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Abstract

An important determinant of option prices is the elasticity of the

pricing kernel used to price all claims in the economy. In this paper, we

�rst show that for a given forward price of the underlying asset, option

prices are higher when the elasticity of the pricing kernel is declining

than when it is constant. We then investigate the implications of the

elasticity of the pricing kernel for the stochastic process followed by

the underlying asset. Given that the underlying information process

follows a geometric Brownian motion, we demonstrate that constant

elasticity of the pricing kernel is equivalent to a Brownian motion for

the forward price of the underlying asset, so that the Black-Scholes

formula correctly prices options on the asset. In contrast, declining

elasticity implies that the forward price process is no longer a Brownian

motion: it has higher volatility and exhibits autocorrelation. In this

case, the Black-Scholes formula underprices all options.
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1 Introduction

Following Black and Scholes (1973), the traditional approach to the pricing

of European-style options on an underlying asset assumes that the asset

price follows a given, exogenous process and prices the options using an

arbitrage-free hedging argument. An alternative equilibrium approach, fol-

lowed by Rubinstein (1976) and Brennan (1979), assumes that the asset

price and the value of the market portfolio at the end of a single period have

a given joint probability distribution and that a representative investor ex-

ists, with a given utility function for end of period wealth. It has been shown

that both these approaches can lead to the same risk-neutral valuation re-

lationship for the option price. A third approach, following Harrison and

Kreps (1979), assumes a no-arbitrage economy which in turn implies the

existence of a pricing kernel. This pricing kernel variable has the impor-

tant property that the option forward price equals the expected value of the

product of the option payo� and the pricing kernel. This third approach

is consistent with the equilibrium approach, since the Brennan-Rubinstein

assumptions imply a pricing kernel which equals the relative marginal utility

of the representative investor.

In this paper, we adopt the more general pricing kernel framework. As-

suming that the asset-speci�c pricing kernel exhibits constant elasticity,

yields the Black-Scholes assumption of a geometric Brownian motion of the

asset price. Assuming a representative investor exists with constant relative

risk aversion, implies the Brennan-Rubinstein world. However, the general

framework permits the pricing of options under less restrictive assumptions.

In particular, it turns out that the curvature of the pricing kernel is criti-

cal for the pricing of options. Alternative characterizations of the elasticity

of the pricing kernel with respect to the price of the underlying asset lead

to di�erent option prices. In order to investigate the e�ect of alternative

pricing kernels, we start with an assumption regarding the price of the un-

derlying asset. Option pricing models typically take as given either the price

of the underlying asset and the risk-free rate of interest, or alternatively, the

asset forward price. In this paper, we assume throughout that the current

forward price, for delivery at a �xed terminal date, is given. Thus, when

we compare the e�ect on option prices of di�erent characterizations of the

pricing kernel, we do so assuming that the di�erent pricing kernels lead to

the same current forward price of the asset.

We �rst investigate the relative pricing of options in a general setting,

where the forward price of the asset is given and the asset-speci�c pricing
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kernel exhibits either constant or declining elasticity. We �nd that the prices

of all options are higher in the economy with declining elasticity than in

the economy with constant elasticity. These higher prices are the result

of the increased convexity of the pricing kernel. In the special case where

asset prices on the terminal date are lognormal, all option prices exceed the

Black-Scholes prices, if the pricing kernel has declining elasticity.

How can it be, then, that the Black-Scholes model underprices all op-

tions, when we know that if the asset forward price follows a geometric Brow-

nian motion, no-arbitrage arguments can be used to establish the Black-

Scholes prices? We investigate the answer to this puzzle and �nd that, in a

declining elasticity pricing kernel economy, the asset forward price does not

follow a geometric Brownian motion, even though the information process

does. We �rst establish the conditions under which the asset forward price

follows a geometric Brownian motion. We then investigate the e�ect on the

price process of the alternative assumptions regarding the elasticity of the

pricing kernel.

The organization of this paper is as follows. In the following section we

review previous related work. Then, in section 3, we establish our principal

result: all options have higher prices in the declining elasticity economy than

in the constant elasticity economy. In section 4, we consider a Black-Scholes

world in which the terminal asset price is lognormal, and we establish the

equivalence of two alternative assumptions: constant elasticity of the pric-

ing kernel, and a geometric Brownian motion of the asset forward price.

