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Backward Stochastic Di�erential Equations and Stochastic

Controls: A New Perspective

Michael Kohlmann� and Xun Yu Zhouy

May 21, 1999

Abstract

It is well known that backward stochastic di�erential equations (BSDEs) stem from the

study on the Pontryagin type maximum principle for optimal stochastic controls. A solution

of a BSDE hits a given terminal value (which is a random variable) by virtue of an additional

martingale term and an inde�nite initial state. This paper attempts to view the relation

between BSDEs and stochastic controls from s new perspective by interpreting BSDEs as

some stochastic optimal control problems. More speci�cally, associated with a BSDE a new

stochastic control problem is introduced with the same dynamics but a de�nite initial state.

The martingale term in the original BSDE is regarded as the control and the objective is

to minimize the second moment of the di�erence between the terminal state and the given

terminal value. This problem is solved in a closed form by the stochastic linear-quadratic

theory developed recently. The general result is then applied to the Black-Scholes model,

where an optimal feedback control is obtained explicitly in terms of the option price. Finally,

a modi�ed model is investigated where the di�erence between the state and the expectation

of the given terminal value at any time is take into account.
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1 Introduction

Backward stochastic di�erential equation (BSDE for short) theory and applications have remained

very active in recent years. Consider the following linear BSDE:8<
:
dp(t) = [A(t)p(t) +B(t)q(t) + f(t)]dt+ q(t)dW (t);

p(T ) = �;
(1.1)

where � is a random variable that will become certain only at the terminal time T . As is well-known

the equation was initially introduced by Bismut [2, 3] when he was studying the adjoint equations

associated with the stochastic maximum principle in stochastic optimal controls. Basically, the

equation (1.1) tells how to price the marginal value of the resource represented by the state variable

in a random environment. The solution of (1.1) has two components: p and q, the former being the

price while the latter signi�es the uncertainty between the present and terminal times. The linear

BSDEs were later extended to nonlinear ones by Pardoux and Peng [12] motivated by stochastic

control problems, and independently by Du�e and Epstein [6] in their study of recursive utility

in �nance. The BSDE theory has found wide applications in partial di�erential equation theory,

stochastic controls and, particularly, mathematical �nance. For a most updated account of the

BSDE theory and applications see the book by Yong and Zhou [14, Chapter 7].

As mentioned a solution of a BSDE consists of two components, p and q. Mathematically q is

obtained implicitly by the martingale representation theorem (see [10]). This somehow mysterious

second term q is hard to handle both analytically and numerically, and we have not found a clear,

tangible explanation for q in the literature. The purpose of this paper is try to view the BSDEs

from a control perspective (so it is a reverse of the original \birth process" of BSDEs!) and interpret

the term q as a control variable.

To be precise, note that in equation (1.1) the terminal value is speci�ed while the initial value

is left open. But if the equation has a solution then the initial value cannot be chosen arbitrarily;

rather it is uniquely determined by the solution and is hence part of the solution. Therefore, solving

(1.1) amounts to the following statement: starting with a proper initial condition and choose an

appropriate di�usion term to hit the given value at the terminal.

Then, it will be very natural to modify the above statement and consider the following stochastic

optimal control problem: for the same dynamics of (1.1), starting with a given initial state x choose

a control q so that the terminal state p(T ) stays as close to the given terminal value � as possible.

Note that since now the initial value x is given a priori, one in general cannot expect that p(T ) will

hit � exactly by choosing certain q. Hence it is reasonable to require that the di�erence between

the two is minimized. Here, the \di�erence" may be measured by, say, the second moment of the

algebraic di�erence between the two random variables. More interestingly, if we regard the initial
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state also as a decision variable then the optimal state-control pair of the problem (p; q) is exactly

the solution of the original BSDE!

It turns out that the control problem formulated above is a stochastic optimal linear-quadratic

(LQ) problem that can be solved analytically via a stochastic Riccati equation (SRE), employing

the similar technique as developed recently in [4, 5].

We then apply the general result obtained to the Black-Scholes model. Taking advantage of the

fact that the state (wealth) is a scalar, one can solve the SRE explicitly and hence the stochastic

control problem. It turns out that an optimal control consists of the hedging strategy for the claim

and the Merton portfolio for a quadratic terminal utility.

Finally we consider a modi�ed model where the di�erence between the state and and the expected

terminal value must be kept small at any time. Again explicit optimal control is derived via an

SRE which is shown to be always solvable. The result is then applied to the Black-Scholes model

which gives rise to a consumption process to correct dynamically any large deviation of the price

from the expected value of the claim.

The rest of the paper is organized as follows. In Section 2 we formulate the model and problem.

