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Introduction

Using the equivalent martingale measure approach, see Harrison and
Pliska (1981), Delbaen and Schachermayer (1994), we study the prob-
lem of �nding mean-variance eÆcient portfolios which is closely re-
lated to the notion of a price for risk. Originally, the �rst probabilistic
(single-period) market models (CAPM) were based on the idea of a

price for risk and the notion of mean-variance eÆciency, see Markowitz
(1952, 1987), Sharpe (1964), Lintner (1965), Jensen (1972), Elton and
Gruber (1979). See also Li and Ng (2000) for a multi-period model.
The notion of a price for risk often appears in connection with the

equivalent martingale measure.
In the most general case, where we consider a (not necessarily con-

tinuous but locally S2) semimartingale market model, the central idea
for solving this problem is just the notion of orthogonality, whereas in

the case of a continuous semimartingale market model, where we will
derive stronger results, the central idea comes from stochastic duality
theory, which goes back to Bismut (1973, 1975). For an alternative ap-
proach based on BSDE theory, see Zhou and Li (2000), Lim and Zhou
(2000).

After some technical preparations in Section 1, we introduce in Sec-
tion 2 di�erent spaces of equivalent local martingale measures and
several spaces of self-�nancing hedging strategies. In Section 3 we
prove the existence of the discounted variance-optimal martingale mea-

sure and the hedging num�eraire for a locally S2-semimartingale market
model, see Gourieroux, Laurent and Pham (1998), (GLP98), for this
result in the continuous case.
In Section 4 we generalize the classical single-period results about

mean-variance eÆcient portfolios to the case of a general semimartin-
gale market model. Assuming the existence of zero bonds in the market,
the mean-variance eÆcient portfolios are shown to be linear combina-
tions of the hedging num�eraire and the zero bond. We �nd the mean-
variance eÆcient market line for a �xed time horizon to be a straight

line with a slope equal to the standard deviation of the discounted
variance-optimal martingale measure divided by the zero bond price.
This quantity can be interpreted as a price for intertemporal risk. In
Section 5 we develop a conditional version of these results in the case

of a continuous semimartingale market model. This allows to de�ne
the term structure of the intertemporal price for risk and its dynamic.
In Section 6 we discuss an application of our results to the problem of
pricing non-attainable claims and the relation of the term structure of

interest rates to the term structure of the intertemporal price for risk.
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1. Self-financing Hedging Strategies

Let a �ltered probability space 
1 := (
;F ; (Fs)s�0; P ), satisfying
the usual conditions be given. For simplicity we assume F0 to be trivial
up to sets of measure 0 with respect to P and F1� = F1 := F . For
a process X and a map � : 
 ! �R+ , denote the stopped process at
time � by X

� . We will often restrict a semimartingale X on 
1 to

an interval [t; T ]; 0 � t � T < 1, resp. to [t;1). Therefore we
introduce the following �ltered probability space (again satisfying the

usual conditions), 
[t;T ] :=

�

;FT ;

�
F [t;T ]
s

�
s�0

; PjFT

�
for all 0 � t �

T � 1, t < 1, where F [t;T ]
s := Ft_s^T for 0 � s < 1. The process

X
[t;T ]
s := Xt_s^T is then a semimartingale on 
[t;T ]. However, on [t; T ]

we often write X instead of X [t;T ]. Set 
T := 
[0;T ].

De�ne L2(
[t;T ]), resp. L
2
t
(
[t;T ]), as the set of FT -measurable ran-

dom variables X, such that E[X] < 1 a.s., resp. Et[X] < 1 a.s.,
where Et[�] := E[�jFt] denotes the generalized conditional expectation.
The conditional variance is denoted by Vart(�).
The stochastic exponential of a semimartingale X is denoted as

E(X). As a general reference we cite Jacod and Shiryaev (1987), (J&S
87) and Jacod (1979). Denote the set of predictable processes which
are locally integrable, resp. locally Riemann-Stieltjes integrable, with
respect to a local martingale M , resp. with respect to a process A of
�nite variation, by L1

loc
(M), resp. by L1

loc
(A). If the semimartingale X

admits a decompositionX = X0+A+M , whereM is a local martingale
and A is a process of �nite variation then L1

loc
(X) := L

1
loc
(M)\L1

loc
(A).

We can now de�ne the market model: Let S = (St)0�t<1 be a Rd -

valued semimartingale. M := (
1; S) = ((
;F ; (Fs)s�0; P ); S) is a
model for a market, where S describes the price processes of d assets.
We will often consider such a market on an interval [t; T ]; 0 � t < T <

1. This is equivalent to work with the following market modelM[t;T ]

de�ned by M[t;T ] :=
�

[t;T ]; S

[t;T ]
�
. Set MT :=M[0;T ].

We want to model the economic activity of investing money into a
portfolio of assets and changing the number of assets held over time
according to a certain strategy. This is achieved with the following

de�nition:

De�nition 1.1. A hedging strategy in the marketM is a H 2 L
1
loc
(S).

The corresponding value process V H of H is de�ned as V H := HS.
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The gains process of H is de�ned as the semimartingale GH := H � S.

H is called self-�nancing if V H = V
H

0 + G
H , i.e. HtSt = H0S0 +R

t

0
HsdSs; 8 t � 0. Denote the space of all self-�nancing hedging strate-

gies in M by SF(M).

Note that for H 2 SF(M), we have H [t;T ] 2 SF(M[t;T ]). The idea

of a self-�nancing hedging strategy is that the changes over time of
the corresponding value process are solely caused by the changes of the
value of the assets held in the portfolio and not by withdrawing money
from or adding money to the portfolio.

De�nition 1.2. A semimartingale B such that B and B� are strictly

positive is called a num�eraire for the marketM. The market discounted

with respect to B is then de�ned asMB :=
�

1; S

B
�
, where SB := S

B
.

For 0 � t � T < 1, the market restricted to the interval [t; T ] is

de�ned as MB

[t;T ] :=
�MB

�
[t;T ]

=
�

[t;T ];

�
S
B
�[t;T ]�

.

Note that for a num�eraire B, B�1 is a num�eraire too and S
B is

a semimartingale.The following result is well known, see Geman, El
Karui and Rochet (1995) and Goll and Kallsen (2000):

Proposition 1.3. Let B be a num�eraire for the market M. Then

SF(MB) = SF(M) holds.