Section 5 then investigates the e�ect on the stochastic process of the as-

set forward price, of the alternative assumption of declining elasticity. In

section 6, we assume a more traditional, representative agent economy, and

establish su�cient conditions for declining elasticity of the pricing kernel in

an economy in which the asset price and aggregate consumption are related

by a log-linear regression. Section 7 summarizes the main conclusions of our

analysis.

2 Recent Literature on the Mispricing of Options

by the Black-Scholes Model

Empirical research in the last few years has suggested that options are un-

derpriced by the Black-Scholes model, i.e., the implied volatility of options

typically exceeds the historical volatility of the price of the underlying asset

(see, for example Canina and Figlewski (1993)). This evidence is corrob-
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orated by studies that estimate the expected value of the implied pricing

kernel and the parameters of the risk-neutral distribution, using index op-

tions data (for example, see Longsta� (1995), Brenner and Eom (1998),

and Buraschi and Jackwerth (1998)). Although many alternative explana-

tions have been proposed for these �ndings, ranging from jumps in the price

process to the existence of "fat tails" in the return distribution of the un-

derlying asset, most of the explanations relate one way or another to the

stochastic process followed by the price of the underlying asset. We sug-

gest an alternative explanation. We derive a model in which all options are

underpriced by the Black-Scholes model, even though the underlying asset

price has a lognormal distribution on the terminal date. Also, the price

process exhibits excess volatility, even though the information process for

the underlying asset follows a geometric Brownian motion. In our model, it

is the characteristics of the pricing kernel, i.e. of the risk adjustment, that

produces the excess-pricing of the options.

In a closely related recent paper, Mathur and Ritchken (1995) consider

the price of options on the market portfolio, in a single-period, representative

agent model. Restricting their analysis to agents with declining absolute risk

aversion, they conclude that the price of an option given constant propor-

tional risk aversion (CPRA), is the minimum option price. The implication

is that declining proportional risk aversion will produce higher option prices.

In the special case of a lognormal market portfolio payo�, the Black-Scholes

price, resulting from CPRA, is the minimum option price. Our results, cast

in terms of the characteristics of the asset-speci�c pricing kernel rather than

risk attitudes, generalize and explain this conclusion in several ways. First,

we consider options on assets in a multi-asset economy. In the special case

where we consider options on the market portfolio, our results are consistent

with those of Mathur and Ritchken. The second generalization is that we

do not assume a representative agent economy. In contrast, we assume, in

section 3, that the pricing kernel has declining elasticity. This is consistent

with, but does not require, declining proportional risk aversion of the rep-

resentative agent.1 Thirdly, our conclusions hold in a general, multi-period

economy rather than only in the single-period economy. Our conclusions in

section 5, regarding the e�ect of declining elasticity on the stochastic process

1Another set of conditions in which CPRA investors act as if they have declining
proportional risk aversion is provided by Franke, Stapleton and Subrahmanyam (1998).

They show that if investors face non-hedgeable background risks, they act like investors

with declining proportional risk aversion and demand options to hedge the marketable

risks that they face.
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followed by asset forward prices also help to explain Mathur and Ritchken's

results. Although they assume a single period economy, the question arises

as to how their results are consistent with the stochastic process followed by

prices between the two dates. The answer in our model is that underpricing

by the Black-Scholes model is consistent with a process for the forward price

that exhibits excess volatility.

Benninga and Mayshar (1997) analyze a model in which heterogeneous

investors with di�erent levels of CPRA act like a representative investor with

declining proportional risk aversion. They also �nd that certain options are

underpriced by the Black-Scholes model. Our paper is also closely related

to the prior work of Bick [(1987) and (1990)], Franke (1984) and Stapleton

and Subrahmanyam (1990). These authors investigated the consistency of

various asset price processes in a representative investor economy, Bick in

a continuous-time setting and Franke and Stapleton and Subrahmanyam

in a discrete-time setting.2 Our analysis, in section 4, on the equivalence

of constant elasticity of the pricing kernel and a random walk in the asset

forward price, parallels that of Bick. Again, our analysis here is somewhat

more general, relying on the existence of a pricing kernel, rather than a

representative investor who is limited to puchasing claims on the market

portfolio.

