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NEYMAN-PEARSON HEDGING AND DYNAMIC
MEASURES OF RISK

M. KOHLMANN

ABSTRACT. In both complete and incomplete markets we consider
the problem of fulfilling a financial obligation £, as well as possible
at time T if the initial capital is not sufficient to hedge &.. This
introduces a new risk into the market and our main aim is to
minimize this shortfall risk by making use of results from bsde
theory.

1. INTRODUCTION

The problem of hedging a claim & at time ¢ = T attracted new
interest in the recent literature under the point of view that there is
no sufficient initial capital = to perfectly hedge the liability £. In a
complete market M the price of the claim is completely described (-
under appropriate technical assumptions -) as

E*(¢|F),0<t<t

where E* is the risk neutral measure appropriately discounted, or as

the solution of a backward stochastic differential equation
dpy = (rpe + 0:q1)dt + qedw, 0 <t < T
pr=¢§

where r is the interest rate and 6 is the risk premium process. If the
investors’ initial capital x is strictly less than pg, there is no chance
to perfectly hedge the liability and so there is additional risk in the
market which must be measured.

Artzner, Delbaen, Eber and Heath [1] use risk measures in a static
setting satisfying certain coherence properties and Cvitanic and Karatzas
[3], [4] introduce a dynamic version of this measure

— === (T
A(@,¢) = infrea) B(Shm )t
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2 M. KOHLMANN

where A(z) is a set of admissible portfolios, Py(t) is the riskless
instrument in the market and F is the expectation with respect to the
real world measure. %7 (t) is the agent’s wealth at time ¢ when starting
with initial capital 2 and when strategy 7 is used. A(z, () describes the
expected size of shortfall, if x < py. It is one of the many possibilities
described in the recent literatur to measure and quantify the genuine
risk £&. In generality such measures have been studied by Artzner,
Delbaen, Eber and Heath [1]. A different approach is described by
Follmer and Leukert [11], [12], where the agent tries to maximize the
probability of a perfect hedge

sup P(z®™(T) > &).
mEA(z)

This approach makes use of results from test theory in statistics and
thus may be seen as the dynamic version of the familiar ” value at risk”
concept which is described e.g. by Heath, Kulldorf, and Cvitanic and
Karatzas [15], [20], [3].

This ”value at risk” concept does not take into account the size of
shortfall. So the dynamic measure A(z,&) must be preferred to the
later approach. Follmer and Leukert [12] study a dynamic measure of
the form

o\ F
A, &) = Welgfx)E [l <£P0?T) > ]

where [ is a concave function and they study the relation to the
"statistical” approach.

Kohlmann and Zhou [18] choose a mean variance hedging approach
to describe the agent’s behaviour when the initial capital is different
from the hedging price of the obligation £. This approach is also treated
in [14], [5] and [6]. The main disadvantage of this approach is the fact
that no difference is made between overshooting and shortfall. Never-
theless it leads to useful results in special situations (see the explana-
tions in section 3.1).

We shall first use these results to derive the results on the dynamic
measure A(z,§) in a complete market. As we shall make extensive use
of recent results on backward stochastic differential equations (bsde)
this approach is completely different from the methods in the literature
cited above. For results on bsdes the reader is referred to [2], [22], [23],
[24], [27], and [29]. The statistical tools are found in [28], and the
results used from martingale theory in [21], [9].

The next section will show how to extend the results to incomplete
markets. Again the methods to derive the results base on techniques
from the theory of bsdes.
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In the last section we extend the ideas to the problem of measuring
the shortfall risk in the American contingent claim case and we suggest
a completely different method for treating the problem which only relies
on FBSDE techniques.

2. THE MARKET TOOLS

This section describes the market M which we are going to consider
first. It also gives the mathematical tools used in the later sections
as the basic results on hedging, on backward stochastic differential
equations etc.

2.1. The Market. We consider the usual B-S-market described by
one bond P, and d stocks (Py(t), ...Py(t))
dPy(t) = r(t)Py(0)dt, Py(0) =1
dPi(t) = Pi(t)b;(t)dt + 327, 07;(t)dw!®), P(0) = p; > 0
0<t<T

on a probability space (€2, F, P) on which the d-dimensional Brown-
ian motion (wy) lives.

The natural filtration is the P-augmentation of the filtration gener-
ated by (w!,..,w?), say F; = F¥. For simplicity we assume that all
coefficients r(t),b;(x), 05 ;(t) are deterministic, which will us allow to
directly apply the results of Kohlmann-Zhou [18]; the generalization to
progressively measurable coefficients will not encounter systematic diffi-
culties and will be described in a forthcoming paper, where we consider
a more general framework to describe measures of risk. Furthermore
o = (0,;) is assumed to be invertible and - again for simplicity - all
coefficients r, b, 0; ;, and those of o~! are assumed to be bounded.

