroeconomic release (CPI, PPI,

FFR, and UMP/NFP). Table 5 presents the estimation results. The set of parameters

is {(µ, δ, c, ρ, γ, w, g, b), (b1, b2, η1)} . The first group includes the baseline parameters
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which estimates are very similar to those described in Subsection 5.1. Hence, I will

focus on the second group. Regarding news effects on conditional mean, only the

CPI inflation releases show statistical significance and their effects are economically

sensible. Indeed, higher than expected inflation affects returns negatively and lower

than expected inflation affects returns positively, but its impact is smaller. This result is

consistent with Flannery and Protopapadakis (2002) who find important effects of CPI

surprises for the conditional first moment of stock returns, but not for the conditional

volatility. Regarding pure announcement effects, the results suggest that the jump

intensity is significantly higher only on employment announcement days. This is found

for both the persistent and the non-persistent specifications of the jump intensity;

however, the effect is bigger in the non-persistent case, and in-sample fit measures,

such as the likelihood and the Schwarz criterion (SC), favor a jump intensity with

non-persistent employment announcement effects.

A second exercise examines the effect of news variables on jump intensities. Fol-

lowing the intuition that it is the surprise component of a release what matters for

conditional volatility, I use news variables that account for the size of announcement

surprises rather than the fact of the announcement per se. I also examine specifications

that account for asymmetric effects of news variables on jump intensities. Specifically,

the term a0xt in equations (6) and (7) is replaced by a1|St,K |+a2I
−
t,K |St,K|. As explained

earlier, St,K is a type-K news variable (see Equation (13)) and I−t,K is an indicator of

negative news. In the first specification (Model S-1) the shocks persist through the jump
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persistence parameter, ρ. In contrast, the second specification (Model S-2) restricts the

shocks to be non-persistent. Each of these models is estimated using one type of macro-

economic shock at a time. Table 6 presents the estimation results for Model S-1. The

results suggest that PPI inflation shocks significantly impact the jump intensity and

their effects are persistent. Moreover, they show asymmetric impacts that are consis-

tent with the evidence of Jones et al. (1998) and Li and Engle (1998). Specifically,

positive inflation surprises (inflation higher than expected) raise the jump probability

and therefore, the conditional volatility of returns. For example, an inflation shock of

size one (i.e., of size equal to one standard deviation based on the in-sample distribu-

tion of PPI shocks) increases the jump intensity by 0.48, if the shock is positive.27 In

contrast, when inflation is lower than expected, the effect on the jump intensity is com-

pletely offset. These results are also consistent with David and Veronesi (2008) in the

sense that positive inflation shocks might introduce additional uncertainty of switching

to a high inflation regime. Moreover, it is found that the persistent model fits well the

data when PPI inflation shocks are considered. Indeed, the likelihood and the Schwarz

criterion favor such a model suggesting that surprises about inflation can be associated

with persistent and asymmetric effects on jump intensities. In other words, positive

inflation shocks are likely to increase stock market volatility with significant persistent

effects.

Regarding non-persistent news effects on jump intensities, Table 7 shows the results

27In the logistic function Λ the coefficient for positive news is a1 and the coefficient for negative
news is a1 + a2.
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for Model S-2, which is estimated for each type of macroeconomic news at a time. As

in the models discussed above, only CPI news effects are significant for the conditional

mean of stock market returns. The models with CPI and PPI inflation shocks do not

show significant impacts of news variables on jump intensities. In contrast, monetary

policy and employment shocks have highly significant non-persistent effects on jump

intensities. Specifically, surprises about FFR releases increase the jump intensity. For

example, either a positive or a negative FFR surprise of size one (i.e., of size equal to

one standard deviation based on the in-sample distribution of monetary policy shocks)

is associated with an increase in the conditional jump intensity of 0.86 (i.e., 0.86 more

jumps are expected). The coefficient of asymmetry is not significant in this case. Notice

that these results support the connection between events such as surprising Federal

Reserve target changes and jump arrivals, as pointed out by Johannes (2004) in the

term structure case. Comparing these results with those of specification S-1, we can

conclude that the effect of monetary policy shocks on market volatility is unlikely to

be persistent. Moreover, in terms of model selection, the likelihood and the Schwarz

criterion favor the non-persistent model and confirm that short-lived effects seem to

characterize better the impact of monetary policy surprises on jump intensity and stock

market volatility dynamics.