2. Arbitrage-free Markets

We consider in this section the market �M := (
1; �S), where �S :=
(S;B) is Rd � R-valued and B is a num�eraire, with B0 = 1, which we
assume to be uniformly bounded and uniformly bounded away from
0 on �nite intervals. For 0 � t � T � 1; t < 1, denote the set

of uniformly integrable, resp. local martingales, living on 
[t;T ] by
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Lu(
[t;T ]), resp. by L(
[t;T ]). Working in the market �M[t;T ] or on 
[t;T ]

the process
�
S

B

�[t;T ]
will be denoted as S�. De�ne the following sets of

local martingale measures:

D( �M[t;T ]) :=
�
Z 2 L(
[t;T ])jZ1[0;t] = 1; Z > 0; S�Z 2 L(
[t;T ])

	
;

(2.1)

De( �M[t;T ]) :=
�
Z 2 D( �M[t;T ])jZ uniformly integrable martingale

	
;

(2.2)

and

D2( �M[0;T ]) :=
�
Z 2 D( �M[0;T ])jZT 2 L

2(
[0;T ])
	
;(2.3)

D2
t
( �M[t;T ]) :=

�
Zt_�

Zt
jZ 2 D2( �M[0;T ])

�
:(2.4)

We will now introduce a space of simple self-�nancing hedging strate-
gies, following closely the ideas of Delbaen and Schachermayer (1996a,

1996b), (DS96a, DS96b). Assume S
� to be locally in L

2(
[0;T ]) in
the sense, that there exists a sequence Un; n 2 N of localizing stop-
ping times increasing to in�nity such that for each n 2 N, the family
fS� j� stopping time; � � Ung is bounded in L

2(
[0;T ]). This condi-

tion is certainly satis�ed for locally bounded or continuous S. De-
note by H(
[t;T ]) the set of R

d -valued predictable processes which are
a linear combination of processes of the form H = h1]�1;�2], where
t � �1 � �2 � T are stopping times dominated by some Un and

h1f�1<�2g is a bounded F�1
-measurable random variable. De�ne the

following space of semimartingales:

K�( �M[t;T ]) :=
�
H � S�jH 2 H(
[t;T ])

	
;(2.5)

and the corresponding space of terminal values

K�
T
( �M[t;T ]) :=

�
VT jV 2 K�( �M[t;T ])

	 � L
2(
[t;T ]):(2.6)

Every H 2 H(
[t;T ]) can be extended to an Ĥ 2 SF( �M[t;T ]) with

V
Ĥ

0 = 0, hence K�( �M[t;T ]) is just the space of discounted gains pro-

cesses G
Ĥ

B[t;T ] for such Ĥ. For H = h1]�1;�2] 2 H(
[t;T ]) as above, we �nd

H � S� = h(S��2 � S
��1) and for a stopping time � we have (H � S�)� =

h(S��2^� � S
��1^� ) = Ĥ � S�, where Ĥ := h1]�1^�;�2^� ] 2 H(
[t;T ]), since

h1f�1^�<�2^�g = h1f�1<�2g1f�1<�g is F�1^� -measurable. Hence K�( �M[t;T ])
is stable under stopping. De�ne the following space of uniformly inte-
grable martingales:

Ds;2( �M[t;T ]) := fE [ZjF�]
��Z 2 L

2(
[t;T ]); E [Z] = 1;

E [VTZ] = 0; 8 V 2 K�( �M[0;T ])
	
;(2.7)
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and the corresponding space of terminal values

Ds;2
T
( �M[t;T ]) :=

�
ZT jZ 2 Ds;2( �M[t;T ])

	
:(2.8)

Note that Ds;2
T
( �M[t;T ]) is closed. Since K�( �M[t;T ]) is stable under stop-

ping, we �nd for V 2 K�( �M[t;T ]) and Z 2 Ds;2( �M[t;T ]) and a stopping
time 0 � � < 1, E [VTZT ] = 0 = E [V �

T
ZT ] = E [E [V�ZT jF� ]] =

E [V�Z� ], hence V Z is a uniformly integrable martingale, see J&S 87,
Lemma I.1.44. Let Z 2 L

2(
[t;T ]) with E[Z] = 1 be such that S�Z

is a local martingale. We want to show that V Z is a uniformly in-
tegrable martingale for all V 2 K�( �M[t;T ]). For this it suÆces to
show that S��1Z is uniformly integrable for every stopping time �1

bounded by some Un. We show uniform integrability of the family

fS��1
�
Z� j� stopping time g. We have

lim
K!1

E

h
1fjS��1� Z� j>Kg

i
� lim

K!1
E

h
1fjS��1� j>

p
Kg

i
+ E

h
1fjZ� j>

p
Kg

i
= lim

K!1
E

h
1fjS��1� j2>Kg

i
= 0;

since S
��1
�

= S
�
�^�1 , � ^ �1 � Un and by the assumed boundedness

of fS� j� stopping time; � � Ung in L
2(
[0;T ]). Conversely, for Z 2

Ds;2( �M[t;T ]), it is easily seen that S�Z is a local martingale. Therefore

Ds;2( �M[t;T ]) equals the set of signed local martingale measures for the

market �M[t;T ].
We will work with the following No-Arbitrage condition:

D2( �MT ) 6= ;; 8 T <1:(2.9)

It implies that

D2
t
( �M[t;T ]) 6= ;; 8 0 � t � T <1:(2.10)

Note that for Z 2 D2
t
( �M[t;T ]) and t � t

0 � T
0 � T , we have Z

[t0;T 0]

Zt0
2

D2
t0
( �M[t0;T 0]). Note also that D2

0(
�M[0;T ]) = D( �M[0;T ]), since F0 was

assumed to be trivial.
Let B � SF( �M[t;T ]). We call a H 2 B an B-arbitrage, if V H

0 = 0,

V
H

T
� 0 and V

H

T
6= 0 almost surely. If there exists no B-arbitrage,

then B is called arbitrage-free. In all probabilistic theories of �nancial
markets allowing to trade at an in�nitely large number of instances of
time one has to exclude certain self-�nancing hedging strategies, e.g.

doubling strategies, in order to avoid arbitrage opportunities. We will
de�ne several arbitrage-free subsets of SF( �M[t;T ]):

1.

SF b( �M[t;T ]) :=
�
H 2 SF( �M[t;T ])j9K 2 R : V H � K

	
:(2.11)
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Let H 2 SF b( �M[t;T ]), V
H

0 = 0 and V
H � K. V

H

B[t;T ]Z is then

a supermartingale for all Z 2 De( �M[t;T ]) and V
H

T
� 0 implies

Et

h
V
H
T

BT
ZT

i
� V

H
t

Bt
= 0, hence V H

T
= 0.