The above assumptions allow us to define the bounded risk premium
process

0(t) = o (O)(0(t) —r(t)-1),0<t < T
the existence of which assures that the market is arbitrage free (see

e.g. [9], [16]). The Girsanov functional associated with 6(¢), namely
the solution of

dzo; = —0zoidwy, 200 = 1
is a P-martingale and defines the risk neutral measure by
dP = zopdP

under which the discounted stocks become martingales. From Gir-
sanov’s theorem we then have a Brownian motion under P namely

Wy = wy + %fot@sds
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__The expectations with respect to P and P will be denoted by E and
E | respectively.

With these tools we find ourselves in the standard arbitrage free,
complete market. In this market the wealth process of an agent who
starts with an initial capital = and follows a self-financing portfolio
strategy m(t) = (m1(t), ..., m4(t)) where m;(¢) is the amount invested in
the ¢ — th stock, is given by

dzy = (r(t)z(t) + 0;(t)u;(t))dt + u;(t)dw]
Top =

where u = om. The above wealth equation under P is obviously

given by
dzy = r(t)z(t)dt + u;dw], zo = .

A portfolio 7 (or equivalently a control u) is an R4-valued process on
[0, 7] x 2 which we assume to be progressively measurable and almost
surely twice integrable.

We define the deflator process

dzg, = —rizg,dt — 025,dwy, zgo = 1
and the associated deflated measure is defined by

dP" = z5,dP.
Note that the following relations hold
dP" = HlpzrdP = HipdP
where
dHj, = —riHj,dt, Hyg = 1

and where P is the risk neutral measure. _ _

As we shall mainly work with P" instead of P we will write P for
the deflated risk neutral measure and zg; for the corresponding density
as long as we expect no confusion. P will then be referred to as the
‘measure in reality’ or 'physical measure’ and P will be called the vir-
tual measure. The reader who might find this confusing should at first
reading just let r = 0.

Finally, a contingent claim £ is an L?(Fr, P)—random variable, which

may be thought of as a bounded Borel function of P(T") = (P (T), ..., Ps(T)),

say
§=g(Pr)
and the best known example is the European option
§=g(Pr)=(Pr—K),
where K is the exercise price of the option.
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2.2. Pricing a contingent claim and mean variance hedging.
As pointed out in Kohlmann [17] we consider the formal adjoint for
the following trivial control problem
dzos = —71zoedt — Ozgidwy, zg0 = 1
E(2¢r&) = min!
which is given by the backward stochastic differential equation
dp; = (repy + 0qy)dt + qdw
pr=2¢.
Meanwhile it is standard that the solution of the above bsde
(»,9) = (r*, ¢*)
gives the price of the option &, namely
Pt = E (§|Fy) = E (208 / Fy)
and ¢; is the hedging portfolio process in the sense that
w(t)=0"1q(t).
For future reference we summarize these results in

Theorem 2.1. Under all the above conditions the adapted solution of
the above bsde (p,q) exists. The process (p;) describes the fair price
of the contingent claim and (q;) is the portfolio process for optimally
hedging the claim.

Remark 2.2. We obviously restrict our considerations first to the sim-
plest case possible. As noted above already we might allow for coeffi-
cients depending on w in a progressively measurable way. Also we could
consider constraints on the portfolio process, like cone constraints for
instance. There is a vast literature on these models, the generalization
is straightforward.

In Kohlmann-Zhou [18] we consider the following mean variance
hedging problem
dry = (rezs + Opuy) dt + usdwy, 1o = © € R4
with cost criterion
J(z,u) = 1E (zp — £€)* = min!

From a general LQ-control problem we derive the following result
Theorem 2.3. (i): The optimal portfolio (v = o) of the above hedg-
ing problem s

T =0(t) («* (t) — p) + 07 @
where
(p,q) € L ([0,T], R", (Fy)) x L* ([0, T], R*, (FY))
18 the unique Fy-adapted solution of
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dpy = [r (t) pt + Orqe] dt — qdw
pr=2¢§
(ii) the optimal value of the hedging problem is
sT(T) = 3P (0) (z — p(0))*

where P solves the stochastic Riccati equation

P(t)+2r(t)P(t) — 202 (t) P (t) = 0
P(T)=1,P(t) > 0,t € [0,T]
and the error
L(t) = E (¢ = p.)*

satisfies

F—2(r—6*)—-60Tr=0
L(0) = (z~p(0))’
(iii) The smallest initial endowment to reach the contingent claim &
18

z = p(0)
and in this case the wealth process (zi"™") = (x}) is equal to (p;). So
the fair price of the contingent claim (- and so the solution of the bsde
(p¢) -) is the wealth process for the mean variance hedging problem
with starting point x = p(0), and (q;) is the corresponding portfolio
multiplied by o.

Note that the above result may be interpreted in the following way:
If the initial capital is equal to the fair price of the contingent claim at
time ¢ = 0 then the wealth process is just the price of the contingent
claim. Let us assume that the agent has a higher (respectively, a lower)
capital then the 'rest’ is invested according to a Merton type strategy.