With respect to employment shocks, the estimation results show significant impacts

on jump intensities of both unemployment and NFP employment surprises. These

results are consistent with Huang (2007) and Flannery and Protopapadakis (2002).
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The first study finds that among different macroeconomic announcements, employment

event days are associated with the highest frequency of jumps. The second paper

finds significant employment announcement effects on the stock market volatility. My

results indicate that a NFP surprise of size one (in terms of the standard deviation

of NFP surprises) is associated with an increase of 0.95 in the jump intensity. Thus,

such event can be associated with one additional expected jump conditional on the

information before the opening of the trading session. The effect of unemployment

surprises is asymmetric and only negative surprises increase the jump intensity. Indeed,

a negative unemployment surprise of size one is associated with an increase of 0.92 in

the conditional expected number of jumps. A positive surprise reduces the conditional

expected number of jumps by 0.17. Economically, negative unemployment surprises

along with positive surprises in NFP employment typically signal an upward revision of

growth expectations and possible future increases in interest rates. This is consistent

with the findings of Boyd et al. (2005) in the sense that good news for employment

can be bad news for stocks due to the dominant effect of the interest rate component

of stock prices. However, my results also suggest that bad news for NFP employment

can lead to increases in jump intensities and market volatility. Comparing these results

with those of the persistent specification (Model S-1), it is more likely that employment

surprises on conditional volatility are short-lived. This is also suggested by the model

fit measures where the likelihood and the Schwarz criterion considerably favor the non-

persistent models A-2 and S-2 for employment events (see tables 5, 6, and 7).
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Figure 4: Average Estimated Jump Intensity Residuals on Announcement Days for
Models with and without News Effects
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Figure 5: Notes: Models with news effects correspond to Model S-1 for PPI, and
Model S-2 for FFR and NFP/UMP (see estimated coefficients in Tables 4, 5 and 6,
respectively).
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To further illustrate the importance of introducing news variables into the specifi-

cation of jump intensities, Figure 4 presents averages of the estimated jump intensity

prediction errors from the preferred models for each type of macroeconomic release,

and compares such values with the averages obtained from the baseline specification

estimated in subsection 5.1 (see Figure 3). These averages are taken over the sub-

samples of PPI, FFR and NFP/Ump announcement days using Equation (10) for each

jump intensity specification (the baseline model, specification S-1 for PPI event days,

and specification S-2 for FFR and NFP/UMP event days). Figure 4 confirms that

for monetary policy and employment releases, when the surprise component of an an-

nouncement is incorporated into the jump probabilities, the discrepancy between the ex

post assessment of the probability of a jump occurrence, P (Nt > 0|Ωt), and its ex ante

estimator, λt, is substantially reduced. For inflation shocks the positive bias is more

than offset and a negative bias is introduced. Hence, macroeconomic surprises can be

seen not only as important determinants of conditional volatilities but also as relevant

predictors of ex post (or realized) jump probabilities.28 Nonetheless, these results are

in-sample and need to be complemented by out-of-sample forecasting tests that allow

us to rule out potential problems of overfitting.

28The average jump intensity residual for non announcement days is -0.0078 for the specification
without news variables. For the preferred specifications with PPI, FFR and NFP/Ump surprises, the
average is -0.0093, -0.0071 and -0.0063, respectively. This suggests that introducing news variables
does not worsen the errors in predicting jumps on non announcement days.
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6 Jump Intensity Forecasts

The results in the previous section indicate that the effects of different types of news

events are heterogenous not only in terms of their impact on conditional mean but also

in terms of their effect on jump and volatility dynamics. In this section I perform an

out-of-sample forecasting exercise that compares the baseline model and the preferred

models for each type of announcement. Using the estimated coefficients presented in

Tables 4-7 and data from January 2, 2004 to August 29, 2008, jump intensities and

volatility forecasts are computed during this out-of-sample period. These forecasts are

one-day ahead recursive forecasts that are constructed by sequentially updating the

returns information up to the day preceding a specific announcement.