2. For D2
t
( �M[t;T ]) 6= ;, (see DS96b):

SF2( �M[t;T ]) :=

�
H 2 SF( �M[t;T ])jV H

T
2 L

2(
[t;T ]);

V
H

B[t;T ]
Z 2 Lu(
[t;T ]); 8 Z 2 D2( �M[t;T ])

�
;(2.12)

resp.

SF2
t
( �M[t;T ]) :=

�
H 2 SF( �M[t;T ])jV H

T
2 L

2
t
(
[t;T ]);

V
H

B[t;T ]
Z 2 Lu(
[t;T ]); 8 Z 2 D2

t
( �M[t;T ])

�
:(2.13)

3.

SF s;2( �M[t;T ]) :=

�
H 2 SF( �M[0;T ])jV H

T
2 L

2(
[t;T ]);

V
H

B[t;T ]
Z 2 Lu(
[t;T ]); 8 Z 2 Ds;2( �M[t;T ])

�
:(2.14)

4.

SF0( �M[t;T ]) := SF0
t
( �M[t;T ]) :=

�
H 2 SF( �M[t;T ])jV H � 0

	
:(2.15)

5. For D2( �M[t;T ]) 6= ;

SF sup;2
t

( �M[t;T ]) :=

�
H 2 SF( �M[t;T ])

��Es

�
V
H

T

BT

ZT

�
� V

H

s

Bs

Zs;

8 t � s � T; Z 2 D2
t
( �M[t;T ])

�
:(2.16)

6. For Ds;2( �M[0;T ]) 6= ;

SF sup;s;2( �M[t;T ]) :=

�
H 2 SF( �M[t;T ])

��Es

�
V
H

T

BT

ZT

�
� V

H

s

Bs

Zs;

8 t � s � T; Z 2 Ds;2( �M[t;T ])

�
:(2.17)
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7. For �S 2 S2
loc
(
[t;T ])

G2( �M[t;T ]) :=
�
H 2 SF( �M[t;T ])jV H 2 S2(
[t;T ])

	
;(2.18)

where S2(
[t;T ]) denotes the space of L2-integrable semimartin-
gales, see Delbaen, Monat, Schachermayer, Schweizer and Stricker
(1997) (DMSSS97).

De�ne for Ft-measurable v

A�2
v
( �M[t;T ]) :=

�
V
H

T

BT

��H 2 SF 2( �M[t;T ]);
V
H

t

Bt

= v

�
;(2.19)

and

K�2
v
( �M[t;T ]) :=

�
V
H

T

BT

��H 2 SF s;2( �M[t;T ]);
V
H

t

Bt

= v

�
:(2.20)

Denote by �K�
T
( �M[t;T ]) the closure of K�T ( �M[t;T ]) in L

2(
[0;T ]) and de�ne

�A�
T
( �M[t;T ]) := K�

T
( �M[t;T ])� L

2
+(
[t;T ]) \ K�T ( �M[t;T ]) + L

2
+(
[t;T ]):

(2.21)

In DS96b, Theorem 1.2, Theorem 2.2, the following was shown using a
results from Yor (1978):

Theorem 2.1. Under the above assumptions we have

�A�
T
( �M[t;T ]) = A�2

0 (
�M[t;T ])

=
�
V 2 L

2(
[t;T ])jE [V Z] = 0; 8 Z 2 D2( �M[t;T ])
	
:

In particular, A�2
0 (

�M[t;T ]) is closed in L
2(
[t;T ]). Furthermore, for con-

tinuous �S, we have �A�
T
( �M[t;T ]) = �K�

T
( �M[t;T ]).

We will prove the following corollary:

Corollary 2.2. Under the above assumptions we have

�K�
T
( �M[t;T ]) = K�20 ( �M[t;T ])

=
�
V 2 L

2(
[t;T ])jE [V ZT ] = 0; 8 Z 2 Ds;2( �M[t;T ])
	
:
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Proof. For V 2 �K�
T
( �M[t;T ]) choose a sequence V n 2 K�

T
( �M[t;T ]) con-

verging to V in L
2(
[t;T ]). Since E [V n

ZT ] = 0; 8 Z 2 Ds;2( �M[t;T ])

and since the inclusion L
2(
[t;T ]) ,! L

1(
[t;T ]; Q
Z), where ZT = dQ

Z

dP
,

is continuous for Z 2 Ds;2( �M[t;T ]) by Cauchy-Schwarz inequality, we

�nd E [V ZT ] = 0; 8 Z 2 Ds;2( �M[t;T ]). Conversely, if V 2 L
2(
[t;T ])

and E [V ZT ] = 0; 8 Z 2 Ds;2( �M[t;T ]) and V 62 �K�
T
( �M[t;T ]), then V 62

span
�
�K�
T
( �M[t;T ]); 1

	
, hence by the Hahn-Banach theorem and since

1 62 �K�
T
( �M[t;T ]), we �nd an Z 2 Ds;2( �M[t;T ]) such that E [V ZT ] 6= 0,

a contradiction. Since �K�
T
( �M[t;T ]) � �A�

T
( �M[t;T ]), we �nd by Theorem

2.1 for V 2 �K�
T
( �M[t;T ]) a H 2 SF 2( �M[t;T ]) with V

H

0 = 0 and
V
H
T

BT
= V .

We also �nd a sequence ~V n 2 K�
T
( �M[t;T ]) converging to V in L2(
[t;T ])

and a sequence V n 2 K�( �M[t;T ]) with V
n

T
= ~V n. For Z 2 Ds;2( �M[t;T ])

and 0 � s � T we have for n;m!1

E [jV n

s
Zs � V

m

s
Zsj] = E

���E [V n

T
ZT jFs]� E [V m

T
ZT jFs]

���
� E

�
E
�jV n

T
ZT � V

m

T
ZT j
��Fs

��
= E [jV n

T
ZT � V

m

T
ZT j]! 0;

hence V n

s
Z
s is a Cauchy-sequence in L

1(
[t;T ]). For ~Z 2 D2( �M[t;T ])

and 0 � s � T , we therefore know that V n

s
is a Cauchy-sequence

in L
1(
[t;T ]; Q

~Z) converging to V
H

s
and doing so Q

~Z-a.s. and P -a.s.
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pointwise for a subsequence. Since for n!1

E [jV n

s
Zs � E [V ZT jFs]j] = E [jE [V n

T
ZT jFs]� E [V ZT jFs]j]

� E
�
E
�jV n

T
ZT � V ZT j

��Fs

��
= E [jV n

T
ZT � V ZT j]! 0;

we �nd V
n

s
Zs ! V

H

s
Zs, hence E [V ZT jFs] = E

�
V
H

T
ZT jFs

�
= V

H

s
Zs.