2.3. Superhedging and the upper price in an incomplete mar-
ket. When we consider incomplete markets the target & might not be
reachable, the liability £ cannot be hedged in the sense that there might
not be a starting point z and a portfolio 7 such that 7" = £. This situ-
ation typically arises when the number of tradeable securities is smaller
than the number of random sources in the market. A most successful
approach to solving this problem is the Féllmer et al. hedging or the
mean variance hedging approach [14]. The research in this field gives a
deep insight into the structure of hedging problems, though the main
drawback of this theory is the fact that mean variance hedging makes
no difference between a shortfall from the unreachable obligation and
an overshooting: The influence of these two failures of completing a
liability are ruled out by just considering the variance.
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A completely different approach was taken by Karatzas, Shreve, Cvi-
tanic, El Karoui and Quenez [3], [4] ,[8] ,[16]. The idea consists in defin-
ing a self-financing superstrategy (m,c) where 7 is a portfolio process
and the increasing right continuous process (¢;) with ¢g = 0 may be
interpreted as a consumption process. The upper price of a contingent
claim is then given by the generalized bsde

dpt - (rpt + eqt) dt — dCt + qtdwt
pr =¢§.

It is straightforward that the idea of introducing the above gener-
alized bsde has its counterpart in the martingale approach. Karatzas
and Shreve [16] make use of the classical Doob Meyer decomposition to
derive the existence of the cumulative consumption process. A similar
approach was taken by El Karoui and Quenez [8]. Generalizations are
found in Kramkow [10], and Follmer-Kramkow [19], where a ”Doob-
Meyer decomposition” with an optional process is derived. Yet another
approach is possible by considering g — martingales [27].

At this point it makes sense to formalize the bsde techniques for
future use. The definitions and properties are taken from [24]. Many
results below may be cited in a more general way, we restrict the as-
sumptions to our needs.

Given (2, F, P) and an R™-valued Brownian motion so we consider

(i) (Fy)sepo,r] the augmented filtration generated by (w¢)cjo,r1 and it
is assumed that the filtration satisfies the usual properties. B3 denotes
the predictable o-field.

(ii) L* (T; R%), the space of all Fr-measurable random variables

r: Q — R? with E (|z|*) < .
(iil) H? (T; Rd) the space of predictable processes
¢:Q x[0,T] — R* with ET [ (¢;)* dt < oo.
(iv) H? (T ; Rd) the space of predictable processes
¢:Qx[0,T] — R* with E\/T [|¢:2dt < oo
v) H? (T,R%),3 > 0 denotes the space H? (T; R%) endowed with
the norm |.| defined by |.|> = ET [ el¢2dt.
Definition 2.4. Consider the bsde

dpe = —f (t,pt,qe) dt + qedwy, pr =€
as an anologue of

=+ [l f (t,pe,qe) dt — IF qF dw,
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where T here denotes the transpose and where

(i) € is an Fr-measurable random variable

(ii) the ”generator” f,

f: QxR x R x R4 — R4

is P ® B? @ B"*%-measurable.

We call (p;.g:), such that

(i) (ps) is an adapted continuous R%valued process

(ii) (g¢) is an R™%valued predictable process with ¥ [|gs|?ds <
o0, P — a.s. a solution of the above bsde.

The next theorem gives a fairly general existence result [26]

Theorem 2.5. Let £ € L* (T; RY) , f(.,0,0) € H? (T; R%)

such that there exists C' > 0 with

| (w,t,p1,q1) — f(w,t,p2,92)] < C(lp1 — p2| + @1 — @), P — a.s.

for all p1,pa,q1,q2- (In [8] (f,&) is then called a pair of standard
parameters for the bsde).

Then there exists a unique pair (p,q) € H? (T; Rd) x H? (T; R"Xd)
which solves the above bsde.

We shall make use of a comparison theorem which is stated in

Theorem 2.6. Let (f, &), (f? &%) be standard parameters of bsdes
and let (p', q') and (p?, ¢*) be the associated square integrable solutions.
Let

(1) &8 > &2 P — a.s.

(i) f'(t,py,a¢) — f2(t, 97, ) > 0,dP @ dt — as.

Then for any t

P > i

almost surely. If p; = p? on A € F; then

(i) pt = p? on [t,T] x A, a.s.

(1) & = €% a.s. on A

(i) 1 (5,51, 1) = 12 (5,5, ¢2)om A x [t,T] ,dP @ ds — a.s.

The comparison theorem implies

Corollary 2.7. If £ > 0 a.s. and f(¢,0,0) > 0 dP ® dt — a.s. then
pt >0 P—as. Ifpy=0 on a set A € Fythen p; =0, f(5,0,0) =0 on
[t,T] x AdP®ds —a.s. and £ =0 a.s. on A.

Remark 2.8. We shall mainly use the above theorems for the linear
case, that is for the case

—f(t,p,q) = repe + O1q + B¢

where 74, 0; are bounded R, resp. R"-valued predictable process ¢ €
H? (T, RY). 1t is straightforward from the above theorem that in this
case the bsde has a unique solution and (p;) is given by
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p=FE [z&lzm + 7 zgtlz(]sgbsdsm] P—as.