Section 3 presents the optimal solution to the problem. Section 4 is concerned with the solvability

of the stochastic Riccati equation necessary for the optimal control derived in Section 3. In Section

5 a special case, namely the Black-Scholes model is considered and an optimal hedging portfolio is

derived explicitly based on the results of the previous sections. Section 6 is devoted to a modi�ed

model. Finally, Section 7 concludes the paper.

2 Problem Formulation

Throughout this paper (
;F ; P; fFtgt�0) is a �xed �ltered complete probability space on which

de�ned a standard fFtgt�0-adapted m-dimensional Brownian motion W (t) � (W 1(t); � � � ;Wm(t))0

with W (0) = 0. It is assumed that Ft = �fW (s) : s � tg. We denote by L2
F(0; T ;R

d) the set of all

Rd-valued, measurable stochastic processes  (t) adapted to fFtgt�0, such that E
R T
0 j (t)j

2dt < +1:
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Notation. We make the following additional notation:

M 0 : the transpose of any vector or matrix M ;

jM j : =
qP

i;jm
2
ij for any matrix or vector M = (mij);

Sn : the space of all n� n symmetric matrices;

Sn
+ : the subspace of all nonnegative de�nite matrices of Sn;

Ŝn
+ : the subspace of all positive de�nite matrices of Sn;

C([0; T ];X) : the Banach space of X-valued continuous functions on [0; T ]

endowed with the maximum norm k � k for a given Hilbert space X;

L2(0; T ;X) : the Hilbert space of X-valued integrable functions on [0; T ]

endowed with the norm
� R T

0 k f(t) k2X dt
� 1

2

for a given Hilbert space X;

L1(0; T ;X) : the Banach space of X-valued essentially bounded functions on [0; T ]

endowed with the norm sup0�t�T k f(t) kX for a given Hilbert space X:

Consider the following controlled system

8<
:
dx(t) = [A(t)x(t) +

Pm
j=1Bj(t)uj(t) + f(t)]dt+

Pm
j=1 uj(t)dW

j(t); t 2 [0; T ];

x(0) = x;
(2.1)

where x(t); x; uj(t); f(t) 2 Rn and A(t); Bj(t) 2 Rn�n. Throughout this paper we assume that

A(t); Bj(t) are bounded deterministic functions and f 2 L2
F (0; T ;R

n). For a given FT -measurable

square integrable random variable �, the problem is to select an (FT -adapted) control process

u(�) � (u1(�); � � � ; um(�)) 2 L
2
F(0; T ;R

mn) so as to minimize the cost functional

J(x; u(�)) = E
1

2
jx(T )� �j2: (2.2)

To simplify the cost functional, it is natural to de�ne

y(t) = x(t)� E(�jFt): (2.3)

Since E(�jFt) is an Ft-martingale and Ft is generated by the Brownian motion W (t), by the

Martingale Representation Theorem ([10]) there is z(�) � (z1(�); � � � ; zm(�)) 2 L
2
F (0; T ;R

mn) so that

E(�jFt) = E� +
mX
j=1

Z t

0
zj(s)dW

j(s): (2.4)

By (2.1), (2.3) and (2.4), with the new state variable y(�) the controlled system becomes

8<
:
dy(t) = [A(t)y(t) +

Pm
j=1Bj(t)uj(t) + g(t)]dt+

Pm
j=1[uj(t)� zj(t)]dW

j(t); t 2 [0; T ];

y(0) = x� E� � y;
(2.5)

where

g(t) = f(t) + A(t)E(�jFt); (2.6)
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and the cost functional reduces to

J(y; u(�)) = E
1

2
jy(T )j2: (2.7)

Notice that the above problem is a stochastic linear-quadratic (LQ) control problem with random

nonhomogeneous terms in both drift and di�usion coe�cients.

3 Solutions

In this section we solve the problem (2.1)-(2.2) or (2.5)-(2.7) by LQ techniques. The main idea is

simply the completion of squares. It should be noted that the problem under consideration is a

singular LQ problem in that the running cost is identically zero, therefore can not be solved by

the conventional approach as developed by Wonham [13] and others. Indeed, study on the general

(possibly singular) stochastic LQ problem is interesting in its own right and has recently been

developed extensively, see [4, 5]. For a systematic treatment of stochastic LQ problems, see also

[14, Chapter 6].

In the rest of this paper, we may writeX for a (deterministic or stochastic) processX(t), omitting

the variable t, whenever no confusion arises. Under this convention, when X 2 C([0; T ];Sn),

X � (>)0 means X(t) � (>)0; 8t 2 [0; T ].