The models are compared in terms of their volatility prediction using the high-low

range volatility, as the realization measure, and volatility forecasts constructed from

Equation (2), the GARCH volatility in (11), and the models for the jump intensity

considered in Figure 4. These include the baseline model, Model S-1 for PPI event

days, and Model S-2 for monetary policy and employment announcement days. The

models are compared in terms of their accuracy in forecasting volatility using a mean

squared error (MSE) loss function. The squared root of such statistic (RMSE) is shown

in Table 8 for the baseline specification and the models with news effects. Under

the most realistic scenario it is natural to assume that surprises cannot be forecasted

(no foresight). In such a case, Table 8 shows that the models that were estimated

incorporating news variables are associated with a smaller RMSE statistic than the
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baseline model, for all of the announcement types. In addition, I present results of an

unrealistic case in which the econometrician is able to forecast a monetary policy shock

on the day before the FOMC announcement (perfect foresight). In such a case, the last

row of Table 8 indicates that the model with FFR news effects would show a further

decline in its RMSE statistic.29

7 Conclusions

In this paper, I present an alternative approach to analyze the effect of public regularly-

scheduled announcements related to fundamental variables, on the conditional jump

intensity and volatility of stock market returns. Based on a mixture of a GARCH

model with a Poisson jump process, I model the response of conditional volatility to

announcements and surprises through the response of the jump arrival intensity, which

can capture non-linear features of returns associated with fat tails and non-normalities.

Following a fully parametric approach, the conditional volatility of returns is composed

of two factors: one related to a standard diffusive component parametrized as a GARCH

process, and the other related to a pure jump component parametrized as a compound

Poisson process with time varying arrival intensity. The contribution of this paper

to the existing literature consists on the examination of a different non-linear channel

through which announcements and surprises might affect the dynamics of volatility. In

addition, this study successfully disentangles the role of heterogeneous news events in

29The case of perfect foresight was considered only for FFR announcements because, for the other
announcements, recent MMS survey forecasts are not available.
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jump intensity dynamics.

The fundamental variables considered in the paper include measures of inflation

(CPI, PPI), employment (NFP Employment and an Index of Unemployment), and

short-term interest rates (Federal Funds Rate). The results suggest that the day of

the announcement, per se, has little impact on conditional volatility for most of the

announcements (only announcements about unemployment tend to boost volatility).

In contrast, when the surprise component of the announcements is incorporated into

the model, the impacts of fundamentals’ news become more important. In line with

other results in the literature, the effects of shocks seem to have a short duration

for most of the variables considered here. Indeed, while employment and monetary

policy surprises show significant short-lived effects on the conditional jump intensity

and volatility of market returns, the evidence of persistent effects is only significant for

PPI inflation shocks. Moreover, the direction of the effects is consistent with previous

theoretical and empirical evidence. Higher than expected inflation, short-term interest

rates, and NFP employment induce an increase in the conditional jump intensity and

volatility. Similarly, lower than expected NFP employment and short-term interest rates

also raise the volatility component associated with jumps. The results also suggest

significant asymmetric effects of inflation shocks. Negative shocks offset the overall

effect of positive shocks for the PPI.

Overall, these empirical findings point out the relevance of incorporating heteroge-

neous news events to explain different volatility patterns and suggest that jumps play
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an important role in explaining the effects on market volatility of macroeconomic events

that take market participants by surprise. Moreover, this paper shows evidence that

the information of macroeconomic surprises has predictive power for jump probabilities

that leads to volatility forecast improvements on event days.
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TABLES 
 

Table 1 
Macroeconomic Announcements by Day of the Week 

  Announcements (1992-2003) 

Dayweek total CPI PPI FFR NFP/Unemployment 
M 575 0 0 3 1 
T 621 41 16 55 0 
W 619 38 17 36 0 
Th 608 26 44 5 5 
Fr 603 39 70 3 135 

Total 3026 144 147 102 141 

 
 

Table 2 

Volatility Proxy: High-Low Range Volatility S&P500 (%) 

Dayof the week Mean Std. Dev. t-stata min max 
M 0.1231 0.0850 -0.51 0.0258 0.7301 
T 0.1262 0.0839 0.51 0.0242 0.7275 
W 0.1240 0.0787 -0.25 0.0252 0.8084 
Th 0.1249 0.0755 0.06 0.0169 0.4920 
Fr 0.1253 0.0771 0.20 0.0169 0.6938 

Total 0.1247 0.0800  0.0169 0.8084 

a) t-test on the equality of means with respect to the other week days. Ho:µ1=µ2, Ha: µ1≠µ2 
 
 

Table 3 

S&P500 High-Low Range Volatility by Day-of-Announcement (%) 
  Release day Day before Day after 