Definition 2.9. A supersolution of a bsde with standard parameters
(f,&) is a triple of processes (p, ¢, C') with

dpy = —f (t,pe, qt) At + gidwy — dCy, pr = §
where
e ¢ is Fp-measurable
e (p;) is a cadlag process.

e (g) is a predictable process with fOT q?ds < 0o P — a.s.

e (C}) is an increasing, adapted, right continuous process with Cy =
0

ep;>0P —a.s.

Theorem 2.10. (i) Let (p',q') and (p?, ¢*) be two solutions of bsdes
with standard parameters satisfying the assumption of the comparison
theorem. Then there exists a process C such that (p', q*,C) is a super-
solution of the bsde with parameter (f2,£?).

(ii) Let (p*,q',C")and (p%, ¢*,C?)
be two continuous supersolutions of bsdes with parameters
(f*,€") and (2,€%).
Then there exists a pair (¢*,C*)such that (p* = p* Ap?,q*,C*) is a
supersolution of the bsde with terminal condition £ = & N & and
generator

ft (tap7 Q) = l{pigpf}fl (t7p7 q) + 1{pf<pt1}f2 (t7p7 q)
(q*)is explicitly given by
G = gt + lpppny @
and C* s given by
where (L) is a local time, i.e. an increasing continuous process with
support included in {t|p! = p?}.

Finally we introduce the notion of a reflected bsde. The idea of this
definition is to define a process (p;) which is a supersolution of a bsde
such that (p;) stays above a pregiven process (.S;) with S = £ or more
general Sy < €.

Definition 2.11. Let f be an R-valued standard driver and let (S;) be
a continuous process on (0,7, adapted, real valued and L?-bounded
with

i < — a.s.

th_)ngﬂSt <¢P—a.s
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The triple (py, gi, K;) of processes taking values in R, R", R, respec-
tively, and satisfying

Definition 2.12. (i) (¢;) € H*4, (p;) € S?, Kr € L*¢
(ii) ps = €+ ftTf (s.ps-qs)ds + Ky — Ky — ftT g dws
(ifi) pe > S
(iv) K is continuous and increasing with

Jo (e = Si)dE, = 0
is said to be a solution of the reflected bsde, if

dp = —f (5,0, q¢) dt — dK; + qudwy
Pr=&p > S; Pa.s.

Now let for (f,S:&) the properties in Definition 2.3.9 be satisfied.
(f, S, €) is then called a set of standard data. We may cite the following

Theorem 2.13. (i) Let (f,S;,&) be a set of standard data. Then the
rbsde has a unique square integrable solution.
(1) Let (f*, S}, €Y, (f%, S%,€2) be standard datas and let (p', ¢*, K*')
and (p?, ¢%, K*)be the solutions of the rbsdes. If
SH<SEHEL<E P —as.
and

) < (07, ¢f)dP x dt —as.
Then
p; <p? P—a.s.

3. MEASURING RISK AND NEYMAN-PEARSON HEDGING

Let us assume that the agent has an initial capital zo. At timet =T
his financial obligations are described by the contingent claim &.. If
the initial capital is greater than the price of & at time t = 0, i.e.
pc (0), then the agent is able to fulfill his obligations. A problem and
an additional risk arises when

zo < pe (0).

Cvitanic and Karatzas [3], [4] consider the situation where an ob-
server of the situation at time ¢ = 0 has information about &. and
about the agent’s aim to hedge &. The observer requires that the
agents wealth stays above the price p, (t) of a contingent claim &,, for
which then of course zy > p, (0), and & > &,. For the economical
interpretation see [3]. Instead the observer could also require that the
agent should fulfill his obligation as well as he can under the additional
condition that his present wealth at time ¢ should be near the estimated
value of a portion k&, k € (0,1) of the contingent claim.
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Let A(x)be the family of admissible strategies m. We take the least
expected loss with respect to 7 € A (x) as measure of risk:

R(r) =R (z,&) = ﬂeig{z)E [HST (& — x?ﬂ)—i—]

Remark 3.1. Artzner et al. [1] propose certain desirable properties of
a risk measure:

(i) the risk should be no larger than the maximal net loss

(ii) R(z, &) should be subadditive in both variables so that the agent
should not want to split his initial capital and the obligations.

(iii) R(z,&.) should be decreasing and convex in x and = + R(z, &)
should be increasing and convex for fixed . With this requirement
the risk decreases with increasing capital x. Also the risk exposure

% decreases with increasing initial capital.

Obviously, these assumptions are true for the above defined risk mea-
sure. First we will now consider the special and simple case of a com-
plete market.

3.1. The Neyman-Pearson hedge. We first state some results from
Follmer-Leukert [11]. Consider the class of randomized tests

R :={p:Q—10,1]|¢ is Fr — measurable}
As in this section we live in a complete market any ¢ may be consid-
ered as a contingent claim, when we let ¢ from L? what we assume from

now on. Then also &, is hedgeable and we may state the following
result:

Theorem 3.2. Letx < p.(0). There exists a ¢ such that the minimum
mn

E(p* (T) — p** (T))
under the constraint
p<p£ (0) < zo

18 attained in .