We introduce the following stochastic Riccati equation (SRE for short):

8>><
>>:

_P + PA+ A0P �
Pm

j=1 PBjP
�1B0

jP = 0;

P (T ) = I;

P (t) > 0; 8t 2 [0; T ];

(3.1)

along with a backward stochastic di�erential equation (BSDE for short)

8>><
>>:

d�(t) = �
h
(A0 �

Pm
j=1 PBjP

�1B0
j)��

Pm
j=1 PBjP

�1�j + P (g +
Pm

j=1Bjzj)
i
(t)dt

+
Pm

j=1 �j(t)dW
j(t);

�(T ) = 0:

(3.2)

Note that the SRE (3.1) is fundamentally di�erent from the conventional Riccati equation1 in that

the equation (3.1) involves the inverse of the unknown. In addition, the third constraint of (3.1)

must also be satis�ed for any solution. In general, such an equation does not automatically admit

a solution (the sovalbility of this equation is interesting on its own; see Section 4 below). On the

other hand, if (3.1) has a solution P (�), then the second equation (3.2) must admit an Ft-adapted

solution (�(�); �j(�); j = 1; � � � ; m) as (3.2) is a linear BSDE; see [2, 3] or [14, Chapter 7] for more

details about BSDEs.

1Here by a conventional Riccati equation we mean one associated with the deterministic LQ problem, see [1], as

opposed to that associated with the stochastic LQ problem, see [13, 4].
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Theorem 3.1. If the equations (3.1) and (3.2) admit solutions P 2 C([0; T ]; Ŝn
+) and (�(�); �j(�); j =

1; � � � ; m) 2 L2
F (0; T ;R

n)�L2
F(0; T ;R

nm), respectively, then the problem (2.5)-(2.7) has an optimal

feedback control u�(�) � (u�1(�); � � � ; u
�
m(�)), where

u�j(t) = �P (t)�1Bj(t)
0[P (t)y�(t) + �(t)]� P (t)�1�j(t) + zj(t); j = 1; � � � ; m: (3.3)

Moreover, the optimal cost value under the above control is

J�(y) = 1
2
y0P (0)y + y0�(0) + 1

2
E
R T
0

h
2�0g � 2

Pm
j=1 �jzj +

Pm
j=1 z

0
jPzj

�
Pm

j=1(P
�1B0

j�+ P�1�j � zj)
0P (P�1B0

j�+ P�1�j � zj)
i
(t)dt:

(3.4)

Proof. Applying Ito's formula, we get

1
2
d[y(t)0P (t)y(t)] = 1

2

hPm
j=1(uj � zj)

0P (uj � zj) + 2y0Pg

+
Pm

j=1(y
0PBjP

�1B0
jPy + 2u0jB

0
jPy)

i
(t)dt+ 1

2
f:::gdW (t);

(3.5)

and

d[�(t)0y(t)] =
h
� �0(A�

Pm
j=1BjP

�1B0
jP )y +

Pm
j=1 �

0
jP

�1B0
jPy � (g0 +

Pm
j=1 z

0
jB

0
j)Py

+�0(Ay +
Pm

j=1Bjuj + g) +
Pm

j=1 �
0
j(uj � zj)

i
(t)dt+ f:::gdW (t):

(3.6)

Then we integrate both (3.5) and (3.6) from 0 to T , take expectations, and add them together.

Trying to complete a square and going through a fairly tedious manipulation, we end up with

J(y; u(�))

= 1
2
E
R T
0

h
2�0g � 2

Pm
j=1 �jzj +

Pm
j=1 z

0
jPzj

+
Pm

j=1(uj + P�1B0
jPy + P�1B0

j�+ P�1�j � zj)
0P (uj + P�1B0

jPy + P�1B0
j�+ P�1�j � zj)

�
Pm

j=1(P
�1B0

j�+ P�1�j � zj)
0P (P�1B0

j�+ P�1�j � zj)
i
(t)dt

+1
2
y0P (0)y + y0�(0):

(3.7)

It follows immediately that the optimal feedback control is given by (3.3) and the optimal value is

given by (3.4) provided that the the corresponding equation (2.5) under (3.3) has a solution. But

under the linear feedback (3.3), the system (2.5) is a nonhomogeneous linear stochastic di�erential

equation with bounded linear coe�cients and square integrable nonhomogeneous terms. Hence it

must admit one and only one solution by standard SDE theory. This completes the proof. 2

Now we would like to derive the optimal feedback control in terms of the original variable x(t).

Interestingly, the optimal control can be obtained via the original BSDE that motivated the optimal

control problem (2.1)-(2.2).