This proves �K�
T
( �M[t;T ]) � K�20 ( �M[t;T ]). The corollary follows now from

the obvious inclusion

K�20 ( �M[t;T ]) �
�
V 2 L

2(
[t;T ])jE [V ZT ] = 0; 8 Z 2 Ds;2( �M[t;T ])
	
;

and the �rst part of the proof.

We have the following easy result:

Lemma 2.3. Assume D2
t
( �M[t;T ]) 6= ; and �S to be continuous. Then

G2( �M[t;T ]) � SF2
t
( �M[t;T ]). In particular G2( �M[t;T ]) is arbitrage-free.

3. The Discounted Variance-optimal Martingale Measure

We will need the discounted variance-optimal martingale measure,
introduced in GPL98 for the case of a continuous price process �S, in the

locally S2-semimartingale setting. We generalize the proof of Lemma
2.1. part (c), in DS96a to our situation:

Lemma 3.1. Assume Ds;2( �M[t;T ]) 6= ;. Then there exists a unique

element Zopt�;t;T 2 Ds;2( �M[t;T ]) such that
Z
opt�;t;T

T

BT
2 BTK�2vt;T ( �M[t;T ]),
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where

v
t;T = E

2
4
 
Z
opt�;t;T
T

BT

!2
3
5 = inf

Z2Ds;2( �M[t;T ])
E

"�
ZT

BT

�2
#
> 0:(3.1)

Furthermore, there exists a H
opt 2 SF s;2( �M[t;T ]) with corresponding

value process V opt;t;T := V
H
opt

such that V
opt;t;T

0 = 1,

V
opt;t;T

T
=

Z
opt�;t;T
T

vt;TBtBT

(3.2)

and

E

��
V
opt;t;T

T

�2�
= inf

V 2BTK�2
B
�1
t

( �M[t;T ])
E
�
V

2
�
:(3.3)

Proof. By the uniform boundedness of B and B
�1 on [t; T ], we �nd

the sets D := B
�1
T
Ds;2
T
( �M[t;T ]) and K := BT span

�K�20 ( �M[t;T ]); 1
	
to

be closed in L
2(
[t;T ]). Therefore we �nd a Z

min

BT
2 D with minimal

norm and a representation Z
min

BT
= Z1 + Z2, where Z1 2 K and Z2 2

K?, since L
2(
[t;T ]) �= K � K?. Denote by < �; � > the standard

linear product of the Hilbert-space L2(
[t;T ]). From < Z2;K >= 0 it

follows E[Z1BT ] = 1 and < Z1; BTK�20 ( �M[t;T ]) >= 0, thus Z1 2 D.

Since



Zmin

BT




2 = kZ1k2 + kZ2k2 was minimal it follows Z2 = 0, hence

Z
min

BT
2 K, i.e. there exists a H 2 SF s;2( �M[t;T ]) such that V H

T
=

Z
min

BT
. De�ne Z

opt�;t;T := E[ZminjF�]. Uniqueness follows from the

strict convexity of k�k2. We have Et

��
Z
opt�;t;T

T

BT

�2�
= Et

h
V
H
T

BT
Z
opt�;t;T
T

i
=

V
H
t

Bt
Z
opt�;t;T
t

. By construction v
t;T :=

V
H
t

Bt
is deterministic, hence (3.1)

follows. Set Hopt := H

vt;TBt
and V

opt;t;T := V
H
opt

. Since V H

0 = v
t;T
Bt,
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we have V
opt;t;T

0 = 1. Let H 0 2 SF s;2( �M[t;T ]) such that V H
0

0 = 1.

Then E

h
V
opt;t;T

T
(V

opt;t;T

T
� V

H
0

T
)
i
= 0, since

V
opt;t;T
T

�V H0

T

BT
2 K�20 ( �M[t;T ])

and
BT V

opt;t;T

T

E[BT V opt;t;T

T ]
2 Ds;2

T
( �M[t;T ]). Therefore V

opt;t;T

T
is the element with

minimal norm in BTK�2
B
�1
t

( �M[t;T ]).

Remark 3.2. V opt;t;T is known as the hedging num�eraire, see Gourier-

oux, Laurent and Pham (1998), (GLP98).

4. Mean-Variance Efficiency

In this section we introduce a �rst version of the constraint optimiza-

tion problem known as the Mean-Variance EÆciency problem for the
market �M[t;T ], where �S is only assumed to be locally in L2(
[t;T ]), as
described in Section 2.
De�ne K := BTK�2

B
�1
t

( �M[t;T ]) and consider the optimization problem

V(t; T; e) := inf
H2SFs;2( �M[t;T ])

V H
0

=1

E

h�
V
H

T

�2i
= inf

V 2K
E
�
V

2
�
;(4.1)

under the constraint

E
�
V
H

T

�
= e;(4.2)

for e 2 R. Since K is closed in L
2(
[t;T ]) by Corollary 2.2 and by

strict convexity, there exists a unique V
t;T;e 2 K with V(t; T; e) =

E

��
V
t;T;e

T

�2�
and E

h
V
t;T;e

T

i
= e i� K \ ff 2 L

2(
[t;T ])jE[f ] = eg 6=
;. By Lemma 3.1, we have V

t;T;ê
t;T

= V
opt;t;T , where ê := ê

t;T :=

E

h
V
opt;t;T

T

i
. We call V t;T;e

; e 2 R the mean-variance eÆcient frontier.

We will prove the following

Proposition 4.1. Assume the existence of an V 2 K with E[V ] 6=

ê
t;T . Then

V(t; T; e) = V(t; T; ê) + c
t;T (e� ê)2; 8 e 2 R;(4.3)
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for a constant ct;T � 1. c
t;T = 1 implies ê = 0 and Var(V t;T;e) =

V(t; T; ê) for all e 2 R.

