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Kernel smoothed prediction
intervals for ARMA models

Klaus Abberger, University of Konstanz, Germany

Abstract

The procedures of estimating prediction intervals for ARMA processes can

be divided into model based methods and empirical methods. Model based

methods require knowledge of the model and the underlying innovation dis-

tribution. Empirical methods are based on the sample forecast errors. In

this paper we apply nonparametric quantile regression to the empirical fore-

cast errors using lead time as regressor. With this method there is no need

for a distribution assumption. But for the data pattern in this case a double

kernel method which allows smoothing in two directions is required. An

estimation algorithm is presented and applied to some simulation examples.

Keywords: Forecasting; Prediction intervals; Non normal distributions;

Nonparametric estimation; Quantile regression

1 Introduction

In calculating predictions it is often important to associate an assessment

of uncertainty together with a point forecast. In this case an interval fore-

cast as well as a point forecast should be given. The intervals can be used

to compare forecasts by di�erent models more thoroughly or the intervals

might be used to calculate risks associated with the forecast. E.g. in �nan-
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cial data one is often interested in the behaviour of quantiles in the tails of

the return distributions. The \value at risk\ for a certain asset is measured

by low quantiles (� = 0:01 or � = 0:05 ) of the conditional distribution of

the corresponding series of returns.

In 1993 Chris Chat�eld published a very impressive review entitled \Cal-

culating Interval Forecasts\. Calculating prediction intervals the author

di�erentiates between model based methods and empirical methods. The

derivation of the former assumes complete knowledge of the model includ-

ing the distribution. Empirical methods make use either of within sample

\forecast\ errors or of post sample forecast errors by splitting the past time

series in two parts: �t the model to the �rst part and make predictions of the

second part. In his discussion of Chat�eld`s paper Tsay analyses a data ex-

ample and computes prediction intervals by using the empirical distribution

of predictive residuals. In his reply Chat�eld states: \The second feature

of the proposed method (in my view the more important feature) is that

the empirical distribution of forecast errors at di�erent horizons are used

to get appropriate percentiles to add and subtract from the point forecasts

at di�erent horizons. No normality assumption is required, and there is no

need to estimate expected mean squared prediction error. This means in

particular that the approach can cope with an asymmetric error distribu-

tion,.... The drawback of the method is that only 22 predictive residuals

are available for each forecast horizon, and this is dangerously small unless

some form of smoothing is used\. And later Chat�eld writes: \Therefore,

although I sympathize with the idea of using the empirical distribution in

some way, I think some sort of smoothing must also be used if the results to

be judged acceptable\. This kind of smoothing is discussed in the present
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paper. Especially when we work with post sample forecasts so that the data

series is splitted we look for methods which allow calculating prediction in-

tervals even with small data sets since the most part of the data is required

for model selection and estimation. In this case with a small amount of post

sample prediction errors we need \some sort of smoothing\ as Chat�eld

stated.

2 Nonparametric prediction interval estimation

2.1 Notation and motivation

This article adopts the following notation. Let Xt follow the stationary,

invertible ARMA(p,q) process

Xt =
pX

j=1

ajXt�j +
qX

j=0

bj�t�j ; b0 = 1: (1)

�t denotes the innovation process. Standing at time n, let the k-step ahead

point forecast of Xn+k be X̂n+k. The ARMA(p,q) process a(B)Xt = b(B)�t

can be written as an in�nite moving average Xt = c(B)�t with c(B) =

c0+ c1B+ c2B
2+ ::: and B the backshift operator. Then the forecast errors

are given by

en(k) = Xn+k � X̂n+k =
k�1X
j=0

cj�n+k�j: (2)

The innovations are usually assumed to be a sequence of independent

normally distributed random variables with zero mean and constant vari-

ance. Even when we drop the normality assumption we usually keep the

zero mean and the constant variance assumptions. Hence the variances of

the forecast errors are given by

var[en(k)] = E[e2n(k)] = �2�

k�1X
j=0

c2j : (3)
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Assuming normality, prediction intervals can then be constructed based

on this expression. Thus an (1� �) prediction interval is given by

X̂n+k � z�=2

q
var[en(k)]; (4)

where z�=2 denotes the appropriate percentage point of a standard normal

distribution. The derivation of this interval assumes complete knowledge of

the model including values of cj and �2� and the normality. The coeÆcients

usually have to be estimated. However, this approach to prediction interval

estimations is used by several of the widely used forecasting packages.

Since we have to estimate the parameters a common procedure is to split

the data set. The �rst part of the data is used to select and estimate the

model. The second part of the data is needed to calculate post-sample fore-

cast errors. Because of this data splitting we look for methods which use

the data economically. This objective leads us to the idea of smoothing.