Proof. We follow the technical ideas of Follmer-Leukert [11]. Let Ry
be the set of randomized tests with p#% (0) < x,. Choose functions
(#n) € Ro in the convex hull of the tail set of a minimizing sequence
©n such that @, converges to some ¢ € R.

From Fatou’s lemma we then find that the minimum above is at-
tained in @:

E (p'fc (T) _ p% (T)) <E (pﬁc (T) _ psoﬁc (T))

for all randomized tests ¢ and
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pP% (0) < z. O

Remark 3.3. (i) As ¢ may be considered as a contingent claim we may
look at the bsde

dpf = rp{ + 0qf dt + qdw,
Pr=¢
It might be interesting to consider p{ as the price of a defautable
bond. This will be described in a forthcoming paper.

(ii) Follmer and Leukert [11], [12] consider a more general case. For
a convex function [ they consider the problem

E[t((1 - ¢)&)] = min!
under

E (‘P&c) < xo.
To simplify the notation we assume that £, > 0. Let ¢ be the solution
in , let py % be the price of the knock-out option (see below) @, and
consider the problem

B (Hr (& - o7")") = max!

for x < zy < p. (0).

Theorem 3.4. The optimal solution (z*,7*) of the above problem is
given by

7" for mf = o 1qPée g* = pPle (0).
Proof. a) For any admissible strategy (z, ) define the success ratio as
Plam) = Lazmsey + x?—;wl{m%"«c}-
Then for any success ratio ¢, x)
pw(z,n)ﬁc(o) < z*

holds, as the fair price is the infimum of all z such that (z;"") repli-

cates x7":
pPemée(0) < pr (0) < x < z*
and with pé = p,
E (& —az")" = B(pe(T) — pe (T) p#=n) (T)) >
E (pc (T) — pc (T) p% (T))

as @ is optimal for the Neyman-Pearson hedging problem.
b)(z*, 7*) is obviously admissible. Its success ratio satisfies
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Pl abe = o7 " Née > G on {€& > 0}
and so from 3.1
Pa*m)be = P& Pa.s. on{& > 0}.
Moreover we have
Pargy=p=1on& =0

and so
(6-a5") =1 -Pe=p(1) (1~ 7 (T))

so that equality holds in 3.1, and so (z*, 7*) solves the optimization
problem O

It might be interesting to note that in the complete market case the
optimal portfolio automatically is a martingale generating portfolio.
The wealth satisfies

dep™ = (r (t) 2p™ + 05 (0¥ ),)dt + (0" 1) jdw’
Ty =

If the coefficients r, 0,0 are well behaved, then for a 7 € A(x) the

process (z;"") is a discounted martingale under P. When we denote the
-in this sense- martingale generating portfolios by M(z), we here have

A(z) = M (z)

and a simple consequence is that the optimal portfolio © for the
problem

El¢ — x;’“r = Milyrep(e)!
is the same as the optimal portfolio for the problem

E[¢. — 2% = min! = min! where z < zo,
weA(x) weM (z)

From Kohlmann-Zhou [18] we can explicitly compute the optimal
portfolio 77* for all initials x:

7 (t) = o710 (z; — p* (t)) + o 1¢*

where (p* (t),q*(t)) is the Black Scholes price of . as a solution of
the bsde

dpt = (7“ (t) Dt + 9]‘(]1‘) dt -+ qjdwj
pr =¢.
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and (z}) is the response of the system on applying 7*.
For z < p* (0) we have from the usual comparison theorem that

0<p(t)—a" () =p"(0) — =+

Jo (o =) + 6% (0 — ) + 00" dt + [T (6 (pf — )+ ¢°) dwo
= (" (t) = 2" (1)) = R(z,&,1)

and the minimum is attained in R (xg, &, t)

Note here that if the equivalent martingale measure coincides with
the physical measure the minimal risk is just

p*(0) — zo
and the optimal terminal wealth is
(p*(0) — o) Po(T) + &

which is also obvious from the mean variance approach.
The expectation of R (xzg,&.,t)may be interpreted as the expected
minimal shortfall at time ¢, and the success ratio at time ¢ is given by

J— :1:*
QO(.Z'*,W*)(T) - 1{%’}2]},’}} + p*(q’})l{p,’}>m}}

In the very special case under consideration in this section we can
compute the success ratio explicitly in terms of the density (zor). This
is a direct consequence of the Neyman-Pearson lemma:

Theorem 3.5. The optimal randomized test ¢* € R s given by
Y= 1{20_7}>a*} + Vl{zo_;:a*}
where
a* = inf {a*| f{zaTlM} phdP = :1:0}
and
7= (0" = fr.otoay P2AP) | [{.or_ ey PP
Proof. The optimization problem
E (pp— ™)'
under the constraint
zp" < T
is equivalent to
E (¢ (T)p" (T)) = max!

under
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E (¢ (T)p* (T)) < 2o

Let us introduce the Fpr-densities

dQ _ _p'(T)  _ _E'(&|Fy)

P — E((T)) _ E(E*(&lFr))
4G _ _pT) _ p'(D)
P~ B (1)  Ble)

then the problem is equivalent to

[ ¢ (T)dQ = max!