3 Contingent Claims Prices Given Declining Elas-

ticity of the Pricing Kernel

In this section, we analyze the prices of contingent claims in a perfect capital

market, where arbitrage possibilities do not exist. We do so by examining

the properties of the pricing kernel, a variable which can be used to price

any claim in this economy.

Consider a date t in the interval [0; T ] where 0 is the current date and T

is some terminal date. Let ST;j be the price of the asset j at time T . The

forward price at date t, for delivery of the asset at date T is denoted Ft;T;j.

Based on the absence of arbitrage there exists a pricing kernel,  t;t+1,

such that for any asset or claim on an asset, j,

2Franke (1984) and Stapleton and Subrahmanyam (1990) use a somewhat di�erent

approach to characterize the preferences that support a geometric random walk. They

start with a process for the cash ows, the fundamental exogenous variable, and derive
the restrictions required for the process for cash ows to be transformed into a geometric

random walk for returns.
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Ft;T;j = Et[Ft+1;T;j t;t+1] (1)

where Et is the expectation operator conditional on the information set

at time t.  t;t+1 is a positive random variable. Since a risk-free claim on a

dollar to be paid at date T always has a forward price of one dollar, it follows

from the no-arbitrage condition in equation (1) that the pricing kernel has

an expectation of unity, i.e. Et( t;t+1) = 1. Now, de�ning the pricing kernel

over the interval from t to T as

 t;T =  t;t+1 t+1;t+2::: T�1;T

it follows by successive substitution and using the unbiased expectations

property of conditional expectations, that the asset forward price is

Ft;T;j = Et[ST;j t;T ]; (2)

since FT;T;j = ST;j . Also, it follows that Et( t;T) = 1.

The pricing kernel,  t;T , prices any date T claim. If we now consider

claims contingent on a single asset, j, with price ST;j , we can de�ne and use

a pricing kernel unique to asset j. De�ning

�t;T;j = Et[ t;T jST;j]

and using the property of conditional expectations we can re-write equation

(2) as

Ft;T;j = Et[ST;j�t;T;j] (3)

where the expectation is over states of ST;j and �t;T;j is a time T measurable

random variable, unique to asset j. Clearly, �t;T;j is a function of ST;j.
3

Since we are concerned here with the pricing of contingent claims on

(any) single asset, we drop the subscript j in equation (3) and write the

basic pricing equation as simply

Ft;T = Et[ST�t;T ] (4)

We assume that �t;T is twice di�erentiable in ST . Having described the

basic economy, we can now proceed to price contingent claims.

3The pricing kernel, �t;T , can also be derived using the �rst order condition for the

optimal portfolio choice of the investor in a representative agent economy. This is discussed

in more detail in section 6 below.
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Pricing of European Options: The General Case

A similar no-arbitrage pricing argument can be used to evaluate the forward

price of a European-style contingent claim on the risky asset. If the payo�

on the contingent claim at time T is g(ST ), then the forward price of the

contingent claim at time t, for delivery at T , denoted Ct;T , is given by

Ct;T = Et[g(ST)�t;T ] (5)

In option pricing, we generally take the price of the underlying asset as

given, and consider only the relative pricing of the option. We take a similar

approach here, Ft;T is assumed to be at a given level, F �

t;T :

Ft;T = F �

t;T = Et[ST�t;T ]: (6)

We then ask the following question. How does the forward price of the option

Ct;T depend on the pricing kernel, �t;T , given that Ft;T = F �

t;T? Clearly,

assuming only that Ft;T = F �

t;T leaves room for several alternative shapes of

the pricing kernel �t;T , since there is an in�nite number of possible pricing

kernels that satisfy the constraint in equation (6). We now establish a result

which characterizes the �t;T functions which satisfy equation (6).

Since option prices are dependent on the joint relationship of the pricing

kernel, �t;T , and the price of the asset on the terminal date, we can analyse

option prices by investigating the elasticity of the pricing kernel, �t;T , with

respect to the asset price on the terminal date. The elasticity is de�ned in

the conventional manner as

�(ST) = �
@�t;T

�t;T

�
@ST

ST
(7)

We de�ne the elasticity of two di�erent pricing kernels, both of which

satisfy equation (6) as follows. The �rst pricing kernel �t;T;1, written hence-

forth as �1, has constant elasticity �1, i.e., �
0

1 = 0. The second pricing kernel

�t;T;2, written as �2, has declining elasticity �2, where �
0

2 is negative for all

values of ST . We �rst establish the following result about the properties of

the two pricing kernels.