Release Obs Mean Std. Dev. t-stata Mean Std. Dev. t-stata Mean Std. Dev. t-stata 

CPI 137 0.1335 0.0886 1.46 0.1269 0.0851 0.64 0.1276 0.0899 0.69 
PPI 144 0.1263 0.0771 0.62 0.1231 0.0761 0.13 0.1280 0.0859 0.78 
FFR 101 0.1415 0.0965 1.99 0.1203 0.0742 -0.25 0.1286 0.0803 0.78 

NFP/UMP 141 0.1470 0.0794 3.61 0.1160 0.0660 -1.03 0.1187 0.0781 -0.49 
Non-ann 2503 0.1222 0.0788        

Total 3026 0.1247 0.0800        
a) t-test on the equality of means with respect to the sample of non-announcement days. Ho:µ1=µ2, Ha: µ1≠µ2 
Significant values at 5% are highlighted. 
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Table 4 

Estimation Results from the Baseline Modela 

 Parameters 
 µ  δ  c  ρ  γ  w  g  b  

Estimates 0.0677 0.8907 0.0134 0.9756 0.4671 0.0015 0.0091 0.9806 
T-Statistics 4.91 3.91 2.43 82.79 4.04 2.20 2.54 182.43 

a) The baseline model is defined as follows: 
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1 1
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2 2 2
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w g b

µ σ δ λ

λ ρλ γζ
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σ ε σ

=

− −
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− −
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= + +
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Table 5 
Estimation Results for Models with Persistent and Non-Persistent Announcement 

Effects 
 Event Days and Estimated Modelsa 

 CPI  PPI FFR  UMP/NFPb 

Parameters Model A1 Model A2  Model A1 Model A2 Model A1 Model A2  Model A1 Model A2
µ 0.069 0.069  0.069 0.069 0.064 0.064  0.067 0.066 

 (0.014)* (0.014)*  (0.014)* (0.014)* (0.013)* (0.015)*  (0.013)* (0.013)* 
δ2 0.923 0.875  0.913 0.906 0.886 0.858  0.939 0.873 

 (0.259)* (0.243)*  (0.272)* (0.251)* (0.208)* (0.228)*  (0.33)* (0.205)* 
c 0.016 0.014  0.015 0.013 0.010 0.014  0.009 0.015 

 (0.006)* (0.003)*  (0.007)* (0.006)* (0.007) (0.004)*  (0.007) (0.005)* 
ρ 0.973 0.975  0.974 0.975 0.976 0.976  0.970 0.973 

 (0.01)* (0.013)*  (0.014)* (0.012)* (0.014)* (0.014)*  (0.021)* (0.009)* 
γ 0.480 0.489  0.471 0.461 0.465 0.456  0.504 0.502 

 (0.115)* (0.113)*  (0.14)* (0.117)* (0.129)* (0.116)*  (0.155)* (0.093)* 
w  0.0014 0.0015  0.0015 0.0015 0.0016 0.0015  0.0015 0.0014 

 (0.0008)** (0.0006)*  (0.0007)* (0.0007)* (0.0008)** (0.0007)*  (0.0007)* (0.0006)*
g 0.010 0.009  0.009 0.009 0.009 0.009  0.010 0.008 

 (0.004)* (0.004)*  (0.004)* (0.004)* (0.004)* (0.004)*  (0.005)* (0.003)* 
b 0.980 0.981  0.980 0.980 0.980 0.980  0.980 0.982 

 (0.006)* (0.006)*  (0.005)* (0.005)* (0.006)* (0.005)*  (0.007)* (0.004)* 
η1 -0.042 0.104  -0.023 -0.046 0.093 0.153  0.128 0.487 

 (0.071) (0.155)  (0.06) (0.07) (0.084) (0.116)  (0.064)* (0.174)* 
b1 -0.260 -0.253  -0.217 -0.227 0.094 0.103  0.008 0.037 

 (0.109)* (0.111)*  (0.15) (0.148) (0.178) (0.183)  (0.128) (0.129) 
b2 0.302 0.320  0.258 0.267 0.126 0.131  0.122 0.102 

 (0.125)* (0.136)*  (0.174) (0.167) (0.21) (0.207)  (0.154) (0.149) 
b1(NFP)         -0.044 -0.045 

         (0.123) (0.129) 
b2(NFP)         0.082 0.090 

         (0.15) (0.164) 
           

-Log-
likelihood 3981.1 3981.00  3983.1 3983.06 3981.1 3981.10  3981.6 3976.50 

SC 8050.4 8050.30   8054.4 8056.40  8050.4 8050.30   8051.3 8041.10 
a) Following the returns process in Equation 1, models A-1 and A-2 are defined as follows: 

1 1 1

1 1 1 1

1 1 1 1 2

1
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2 : ( )
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t t t t

A A
t t t t t

A
t t t t t t

t

Model A c I

Model A c I I

where E N E N I Announcement Indicator

λ η ρλ γζ

λ η ρ ρλ γζ

ζ

− −

− − −

− − − − −

−

− = + + +

− = + − + +

= Ω − Ω =

Ω
2 2 2

1 1 1 , 2 1, ,

se of trading day .