under

fﬁo (T) dQ S r = —chgc) - p::(oo)

The Neyman Pearson lemma then implies that the optimal test of
the hypothesis () against the alternative @ is given by . O

Remark 3.6. Just some few words for the non-statisticians: Testing two
hypotheses Hy and H;(the second hypothesis is usually called the anti-
hypothesis or alternative) on the basis of an observation is a decision
to accept one of the hypotheses as true. In statistics one treats this
problem in an unsymmetric way: There are two kinds of mistakes
we make when making the decision. First, the observation leads us
to accepting H; although H, is true. This is called an error of first
kind. Second a decision for Hy though Hj is true is called an error of
second kind. Statisticians then find the optimal test as the one which
keeps the first kind error below a pre-given boundary and minimizes
the error of second kind. The reason for this unsymmetric way of
approaching the problem lies in the structure of the problem itself.
The probability of a possibly fatal error should be known in advance
-in order to keep it small within acceptable bounds- and among all
decisions which respect this one looks for the test which minimizes
the probability of the second kind error. In our problem the initial
investment gives the ”error bound” and we minimize the ”error” of a
shortfall. The details are found in [28].

Remark 3.7. (i) Cvitanic and Karatzas [3] consider an additional re-
quirement on the agent’s behaviour, namely that an observer gives a
contingent claim which may be thought of as a minimal obligation to
be fulfilled certainly

Ea < &

with price less than or equal to xy, the present price of which must
not be undergone by z7". In the present case this problem is trivial as
automatically
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x;o,w* > pa (T)
by the well known comparison theorem and the martingale property
of m*.
(ii) It is a simple generalization to consider the problem
E(((é —=7")7))
where [ is a concave or convex function. The respective optimal tests

are easily computed by making use of the Legendre-Fenchel duals of [.

3.2. Uncertain real world. We stay in the market considered in the
last sections but now we allow for additional uncertainty in the follow-
ing sense: The real world measure P is assumed only to belong to a
family P.
The problem now consists in finding
. z,m1+
Viw)= sup_inf Fg £ — o7

and
V(z)= inf supE P
(@) = inf supFol6: — i)
We would now like to define a value of this game by v () =V (z) =

V(x).

We shall only shortly describe one way to solve the problem without
going into the details as this will be done in a forthcoming paper by
making use of the results of the next section.

The idea is to consider

ky (& — x?w)+

where £k, is the density of () with respect to a basic measure P and
P = {k,|v € D}

by abuse of notation. Let us now assume that k, (&, — z2™)" is a
standard driver for all (v, 7) and let

x,U + : z,m\+
ks (fc — a7 ) = ess inf, sup, (k,, (& —x7™) ) .
Then a standard result [8] states that Isaacs equation holds:
Theorem 3.8. Let (f)t, §t> be the solution of the bsde with standard

driver ky (fc - x§1'7> !
Then
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p, = ess inf,sup, E(k” (&, — 2™ | F)
= sup, ess inf, E(k” (& — »’ng’ﬂ)Jr | F)

that is we have

and so a price of the contingent claim is well defined in this market.

3.3. Testing and Optimization. We reduced the measuring risk
problem to solving the Neyman Pearson testing problem

Eo(p) = max,,!
under the constraint

Ez(p) <o

and in section 3.2 we suggested a way to solve the problem in an
uncertain world. Obviously, this problem may be translated into a
testing problem of the following kind:

Let P be a family of probability measures and let us assume that
all @ € P are absolutely continuous with respect to a measure p. For
each @ we find (a family of equivalent martingale measures P € P and
we may assume that all P € P are also absolutely continuous with
respect to p. So we identify P with a set D of densities f,, P with a
set D of densities f.. Our special assumption here is that we are given
a parameter set ©, disjoint union of ®y and ©;such that

D = {1}/7’6 0.}
D= {fT/TEGO}.

This assumption is not as strong as it might seem at first glance. Let
us look at a certain world, certain about the physical measure @), so
that ©, contains a single point. ©( then may be seen as a parameter
set for the risk premium processes in an incomplete market. If there is
only one equivalent martingale measure then also ©¢ reduces to a set
with one single point.

The problem of the last section then takes the form of finding a
solution of

ma’X{infTeel ET(QO) | ET(QO) S a, T € ®0a0 S 4 S 1} .

A solution of this problem is called a max-min Test and standard
results from statistics assure the existence for the case when p is finite.
As now we are following a Bayesian approach, we finally assume that
O¢ and ©; are measurable spaces. The following outline is more or less
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taken from a script on ”Testtheorie” for a lecture given by Professor
Vogel at the University of Bonn in 1974.

Now let p and v be two finite measures on the measurable space
(0, F) and define the Lagrangian of the above problem by:

L\, ¢,v,p,h) = B
f@o a(r)dv + [ hdp+ A(1 - fel dp) + fn(fel frdp — feo frdv — h)dp

for 0 <AeRT,0< p<1heL(Qpu).
From this we find the dual problem for 3.3 as

min {feo a(r)dv + [o(fo, frdp — [o, Frdv)Tdu | p(©) = 1,p,v > O} .