Theorem 3.2. Under the same assumptions of Theorem 3.1, the control problem (2.1)-(2.2) has

an optimal feedback control u�(�) � (u�1(�); � � � ; u
�
m(�)), where

u�j(t) = �P (t)�1Bj(t)
0P (t)[x�(t)� p(t)] + qj(t); j = 1; � � � ; m; (3.8)
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where (p(�); qj(�); j = 1; � � � ; m) 2 L2
F(0; T ;R

n)�L2
F (0; T ;R

nm) is the unique Ft-adapted solution of

the following BSDE:

8<
:
dp(t) = [A(t)p(t) +

Pm
j=1Bj(t)qj(t) + f(t)]dt+

Pm
j=1 qj(t)dW

j(t); t 2 [0; T ];

p(T ) = �:
(3.9)

Proof. First of all, consider the following matrix-valued ordinary di�erential equation:

8<
:

_Q� AQ�QA0 +
Pm

j=1BjQB
0
j = 0;

Q(T ) = I;
(3.10)

which must admit a unique solutionQ(�) since it is linear with bounded coe�cients. Denote S = PQ,

then by the di�erential chain rule it is easy to verify that S satis�es

8<
:

_S = SA0 � A0S +
Pm

j=1 PBjP
�1B0

jS �
Pm

j=1 PBjP
�1SB0

j;

S(T ) = I:
(3.11)

This is a linear equation hence it has a unique solution S � I. It leads to Q(t) = P (t)�1.

Now, noting (2.3), the feedback control (3.3) can be written as

u�j(t) = �P (t)�1Bj(t)
0[P (t)x�(t)� P (t)E(�jFt) + �(t)]� P (t)�1�j(t) + zj(t); j = 1; � � � ; m: (3.12)

Denote
p(t) = E(�jFt)� P (t)�1�(t) � E(�jFt)�Q(t)�(t);

qj(t) = zj(t)� P (t)�1�j(t) � zj(t)�Q(t)�j(t); j = 1; � � � ; m:
(3.13)

Applying Ito's formula to (2.4), (3.10) and (3.2), we can verify that (p(�); qj(�); j = 1; � � � ; m) satis�es

the BSDE (3.9). Therefore the desired results follow by virtue of the uniqueness of solutions to

(3.9). 2

Remark 3.1. Equation (3.4) also gives the optimal cost functional value as a function of the

initial value y � x�E�. It turns out to be a quadratic function. If the controller has the choice of

selecting the initial value y so as to minimize J�(y), then the \best" initial value would be obtained

by setting d

dy
J�(y)jy=y� = 0. This yields y� = �P (0)�1�(0). Returning to the original variable, we

get that the best initial value for x(�) will be

x� = y� + E� = �P (0)�1�(0) + E� = p(0); (3.14)

where the last equality is due to (3.13). This makes perfect sense, as it implies that one should

choose an initial value p(0) so as to minimize the di�erence between the terminal state value and

the given value � (of course, in this case the minimum di�erence is zero since starting with p(0)

one can hit � exactly at the end, by the BSDE theory). In this perspective, the solution pair (p; q)
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of the BSDE (3.9) may be regarded as the optimal state-control pair of minimizing J(x; u(�)) (as

given by (2.2)) over (x; u(�)) subject to the dynamics (2.1). This gives an interpretation of (p; q)

via a stochastic control problem. In this perspective, if a BSDE does not have an adapted solution

(e.g., when the underlying �lteration is not generated by the Brownian motion involved), we may

still de�ne a \pseudo-solution" via the corresponding stochastic control problem.

Remark 3.2. Under the optimal feedback (3.8), the optimal trajectory x�(�) evolves as

8>><
>>:

dx�(t) =
n
[A�

Pm
j=1BjP

�1B0
jP ]x

� +
Pm

j=1Bj(t)P
�1B0

jPp+ f +
Pm

j=1Bjqj
o
(t)dt

+
Pm

j=1[�P
�1B0

jPx
� + P�1B0

jPp+ qj](t)dW
j(t);

x�(0) = x:

(3.15)

Moreover, the di�erence �(t) = x�(t)� p(t) satis�es

8<
:
d�(t) = [A�

Pm
j=1BjP

�1B0
jP ](t)�(t)dt�

Pm
j=1[P

�1B0
jP ](t)�(t)dW j(t);

�(0) = x� p(0):
(3.16)

Notice that �(�) satis�es a homogeneous linear SDE, and hence must be identically zero if the

initial is zero, namely, x = p(0). In this case, by (3.8), the optimal control is u�j(t) = qj(t). This is

exactly in line with the observation in Remark 3.1.

Remark 3.3. The results obtained above are based on the LQ approach. LQ models constitute an

extremely important class of optimal control problems and their optimal solutions can be obtained

explicitly via the Riccati equations, due to the nice underlying structures (see [1, 4, 5, 9, 13, 14]).

The general stochastic Riccati equation is introduced in [4] as a BSDE of the Pardoux-Peng type

([12]) for the case where all the coe�cients are random. It reduces to (4.1) for the present case.

Consequently, the results in this section can be easily extended to the case where the coe�cients

A;Bj are adapted random processes.

4 Solvability of SRE

In the previous section we derived explicitly an optimal control (in a feedback form) of the problem.

However, there is one gap remaining, namely the result depends on the SRE (3.1) being solvable.

