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Abstract

An important determinant of option prices is the elasticity of the
pricing kernel used to price all claims in the economy. In this paper, we
first show that for a given forward price of the underlying asset, option
prices are higher when the elasticity of the pricing kernel is declining
than when it is constant. We then investigate the implications of the
elasticity of the pricing kernel for the stochastic process followed by
the underlying asset. Given that the underlying information process
follows a geometric Brownian motion, we demonstrate that constant
elasticity of the pricing kernel is equivalent to a Brownian motion for
the forward price of the underlying asset, so that the Black-Scholes
formula correctly prices options on the asset. In contrast, declining
elasticity implies that the forward price process i1s no longer a Brownian
motion: it has higher volatility and exhibits autocorrelation. In this
case, the Black-Scholes formula underprices all options.



1 Introduction

Following Black and Scholes (1973), the traditional approach to the pricing
of FEuropean-style options on an underlying asset assumes that the asset
price follows a given, exogenous process and prices the options using an
arbitrage-free hedging argument. An alternative equilibrium approach, fol-
lowed by Rubinstein (1976) and Brennan (1979), assumes that the asset
price and the value of the market portfolio at the end of a single period have
a given joint probability distribution and that a representative investor ex-
ists, with a given utility function for end of period wealth. It has been shown
that both these approaches can lead to the same risk-neutral valuation re-
lationship for the option price. A third approach, following Harrison and
Kreps (1979), assumes a no-arbitrage economy which in turn implies the
existence of a pricing kernel. This pricing kernel variable has the impor-
tant property that the option forward price equals the expected value of the
product of the option payoff and the pricing kernel. This third approach
is consistent with the equilibrium approach, since the Brennan-Rubinstein
assumptions imply a pricing kernel which equals the relative marginal utility
of the representative investor.

In this paper, we adopt the more general pricing kernel framework. As-
suming that the asset-specific pricing kernel exhibits constant elasticity,
yields the Black-Scholes assumption of a geometric Brownian motion of the
asset price. Assuming a representative investor exists with constant relative
risk aversion, implies the Brennan-Rubinstein world. However, the general
framework permits the pricing of options under less restrictive assumptions.
In particular, it turns out that the curvature of the pricing kernel is criti-
cal for the pricing of options. Alternative characterizations of the elasticity
of the pricing kernel with respect to the price of the underlying asset lead
to different option prices. In order to investigate the effect of alternative
pricing kernels, we start with an assumption regarding the price of the un-
derlying asset. Option pricing models typically take as given either the price
of the underlying asset and the risk-free rate of interest, or alternatively, the
asset forward price. In this paper, we assume throughout that the current
forward price, for delivery at a fixed terminal date, is given. Thus, when
we compare the effect on option prices of different characterizations of the
pricing kernel, we do so assuming that the different pricing kernels lead to
the same current forward price of the asset.

We first investigate the relative pricing of options in a general setting,
where the forward price of the asset is given and the asset-specific pricing



kernel exhibits either constant or declining elasticity. We find that the prices
of all options are higher in the economy with declining elasticity than in
the economy with constant elasticity. These higher prices are the result
of the increased convexity of the pricing kernel. In the special case where
asset prices on the terminal date are lognormal, all option prices exceed the
Black-Scholes prices, if the pricing kernel has declining elasticity.

How can it be, then, that the Black-Scholes model underprices all op-
tions, when we know that if the asset forward price follows a geometric Brow-
nian motion, no-arbitrage arguments can be used to establish the Black-
Scholes prices? We investigate the answer to this puzzle and find that, in a
declining elasticity pricing kernel economy, the asset forward price does not
follow a geometric Brownian motion, even though the information process
does. We first establish the conditions under which the asset forward price
follows a geometric Brownian motion. We then investigate the effect on the
price process of the alternative assumptions regarding the elasticity of the
pricing kernel.

The organization of this paper is as follows. In the following section we
review previous related work. Then, in section 3, we establish our principal
result: all options have higher prices in the declining elasticity economy than
in the constant elasticity economy. In section 4, we consider a Black-Scholes
world in which the terminal asset price is lognormal, and we establish the
equivalence of two alternative assumptions: constant elasticity of the pric-
ing kernel, and a geometric Brownian motion of the asset forward price.
Section 5 then investigates the effect on the stochastic process of the as-
set forward price, of the alternative assumption of declining elasticity. In
section 6, we assume a more traditional, representative agent economy, and
establish sufficient conditions for declining elasticity of the pricing kernel in
an economy in which the asset price and aggregate consumption are related
by a log-linear regression. Section 7 summarizes the main conclusions of our
analysis.

2 Recent Literature on the Mispricing of Options
by the Black-Scholes Model

Empirical research in the last few years has suggested that options are un-
derpriced by the Black-Scholes model, i.e., the implied volatility of options
typically exceeds the historical volatility of the price of the underlying asset
(see, for example Canina and Figlewski (1993)). This evidence is corrob-



orated by studies that estimate the expected value of the implied pricing
kernel and the parameters of the risk-neutral distribution, using index op-
tions data (for example, see Longstaff (1995), Brenner and Eom (1998),
and Buraschi and Jackwerth (1998)). Although many alternative explana-
tions have been proposed for these findings, ranging from jumps in the price
process to the existence of "fat tails” in the return distribution of the un-
derlying asset, most of the explanations relate one way or another to the
stochastic process followed by the price of the underlying asset. We sug-
gest an alternative explanation. We derive a model in which all options are
underpriced by the Black-Scholes model, even though the underlying asset
price has a lognormal distribution on the terminal date. Also, the price
process exhibits excess volatility, even though the information process for
the underlying asset follows a geometric Brownian motion. In our model, it
is the characteristics of the pricing kernel, i.e. of the risk adjustment, that
produces the excess-pricing of the options.