We may now consider the following four equivalent problems:
(S) the Lagrangian has a saddle point (g, @0, 10, Po, o)
(Kuhn Tucker KT) the Kuhn Tucker conditions hold: There is a

ﬁve tuple ()\0, gpg, 1/0, o, ho) such that
(i) Jo, (B A)dpo = 0; E- (o) > Ao, T € O
(ii) f@ Er(0))dvo = 0; E; (o) < (), T € 4
(iii) fg 1 — SOO)hodN =0,0<¢p <1
(iv) fQ(f@l frdpo — feo frdvo —ho)dp = 0, fel frdpo — feo frdvy < ho
EV) po(©1) =1

VI) %o, Y0, Po, hO > 0.
(D) a duality formulation holds

max{A/E (¢) > AT €O, E.(¢) <ar), 7€ 0p;0< ¢ <1}

min {feo ofT)dv + [, hdp | fel frdp — fGo frdv < h,p(©1) = 1;v,p,h > O}
(NP) a test has Neyman Pearson structure if

L for [o frdp> [q, frdv
P10 for [y frdp < fe frdv

for

fel (WO))dVﬂ =0,E. (o) < a(r), 7 € O
fe — Xo)dpo = 0; E-(pg) > Ao, T € ©4

Po(@l) =1,15,p0 2> 0.

With this we have several equivalent formulations of the problem of
measuring risk. The reader familiar with [11], [12] and [3] will recognize
the different approaches to the problem as equivalent from the above
results and the fact that a least favourable distribution (v, py) exists
if one of the above conditions (S), (KT), (D), (NP) holds. Here (v, po)
is a least favourable distribution if
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By (powo) < Ep(0,,) for all v, p

where F, is the expectation with respect to

Jo, frdp.

On the other hand (S), (KT), (D), (NP) hold if a least favourable a
priori distribution exists with

ET(‘:DPO,VO) < a,T € @1

and

ET(SDPO,VO) > f91 ET(SOPO,Vo)de?T € @1-

To illustrate the application of these equivalent formulations let us
consider the case

#0,=1,i=0,1.
So we have the familiar testing problem

max {Ey, (¢)/Ery(¢) < ,0 < o <1}

which is solved by the standard Neyman-Pearson lemma, namely the
optimal test is given by

_ [ 1 for fr >ty
P10 for fr <cfn

for some ¢ which has to be determined in the usual way. Equivalently
we could solve

min {ac+ [ fr, — cfr)Tdp/c >0} .

The first formulation is the one chosen in [11], the latter was treated
in [3].

This duality approach makes it easy to solve the slightly more general
problem of measuring risk by

+
. g_a:iv,’ll’
B ()]
which was shown to be equivalent to

inf, B[ (((1 — ¢)&)")]

under

E(ngc) < a,
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where o was appropriately chosen. We consider two cases:

(i) 1 is convex and its derivative exists with a well defined inverse I
and [(0) =0
(ii) I is concave and bounded, I(0) = 0.

In the first case the results on Legendre-Fenchel duals and the trans-
formation of densities show that the optimal Neyman Pearson test is
given by

o =1— (I(constg)/fc A1)

where again we assume that & > 0.
The second case can be reduced to considering the Neyman Pearson
lemma of section 3 after replacing &, by I(&.).

This for instance allows to compute the optimal tests o3 for [(z) = %p

for both cases p < 1 and p > 1 where for p — 1 we refind the case
treated in the previous sections, for p — 0 the problem becomes the
quantile hedging problem

P ($0%) = min

and for p — oo the optimal test is given by

* c +
Qr = (3 £07)

where 7y is the constant with
c—p"(0) =z
for the case 0 < zg< ¢ = p(0).

When writing this section we became aware of the preprint [13] which
exhibits the results in much more detail.

4. INCOMPLETE CASE

We now go back to section 3.1, here, however, we do no longer assume
that the market is complete. So we have to be a bit more careful in
stating the analogue of 3.1.

Theorem 4.1. There exists a test function * € R which solves the
problem

E((1-¢)&) = min!
p‘p'fc (0) < zg

where
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dpwﬁc — rpwﬁc + ggqqﬁﬁc + quﬁc dw — dc«p,ﬁc7
P = k.

for (Cs) an increasing continuous process with Cy = 0 is the agent’s
upper price of the claim.

Proof. The result follows directly from 3.1 and section 2.3.
Now we can follow the outline in the complete market case, and we
can state the result in the following form:

Theorem 4.2. Let (mg,q“’&,C‘P&)be the strategy determined in 4.1.
That s

($0, g¥ée, Cwﬁc)
18 the upper hedging strategy for the contingent claim p&.. Then

X, aflq‘/’&, C¥& ) solves the problem

E - z,0 " 1gPle\ 4 _ . - z,m\+
(€ — a7 ) Wrea}&) (€ —27")

zo > p¥ (0).

Proof. The proof follows the same lines as in the complete market case,
and so we find the following

Corollary 4.3. The optimal test here is the optimal test in testing a
compound hypothesis against a simple alternative.