Furthermore, given V t;T;�e for some �e 6= ê we have

V
t;T;e = s(e)V t;T;ê +

�
1� s(e)

�
V
t;T;�e

; 8 e 2 R;(4.4)

where s(e) := e��e
ê��e

is de�ned in such a way that s(e)ê+ (1� s(e))�e = e

holds and

c
t;T =

V(t; T; �e)� V(t; T; ê)
(ê� �e)2

(4.5)

Proof. Let V 2 K with E[V ] 6= ê be given. Since sV +(1�s)V opt;t;T

T
2 K

for all s 2 R, we �nd K \ ff 2 L
2(
[t;T ])jE[f ] = eg 6= ; for all e 2 R,

hence V t;T;e exists for all e 2 R. De�ne for ê 6= �e, and s 2 R, ~V�e(s) :=

E

h�
sV

t;T;ê + (1� s)V t;T;�e
�2i

. Since E
h
V
t;T;ê

T
V

i
= E

��
V
t;T;ê

T

�2�
for

all V 2 K we have ~V�e(s) = (1� (1� s)2)V(t; T; ê) + (1� s)2V(t; T; �e).

Set V�e(e) := ~V�e(s(e)). We �nd

V�e(e) = V(t; T; ê) + V(t; T; �e)� V(t; T; ê)
(ê� �e)2

(e� ê)2:(4.6)

V�e(e) is clearly a polynomial of at most second order in e with a min-

imum of V�e(ê) = V(t; T; ê) in ê. The assertion follows now if we show

V�e(e) = V(t; T; e) for all e 2 R. Since E
h
s(e)V

t;T;ê

T
+ (1� s(e))V

t;T;�e
T

i
= s(e)ê + (1 � s(e))�e = e we have V�e(e) � V(t; T; e) and Ve(�e) �

V(t; T; �e). By a simple calculation, these two inequalities imply V�e(e) =

V(t; T; e) for all e; �e. Calculating Var(V
t;T;e

T
) = V(t; T; e) � e

2, which
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must be non-negative, we �nd c
t;T :=

V(t;T;�e)�V(t;T;ê)
(ê��e)2

� 1 and c
t;T = 1

to imply ê = 0.

This result also allows to calculate variance optimal portfolios. Con-
sider the optimization problem

~V(t; T; e) := inf
H2SFs;2( �M[t;T ])

V H
0

=1

E
�
Var

�
V
H

T

��
= inf

V 2K
E [Var(V )] ;(4.7)

under the constraint

E
�
V
H

T

�
= e;(4.8)

for e 2 R. Since ~V(t; T; e) = V(t; T; e)� e
2, we �nd for ct;T 6= 1,

min
e2R

~V(t; T; e) = ~V
�
t; T;

c
t;T

ct;T � 1
ê

�
= V(t; T; ê)� c

t;T

ct;T � 1
ê
2
:(4.9)

c
t;T = 1 implies ~V(t; T; e) = ~V(t; T; ê) for all e 2 R.

Assume now the zero bond BT with maturity T to be attainable in
�M[0;T ], i.e. there exists a H 2 SF s;2( �M[0;T ]) such that for BT := V

H ,

B
T

T
= 1 holds. This is equivalent to the existence of an almost surely

deterministic element in K. Necessarily we have BT
> 0 and B

T is
uniformly bounded. The existence of BT together with the existence
of a V 2 K with E[V ] 6= ê implies c0;T > 1, since

ê = E

�
Z
opt�;0;T

v0;TBT

�
=
E

h
B
T
T

BT
Z
opt�;0;T

i
v0;T

=
B
T

0

v0;T
> 0:(4.10)

Hence equation (4.9) implies V(0; T; ê)� c
t;T

ct;T�1
ê
2 = 0 which is equivalent

to c0;T (V(0; T; ê)� ê
2) = V(0; T; ê). Since V(0; T; ê) > 0 we �nd c0;T =

V(0;T;ê)
Var(V 0;T;ê

T )
. By (3.3), we have

V(0; T; ê) = E

��
V
opt;0;T
T

�2�
=

1

v0;T
;(4.11)

hence

c
0;T =

v
0;T

v0;T � (BT

0 )
2
:(4.12)

The unique risk-free self-�nancing hedging strategy with initial value
1 is just given by V := 1

B
T
0

B
T and the risk-free return is VT = 1

B
T
0

.

Similar as in the Markowitz single period model we can consider the
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ratio of excess expected return e over the risk-free return 1

B
T
0

and the

standard deviation of the return, for e 6= 1

B
T
0

:

�[0;T ](e) :=

���e� 1

B
T
0

���r
Var

�
V

0;T;e
T

� = max
V 2K

E[V ]=e

���e� 1

B
T
0

���p
Var (V )

:(4.13)

Lemma 4.2. Under the assumption of Proposition 4.1 and assuming

the existence of BT , we have for all e 6= 1

B
T
0

:

�[0;T ](e) =

r
Var

�
Zopt�;0;T

BT

�
B
T

0

> 0:(4.14)

Proof. The assertion follows from an elementary calculation using for-

mulas (4.10), (4.11) and (4.12):

Var
�
V

0;T;e
T

�
= V(0; T; e)� e

2

= V(0; T; ê) + c
0;T (e� ê)2 � e

2

=
1

v0;T
+

v
0;T

v0;T � (BT

0 )
2

�
e� B

T

0

v0;T

�2

� e
2

=

�
eB

T

0 � 1
�2

v0;T � (BT

0 )
2
=

�
B
T

0

�2 �
e� 1

B
T
0

�2
Var

�
Zopt�;0;T

BT

� :

Lemma 4.3. If the zero bond BT exists in �M[0;T ] and E[V ] =
1

B
T
0

for

all V 2 K, then Var
�
Z
opt�;0;T

BT

�
= 0.

Proof. Observe that Var
�
Z
opt�;0;T

BT

�
= v

0;T � �BT

0

�2
and that 1

B
T
0

=

E[V
opt;0;T
T

] =
B
T
0

v0;T
by (3.2).
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De�nition 4.4. The intertemporal price for risk for maturity time T

in the market �M[t;T ] is de�ned as

�[t;T ] :=

r
Vart

�
BtZ

opt�;t;T

BT

�
B
T

t

:(4.15)

We have the following result:

Theorem 4.5. Assume the existence of the zero bond B
T in �M[0;T ].