In a closely related recent paper, Mathur and Ritchken (1995) consider
the price of options on the market portfolio, in a single-period, representative
agent model. Restricting their analysis to agents with declining absolute risk
aversion, they conclude that the price of an option given constant propor-
tional risk aversion (CPRA), is the minimum option price. The implication
is that declining proportional risk aversion will produce higher option prices.
In the special case of a lognormal market portfolio payoff, the Black-Scholes
price, resulting from CPRA, is the minimum option price. Our results, cast
in terms of the characteristics of the asset-specific pricing kernel rather than
risk attitudes, generalize and explain this conclusion in several ways. First,
we consider options on assets in a multi-asset economy. In the special case
where we consider options on the market portfolio, our results are consistent
with those of Mathur and Ritchken. The second generalization is that we
do not assume a representative agent economy. In contrast, we assume, in
section 3, that the pricing kernel has declining elasticity. This is consistent
with, but does not require, declining proportional risk aversion of the rep-
resentative agent.! Thirdly, our conclusions hold in a general, multi-period
economy rather than only in the single-period economy. Our conclusions in
section 5, regarding the effect of declining elasticity on the stochastic process

! Another set of conditions in which CPRA investors act as if they have declining
proportional risk aversion is provided by Franke, Stapleton and Subrahmanyam (1998).
They show that if investors face non-hedgeable background risks, they act like investors
with declining proportional risk aversion and demand options to hedge the marketable
risks that they face.



followed by asset forward prices also help to explain Mathur and Ritchken’s
results. Although they assume a single period economy, the question arises
as to how their results are consistent with the stochastic process followed by
prices between the two dates. The answer in our model is that underpricing
by the Black-Scholes model is consistent with a process for the forward price
that exhibits excess volatility.

Benninga and Mayshar (1997) analyze a model in which heterogeneous
investors with different levels of CPRA act like a representative investor with
declining proportional risk aversion. They also find that certain options are
underpriced by the Black-Scholes model. Our paper is also closely related
to the prior work of Bick [(1987) and (1990)], Franke (1984) and Stapleton
and Subrahmanyam (1990). These authors investigated the consistency of
various asset price processes in a representative investor economy, Bick in
a continuous-time setting and Franke and Stapleton and Subrahmanyam
in a discrete-time setting.? Our analysis, in section 4, on the equivalence
of constant elasticity of the pricing kernel and a random walk in the asset
forward price, parallels that of Bick. Again, our analysis here is somewhat
more general, relying on the existence of a pricing kernel, rather than a
representative investor who is limited to puchasing claims on the market
portfolio.

3 Contingent Claims Prices Given Declining Elas-
ticity of the Pricing Kernel

In this section, we analyze the prices of contingent claims in a perfect capital
market, where arbitrage possibilities do not exist. We do so by examining
the properties of the pricing kernel, a variable which can be used to price
any claim in this economy.

Consider a date ¢ in the interval [0, 7] where 0 is the current date and 7'
is some terminal date. Let S7; be the price of the asset j at time 7. The
forward price at date ¢, for delivery of the asset at date 7" is denoted F} 1 ;.

Based on the absence of arbitrage there exists a pricing kernel, ¥ ¢y1,
such that for any asset or claim on an asset, j,

*Franke (1984) and Stapleton and Subrahmanyam (1990) use a somewhat different
approach to characterize the preferences that support a geometric random walk. They
start with a process for the cash flows, the fundamental exogenous variable, and derive
the restrictions required for the process for cash flows to be transformed into a geometric
random walk for returns.



Firj = EdFipr,ri%641] (1)

where F; is the expectation operator conditional on the information set
at time ?. ;441 is a positive random variable. Since a risk-free claim on a
dollar to be paid at date T" always has a forward price of one dollar, it follows
from the no-arbitrage condition in equation (1) that the pricing kernel has
an expectation of unity, i.e. (1 +41) = 1. Now, defining the pricing kernel
over the interval from ¢ to T as

i1 = Vg1t 42071

it follows by successive substitution and using the unbiased expectations
property of conditional expectations, that the asset forward price is

Fyor; = EST %07, (2)

since Frr; = St,;. Also, it follows that Ey(i¢ 1) = 1.

The pricing kernel, 1 7, prices any date 7" claim. If we now consider
claims contingent on a single asset, 7, with price ST ;, we can define and use
a pricing kernel unique to asset j. Defining

éi,1,; = Lo 1|57 5]

and using the property of conditional expectations we can re-write equation
(2) as

Fyr; = EST ;0 7,5] (3)

where the expectation is over states of St ; and ¢¢ 7 ; is a time 7" measurable
random variable, unique to asset j. Clearly, ¢; r; is a function of St ;. *

Since we are concerned here with the pricing of contingent claims on
(any) single asset, we drop the subscript j in equation (3) and write the
basic pricing equation as simply

Fir = EySTé:,1] (4)

We assume that ¢, is twice differentiable in S7. Having described the
basic economy, we can now proceed to price contingent claims.

®The pricing kernel, ¢, 7, can also be derived using the first order condition for the
optimal portfolio choice of the investor in a representative agent economy. This is discussed
in more detail in section 6 below.



Pricing of European Options: The General Case

A similar no-arbitrage pricing argument can be used to evaluate the forward
price of a Furopean-style contingent claim on the risky asset. If the payoff
on the contingent claim at time 7" is g(57), then the forward price of the
contingent claim at time ¢, for delivery at 7', denoted Cy r, is given by

Cor = Eifg(ST)01.7] (5)

In option pricing, we generally take the price of the underlying asset as
given, and consider only the relative pricing of the option. We take a similar
approach here, Fy r is assumed to be at a given level, F/:

Fir = Fp = E[ST9:,71]- (6)

We then ask the following question. How does the forward price of the option
Cyr depend on the pricing kernel, ¢, 7 , given that Fy 7 = F/;7 Clearly,
assuming only that Fy 7 = F{’p leaves room for several alternative shapes of
the pricing kernel ¢; 7, since there is an infinite number of possible pricing
kernels that satisfy the constraint in equation (6). We now establish a result
which characterizes the ¢; v functions which satisfy equation (6).