The solvability of the SRE is by no means trivial, and is interesting in its own right. In [4], a

necessary and su�cient condition for the solvability of SREs more general than (3.1) is derived.

However the condition there is rather implicit. This section gives an explicit condition which ensures

that (3.1) admits a unique solution.

To this end, we �rst consider a conventional Riccati equation

8<
:

_P + PA+ A0P �
Pm

j=1 PBjK
�1B0

jP = 0;

P (T ) = I;
(4.1)
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where K > 0 is given a priori (compare the equations (4.1) and (3.1)). Note that the above equation

is a bit di�erent from the standard Riccati equation arising from deterministic control problems

(see [1]) where m = 1. But the case m > 1 can be treated in the same way without any di�culty.

In particular, it is associated with the following deterministic LQ problem:

Minimize J(s; y; u(�)) =
R T
s

1
2

Pm
j=1 uj(t)

0K(t)uj(t)dt+
1
2
jx(T )j2;

Subject to

8<
:

_x(t) = A(t)x(t) +
Pm

j=1Bj(t)uj(t);

x(s) = y;

where (s; y) 2 [0; T ]�Rn. Namely, the value function of the above LQ problem is 1
2
y0P (s)y where P

is the solution to (4.1). Denote K = fK 2 L1(0; T ; Ŝm
+ ) j K

�1 2 L1(0; T ; Ŝm
+ )g. It can be checked

that C([0; T ]; Ŝm
+ ) � K. For each K 2 K, we know from the classical Riccati theory (as well as

the remark above) that (4.1) admits a unique solution P 2 C([0; T ];Sn
+). Thus we can de�ne a

mapping 	 : K ! C([0; T ];Sn) as P = 	(K).

Theorem 4.1. The SRE (3.1) admits a unique solution if and only if there exist K 2 C([0; T ]; Ŝm
+ )

such that

	(K) � K: (4.2)

Proof. This is a special case of [4, Theorem 4.2]. 2

Theorem 4.2. If

A(t) + A(t)0 �
mX
j=1

Bj(t)Bj(t)
0; (4.3)

then the SRE (3.1) admits a unique solution.

Proof. We will show that (4.2) holds for K = "I for some " > 0. To this end, for " > 0 set

P" = 	("I)� "I. Then P" satis�es

8>><
>>:

_P" + P"(A�
Pm

j=1BjB
0
j) + (A�

Pm
j=1BjB

0
j)
0P" � "�1

Pm
j=1 P"BjB

0
jP"

+"(A+ A0 �
Pm

j=1BjB
0
j) = 0;

P"(T ) = I � "I:

(4.4)

Therefore, under the assumption (4.3) and when 0 < " < 1, the above is a standard conventional

Riccati equation which admits a unique solution P" � 0. This implies that (4.2) holds with K = "I.

The result follows then from Theorem 4.1. 2

Remark 4.1. In [4], an algorithm of computing the solution to the SREs is given. For the special

SRE (3.1), the algorithm basically stipulates that one start with K = "I (with 0 < " < 1) and

solve the conventional Riccati equation (4.1) recursively. The resulting sequence of solutions will

monotonically converge to the solution of SRE (3.1).
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It should be noted that (4.3) only gives an (easily veri�able) su�cient condition for the solvability

of SRE (3.1). In other special cases (see Section 5 below), solvability of SRE can also be shown

without (4.3).

5 Black-Scholes Model

We now apply the general results obtained in the previous sections to a contingent claim problem

with the Black-Scholes setup. Suppose there is a market in which m + 1 assets (or securities)

are traded continuously. One of the assets is the bond whose price process P0(t) is subject to the

following (deterministic) ordinary di�erential equation:

8<
:
dP0(t) = r(t)P0(t)dt; t 2 [0; T ];

P0(0) = p0 > 0;
(5.1)

where r(t) > 0 is the interest rate (of the bond). The other m assets are stocks whose price processes

P1(t); � � � ; Pm(t) satisfy the following stochastic di�erential equation:

8<
:
dPi(t) = Pi(t)[bi(t)dt+

Pm
j=1 �ij(t)dW

j(t)]; t 2 [0; T ];

Pi(0) = pi > 0;
(5.2)

where bi(t) > 0 is the appreciation rate, and �i(t) � (�i1(t); � � � ; �im(t)) : [0; T ]! Rm is the volatility

or the dispersion of the stocks. De�ne the covariance matrix

�(t) =

0
BBB@
�1(t)
...

�m(t)

1
CCCA � (�ij(t))m�m: (5.3)

The basic assumption throughout this section is

�(t) � �(t)�(t)0 � �I; 8t 2 [0; T ]; (5.4)

for some � > 0. This is the so-called non-degeneracy condition. We also assume that all the

functions are measurable and uniformly bounded in t.