Then the following inequality holds for all H 2 SF s;2( �M[0;T ]) with

V
H

0 = 1:

1

B
T

0

� �[0;T ]

q
Var (V H

T
) � E

�
V
H

T

� � 1

B
T

0

+ �[0;T ]

q
Var (V H

T
):(4.16)

In particular, �[0;T ] = 0 implies E[V H

T
] = 1

B
T
0

for all H 2 SF s;2( �M[0;T ]),

V
opt;0;T = B

T

B
T
0

and the so-called Return-to-Maturity Expectation Hy-

pothesis for the zero bond price in t = 0 holds:

B
T

0 =
1

E[BT ]
:(4.17)

Furthermore, if �[0;T ] 6= 0, then

V
0;T;e = s(e)V opt;0;T +

�
1� s(e)

�BT

B
T

0

;(4.18)

where now s(e) := � v
0;T

B
T
0

v0;T�(BT
0 )

2

�
e� 1

B
T
0

�
, and if

����E �V H

T

�� 1

B
T

0

���� = �[0;T ]

q
Var (V H

T
);(4.19)

for a H 2 SF s;2( �M[0;T ]) with V
H

0 = 1, then V
H = V

0;T;E[V H
T ].
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Proof. Inequality (4.16) follows from Lemma 4.2 and Lemma 4.3. If

�[0;T ] = 0 we have
Z
opt�;0;T
T

BT
= B

T

0 a.s., since
Z
opt�;0;T
T

BT
is almost surely

deterministic and E

h
V
opt;0;T
T

i
= E

h
Z
opt�;0;T
T

v0;TBT

i
=

B
T
0

v0;T
= 1

B
T
0

. Hence

�
B
T

0

��1
= E

h
Z
opt�;0;T
T

B
T
0

i
= E[BT ]. The remaining assertions follow from

Proposition 4.1 and from the uniqueness of V
0;T;e
T

, which implies the

uniqueness of V 0;T;e.

Remark 4.6. The hedging num�eraire has turned out to be the market

portfolio, see Markowitz (1952, 1987). See Laurent and Pham (1999)

and Leitner (2000) for explicit formulas for the hedging num�eraire.

Corollary 4.7. Assume the existence of the zero bond BT in the mar-

ket �M[0;T ]. Then for all H 2 SF sup;s;2( �M[0;T ]) with V
H

0 = 1 and

E
�
V
H

T

� � 1

B
T
0

, the following inequality holds:

E
�
V
H

T

� � 1

B
T

0

+ �[0;T ]

q
Var (V H

T
):(4.20)

Proof. V H equals V 0;T;E[VH
T

] + V
H
0

for a H 0 2 SF sup;s;2( �M[0;T ]) with

V
H
0

0 = 0 and E
�
V
H
0

T

�
= 0. Now calculate, using (4.18):

E

h�
V
H

T

�2i
= E

��
V

0;T;E[VHT ]

T
+ V

H
0

T

�2�

= E

��
V

0;T;E[VH
T

]

T

�2�
+ 2

�
1� s

�
E
�
V
H

T

���
E

�
1

B
T

0

V
H
0

T

�

+2s
�
E
�
V
H

T

��
E

h
V
opt;0;T
T

V
H
0

T

i
+ E

��
V
H
0

T

�2�

� E

��
V

0;T;E[VH
T

]

T

�2�
;
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where the last inequality follows from

E

h
V
opt;0;T
T

V
H
0

T

i
= E

�
V
H
0

T

v0;TBT

Z
opt�;0;T
T

�
� V

H
0

0

v0;T
= 0

and s
�
E
�
V
H

T

�� � 0 for E
�
V
H

T

� � 1

B
T
0

.

Remark 4.8. The last result holds also for H 2 SF( �M[0;T ]) with V
H

0 =

1, E
�
V
H

T

� � 1

B
T
0

and such that V
H

B[0;T ]Z
opt�;0;T is a supermartingale. In

particular, if Zopt�;0;T 2 D2( �M[0;T ]), then the above result holds for all

H 2 SF2( �M[0;T ]) with V
H

0 = 1.

Remark 4.9. The results of this section hold in particular for the orig-

inal one-step CAPM and its multi-period generalizations.

In the next section we will derive for a continuous price process �S sim-
ilar results for the market �M[t;T ] using a stochastic duality approach.

5. The Conditional Price for Intertemporal Risk

Let �S be continuous. Fix 0 � t � T <1, and assume the zero bond
B
T maturing at time T to be attainable in �M[t;T ], i.e. there exists a

H 2 SF 2
t
( �M[t;T ]) such that V H

T
= 1 almost surely. In this section we

want to solve the optimization problem

V (t; T; e;B) := ess inf H2B

V H
0

=1

Et

h�
V
H

T

�2i
;(5.1)

where B 2 �SF 2
t
( �M[t;T ]);SF sup;2

t
( �M[t;T ]);G2( �M[t;T ])

	
, under the con-

straint

Et

�
V
H

T

�
= e;(5.2)

for an Ft-measurable random variable e.
Since F0 was assumed to be trivial, we known that Z

opt�0;T
0 = 1. In

the continuous case we also know that Zopt�;0;T
> 0, see GLP98. This

allows to de�ne Zopt�;t;T :=
Z
opt�;t;T
t_�

Z
opt�;t;T
t

2 D2
t
( �M[t;T ]). We have V opt;0;T

with V
opt;0;T
0 = 1 and V

opt;0;T
T

=
Z
opt�;0;T
T

v0;TBT
> 0. Since V

opt;0;T

B[0;T ] Z
opt�;0;T
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is a uniformly integrable martingale with
V
opt;0;T
T

BT
Z
opt�;0;T
T

> 0 we �nd

V
opt;0;T

> 0. This allows to de�ne V opt;t;T :=
V
opt;0;T
t_�

V
opt;0;T
t

2 SF2
t
( �M[t;T ]).

We then have

V
opt;t;T

T
=
Z
opt�;t;T
T

vt;TBT

;(5.3)

where vt;T :=
V
opt;0;T
t

Z
opt�;t;T
t

v
0;T is Ft-measurable. Set

C[t;T ] := Et

2
4 BtZ

opt�;t;T
T

BT

!2
3
5 = Et

"
v
t;T
V
opt;t;T

T

B
2
t
Z
opt�;t;T
T

BT

#
= Btv

t;T
;

(5.4)

and note that

Et

h
V
opt;t;T

T

i
=

B
T

t

C[t;T ]

;(5.5)

Et

��
V
opt;t;T

T

�2�
=

1

C[t;T ]

;(5.6)

and f�[t;T ] = 0g = fC[t;T ] = (BT

t
)2g.