: . : | | | |t t t t t K t K t K

t

GARCH Variance w g b Conditional Mean b S b I Sσ ε σ µ µ −
− − −= + + = + +

 

Standard errors are reported in parentheses. Asterisks denote: *significance at the 5% level, **significance at the 10% level. 
b) On employment event days, the coefficients b1 and b2 correspond to the conditional mean effects of unemployment news, and 
b1(NFP) and b2(NFP) correspond to the conditional mean effects of NFP news. 
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Table 6 
Estimation Results for Model with Persistent News Effectsa 

 Event Days 
Parameters CPI PPI FFR UMP NFP 

µ 0.0625 0.0611 0.0590 0.0580 0.0618 
 (0.013)* (0.013)* (0.013)* (0.013)* (0.013)* 

δ2 0.5149 0.4993 0.7078 0.6838 0.7388 
 (0.074)* (0.074)* (0.163)* (0.158)* (0.164)* 

c 0.4589 0.3971 2.2672 1.8771 2.0528 
 (0.278)** (0.291) (0.618)* (0.746)* (0.84)* 

ρ 0.9956 0.9932 0.9682 0.9737 0.9604 
 (0.002)* (0.002)* (0.014)* (0.011)* (0.017)* 

γ 0.2548 0.2845 0.5768 0.5290 0.6619 
 (0.074)* (0.059)* (0.115)* (0.135)* (0.161)* 

w  0.0226 0.0230 0.0017 0.0017 0.0018 
 (0.009)* (0.01)* (0.001)* (0.001)* (0.001)* 

g 0.0416 0.0342 0.0091 0.0083 0.0102 
 (0.012)* (0.011)* (0.004)* (0.004)* (0.004)* 

b 0.8508 0.8535 0.9797 0.9803 0.9786 
 (0.039)* (0.044)* (0.006)* (0.007)* (0.007)* 

1a  -0.0475 0.9866 0.1205 0.3628 0.5297 
 (0.169) (0.528)** (0.307) (0.257) (0.347) 

2a  0.1564 -0.9823 -0.0134 -0.3397 -0.2401 
 (0.217) (0.506)** (0.367) (0.263) (0.401) 

b1 -0.2933 -0.1756 0.0871 -0.0445 -0.0734 
 (0.112)* (0.15) (0.182) (0.097) (0.131) 

b2 0.3602 0.2269 0.1416 0.1743 0.0995 
 (0.134)* (0.173) (0.202) (0.118) (0.158) 
      

Log-likelihood 3983.10 3981.70 3988.30 3987.80 3987.80 
SC 8062.30 8058.60 8072.80 8071.90 8071.80 

a) Following the returns process in Equation (1), Model S-1 is defined as follows: 
1 1

1 1 1 1 2
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1
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exp( ) 1,   ( | ) ( | ), ( ) 2*
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Standard errors are reported in parentheses. Asterisks denote: *significance at the 5% level,  
**significance at the 10% level. 
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Table 7 
Estimation Results for Model with Non-Persistent News Effectsa 

 Event Days 
Parameters CPI PPI FFR UMP NFP 

µ 0.0616 0.0591 0.0580 0.0580 0.0609 
 (0.014)* (0.014)* (0.014)* (0.014)* (0.014)* 

δ2 0.5091 0.4823 0.5186 0.5060 0.5139 
 (0.085)* (0.07)* (0.062)* (0.068)* (0.086)* 

c 0.5280 0.4031 0.4306 0.5416 0.4625 
 (0.279)** (0.275) (0.237)** (0.26)* (0.239)** 

ρ 0.9958 0.9968 0.9963 0.9957 0.9958 
 (0.002)* (0.002)* (0.002)* (0.002)* (0.002)* 