Since option prices are dependent on the joint relationship of the pricing
kernel, ¢; 7, and the price of the asset on the terminal date, we can analyse
option prices by investigating the elasticity of the pricing kernel, ¢; 7, with
respect to the asset price on the terminal date. The elasticity is defined in
the conventional manner as

d¢er [ OST
_ ot [OOT 7
o ST (7)

We define the elasticity of two different pricing kernels, both of which

n(St) =

satisfy equation (6) as follows. The first pricing kernel ¢¢ 11, written hence-
forth as ¢1, has constant elasticity n,i.e., 7j = 0. The second pricing kernel
é1,1,2, Written as ¢g, has declining elasticity 7,, where 74 is negative for all
values of S7. We first establish the following result about the properties of
the two pricing kernels.

Lemma 1 (Intersections of Pricing Kernels with Different Elasticities)

Consider two pricing kernels, ¢1 and ¢4, each of which yields the same
forward asset price F; . Suppose that for ¢1, the elasticity is constant, i.e.
ny = 0, and for ¢, the elasticity is declining, i.e. 0y < 0, VSr, then the
pricing kernels ¢1 and ¢, intersect twice.



Proof:
Consider the two pricing kernels ¢; and ¢ with corresponding elasticities
m and 7, for which 1 = 0 and 7, < 0. This implies that

J [m
. m] <. (8)

Suppose that both pricing kernels satisfy equation (6). First, it is nec-
essary that the two pricing kernels (see Figure 1) intersect at least once.
Otherwise, it would be impossible for them to have the property E(¢1) =
E(¢2) = 1. Second, the two pricing kernels must intersect more than once,
since otherwise the forward price of the risky asset, Fy";, cannot be the
same under both pricing kernels. To see this, suppose that the two pric-
ing kernels intersect only once at S; = S7. Suppose that ¢ > [<]¢y for
St < [>]A§T‘ Then, consider a claim paying (57 — ST) at date T'. Then,
E[(ST— ST)Q?Q] > B[(S7— ST)C?l] follows since (ST —S7)(¢p2—¢p1) > 0,Y97.
As E[(S1— S1)¢] = E[ST¢]— S7, the forward price of the risky asset would
be higher under pricing kernel ¢, than under ¢;. Hence, the forward price
can be the same only if the pricing kernels intersect at least twice. Finally,
we show in Appendix A that more than two intersections contradicts the
assumption in equation (8). g

The lemma is illustrated in Figure 1. For prices below S4, ¢9 > ¢.
This implies that for contingent claims that pay off only in the region St <
514, contingent claim prices will be higher under ¢, than under ¢;. Also,
for prices above S:]ﬁ, we have ¢y > ¢1. Again, for contingent claims that
pay off only in the region S7 > S:]ﬁ, contingent claim prices will be higher
under ¢ than under ¢¢. In particular, put options with strike prices at or
below 514 and call options with strike prices at or above S:]FB have higher
prices under the declining elasticity pricing kernel. However, the following
Theorem establishes that all options have higher prices.

Theorem 1 (The Pricing of Furopean-Style Options)

Consider two pricing kernels, ¢1 and ¢5, both of which yield the same
forward price of the risky asset. Suppose that for pricing kernel ¢y, the
elasticity is constant and for pricing kernel ¢o, the elasticity is declining.
Then, the price of any Furopean-style option is greater under pricing kernel

@9 than under ¢q.

Proof:



We show in Appendix A that the two pricing kernels ¢y and ¢, intersect
twice, at points which we denote as 514 and S:]ﬁ. That is
P2 > ¢ for St < S%,
¢ < ¢ for §7 < Sp < SF, (9)
by > ¢ for SB < S,

Now let Li(S7) = ai + biSt, where ay and by are chosen so that
Li(ST) = (S — k)t ,for S7 = §4,and 57 = SE. (10)
The forward price of a call option with strike price £ is

Crj=E[(51—k)T¢],5=1,2 (11)

which can be written

Cr; = E[((ST = k)" = Li(57))¢;] + E[Li(ST)9s) .5 = 1,2 (12)

Since the forward price of a linear payoff is the same under both pricing
kernels, i.e.,

E[Li(ST)¢1] = E[Li(ST)02], (13)
it follows that

Cra— Cra1 = E[((ST = k)F = Li(S7)) (62 — ¢1)]- (14)

It follows from the definition of Lj(S7) that (ST — k)t — Lx(S7) > [=][<]0,
when ¢ — ¢1 > [=][<]0, and hence C 3 > Cj 1.

Also, by put-call parity, all puts must have higher forward prices under
¢9 than under ¢¢. O

Theorem 1 shows that given the same forward price for the underlying
asset, all options, both puts and calls at any strike price are more highly
priced by the declining elasticity pricing kernel, ¢, compared to the constant
elasticity pricing kernel, ¢;.* The intuitive reason for this ”mispricing”
is that the declining elasticity pricing kernel is more convex than the one

*We exclude cases where there is a zero probability of finishing out-of-the-money. For
example, a call option at a strike price of zero, always finishes in-the-money. By definition,
its forward price is the same as the forward price of the underlying asset, and hence equal
under the two pricing kernels.

10



with constant elasticity. This convexity implies that convex claims, such as
options, are valued more highly by the declining elasticity pricing kernel,
all else being the same. In other words, extreme payoffs on either side of
the mean are priced more highly by the declining elasticity pricing kernel.
However, linear claims such as the forward contract on the asset are priced
the same, by assumption. Although the payoffs close to the mean are priced
lower by the declining pricing kernel, this is not sufficient to outweigh the
higher pricing of the more extreme payoffs.