Lemma 5.1. On f�[t;T ] = 0g, we have
BtZ

opt�;t;T

T

BT
= B

T

t
almost surely

and for all H 2 SF2
t
( �M[t;T ]), resp. H 2 SF sup;2

t
( �M[t;T ]), with V

H

0 =

1 we have Et

�
V
H

T

�
= 1

B
T
t

, resp. Et

�
V
H

T

� � 1

B
T
t

. Furthermore, on

f�[t;T ] = 0g, �[t0;T ] = 0 holds for all t � t
0 � T and on f�[t0;T ] = 0g

holds BT

t0
=

Bt0

Et0 [BT ]
and V opt;t

0
;T = B

T

B
T
t0

.

Proof. Since Et

h
BtZ

opt�;t;T
T

BT

i
= B

T

t
, we �nd

BtZ
opt�;t;T
T

BT
to be Ft-measurable

on f�[t;T ] = 0g, hence the �rst assertion holds. For H 2 SF2
t
( �M[t;T ]),

resp. H 2 SF sup;2
t

( �M[t;T ]), with V
H

0 = 1 we �nd

Et

�
V
H

T

�
=

1

B
T

t

Et

"
V
H

T

BtZ
opt�;t;T
T

BT

#
=

1

B
T

t

;
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resp. Et

�
V
H

T

� � 1

B
T
t

, on f�[t;T ] = 0g. By the de�nition of Zopt�;t0;T

we �nd Z
opt�;t0;T
T

to be Ft0-measurable on f�[t;T ] = 0g, hence �[t0;T ] = 0

there. Since Z
opt�;t;T
T

=
BTB

T
t

Bt
on f�[t;T ] = 0g, we �nd 1 = Et

h
BTB

T
t

Bt

i
=

B
T

t

Et[BT ]

Bt
there. Now applying what we have proved so far to the case

t � t
0 � T we �nd the last assertion.

Proposition 5.2. Let e be a Ft-measurable random variable satisfying

e = (BT

t
)�1 on f�[t;T ] = 0g. De�ne �e := � C[t;T ]B

T
t

C[t;T ]�(BT
t )2

�
e� 1

B
T
t

�
on

f�[t;T ] 6= 0g, resp. �e := 0 on f�[t;T ] = 0g. Then

V
t;T;e := �eV

opt;t;T + (1� �e)
B
T

B
T

t

(5.7)

is the unique solution of the constraint optimization problem (5.1) with

respect to SF2
t
( �M[t;T ]), under the constraint e. On f�[t;T ] 6= 0g we have

V �t; T; e;SF2
t
( �M[t;T ])

�
=

�
B
T

t

�2
C[t;T ] � (BT

t
)
2

�
e� 1

B
T

t

�2

+ e
2
;(5.8)

resp. V �t; T; e;SF 2
t
( �M[t;T ])

�
=
�
B
T

t

��2
on f�[t;T ] = 0g.

Proof. First, note that V
t;T;e

0 = 1 and Et

h
V
t;T;e

T

i
= e, hence V t;T;e is

admissible for the constraint optimization problem (5.1). De�ne

F
(t;T )

�e
(x) := x

2 � 2
�e

vt;T

 
Z
opt�;t;T
T

BT

x� B
�1
t

!
� 2

1� �e

B
T

t

(x� e) :(5.9)

F
(t;T )

�e
is de�ned in such a way that for H 2 SF 2

t
( �M[t;T ]), with V

H

0 = 1

and Et

�
V
H

T

�
= e, we have

Et

h
F

(t;T )

�e

�
V
H

T

�i
= Et

h�
V
H

T

�2i
:(5.10)
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Furthermore, since

dF
(t;T )

�e

dx
(x) = 2x� 2

�e

vt;T

Z
opt�;t;T
T

BT

� 2
1� �e

B
T

t

;

and by (5.3)

dF
(t;T )

�e

dx
(x) = 0, x =

�e

vt;T

Z
opt�;t;T
T

BT

+
1� �e

B
T

t

= V
t;T;e

T
;(5.11)

and
d
2
F
(t;T )

�e

dx2
> 0, we �nd

F
(t;T )

�e

�
V
t;T;e

T

�
= inf

x2R
F

(t;T )

�e
(x):(5.12)

Therefore

Et

��
V
t;T;e

T

�2�
= Et

h
F

(t;T )

�e

�
V
t;T;e

T

�i

� Et

h
F

(t;T )

�e

�
V
H

T

�i
= Et

h�
V
H

T

�2i

Now calculate on f�[t;T ] 6= 0g, using e = �eB
T
t

C[t;T ]
+ 1��e

B
T
t

and e2 =
�eB

T
t

C[t;T ]
e+

1��e
B
T
t

e:

V �t; T; e;SF2
t
( �M[t;T ])

�
= Et

��
V
t;T;e

T

�2�
=

= Et

��
�eV

opt;t;T

T
+
1� �e

B
T

t

�
V
t;T;e

T

�

= �eEt

h
V
opt;t;T

T
V
t;T;e

T

i
+
1� �e

B
T

t

e

= �eEt

��
V
opt;t;T

T

�2�
+ e

2 � �eB
T

t

C[t;T ]

e

= ��eB
T

t

C[t;T ]

�
e� 1

B
T

t

�
+ e

2 =

�
B
T

t

�2
C[t;T ] � (BT

t
)
2

�
e� 1

B
T

t

�2

+ e
2
:

On f�[t;T ] = 0g we have V �t; T; e;SF2
t
( �M[t;T ])

�
=
�
B
T

t

��2
by Lemma

5.1. Uniqueness of V t;T;e follows from strict convexity.
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Theorem 5.3. Assume the existence of the zero bond B
T in �M[t;T ].

Then the following inequality holds for all H 2 SF 2
t
( �M[t;T ]) with V

H

0 =

1:

1

B
T

t

� �[t;T ]

q
Vart (V

H

T
) � Et

�
V
H

T

� � 1

B
T

t

+ �[t;T ]

q
Vart (V

H

T
):(5.13)

Furthermore, ����Et

�
V
H

T

�� 1

B
T

t

���� = �[t;T ]

q
Vart (V

H

T
);(5.14)

holds if and only if V H = V
t;T;Et[V H

T ] on f�[t;T ] 6= 0g. On f�[t;T ] = 0g

the Return-to-Maturity Expectation Hypothesis holds:

B
T

t_� =
Bt_�

E [BT jFt_�]
:(5.15)

Proof. By Proposition 5.2 we �nd on f�[t;T ] 6= 0g

�[t;T ] =

���e� 1

B
T
t

���r
Vart

�
V
t;T;e

T

� = max
H2SF2

t
( �M[t;T ])

V H
0

=1;E[V HT ]=e

���e� 1

B
T
t

���p
Vart (V

H

T
)
:(5.16)

This and Lemma 5.1 imply the �rst assertion. The second assertion

follows from the uniqueness of V t;T;e on f�[t;T ] 6= 0g. The last assertion

follows again from Lemma 5.1.