Lemma 1 (Intersections of Pricing Kernels with Di�erent Elasticities)

Consider two pricing kernels, �1 and �2, each of which yields the same

forward asset price F �

t;T . Suppose that for �1, the elasticity is constant, i.e.

�01 = 0, and for �2, the elasticity is declining, i.e. �02 < 0; 8ST , then the

pricing kernels �1 and �2 intersect twice.
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Proof:

Consider the two pricing kernels �1 and �2 with corresponding elasticities

�1 and �2 for which �
0

1 = 0 and �02 < 0. This implies that

@

@ST

�
�2

�1

�
< 0: (8)

Suppose that both pricing kernels satisfy equation (6). First, it is nec-

essary that the two pricing kernels (see Figure 1) intersect at least once.

Otherwise, it would be impossible for them to have the property E(�1) =

E(�2) = 1. Second, the two pricing kernels must intersect more than once,

since otherwise the forward price of the risky asset, F �

t;T , cannot be the

same under both pricing kernels. To see this, suppose that the two pric-

ing kernels intersect only once at ST = ŜT . Suppose that �1 > [<]�2 for

ST < [>]ŜT . Then, consider a claim paying (ST � ŜT ) at date T . Then,

E[(ST� ŜT )�2] > E[(ST � ŜT )�1] follows since (ST � ŜT )(�2��1) � 0; 8ST .
As E[(ST � ŜT )�] = E[ST�]� ŜT , the forward price of the risky asset would

be higher under pricing kernel �2 than under �1. Hence, the forward price

can be the same only if the pricing kernels intersect at least twice. Finally,

we show in Appendix A that more than two intersections contradicts the

assumption in equation (8). 2

The lemma is illustrated in Figure 1. For prices below SAT , �2 > �1.

This implies that for contingent claims that pay o� only in the region ST <

SAT , contingent claim prices will be higher under �2 than under �1. Also,

for prices above SBT , we have �2 > �1. Again, for contingent claims that

pay o� only in the region ST > SBT , contingent claim prices will be higher

under �2 than under �1. In particular, put options with strike prices at or

below SAT and call options with strike prices at or above SBT have higher

prices under the declining elasticity pricing kernel. However, the following

Theorem establishes that all options have higher prices.

Theorem 1 (The Pricing of European-Style Options)

Consider two pricing kernels, �1 and �2, both of which yield the same

forward price of the risky asset. Suppose that for pricing kernel �1, the

elasticity is constant and for pricing kernel �2, the elasticity is declining.

Then, the price of any European-style option is greater under pricing kernel

�2 than under �1.

Proof:
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We show in Appendix A that the two pricing kernels �1 and �2 intersect

twice, at points which we denote as SAT and SBT . That is

�2 > �1 for ST < SAT ;

�2 < �1 for SAT < ST < SBT ; (9)

�2 > �1 for SBT < ST :

Now let Lk(ST ) = ak + bkST , where ak and bk are chosen so that

Lk(ST ) = (ST � k)+ ; for ST = SAT ; and ST = SBT : (10)

The forward price of a call option with strike price k is

Ck;j = E[(ST � k)
+�j ]; j = 1; 2 (11)

which can be written

Ck;j = E[((ST � k)
+ � Lk(ST ))�j ] +E[Lk(ST )�j ] ; j = 1; 2 (12)

Since the forward price of a linear payo� is the same under both pricing

kernels, i.e.,

E[Lk(ST )�1] = E[Lk(ST )�2]; (13)

it follows that

Ck;2 � Ck;1 = E[((ST � k)
+ � Lk(ST ))(�2 � �1)]: (14)

It follows from the de�nition of Lk(ST ) that (ST � k)
+�Lk(ST ) � [=][�]0,

when �2 � �1 > [=][<]0, and hence Ck;2 > Ck;1.

Also, by put-call parity, all puts must have higher forward prices under

�2 than under �1. 2

Theorem 1 shows that given the same forward price for the underlying

asset, all options, both puts and calls at any strike price are more highly

priced by the declining elasticity pricing kernel, �2, compared to the constant

elasticity pricing kernel, �1.
4 The intuitive reason for this "mispricing"

is that the declining elasticity pricing kernel is more convex than the one

4We exclude cases where there is a zero probability of �nishing out-of-the-money. For

example, a call option at a strike price of zero, always �nishes in-the-money. By de�nition,
its forward price is the same as the forward price of the underlying asset, and hence equal

under the two pricing kernels.
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with constant elasticity. This convexity implies that convex claims, such as

options, are valued more highly by the declining elasticity pricing kernel,

all else being the same. In other words, extreme payo�s on either side of

the mean are priced more highly by the declining elasticity pricing kernel.