Theorem 1 is a general result for the pricing of European-style options:
it holds for any probability distribution of S7. An important implication of
the result is that option pricing models that implicitly assume a constant
elasticity for the pricing kernel yield lower option prices than those that
assume declining elasticity. If the true pricing kernel has declining elasticity,
the use of such models leads to mispricing.

4 Constant Elasticity of The Pricing Kernel: The
Black-Scholes Economy

We have shown above that if the pricing kernel exhibits declining elastic-
ity, then European options are underpriced by any model that assumes,
either explicitly or implicitly, that the pricing kernel has constant elasticity.
Hence, the question arises as to what pricing kernel property would yield
the same option prices as the Black-Scholes model. Since the Black-Scholes
model follows from the assumption that the forward price of the underlying
asset follows a geometric Brownian motion, we need to investigate the re-
lationship between the properties of the pricing kernel and the asset price
process. In this section, we first examine the relationship between the two
assumptions: the elasticity of the pricing kernel is constant, and the asset
forward price follows a geometric Brownian motion. We then illustrate the
case of constant elasticity using an example, where the forward price follows
a stationary geometric binomial process. In the following section, we relax
the assumption of constant elasticity and investigate the effects on the price
process.

4.1 The General Case

We assume here that the conditional expectation of the underlying asset
price at time T', S, evolves as a geometric Brownian motion. We show in the

11



following theorem that two properties: A) the pricing kernel has constant,
non-state dependent elasticity, and B) the forward price of the asset follows
a geometric Brownian motion, are equivalent.® In the following section we
then proceed to derive the implications of declining elasticity for the forward
price process.

First, let B, be a Brownian motion on the probability space (€2, F, P).
We define the information process for the price St as the conditional expec-
tation process of St, I; = E.(ST), T€(t,T). We assume that the behaviour
of I, is governed by the stochastic differential equation:

dl-

T = adr 4+ odB; (15)

where o is a constant and «, the mean of the process, is zero, simply because
it is an information process. It follows that St is lognormally distributed.
We now investigate conditions under which the forward price F; 7 follows a
geometric Brownian motion process of the form

dFT,T = FT,T,quT + FT,TUdBTv t<7< T7 (16)

where the drift, p, is non-stochastic, but possibly time dependent. It is
known that, if the forward price is governed by (16), then the Black-Scholes
prices for European-style options must obtain. Hence, we are also looking
at conditions for the Black-Scholes theorem to hold. We establish:

Theorem 2 (Constant Flasticity of the Pricing Kernel)
Given that the information process for the underlying asset is

dl
— = adr + 0dB,
I,
with a = 0, then the following statements are equivalent:
A) The pricing kernel, ¢¢ 7 has constant elasticity,

neT = ftT nrdT _ ftT prdr
' (T —1) o?(T —1)

®Note that in the multi-period world A) includes the condition of non-state dependency
of the elasticity of the pricing kernel. In principle, it is possible for the pricing kernel
elasticity to be state dependent, i.e. for the elasticity of ¢; 7 to depend on the state at ¢,
for t < T.

12



in each state and at each date, where n, = u, /o2

B) The asset forward price, I, 7 follows a geometric Brownian motion,
with drift, p, and standard deviation, o.
Also, if A) or B) holds, then the Black-Scholes formula for the price of a

FPuropean-style option on St holds, at each date and in each state.

Proof:
B = A Assume that the forward price follows the geometric Brownian mo-
tion

dFT7T = FT7T,1LTdT + FT7TUdBT, t<rt<T.
For notational covenience, since T is fixed, we write this as

dF. = F.u.dr + F.odB;. (17)

We now consider the process for the conditional expectation of the pricing
kernel, ¢¢ 1. ¢¢ 7 is a time T measureable random variable, and its condi-
tional expectation is F.(¢y 7). For simplicity, we denote

ET(¢2€,T) = 07’ = 07(F7'7T)

where, by assumption, 6, is a twice continuously differentiable function of
the forward price F; and of time 7. By Ito’s lemma,

00, N 1020,
ar  20F?

0;
F2o%)dr + 8—FTdFT

do; = ( O

Since @, is the conditional expectation of the pricing kernel, it is a P mar-
tingale. It follows that the terms in d7 must add to zero. Hence, we have
00
df, = —F,0dB,. 18
or 170 (18)
In appendix B, we show that it follows from the definition of the forward
price that F (dF;0:14;) = 0. Since 6,14, = 0. + df, we have, using the
expressions for df, and dF,

00,

OF dr=20

wrdr, + oF,

13



which implies that, for the elasticity n;,

20, I p,
nr = —aFTZ = ;, V. (19)

From (18) and (19) it follows that

d0, = —0.n,0dB,, VT.

6, follows a geometric Brownian motion. Hence, 87 = ¢ 1 is lognormal.
Since ¢¢ 1 = ¢4 7(S7), where St is also lognormal, then ¢ 1 has constant
elasticity with respect to S7. From (19), i, = n,0% so that

T T
/t prdr = Uz/t ndr = 02(T —ner

This establishes that the pricing kernel has constant, non-state-dependent
elasticity, ¢ 1, with respect to the terminal spot price, when the forward
price follows a geometric Brownian motion.O

A = B Assume that the pricing kernel ¢; 7 has constant, non-state-dependent
elasticity, 1, 7. Constant elasticity with respect to St implies that we can
write the pricing kernel as

—7t, T
Ge1 = NS

Hence, from the condition (¢ 7) =1,

S —nt, T
’\t_,ilFth’T = F; [(%) ] .

Also, from Fy = E¢(S7¢i1)

S —n¢,7+1
’\t_,ilFth’T = F; [(%) ] .