Consider an investor whose total wealth at time t � 0 is denoted by x(t). Suppose he/she

decides to hold Ni(t) shares of i-th asset (i = 0; 1; � � � ; m) at time t. Then

x(t) =
mX
i=0

Ni(t)Pi(t); t � 0: (5.5)

Assume that the trading of shares takes place continuously and transaction cost and consumptions
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are not considered. Then one has

8>>>>>>>>>>><
>>>>>>>>>>>:

dx(t) =
Pm

i=0Ni(t)dPi(t)

=
n
r(t)N0(t)P0(t) +

Pm
i=1 bi(t)Ni(t)Pi(t)

o
dt

+
Pm

i=1Ni(t)Pi(t)
Pm

j=1 �ij(t)dWj(t)

=
n
r(t)x(t) +

Pm
i=1 [bi(t)� r(t)]�i(t)

o
dt

+
Pm

j=1

Pm
i=1 �ij(t)�i(t)dW

j(t);

x(0) = x > 0;

(5.6)

where

�i(t) � Ni(t)Pi(t); i = 0; 1; 2 � � � ; m; (5.7)

denotes the total market value of the investor's wealth in the i-th bond/stock. If �i(t) < 0

(i = 1; 2; � � � ; m), then the investor is short-selling i-th stock. If �0(t) < 0, then the investor is

borrowing the amount j�0(t)j at rate r(t). It is clear that by changing �i(t), the investor changes

the \allocation" of his/her wealth in these m+1 assets. We call �(t) � (�1(t); � � � ; �m(t))
0 a portfolio

of the investor. Notice that we exclude the allocation to the bond, �0(t), from the portfolio as it

will be determined completely by the allocation to the stocks.

Before going further, let us change the control variable so that the resulting system �ts into the

one we studied in the previous sections. Set

u(t) � (u1(t); � � � ; um(t))
0 = �(t)0�(t); or �(t) = �(t)�1�(t)u(t): (5.8)

On the other hand, due to (5.4), the model is arbitrage free, namely, there exits a risk premium

process �(�) satisfying

�(t)�(t)0 = (b1(t)� r(t); � � � ; bm(t)� r(t)): (5.9)

In fact, �(�) can be constructed as

�(t) � (�1(t); � � � ; �m(t)) = (b1(t)� r(t); � � � ; bm(t)� r(t))�(t)�1�(t): (5.10)

With the above notation the equation (5.6) becomes

8<
:
dx(t) = [r(t)x(t) +

Pm
j=1 �j(t)uj(t)]dt+

Pm
j=1 uj(t)dW

j(t);

x(0) = x:
(5.11)

The objective is, for each given initial wealth x and a contingent claim � (which is an FT -

measurable square integrable random variable), to choose a hedging portfolio �(�) (or equivalently

a control u(�)) so as to minimize

J(x; u(�)) =
1

2
Ejx(T )� �j2: (5.12)
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This is a special case of the general model studied in Section 4, so we can apply the results

there. Interestingly, in this case the corresponding stochastic Riccati equation is explicitly solvable

due to the speci�c structure that the state variable is a scalar (and hence so is the solution to the

SRE).

Theorem 5.1. The optimal portfolio of the hedging problem consisting of (5.6) and (5.11) is

��(t) = ��(t)�1(b1(t)� r(t); � � � ; bm(t)� r(t))0[x�(t)� p(t)] + �(t)�1�(t)q(t); (5.13)

where (p(�); q(�)) � (p(�); qj(�); j = 1; � � � ; m) 2 L2
F(0; T ;R

n) � L2
F(0; T ;R

nm) is the unique adapted

solution of the BSDE

8<
:
dp(t) = [r(t)p(t) +

Pm
j=1 �j(t)qj(t)]dt+

Pm
j=1 qj(t)dW

j(t);

p(T ) = �:
(5.14)

Proof. The SRE (3.1) in the present case reduces to (noting that the unknown P (t) of the

equation is a scalar) 8>><
>>:

_P (t) + 2r(t)P (t)�
Pm

j=1 �j(t)
2P (t) = 0;

P (T ) = 1;

P (t) > 0; t 2 [0; T ]:

(5.15)

Denote �(t) =
Pm

j=1 �j(t)
2 � (b1(t) � r(t); � � � ; bm(t) � r(t))�(t)�1(b1(t) � r(t); � � � ; bm(t) � r(t))0.