However, linear claims such as the forward contract on the asset are priced

the same, by assumption. Although the payo�s close to the mean are priced

lower by the declining pricing kernel, this is not su�cient to outweigh the

higher pricing of the more extreme payo�s.

Theorem 1 is a general result for the pricing of European-style options:

it holds for any probability distribution of ST . An important implication of

the result is that option pricing models that implicitly assume a constant

elasticity for the pricing kernel yield lower option prices than those that

assume declining elasticity. If the true pricing kernel has declining elasticity,

the use of such models leads to mispricing.

4 Constant Elasticity of The Pricing Kernel: The

Black-Scholes Economy

We have shown above that if the pricing kernel exhibits declining elastic-

ity, then European options are underpriced by any model that assumes,

either explicitly or implicitly, that the pricing kernel has constant elasticity.

Hence, the question arises as to what pricing kernel property would yield

the same option prices as the Black-Scholes model. Since the Black-Scholes

model follows from the assumption that the forward price of the underlying

asset follows a geometric Brownian motion, we need to investigate the re-

lationship between the properties of the pricing kernel and the asset price

process. In this section, we �rst examine the relationship between the two

assumptions: the elasticity of the pricing kernel is constant, and the asset

forward price follows a geometric Brownian motion. We then illustrate the

case of constant elasticity using an example, where the forward price follows

a stationary geometric binomial process. In the following section, we relax

the assumption of constant elasticity and investigate the e�ects on the price

process.

4.1 The General Case

We assume here that the conditional expectation of the underlying asset

price at time T , ST , evolves as a geometric Brownian motion. We show in the

11



following theorem that two properties: A) the pricing kernel has constant,

non-state dependent elasticity, and B) the forward price of the asset follows

a geometric Brownian motion, are equivalent.5 In the following section we

then proceed to derive the implications of declining elasticity for the forward

price process.

First, let B� be a Brownian motion on the probability space (
; F; P ).

We de�ne the information process for the price ST as the conditional expec-

tation process of ST , I� = E�(ST ), ��(t; T ). We assume that the behaviour

of I� is governed by the stochastic di�erential equation:

dI�

I�
= �d� + �dB� (15)

where � is a constant and �, the mean of the process, is zero, simply because

it is an information process. It follows that ST is lognormally distributed.

We now investigate conditions under which the forward price F�;T follows a

geometric Brownian motion process of the form

dF�;T = F�;T��d� + F�;T�dB� ; t � � � T; (16)

where the drift, �� is non-stochastic, but possibly time dependent. It is

known that, if the forward price is governed by (16), then the Black-Scholes

prices for European-style options must obtain. Hence, we are also looking

at conditions for the Black-Scholes theorem to hold. We establish:

Theorem 2 (Constant Elasticity of the Pricing Kernel)

Given that the information process for the underlying asset is

dI�

I�
= �d� + �dB�

with � = 0, then the following statements are equivalent:

A) The pricing kernel, �t;T has constant elasticity,

�t;T =

R T
t ��d�

(T � t)
=

R T
t ��d�

�2(T � t)

5Note that in the multi-period world A) includes the condition of non-state dependency

of the elasticity of the pricing kernel. In principle, it is possible for the pricing kernel

elasticity to be state dependent, i.e. for the elasticity of �t;T to depend on the state at t,
for t < T .
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in each state and at each date, where �� = ��=�
2
.

B) The asset forward price, F�;T follows a geometric Brownian motion,

with drift, �� and standard deviation, �.

Also, if A) or B) holds, then the Black-Scholes formula for the price of a

European-style option on ST holds, at each date and in each state.