Equating these expressions, defining [u(F;) — 02/2](T — t) as the mean of
the logarithm of St/ F}, given the forward price F}, and using the properties
of lognormal variables, yields®

H(Ft) = Uznt,T

If X is lognormally distributed with E(ln X) = p — ¢®/2, then E(X®) = exp[a(n +
(a —1)o%/2)]

14



But, by assumption 7, 7 and hence p(F:) is state independent. Hence, since
T

N T = % and St/ F; is lognormal, for all ¢€[0,7),
T 0.2
E/(InS7) — InF, = / pedr = (T —1). (20)
¢

Now, consider the information process, I;. It has zero drift, i.e.

This implies that St is lognormal with

0.2

Er(InS7) = InEy(S7) = (T = 1).

From this equation and (20) it follows that

T
InF;, = InEy(St) — / wrdr
¢

and since InFy(S7) is a Brownian motion, so is InF;.0

Finally, it is well known that condition B above implies that the Black-
Scholes model holds. The proof is similar to the original Black-Scholes proof,
with the forward price process substituted for the spot price process.O

Theorem 2 shows that the assumption of the Black-Scholes model, that
the asset (forward) price follows a Brownian motion, is equivalent to constant
elasticity of the pricing kernel. It follows, using Theorem 1 that the Black-
Scholes model underprices options in a declining elasticity economy. We
have the following:

Corollary 1 (Declining Elasticity and Black-Scholes Underpricing)

Suppose that the information process of St follows a standard geometric
Brownian motion and that the forward price Iy is given. Then, if the
pricing kernel has the property of declining elasticity, all options on St will
have higher forward prices at date t than those given by the Black-Scholes
model.

Proof:
First, from Theorem 2, the Black-Scholes formula holds if the pricing
kernel has constant, non-state-dependent elasticity. Further, from Theorem

15



1 we know that, if the pricing kernel has declining elasticity, all options have
higher prices than in the case of constant elasticity. Hence, the forward
prices of options in the case of declining elasticity exceed the Black-Scholes
prices.O

In Theorem 2 we show that the assumption of either a Brownian motion
or a pricing kernel with constant, non-state-dependent elasticity is sufficient
for the Black-Scholes model to hold. The prior work of Brennan (1979),
who showed that, in a representative agent single-period economy, constant
relative risk aversion is a necessary condition for Black-Scholes to price op-
tions on the market portfolio suggests that these conditions may also be
necessary. However this is not the case. The Black-Scholes model does
not require a pricing kernel with constant, state-independent elasticity, or a
Brownian motion in the forward price. If, however, we add a mild restric-
tion on the pricing kernel in an intertemporal setting, to the effect that the
pricing kernel is path independent, we can show necessity of the Brownian
motion. First, we define path-independence of the pricing kernel.

Definition [Path-independence of the pricing kernel]
A pricing kernel is path-independent if for any two outcomes of St: St 1,
ST,2, the ratio
Gu7(ST1)
¢u7(57,2)
does not depend on the state I3, Vi < T. We now establish

Corollary 2 (Necessity of a Brownian Motion in the Forward Price for
Black-Scholes Pricing)

Assume the same information process as in Theorem 2 and path inde-
pendence of the pricing kernel. Then the Black-Scholes formula correctly
prices Furopean-style options on an asset with price St at time T, only if
the underlying asset has a forward price which follows a Brownian motion.

Proof:

If the Black-Scholes model holds at date ¢, the risk-adjusted density of
ST must be lognormal. This density equals the true density multiplied by
&, 7(ST). Since the true density is lognormal, by assumption, it follows that
¢4, 7(S7) has constant elasticity, 77, which may, however, depend on I.

Hence @)
éer(ST1) (ST,1) e

or1(ST2)  \ 72
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so that the pricing kernel is path-dependent. But this path dependency
is ruled out by assumption. Hence, by the equivalence of A) and B) in
Theorem 2 it follows that InfF; is a Brownian motion.O

Corollary 2 shows that a geometric Brownian motion information pro-
cess and path independence of the pricing kernel imply a Brownian motion
of the asset forward price, if the Black-Scholes model is to hold. Many
financial models assume time additive utility of a representative investor,
an assumption which guarantees path independence of the pricing kernel.
Hence, the Black-Scholes world is only slightly more general than a world
where the asset forward price follows a Brownian motion.

4.2 Constant Elasticity: An Example in the Case of a Bino-
mial Process.

In order to clarify the restrictions implied by constant elasticity of the pricing
kernel, we now look at an example where the asset forward price follows a
binomial process. The example allows us to specify the process followed by
the conditional expectation of ¢; 7. In order to be consistent, in the limit,
with geometric Brownian motion, we assume that the information process
of ST follows a multiplicative binomial process.

Given a forward asset price F} 7, we now assume an n-stage, stationary
multiplicative binomial process for the forward price F’ 7, over the period
from t to T. Specifically, let u and d be the proportionate up and down
movements of the binomial process over each sub-interval, then

FT-l—LT_ u o, q
o _{d 1oy VT (21)

where ¢ is the probability of an up-movement in the forward price over any
sub-interval. When n is large, the process in (21) converges to a Brownian
motion process. We now show, consistent with Theorem 2, that the pricing
kernel has constant elasticity.

First, we need to specify the pricing kernel process. Defining Fyia¢ 7 =
Fy 7 + AF; and noting that E[AF0,41] = 0] from the results in appendix
B, it follows that

For = B Fip1,70:441],

where 6,41 is the conditional expectation, at time ¢+ 1, of the pricing kernel
¢¢ 1. In the binomial case, there are only two states at time ¢+ 1, so we can
write
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For =gt 10010 + (1 — @) Fivr1 7,0941 4 (22)

where 0,41, and 8,41 4 are the values, of the conditional expectation
Ei11(¢e 1), in the up-state and down-state respectively.