Then the above equation has a unique solution P (t) = e�
R
T

t
(�(s)�2r(s))ds. Note the third inequality

constraint in (5.15) is automatically satis�ed by this solution. On the other hand, the associated

equation (3.2) reads

8>><
>>:

d�(t) = �
n
[r(t)� �(t)]�(t)�

Pm
j=1 �j(t)�j(t) + P (t)[g(t) +

Pm
j=1 �j(t)zj(t)]

o
dt

+
Pm

j=1 �j(t)dW
j(t);

�(T ) = 0:

(5.16)

Applying Theorem 3.2 and noticing that P (t) is now a scalar, we obtain

u�j(t) = ��j(t)[x
�(t)� p(t)] + qj(t): (5.17)

Appealing to (5.8) and writing in a vector form, we obtain the desired result (5.13). 2

Remark 5.1. The formula (5.11) has a straightforward interpretation in �nancial terms. Indeed,

it is well-known that the second term on the right hand side of (5.11) is the hedger for the claim �

when the initial wealth is the initial option price p(0). The other term is exactly theMerton portfolio

for a terminal utility function c(x) = x2 (Merton [11]). Therefore, our optimal hedging policy (5.11)

for our problem is the sum of the hedger for the claim and the Merton portfolio. Consequently, if

the initial endowment x is di�erent from the fair initial price p(0) necessary to hedge the contingent

claim �, then the di�erence x� p(0) should be invested according to the Merton strategy.
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6 A Modi�ed Model

In the previous sections we investigated a model where only the terminal variance is to be minimized.

It is more in line with the European option in the context of option theory where only the terminal

situation is of interest. Now, in the spirit of the American option, it is natural to consider a

modi�ed model where the di�erence between the state x(t) and the expected value of the claim

E(�jFt) should be kept small at any time (rather than just at the terminal time).

Motivated by this, let us consider a modi�cation of the model (2.1)-(2.2). Instead of cost

functional (2.2), we consider the following

J(x; u(�)) =
1

2
E[

Z T

0
jx(t)� E(�jFt)j

2dt+ jx(T )� �j2]; (6.1)

while keeping the same dynamics (2.1). (One can also put di�erent weights on the running cost

and the terminal cost, but let us not bother to do it here.)

Employing the same change of variable (2.3), we get the state equation (2.5) with the new cost

functional

J(y; u(�)) =
1

2
E[

Z T

0
jy(t)j2dt+ jy(T )j2]: (6.2)

To solve this problem, we only need to slightly modify the argument in Section 3. Speci�cally,

the SRE (3.1) for the present case is changed to

8>><
>>:

_P + PA+ A0P �
Pm

j=1 PBjP
�1B0

jP + I = 0;

P (T ) = I;

P (t) > 0; 8t 2 [0; T ]:

(6.3)

The form of the associated equation (3.2) remains unchanged, but with the new P (�) in it as

determined by (6.3).

Theorem 6.1. If the equations (6.3) and (3.2) admit solutions P 2 C([0; T ]; Ŝn
+) and (�(�); �j(�); j =

1; � � � ; m) 2 L2
F (0; T ;R

n)� L2
F (0; T ;R

nm), respectively, then the optimal control problem consisting

of (2.1) and (6.1) has an optimal feedback control u�(�) � (u�1(�); � � � ; u
�
m(�)), where

u�j(t) = �P (t)�1Bj(t)
0P (t)[x�(t)� p(t)] + qj(t); j = 1; � � � ; m; (6.4)

where (p(�); qj(�); j = 1; � � � ; m) 2 L2
F(0; T ;R

n)�L2
F (0; T ;R

nm) is the unique Ft-adapted solution of

the following BSDE:

8<
:
dp(t) = [A(t)p(t) +

Pm
j=1Bj(t)qj(t) + f(t)� P (t)�2�(t)]dt+

Pm
j=1 qj(t)dW

j(t); t 2 [0; T ];

p(T ) = �;

(6.5)
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or equivalently,

8>><
>>:

dp(t) =
n
[A(t) + P (t)�1]p(t) +

Pm
j=1Bj(t)qj(t) + f(t)� P (t)�1E(�jFt)

o
dt

+
Pm

j=1 qj(t)dW
j(t); t 2 [0; T ];

p(T ) = �:

(6.6)

Proof. Consider the following matrix-valued ordinary di�erential equation:

8<
:

_Q� AQ�QA0 +
Pm

j=1BjQB
0
j �Q2 = 0;

Q(T ) = I;
(6.7)

which is a conventional Riccati equation. Hence it admits a unique solution Q(�). Denote S = PQ,

then S satis�es
8<
:

_S = SA0 � A0S + SQ�Q+
Pm

j=1 PBjP
�1B0

jS �
Pm

j=1 PBjP
�1SB0

j;

S(T ) = I:
(6.8)

It has the only solution S � I, implying Q(t) = P (t)�1. Now do the same change of variable (3.13),

we get that (p(�); qj(�); j = 1; � � � ; m) satis�es (6.5). The equation (6.6) is equivalent to (6.5) due to

the fact that P (t)�2�(t) = P (t)�1[E(�jFt)� p(t)] (see (3.13)). 2

Remark 6.1. We note that in this case (p(�); qj(�); j = 1; � � � ; m) no longer satis�es the original

BSDE (5.14) which is the starting point of the control problem under consideration in this paper.