Proof:

B ) A Assume that the forward price follows the geometric Brownian mo-

tion

dF�;T = F�;T��d� + F�;T�dB� ; t � � < T:

For notational covenience, since T is �xed, we write this as

dF� = F���d� + F��dB� : (17)

We now consider the process for the conditional expectation of the pricing

kernel, �t;T . �t;T is a time T measureable random variable, and its condi-

tional expectation is E�(�t;T ). For simplicity, we denote

E�(�t;T ) � �� = �� (F� ; �)

where, by assumption, �� is a twice continuously di�erentiable function of

the forward price F� and of time � . By Ito's lemma,

d�� = (
@��

@�
+

1

2

@2��

@F 2
�

F 2
� �

2)d� +
@��

@F�
F�dF�

Since �� is the conditional expectation of the pricing kernel, it is a P mar-

tingale. It follows that the terms in d� must add to zero. Hence, we have

d�� =
@��

@F�
F��dB� : (18)

In appendix B, we show that it follows from the de�nition of the forward

price that E�(dF���+d� ) = 0. Since ��+d� = �� + d�� , we have, using the

expressions for d�� and dF� ,

��d��� + �2F�
@��

@F�
d� = 0
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which implies that, for the elasticity �� ,

�� � �
@��

@F�

F�

��
=
��

�2
; 8�: (19)

From (18) and (19) it follows that

d�� = ��� ���dB� ; 8�:

�� follows a geometric Brownian motion. Hence, �T = �t;T is lognormal.

Since �t;T = �t;T (ST ), where ST is also lognormal, then �t;T has constant

elasticity with respect to ST . From (19), �� = ���
2 so that

Z T

t
��d� = �2

Z T

t
��d� � �2(T � t)�t;T

This establishes that the pricing kernel has constant, non-state-dependent

elasticity, �t;T , with respect to the terminal spot price, when the forward

price follows a geometric Brownian motion.2

A) B Assume that the pricing kernel �t;T has constant, non-state-dependent

elasticity, �t;T . Constant elasticity with respect to ST implies that we can

write the pricing kernel as

�t;T = �t;TS
��t;T
T :

Hence, from the condition Et(�t;T ) = 1,

��1t;TF
�t;T
t = Et

"�
ST

Ft

�
��t;T

#
:

Also, from Ft = Et(ST�t;T )

��1t;TF
�t;T
t = Et

"�
ST

Ft

�
��t;T+1

#
:

Equating these expressions, de�ning [�(Ft) � �2=2](T � t) as the mean of

the logarithm of ST =Ft, given the forward price Ft, and using the properties

of lognormal variables, yields6

�(Ft) = �2�t;T

6If X is lognormally distributed with E(lnX) = � � �2=2, then E(Xa) = exp[a(� +

(a� 1)�2=2)]
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But, by assumption �t;T and hence �(F� ) is state independent. Hence, since

�t;T =

R
T

t
�� d�

�2(T�t)
and ST=Ft is lognormal, for all t�[0; T ),

Et(lnST )� lnFt =

Z T

t

��d� �
�2

2
(T � t): (20)

Now, consider the information process, It. It has zero drift, i.e.

dIt

It
= �dBt:

This implies that ST is lognormal with

Et(lnST ) = lnEt(ST )�
�2

2
(T � t):

From this equation and (20) it follows that

lnFt = lnEt(ST )�

Z T

t

��d�

and since lnEt(ST ) is a Brownian motion, so is lnFt.2

Finally, it is well known that condition B above implies that the Black-

Scholes model holds. The proof is similar to the original Black-Scholes proof,

with the forward price process substituted for the spot price process.2

Theorem 2 shows that the assumption of the Black-Scholes model, that

the asset (forward) price follows a Brownian motion, is equivalent to constant

elasticity of the pricing kernel. It follows, using Theorem 1 that the Black-

Scholes model underprices options in a declining elasticity economy. We

have the following:

Corollary 1 (Declining Elasticity and Black-Scholes Underpricing)

Suppose that the information process of ST follows a standard geometric

Brownian motion and that the forward price Ft;T is given. Then, if the

pricing kernel has the property of declining elasticity, all options on ST will

have higher forward prices at date t than those given by the Black-Scholes

model.