However, since the forward price moves from ¢ to ¢t + 1 as a two-state
branching process we have a dynamically complete market economy. It
follows that there exists a unique ”risk neutral” probability measure under
which the forward price of the asset is a martingale. Also the probability of
an up movement under this measure over any sub-period is a constant:

1-d

p= 0<p<l1

v 0Srs
The forward price of the risky asset at any point of time ¢ must also
therefore be given by the equation:
For=pFiir.+ (1 —-p)Fyi14

or

1—
Fr = b (2) 4 (1= 0Fina (12). (23)

Equating (23) and (22) for the conditional expectation of the pricing kernel,
Eip(ér),

P I—p
9t+1,u = - 0t+1,d =T
q 1—y¢q

in the up-states and down-states. Also, if j is the number of up movements
of the asset price over the n sub-periods from ¢ to 7,

0= (Ors1,u) (Org1,0)" ™

We show now that In(F;7) and Inf, are perfectly correlated. First, the
forward price, after 7 up-moves, is given by

Frrj=Forwd™

Hence, taking the logarithm of the pricing kernel expectation and of the
forward price, yields

11107—7]‘ = jlnet-l—l,u + (n - j)1n0t+17d
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and
InFr 7=k r+ jlnu+ (n - j)nd

Thus, In 6, and In F; 7 are linear in j. It follows that we can write in general
Inf, = a; + BInkFrr

for appropriate a; and §, and in particular:
Inge 7 = ar + BnSt (24)

Equation (24) establishes the perfect correlation of In(S7) and Ing; 7.

We can now investigate the elasticity of the pricing kernel. Equation (24)
is the key to understanding the restrictions imposed on the pricing kernel
by the assumption of the lognormal process for the asset price. It implies
that the pricing kernel has the same stochastic properties as the asset price
itself. In particular, in the limit as n — oo, the unconditional pricing kernel
and the asset price are lognormally distributed, as in Rubinstein (1976) and
Brennan (1979).

Although for a finite binomial process with n sub-periods, there exists
only a finite number of St values, we can think of a large n so that, approx-
imately, S may be considered a variable which is continuous on the range
(0,00). Then differentiating equation (24) with respect to In St yields the
elasticity of the pricing kernel,

In

SO pp = (25)
Hence, a stationary multiplicative binomial process of F 7 implies a con-
stant and state-independent elasticity of the pricing kernel. This binomial
example illustrates the result in Theorem 2, where a geometric Brownian
motion for the asset forward price was shown to imply a constant, non-
state-dependent elasticity of the pricing kernel. Here, starting with a mul-
tiplicative binomial distribution for the forward price, we have also shown
that the pricing kernel is perfectly correlated with the asset price and has
constant, non-state-dependent elasticity.” In the limit, both the asset price
and the pricing kernel are lognormal and the Black-Scholes model holds for
European-style claims on the asset.

"The results here relate closely to those in Stapleton and Subrahmanyam (1984b).
They showed that, if the forward price is multiplicative binomial, a risk-neutral valuation
relationship holds for the valuation of options on the asset, if the utility function of the
representative agent is a power function. The results here are analogous to those, but in
a multi-period setting.
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5 Declining Elasticity and Excess Volatility

So far, we have shown, in section 3, that options have higher prices when the
pricing kernel has declining elasticity than when it has constant elasticity.
We have then shown, assuming that the information process follows a ge-
ometric Brownian motion, that the asset forward price follows a geometric
Brownian motion if and only if the pricing kernel has constant elasticity.
It remains to be shown exactly how declining elasticity affects the forward
price process. We now derive the implications for the forward price process,
of relaxing the assumption of constant elasticity of the pricing kernel. We
show in the case of declining elasticity, that the variance of the forward
price, vary(F; 1) increases relative to the constant elasticity case, and also

that returns exhibit negative autocorrelation.®

Theorem 3 Consider an economy for dates 7 € [t,T]. Assume that the
information process for the asset price at date T follows a geometric Brow-
nian motion. Let ;11 and Fr 15 be the forward prices of the asset, at time
7, under the constant and declining elasticity pricing kernels respectively.

Then,
a) across states, the ratio of the two prices F. 19/ F: 11 increases mono-

tonically in Frry V7 € (8,T),
b) there exists a F7p,, such that

FT,T,Q < [:] [>] FT,T,I Zf
Frra < [=] [>] Firy  VreT),

c) the variance of the forward price is higher under the declining elasticity
pricing kernel,

vard Fr12) > vard Fr71) Vr e (t,T).

d) For dates T = ty,ty,...,1;,..., T, the price relatives (Fy, 12/ Fi,_, 12)
exhibit negative autocorrelation.

Proof:

81n the case of increasing elasticity of the pricing kernel, the variance declines relative
to the constant elasticity case, although the returns exhibit negative autocorrelation in
this case also.
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a) Constant elasticity and the lognormality of St imply that the ex-
pected return E.(S7/F;71) is independent of the state at time 7. In the
case of declining elasticity, the rate of return in the high states (high F; 71),
is relatively low and the rate of return in the low states, is relatively high,
compared to the constant elasticity case. Therefore, the forward price at
time 7, F 79, for the declining elasticity case is relatively higher than F 7
in the high states and relatively lower in the low states. Since elasticity
is monotonically declining, it follows that F; 79/F; 71 is monotonically in-
creasing in Fr 14, V7 € (¢,T).

b) Given the same initial price FYr, it must be that the forward prices
under the two pricing kernels do not dominate each other. Hence, given that
Fr 71/ F; 12 increases monotonically in F} 74, there can be only one value
of F. 711 where I, 75 = F;11. In other words, there is a F;TJ, such that
Frra2=Frr1 = Fp,, and the result b) follows.