For the AR(1) model the variances of the forecast errors are

var[en(k)] = �2� (1� a2k1 )=(1� a21) (5)

and looking at an ARIMA(0,1,1) model the variances are given by

var[en(k)] = �2� (1 + (k � 1)(1 � b1)
2): (6)

The error variances are functions of k. This motivates the use of nonpara-

metric regression methods with explanatory variable k.

Since calculating interval forecasts is similar to estimate quantiles of

the prediction error distribution it is obvious to use nonparametric quantile
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regression methods to achieve the kind of smoothing Chat�eld demands. An

overview about nonparametrtic quantile regression methods is included in

Heiler`s (2000) survey on nonparametric time series analysis. A Nadaraya-

Watson type method is to estimate the conditional distribution by

Fn(yjx) =

Pn
i=1 1(�1;y](yi)K

�xi�x
h

�
Pn

i=1K
�xi�x

h

� (7)

with K() an appropriate kernel function, h a bandwidth and 1 the indicator

function. From this the empirical quantile function can be derived by

qn;�(x) = inffy 2 <jFn(yjx) � �g; 0 < � < 1: (8)

In the present application the conditioning variable x is similar to the step

length k.

Figure 1 shows the usual data pattern we are faced with. Prediction

errors are plotted against the step length k. So we have various data points

for k = 1 which denotes the 1-step-ahead errors. There are further observa-

tions at the integers k = 2; 3; :::. One can imagine that in this setting not

only smoothing in k is appropriate but also smoothing in the y direction is

required. Yu and Jones (1998) use a so called double kernel method which

provides smoothing in both directions. An adopted Nadaraya-Watson kernel

estimator of the conditional distribution function is

~Fn(yjx) =

Pn
i=1K1

�
xi�x
h1

�
F2

�
y�yi
h2

�
Pn

i=1K
�
xi�x
h1

� ; (9)

with F2(z) =
R z
�1K2(u)du the distribution function of the kernel K2 and a

further bandwidth for the y direction denoted h2.
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Figure 1: k-step-ahead forecast errors for an AR(1) process with �2
3 dis-

tributed errors
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In the ordinary regression problem smoothing in y is less regarded than

smoothing in x direction. The double kernel approach su�ers from the

disadvantage of the necessity to specify a second bandwidth h2 as well as

the bandwidth h1. But even Yu and Jones state that \...it turns out that the

estimates are not very sensitive to the value of h2,.... But the choice h2 = 0 is

not attractive to us, because it results in a discontinuous conditional quantile

estimate (which is inelegant, at least for small samples)\. Unsurprisingly,

for estimating interval forecasts smoothing in y is not such tri
e, because of

the concentration of observations at the integers k = 1; 2; :::.

2.2 Algorithm

Since a double kernel method is appropriate for the current problem of pre-

diction interval estimation two bandwidths have to be chosen. A practical

procedure for bandwidth choice and �-quantile estimation consists in the

following steps.

(i)

The \single kernel\ method (7) in conjunction with the cross-validation

technique is applied to chose h1, the bandwidth in x direction. This cross-

validation method is further discussed in Abberger (1998). The bandwidth

which minimizes

hCV
1 = min

h

(
nX
i=1

'(yi � q(�i)n;� (xi))

)
(10)

is chosen as cross-validation bandwidth. q
(�i)
n;� denotes the so called \leave-

one-out\ estimator which estimates the conditional quantile at (yi; xi) with-

out using the observation (yi; xi). ' is the quantile function '(u) = �1fu�0g(u)�
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u + (� � 1)1fu<0g(u) � u, introduced by Koenker and Basset (1978) in the

manner of linear quantile regression. Since the minimum problem is solved

for each k separately local bandwidths h1(k) are calculated.

(ii)

The resulting h1(k) and the \single kernel\ method is used for a �rst esti-

mate of the conditional quantile q�(k).

(iii)

For the choice of the second bandwidth h2 methods from kernel density

estimation are adopted. Monographs about these methods are Wand and

Jones (1995) and Silverman (1986).The usual kernel density estimator

f̂(y) =
1

nh

nX
i=1

K

�
y � yi
h

�
; (11)

has the approximate mean squared error

MSE[f̂(y)] �
1

4
h4f 002(y)

�Z
t2K(t)dt

�2
+

1

nh
f(y)

Z
K2(t)dt: (12)

In density estimation the mean integrated squared error is calculated. Then

procedures which estimate the bandwidth minimizing this criterion are de-

veloped. Since in the present application the aim is to have a density esti-

mation at one point namely at the � quantile it is appropriate to ground on

the mean squared error instead of the mean integrated squared error. The

bandwidth which minimizes (12) is

h5�(y) =
f(y)