The reason is that the BSDE (5.14) only concerns the terminal situation, but not any time in

between. Therefore a large deviation of p(t) from the expected terminal value, E(�jFt), is allowed

in the setup of (5.14). However, in our modi�ed model, it is required that this deviation cannot be

too large (which will be realized by the optimal control), therefore in the optimal feedback control

one no longer compares against the original BSDE (5.14).

It is interesting that in this case the SRE (6.3) automatically admits a solution.

Theorem 6.2. The SRE (6.3) admits a unique solution.

Proof. Employing the same argument as that in the proof of Theorem 4.2, set P" = 	("I)� "I.

Then P" satis�es

8>><
>>:

_P" + P"(A�
Pm

j=1BjB
0
j) + (A�

Pm
j=1BjB

0
j)
0P" � "�1

Pm
j=1 P"BjB

0
jP"

+"(A+ A0 �
Pm

j=1BjB
0
j) + I = 0;

P"(T ) = I � "I:

(6.9)

When " > 0 is small enough, "(A + A0 �
Pm

j=1BjB
0
j) + I > 0, hence the solution of the above

equation (which is a conventional Riccati equation) P" � 0. This implies that (4.2) holds with

K = "I for su�ciently small " > 0. The result follows then from Theorem 4.1. 2
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Now let us consider the corresponding Black-Scholes model. The SRE (5.15) is modi�ed to
8>><
>>:

_P (t) + 2r(t)P (t)�
Pm

j=1 �j(t)
2P (t) + 1 = 0;

P (T ) = 1;

P (t) > 0; t 2 [0; T ]:

(6.10)

This equation has an explicit solution P (t) = e�
R
T

t
(�(s)�2r(s))ds +

R T
t e

�
R
s

t
(�(�)�2r(�))d�ds > 0 (the

existence of solutions can also be seen from Theorem 6.2).

Theorem 6.3. The optimal (feedback) control for the modi�ed Black-Scholes model the following

u�j(t) = ��j(t)[x
�(t)� p(t)] + qj(t); j = 1; � � � ; m: (6.11)

where (p(�); qj(�); j = 1; � � � ; m) 2 L2
F(0; T ;R

n)�L2
F (0; T ;R

nm) is the unique Ft-adapted solution of

the following BSDE:8<
:
dp(t) = [r(t)p(t) +

Pm
j=1 �j(t)qj(t) +

p(t)�E(�jFt)

P (t)
]dt+

Pm
j=1 qj(t)dW

j(t);

p(T ) = �:
(6.12)

Proof. This follows immediately from Theorem 6.1. 2

Remark 6.1. Again this result has an interesting interpretation in �nancial terms. Rewrite

(6.12) in the following way
8<
:
dp(t) = [r(t)p(t) +

Pm
j=1 �j(t)qj(t)]dt+

Pm
j=1 qj(t)dW

j(t)� dC(t);

p(T ) = �;
(6.13)

where

C(t) =

Z T

t

p(s)� E(�jFs)

P (s)
ds: (6.14)

The process C(�) may be regarded as a cumulative consumption process in order to correct any

deviation of the price p(t) from the expected value of the claim E(�jFt) at any time t. Note here

the term \consumption" is in a more general sense in our framework; any withdrawal from or

injection into the portfolio may be regarded as an action of consumption. It is interesting that an

equation similar to (6.14) has been derived for studying American options (e.g., [7]), where (p; q; C)

is called a superhedging policy and the role of C(�) is to make the price p(t) stay above E(�jFt) at

any time t. Moreover, C(t) is the minimum required consumption process in the sense that
Z T

0
[p(t)� E(�jFt)]dC(t) = 0: (6.15)

In our case, since the price p(t) is allowed to go either above or under E(�jFt) (the role of C(�) is to

make sure that the variance is minimal), we do not have (6.16). However, we do have the following

analogous relations:
Z T

0
[p(t)� E(�jFt)]

+[dC(t)]� = 0; and

Z T

0
[p(t)� E(�jFt)]

�[dC(t)]+ = 0; (6.16)
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where a+ = maxfa; 0g and a� = maxf�a; 0g. Therefore, the interpretation of the portfolio (6.11)

is that one should superhedge/subhedge the claim and invest the rest of the wealth according to

the Merton portfolio.

7 Concluding Remarks

In this paper we introduced a stochastic control model associated with a backward stochastic

di�erential equation, and solved the problem in a closed form by virtue of the stochastic linear-

quadratic theory developed recently. The results were then applied to solve an optimal hedging

problem associated with a Black-Scholes contingent claim problem. Our study suggested that the

solution pair of a BSDE can be interpreted as the state-control pair of a stochastic control problem.

This �nding is expected to lead insights into the nature of the BSDEs as well as their applications

in �nance problems.
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