T

¢) From a) and b), it follows that

FT,T,Q = FT,T,I + E[FT,T,Z - FT,T,I] + € (26)

where F(€) = 0 and cov(e, Frrq) > 0 since Fr 79 gets larger relative to
F, 11 as F; 11 increases. Hence,

var(F r2) = var(F. 1) + var(e) + 2cov(e, Frrq) > var(FT7T71). (27)

d) For the constant elasticity pricing kernel, the autocorrelation of re-
turns is zero, since the forward price process is generated by a geometric
Brownian motion. Now, assume non-constant elasticity of the pricing ker-
nel. Consider dates ¢, t;, T" and the price relatives Fy 7/F; 7 and S7/Fy, 1.
If the price relative in the period [t, 1] is lower [higher] under non-constant
elasticity, then the conditional expected price relative in the period [ty,T]
must be higher [lower] implying negative autocorrelation. Second, we split
the period [t1,T] into subperiods [t1, 3] and [t2,T]. By the same argument
as before, given some state at ¢y, the price relatives Fy, 7/ Fy, 7 and St/ F, 1
must be negatively autocorrelated under non-constant elasticity. Similarly,
the period [tz,T] can be split sequentially into arbitrarily many subperi-
ods so that, by induction, negative autocorrelation of the price relatives is
obtained for any number of subperiods. O

Theorem 3 shows that a geometric random walk for the forward price
is ruled out by declining elasticity. Moreover, the forward price at any
intermediate date is more volatile under the declining elasticity than under
the constant elasticity pricing kernel.
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6 Option Pricing and the Elasticity of the Pricing
Kernel in a Representative Agent Economy

The analysis of option prices using the pricing kernel approach in a no-
arbitrage setting is quite general. However, it is useful to relate the analysis
to an equilibrium setting in order to interpret the pricing kernel in economic
terms. For example, what kind of equilibrium would lead to pricing ker-
nels with constant or declining elasticity? What restrictions on preferences
would lead to such pricing kernels? In order to answer these questions,
we now make the more traditional assumption of a representative investor
economy, where the agent has utility for end of period consumption. The
analysis below provides a set of restrictive, sufficient conditions, under which
the pricing kernel for an asset has the characteristics assumed in previous
sections of the paper.

We now assume that aggregate end-of-period consumption, C'r, and the
spot price of the asset on the terminal date T, S7, have a constant elasticity
with respect to each other, but with an error.” In other words the two
variables are log-linearly related with an independent error term as follows.1©

InC7p = a+ blnSt + ¢, (28)

where € is independent of S7. A special case is analysed by Rubinstein
(1976), and Brennan (1979), who show that the Black-Scholes model holds
in a single-period discrete-time economy where a representative investor ex-
ists with a utility that exhibits constant relative risk aversion, and where
aggregate wealth is lognormally distributed.!! The Rubinstein-Brennan as-
sumptions imply a pricing kernel with constant elasticity. Now denoting the
utility function of the representative investor as u(Cr) we can establish:

°Cr can be literally interpreted as aggregate consumption or as aggregate wealth in a
single period setting. More generally, it can be thought of as a state variable which is the
argument in the pricing kernel function.

1%We do not assume here that either the asset price or aggregate consumption is log-
normally distributed. Joint lognormality of the variables is sufficient, but not necessary
for the log-linear relationship to hold.

HFollowing up on a result in Merton (1973), Rubinstein (1976) and Brennan (1979),
showed that the Black-Scholes model holds under these assumptions. Brennan shows that
the constant relative risk aversion assumption is also a necessary condition. Stapleton
and Subrahmanyam [(1984a) and (1984b)] and Heston (1993) have extended this work in
various directions.
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Theorem 4 (FElasticity of the Pricing Kernel in a Representative Investor
Feconomy)

Consider an economy in which consumption takes place at time T. As-
sume that an asset with price St and aggregate consumption C'r are log-
linearly related as in equation (28) above and that a representative investor
exists with relative risk aversion R(Cr). Then, at any date t, the pricing
kernel, ¢, 7(ST) for the asset has elasticity

n(ST) = bRA(S7)

where ()
~ U T
R(ST) = F, |R(C S
«(ST) = E¢ | R( T)Et[u’(CT) 571 | ST
Proof:
In a representative investor economy the pricing kernel is
w'(Cr)
VT = 7
Eiu'(Cr]

Since t and T are fixed, we denote the pricing kernel as 1, where ¢ =
P(Cr),Cr > 0. The asset-specific pricing kernel is

¢ = Ei[v | ST

where we can write ¢ = ¢(ST).
The elasticity of the asset specific pricing kernel, ¢, is n = —0dlng/dnSt.
Using (28), and the fact that the partial derivative, 9v/957 = 0, we have

—E[u"(Cr)Crb | S1]
E[(Cr)| S7]

where for notational convenience we write £;(.) as F(.). Hence, we can write

E[R(C)u'(Cr) | S7]

VTR 5] )
where ‘o
(81) = B[RO g e | 51

is the representative agent’s asset specific relative risk aversion. O
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Corollary 3 (Declining Elasticity)

Suppose that relative risk aversion of the representative investor, R(Cr),
is declining in C'p, then if b # 0, the elasticity of the asset specific pricing
kernel, ¢; 7(ST), declines in St.

Proof
See Appendix C.

The significance of Theorem 4 and Corollary 3 is as follows. In a rep-
resentative investor economy, the elasticity of the pricing kernel is closely
related to the relative risk aversion of the investor. However, for a specific
asset, the elasticity depends on a ’risk adjusted’ relative risk aversion, which
accounts for the risk of aggregate consumption, given the asset price. In
Corollary 3, we find that this risk adjusted relative risk aversion declines
with the asset price, if the actual relative risk aversion declines with aggre-
gate consumption.