γ 0.2507 0.2043 0.2386 0.2663 0.2392 
 (0.072)* (0.071)* (0.069)* (0.071)* (0.066)* 

w  0.0223 0.0166 0.0220 0.0217 0.0173 
 (0.008)* (0.007)* (0.007)* (0.007)* (0.005)* 

g 0.0416 0.0419 0.0404 0.0381 0.0407 
 (0.012)* (0.012)* (0.011)* (0.011)* (0.01)* 

b 0.8508 0.8649 0.8553 0.8561 0.8732 
 (0.037)* (0.027)* (0.035)* (0.036)* (0.026)* 

1a  0.9155 0.8217 2.5604 -0.3367 3.5711 
 (0.769) (0.976) (1.045)* (0.109)* (2.074)** 

2a  -0.6360 -1.4175 -1.6316 3.6408 -0.3596 
 (0.805) (0.965) (1.226) (0.834)* (2.149) 

b1 -0.2821 -0.1491 -0.0472 -0.0460 -0.0474 
 (0.138)* (0.165) (0.227) (0.087) (0.115) 

b2 0.3683 0.2002 0.3216 0.1727 0.1330 
 (0.16)* (0.182) (0.256) (0.118) (0.166) 
      

Log-likelihood 3982.60 3983.20 3979.80 3980.10 3975.20 
SC 8061.40 8062.60 8055.80 8056.30 8046.50 

a) Following the returns process in Equation (1), Model S-2 is defined as follows: 
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Standard errors are reported in parentheses. Asterisks denote: *significance at the 5% level,  
**significance at the 10% level. 
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Table 8 

Root Mean Squared Error of Out-of-Sample Volatility Forecasts 
on Macroeconomic Announcement Days 

 RMSE ON EVENT DAYS 
 PPI FFR  UMP/NFP 

Baseline Model 2.0693 2.5579  1.6580 
News Model (No Foresight) 1.9887 2.5239  1.5903 

News Model (Perfect Foresight)    2.2676     
The RMSE is computed considering realizations of the high-low range volatility and one-step-ahead 
recursive forecasts, which are constructed by fixing the estimates obtained in the estimation period 
(01/02/92-12/31/2003), and updating the volatility process using returns data up to the day preceding an 
announcement, during the forecasting period (01/02/2004-08/29/2008). Under “No Foresight” the news 
variables are equal to zero. Under “Perfect Foresight” they are equal to their realization. 
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Appendix A1

Proof of Proposition 1. From Equation (1), we have:

ε1t = σtzt, zt ∼ N(0, 1), {zt}∞t=1 iid

ε2t =
NtP
j=1

cjt, cjt ∼ N(0, δ2), iid for j = 1, 2, ..., Nt

where,

P (Nt = j|Ωt−1,Θ) =
λjt exp(−λt)

j!

and Θ denotes a set of relevant parameters

Now, conditioning upon the event Nt = n

we can define eε2t ≡ NtP
j=1

cjt | Nt = n ∼ N(0, nδ2)

Given that ε1t and eε2t are independent, the density of the sum is obtained through

the convolution of the individual densities:

fε1t+ε2t(ω) =
R∞
−∞ fε1t(ω − z)fε2t(z)dz

=
R∞
−∞

½
1√
2πσ2t

exp
³
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2
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´¾n
1√
2πnδ2
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³
− z2
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´o
dz
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½
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2π
√

nσ2t δ
2
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³
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2

³
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Using the following relation,³
(ω−z)2
σ2t
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nδ2

´
=

µ
z
√
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√
nσ2t δ

2
− nωδ2√

σ2t+nδ
2
√

nσ2t δ
2

¶2
+ ω2√
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2

and integrating the term involving z, we have

fε1t+ε2t(ω) =
1√

2π
√

σ2t+nδ
2
exp

µ
− ω2

2(σ2t+nδ2)

¶
= f(rt|Nt = n,Ωt−1,Θ)

Then, integrating the number of jumps out using the Poisson density, Equation (3)

follows:

f(rt|Ωt−1,Θ) =
∞P
n=1

exp(−λt)λnt
n!

1√
2π(σt+nδ

2)
exp

³
− (rt−µ)2
2(σt+nδ

2)

´
Now, from Bayes rule, we obtain

P (Nt = j | rt,Ωt−1,Θ) =
f(rt|Nt=n,Ωt−1,Θ)P (Nt=j|Ωt−1,Θ)

f(rt|Ωt−1,Θ)

and by simple substitution, Equation (4) follows.
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