R
K2(t)dt

nf 002(y)[
R
t2K(t)dt]2

(13)

which depends besides on n and the kernel on the unknown quantities f(y)

and f 002(y). These expressions have to be estimated, which also can be
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achieved by kernel methods. But therefore another primary bandwidth must

be used. This primary bandwidth is also calculated by (13) but assuming

normality. So f and f 002 can be calculated at the theoretical � quantiles of

the standard normal distribution. Now in the current application of predic-

tion interval estimation the precise procedure is:

Fix x and take the y observations at x. Then compute the primary

bandwidth. Calculate f and f 002 at the �rst estimate of the conditional �-

quantile resulting from step (ii). With these preparations the �nal step can

be tackled.

(iv)

The �nal double kernel estimate (9)is calculated with h1 from step (i) and

h2 calculated by expression (13) replacing n by the number of observations

within the x window. Now the conditional quantile can be computed similar

to (8).

3 Simulation examples

The developed algorithm is applied to some simulated datasets. The settings

in the calculated examples are:

� For all kernel functions the Epanechnikow kernel of the form 3=4(1 �

u2)1f[�1;1]g(u) is chosen.

� In each repetition of the simulations a time series of length 10000

is generated for the model under consideration. But only the �rst

50 observations are used to calculate the � prediction interval. The
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estimated intervals are applied to the rest of the time series and the

observations falling below and above the interval are counted. Thus

we can calculate a value �̂ for the prediction interval.

� The �̂ values computed for the various repetitions are presented graph-

ically for the three methods: normal prediction interval, empirical dis-

tribution, kernel smoothing. In each simulation example the amount

of repetitions is 500. The quantiles for the empirical distribution are

calculated with the S-Plus function quantile(.) which lineary interpo-

lates between the order statistics.

Figure 2 shows the results for simulations of the AR(1) model

Xt = 0:7Xt�1 + �t (14)

and �t � �2
3. At this stage of analysis the problem of model choice and

parameter estimation is left out. So the forecast errors are calculated with

knowledge of the true model. The 0:05 prediction quantiles are estimated

an visualized by the boxplots for step length 1 to 12. In Figure 3 the results

for step length k = 6 are compared. The boxes of the normal intervals are

all below 0:05 indicating that at least 75% of the normal estimates are too

low.

Compared with the empirical distributionmethod kernel smoothing leads

to better estimates in the middle and reduces the variations of the estimates.

Similar results are obtained for the 0:95 prediction intervals for the same

model presented in Figure 4.

The simulation results visualized in Figure 5 ground on the ARMA(1,1)

model

Xt = 0:7Xt�1 + 0:5�t�1 + �t (15)
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Figure 2: Simulated �̂ for the AR(1) model (14) with �2
3 distributed errors

(� = 0:05, 500 repetitions)
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Figure 3: Simulated �̂ for the AR(1) model (14) with �2
3 distributed errors

and step length k=6 (� = 0:05, 500 repetitions)
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Figure 4: Simulated �̂ for the AR(1) model (14) with �2
3 distributed errors

(� = 0:95, 500 repetitions)
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Figure 5: Simulated �̂ for the ARMA(1,1) model (15) with �2
3 distributed

errors (� = 0:95, 500 repetitions)
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with � � �2
3. The calculations are carried out with the knowledge of the

underlying model. The plotted results for the 0:95 quantiles show a similar

behaviour as the results for the former AR(1) model. Figure 6 shows the

true 0:95 quantile and the means of the 500 estimates for each of the three

methods. Compared with the normal method, the kernel estimates are in

the mean closer to the true quantiles.

Now the problem of parameter estimation is added. Figure 7 presents

the results for the 0:95 forecast quantiles based on the ARMA(1,1) model

(15). But now the parameters are estimated with the �rst 50 observations

of each series. Comparing the results with the case where the true model is

known the statements remain unchanged. The boxes for the normal method

are completely below the 0:95 line.

Summarizing the results of these simulations it can be stated that cal-

culating the normal procedure in cases with non normal data gives biased

results. Using the empirical forecast errors in connection with nonparamet-

ric quantile regression reduces the bias. The described algorithm can be

applied in the same way to various distributions and ARMA models of dif-

ferent orders. The price we have to pay is a higher variability of the results.

But compared with the proposal of using only the empirical distribution

smoothing leads to a reduction of this variability.
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Figure 7: Simulated �̂ for the ARMA(1,1) model (15) with �2
3 distributed

errors and estimated model parameters (� = 0:95, 500 repetitions)
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