The results in Theorem 4 and Corollary 3 allow us to generalize the
conclusions of Brennan (1979) and Rubinstein (1976). They showed that
the Black-Scholes formula priced European-style options if the asset price
and aggregate consumption are joint-lognormally distributed and if a rep-
resentative investor exists with CPRA utility. In our Theorem 4, we first
show that lognormality of aggregate consumption is not required. In fact, if
we have CPRA and the log-linear relationship between the asset price and
consumption in equation (28), then the pricing kernel will have constant
elasticity, and from Theorem 2, the Black-Scholes model will hold. Further-
more, if the representative investor has declining proportional risk aversion
(DPRA), then this will translate into a declining elasticity pricing kernel.
The result, in that case, is that all options on the asset have higher prices
than those given by the Black-Scholes model.

7 Conclusions and Extensions

We have derived the main implications, for the asset price process and for
option prices, of declining elasticity of the pricing kernel. Firstly, under
declining elasticity, options have higher prices than under the more familiar
assumption of constant elasticity. Secondly, in the special case where the
information process of the asset price follows a geometric Brownian motion,
the Black-Scholes model underprices Furopean-style options. Also, given the
terminal probability distribution of the asset price, the stochastic process of
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the asset forward price has higher volatility and exhibits negative autocorre-
lation under declining elasticity. Thirdly, declining elasticity is consistent, in
a representative investor economy, with declining proportional risk aversion
of the representative investor.

The model in which the asset (forward) price follows a geometric Brown-
ian motion is one of the standard work-horses of finance. It has been useful in
deriving many empirically testable propositions, but its characteristics and
valuation implications are not always in line with the empirical evidence.
Examples of such empirical anomalies include the high volatility of stock re-
turns, their autocorrelation and the underpricing of contingent claims. The
question, therefore, is whether the implicit assumption of constant elasticity
of the pricing kernel can be modified for the resultant models to better fit
the data. An alternative proposed and analyzed in this paper is to assume
a pricing kernel that exhibits declining elasticity with respect to the payoff
on the asset. This model could help explain a number of empirical anoma-
lies relating to the return generating process and the pricing of contingent
claims.

Several other directions of research can be pursued, based on the research
reported in this paper. First, the properties of the pricing kernel that lead
to a broader class of stochastic processes for returns than the standard
geometric Brownian motion could be explored. These properties could be
tested directly to assess their empirical validity as has been proposed in
the literature on the term structure of interest rates. Second, the further
implications of declining elasticity of the pricing kernel for option pricing,
such as for the ”smile” effect, that relates implied volatilities to strike prices,
could be explored further. This could, in turn, provide a better theoretical
justification for recent work on fitting binomial trees using observed option
prices.
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Appendix A: Proof that more than two intersec-
tions of the pricing kernel cannot exist

Suppose there are three or more intersections of the two pricing kernels.
Consider the first three intersections at forward prices 514, S:]FB and S:(Fj re-
spectively. Suppose that at 514, @2 intersects ¢1 from above, i.e.,

91 (54) Do (54)

a5t a5t

Since, at the first intersection,

$1(57) = 62(57)

it follows that

_04(57) 87

S :
771( T) 85T ¢1(514)
Do (SH) S
< (5% —~ .=z 29
772( T) 85T ¢2(514) ( )
Similarly at S:]ﬁ, @2 intersects ¢ from below, it follows that
m(SF) > no(SF) (30)
Again, at S:(pj, since ¢ intersects ¢y from above, we must have
m(9F) < m(ST) (31)

However, this would contradict inequality (8). Thus, three or more inter-
sections of the two pricing kernels are not possible. In conclusion, the two
pricing kernels must intersect twice and, in order to satisfy n} < 0, ¢ must
intersect ¢; from above at the first intersection, 514, and from below at the
second intersection, S:]FB a
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Appendix B: Proof that E (dF.0,.4)=0

To establish this result, we will first consider the discrete quantity £, (AF-0,4A+),
where Fryanr = Fr + AF;, and then take the limit. Consider the quantity

E(Frin0-4A7) rarErpar ()]
Ar(STOrparT)Eryar (o)

[
[ T+
T[ T+AT(ST¢T+AT T)¢t T¢T T—I—AT]
[
B

T

FE
E;
FE

B [ST0r4Ar 10t rPr 747

— T ST¢T,T]¢2€,T
= FT¢25,T (32)

By definition
FT—I—AT = FT + AFT?

hence

ErFriarbrins] = Er[F0:0a:]+ E[AF0: 7]
EF B iar(fer)] + EA[AF0, 4 A7]
= P E(¢u1)+ E[AF0; 4 A7]
— Fob, + BAFG,a)] (33)

Combining (32) and (33), it follows that
ET[AF7—07—+AT] - 0
Hence, taking limits,

1imAT—>OET[AFTOT+AT] = ET(dFTOT-l—dT) =0.
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Appendix C: Proof of Corollary 3

From Theorem 4, the elasticity of the pricing kernel is

1= (w191
Hence, for b # 0,
I , u'(Cr) E{R(Cr)*u'(C)E[u'(C7) | ST]}
Romsy - ¥ [R (Cr)Cr prmon 5 1 57) ~ E[a(Cr) | 5¢]2

E[R(C)d'(Cr) | ST
Elw(Cr) | ST]?

_|_

and therefore

E[R(Cr)d(Cr){R(CT) — R(ST)} | 57]
E[u/(CT) | 5&13“]4 '

| St]—

L 0 _ W(Cr)
0 ammsy ~ PHECT)CT e T8

As E[W'(C7){R(Ct)— R(ST)} | ST]) = 0, We can expand the second term to
_E[{R(Cr) — R(ST)}u'(Cr){R(CT) — R(S1)} | S7]
Elu'(Cr) | 57]

R'(C7) < 0 means that the first term is negative. We have shown that
the second term in (34) is also negative. Therefore,  declines in InS7. g

<0.  (35)
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