Corollary 5.4. Assume the existence of the zero bond BT in �M[t;T ].

Then the following inequality holds for all H 2 SF sup;2
t

( �M[t;T ]) with

V
H

0 = 1 and Et

�
V
H

T

� � 1

B
T
t

:

Et

�
V
H

T

� � 1

B
T

t

+ �[t;T ]

q
Vart (V

H

T
):(5.17)
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Proof. For H 2 SF sup;2
t

( �M[t;T ]), with V
H

0 = 1 and Et

�
V
H

T

�
= e � 1

B
T
t

,

we have, see (5.9),

Et

h
F

(t;T )

�e

�
V
H

T

�i � Et

h�
V
H

T

�2i
;(5.18)

since �e � 0 for e � 1

B
T
t

, hence

V(t; T; e;SF2
t
( �M[t;T ])) � Et

h�
V
H

T

�2i
;(5.19)

which implies the assertion.

In the special case of a deterministic B, or working with the dis-
counted market �M�

[t;T ] :=
�

[t;T ];

�
S

B
; 1)[t;T ]

��
, where zero bonds triv-

ially exist for all maturity times, the intertemporal price for risk, de-

noted as ��[t;T ] in the market �M�
[t;T ], is related to results by DMSSS97,

especially Theorem B, where for
�
S

B

�[t;T ] 2 S2
loc
(
[t;T ]), the closedness of

G2( �M�
[t;T ]) is shown to be equivalent to the (non-discounted) variance

optimal martingale measure in �M�
[t;T ], denoted as Zopt;t;T , satisfying

the so-called reverse H�older inequality:

Es

2
4 Zopt;t;T

T

Z
opt;t;T

s

!2
3
5 � K; 8 t � s � T;(5.20)

for a constant K. This condition is equivalent to

�
�
[s;T ] �

p
K � 1 8 t � s � T;(5.21)

since Zopt;s;T =
Z
opt;t;T
s_�

Z
opt;t;T
s

for all t � s � T and

�
�
[s;T ] =

vuuutEs

2
4
 
Z
opt;t;T

T

Z
opt;t;T

s

!2
3
5� 1:

For an Ft-measurable random variable e � 1, such that e = 1 on
f��[t;T ] = 0g, denote the solution for the constraint optimization prob-

lem (4.1) in the discounted market �M�
[t;T ] by V

�;t;T;e. For V := V
�;t;T;e
�^T ,

which can be seen as the value process of a self-�nancing hedging strat-

egy in �M�
[t;T 0] for T � T

0, we have Et [VT 0 ] = 1 + �
�
[t;T ]

p
Vart(VT 0).

Therefore

�
�
[t;T ] � �

�
[t;T 0]; 8 T � T

0
:(5.22)
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We summarize these observations:

Theorem 5.5. For T > 0 let
�
S

B

�[0;T ] 2 S2
loc
(
[0;T ]). We then have

equivalence between

1. G2( �M�
[0;T ]) is closed.

2. f��[t;T ]j0 � t � Tg is uniformly bounded.

3. f��[t;T 0]j0 � t � T
0 � Tg is uniformly bounded.

4. G2( �M�
[t;T 0]) is closed for all 0 � t � T

0 � T .

Corollary 5.6. If G2( �M[t;T ]) is closed and if B
T is attainable in �M[t;T ]

with a self-�nancing hedging strategy in G2( �M[t;T ]), then

V(t; T; e;SF 2
t
( �M[t;T ])) = V(t; T; e;G2( �M[t;T ])):(5.23)

6. Application

In an incomplete market with zero bond, one way to price non-

attainable claims is to price them with respect to an equivalent mar-
tingale measure that is in some sense optimal, e.g. minimal, variance-
optimal, Lq-optimal, entropy minimal. If the discounted variance-
optimal measure is an equivalent probability measure, it has the special

property that the intertemporal price for risk �[t;T ] for maturity time

T in the market �M[t;T ] remains unchanged if new securities priced

according to it are introduced to the market: For a non-attainable
square integrable FT -measurable contingent claim �X we can de�ne the

price process Xs :=
B
[t;T ]
s Es

h
�X

BT
Z
opt�;t;T

T

i

Z
opt�;t;T
s

. X

B[t;T ] is a uniformly integrable

martingale with respect to the discounted variance optimal martingale

measure of the market �M[t;T ] de�ned by Z
opt�;t;T
T

. Therefore, for the

extended market �M;X

[t;T ]
:=
�

[t;T ]; ( �S;X)[t;T ]

�
with intertemporal price

for risk denoted as �X[t;T ], we have Z
opt�;t;T 2 D2

t

�
�M;X

[t;T ]

�
� D2

t
( �M[t;T ]),

implying Z
opt�;t;T to be the discounted variance optimal martingale
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measure for the extended market �M;X

[t;T ]
and �

X

[t;T ] = �[t;T ]. Xt is also

known to be the initial price of the mean-variance optimal self-�nancing

hedging strategy approximating �X.
In general it is not easy to calculate any of the quantities �[t;T ]; C[t;T ]

and BT

t
, which are related in the following way:

�[t;T ] =

q
C[t;T ] � (BT

t
)
2

B
T

t

:(6.1)

(This equation follows immediately from the de�nition of �[t;T ].) In
Leitner (2000), an example is given where C[t;T ] can be calculated ex-
plicitly. In a markovian setting a PDE is derived, from which C[t;T ] can
be calculated.

Estimating the function t 7! Ct0;t0+t, t0 � t0+ t � t1, from historical
data and calculating �[t0;t0+t] via equation (6.1) using historical zero
bond prices, one can try to �nd a model for the quantities Ct1;t1+t and

�t1;t1+t. Solving (6.1) for B
t1+t
t1

we �nd a model for the zero bond prices,
which can be compared to observed prices. Alternatively, one can
estimate �[t1;t1+t]; t > 0 from observed zero bond prices and a model for
Ct1;t1+t and look for interesting patterns in the graph of t 7! �[t1;t1+t].

7. Conclusions

We have shown that the term-structure of interest rates and the term
structure of intertemporal prices for risk are closely related.
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