Without further assumptions - of course - we cannot give a more
explicit form of the optimal (randomized) test.

5. THE AMERICAN CONTINGENT CLAIM

Recall that by definition an American contingent claim has a price
which is constrained to be greater than the payoff S; of the claim at
all times t € [0,7]. Even in a perfect market such claims cannot be
perfectly hedged by a portfolio. The price process corresponds to the
minimal superhedging strategy for the claim. In our notation we have
to find a superhedging (self-financing, of course) strategy (m,C). such
that

™¢ > G, for all t

b 7C
.T,'gw?r = ST

and the infimum of all initial conditions x such that a superhedg-
ing strategy exists with the above properties is called the price of the
American claim:

inf {5L‘|3(7,—,0)l’:’c > St, SE;’C = ST}
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Let us consider the European claims defined in the following way:
We define the set of Fi-stopping times greater or equal to t by

I,7 = {o/o is an Fy-stopping time, t < o < T}

For all ¢ € I;7 we define the European price of the claim S, by

p(t,o).
So p(t, o) satisfies

dp(t,o) =rp(t,o) + 0q(t,o)dt + q(t,0)dw
b (07 0) — SO'

Conditions which assure that a unique solution of this random du-
ration bsde are given in [2]. The case under consideration here is sim-
pler than the one in [2] as the stopping times under consideration are
bounded and so the techniques from the deterministic terminal time
case may be adopted.

It is well known [16] that the price of the American claim is now given
by the esssup of {p(t,0) /0 € Ter}. Furthermore [8],[17] the Ameri-
can price is described by a reflected backward stochastic differential
equation:

Definition 5.1. Let

(i) £ € L?

(ii) a standard generator f

and

(iii) an obstacle (S;,0 < t < T') which is a continuous F;-adapted
process bounded in L?, Sy < &

be given. By abuse of notation we denote (f,S,¢)as a standard
generator.

We now consider a triple (py, qt’kt)o <o Of Fi-progressively measur-
able processes taking values in R, R" and R, respectively, and satis-
fying

(i) k€ H*,p€ H* ky € L?

(i)pe = €+ [, (5,05, 45) ds + kr — ke — [ quduw,

(ili) py > S;,0 <t < T

(iv) (k) is continuous and increasing, ko = 0, and [ (p; — S¢) dk: = 0.

Note that because of (iv) (k;) pushes the process upwards to stay
above S;. It is only increasing when k; = S;.

Conditions for well posedness are given in [8], which rely on com-
parison results similar to the results above. A special difficulty is the
construction of the process (k;). It may be defined by the limit of a
sequence of penalized problems[8], [27].
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The price of the American claim (S, £) where without loss of gener-
ality we assume St = &, is now given by

dp; = (rps + 0q;) dt + qidwy — dky
p¢ > Si, pr = Sr-

Now let us consider the situation that an agent is faced the obligation
to be able to pay S; at any time ¢ € [0,T]. He will be able to do so if
his initial capital is greater than or equal to pg. If he is unwilling or
unable to invest this amount at time ¢ = 0, say he only has the capital
o < po, then we are in a similar situation as in section 3.

So we consider the European claim S, for a stopping time v € Zyp.
Then from chapter 3 we know that there is a test function such that

min B (S, — 22" T =E((1—-¢([))S,)
where
R s P
is given by
dp{® = (rpf"” + 0g") dt + ¢f" dw,
Py =@ v)Sy.

From the above consideration it is clear that the following proposition
holds

Theorem 5.2. Let g < py. The optimal strategy (zq, 7%, k?) is given
as the solution of the rbsde

dpy = (rp® + 6p%®) dt + ¢*dw — dk?®
i > t)S, ph=¢(T)Sr, [(pf —¢(t)S)dk? =0

6. CONCLUSION

We might consider a completely different approach to solve the prob-
lems considered in this paper. Let us assume that again we are in a
complete market. As we have seen above the claim hedgeable from the
starting point & may be assumed to be a:;i’“* under the assumptions
of section 3. Let again x < p®(0) for a contingent claim &,. Then the
solution of

dp;® = (rpfc + 0gb)dt + g*dw
e
br = &

may be considered as a supersolution of
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dpr’ = dp} = (rp; + 6q¢;)dt + q*dw,
pr =77
Then there is a right continuous process (C), such that (pfc, qfc, C’t) solves
dp; = (rp; + 0q;)dt + ¢*dw; — dC,
pr =7
Obviously, Cr is just the amount of shortfall, namely
Cr = p§ — p§ App

As the infimum of the two solutions is a solution

~T,m

2

of the problem

(f, ENap” )
so that
Cr= p§f - 5?#-

In this framework the quantile hedging problem may be formulated

in the following form:
Consider the simply coupled FBSDE

dzy™ = (rx}™ + Oiom) dt + omdw, xy"™ = x
dp; = (rp; + 0g;)dt + qdw; — dCy
pr = T

Solve this problem for any 7, compute the supersolution (p;"", ¢;"", (j””)

and find a pair (z*, 7*) such that
with respect to

Then the shortfall is simply given by

E*(&) —x + C= " (T).
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