Proof:

First, from Theorem 2, the Black-Scholes formula holds if the pricing

kernel has constant, non-state-dependent elasticity. Further, from Theorem

15



1 we know that, if the pricing kernel has declining elasticity, all options have

higher prices than in the case of constant elasticity. Hence, the forward

prices of options in the case of declining elasticity exceed the Black-Scholes

prices.2

In Theorem 2 we show that the assumption of either a Brownian motion

or a pricing kernel with constant, non-state-dependent elasticity is su�cient

for the Black-Scholes model to hold. The prior work of Brennan (1979),

who showed that, in a representative agent single-period economy, constant

relative risk aversion is a necessary condition for Black-Scholes to price op-

tions on the market portfolio suggests that these conditions may also be

necessary. However this is not the case. The Black-Scholes model does

not require a pricing kernel with constant, state-independent elasticity, or a

Brownian motion in the forward price. If, however, we add a mild restric-

tion on the pricing kernel in an intertemporal setting, to the e�ect that the

pricing kernel is path independent, we can show necessity of the Brownian

motion. First, we de�ne path-independence of the pricing kernel.

De�nition [Path-independence of the pricing kernel]

A pricing kernel is path-independent if for any two outcomes of ST : ST;1,

ST;2, the ratio
�t;T (ST;1)

�t;T (ST;2)

does not depend on the state It, 8t < T . We now establish

Corollary 2 (Necessity of a Brownian Motion in the Forward Price for

Black-Scholes Pricing)

Assume the same information process as in Theorem 2 and path inde-

pendence of the pricing kernel. Then the Black-Scholes formula correctly

prices European-style options on an asset with price ST at time T , only if

the underlying asset has a forward price which follows a Brownian motion.

Proof:

If the Black-Scholes model holds at date t, the risk-adjusted density of

ST must be lognormal. This density equals the true density multiplied by

�t;T (ST ). Since the true density is lognormal, by assumption, it follows that

�t;T (ST ) has constant elasticity, �t;T , which may, however, depend on It.

Hence

�t;T (ST;1)

�t;T (ST;2)
=

 
ST;1

ST;2

!
��t;T (It)

;
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so that the pricing kernel is path-dependent. But this path dependency

is ruled out by assumption. Hence, by the equivalence of A) and B) in

Theorem 2 it follows that lnF� is a Brownian motion.2

Corollary 2 shows that a geometric Brownian motion information pro-

cess and path independence of the pricing kernel imply a Brownian motion

of the asset forward price, if the Black-Scholes model is to hold. Many

�nancial models assume time additive utility of a representative investor,

an assumption which guarantees path independence of the pricing kernel.

Hence, the Black-Scholes world is only slightly more general than a world

where the asset forward price follows a Brownian motion.

4.2 Constant Elasticity: An Example in the Case of a Bino-

mial Process.

In order to clarify the restrictions implied by constant elasticity of the pricing

kernel, we now look at an example where the asset forward price follows a

binomial process. The example allows us to specify the process followed by

the conditional expectation of �t;T . In order to be consistent, in the limit,

with geometric Brownian motion, we assume that the information process

of ST follows a multiplicative binomial process.

Given a forward asset price Ft;T , we now assume an n-stage, stationary

multiplicative binomial process for the forward price F�;T , over the period

from t to T . Speci�cally, let u and d be the proportionate up and down

movements of the binomial process over each sub-interval, then

F�+1;T

F�;T
=

(
u ; q

d ; 1� q

)
; 8� (21)

where q is the probability of an up-movement in the forward price over any

sub-interval. When n is large, the process in (21) converges to a Brownian

motion process. We now show, consistent with Theorem 2, that the pricing

kernel has constant elasticity.

First, we need to specify the pricing kernel process. De�ning Ft+�t;T =

Ft;T + �Ft and noting that E[�Ft�t+1] = 0] from the results in appendix

B, it follows that

Ft;T = Et[Ft+1;T�t+1];

where �t+1 is the conditional expectation, at time t+1, of the pricing kernel

�t;T . In the binomial case, there are only two states at time t+1, so we can

write

17



Ft;T = qFt+1;T;u�t+1;u + (1� q)Ft+1;T;d�t+1;d (22)

where �t+1;u and �t+1;d are the values, of the conditional expectation

Et+1(�t;T), in the up-state and down-state respectively.

However, since the forward price moves from t to t + 1 as a two-state

branching process we have a dynamically complete market economy. It

follows that there exists a unique "risk neutral" probability measure under

which the forward price of the asset is a martingale. Also the probability of

an up movement under this measure over any sub-period is a constant:

p =
1� d

u � d
; 0 � p � 1

The forward price of the risky asset at any point of time t must also

therefore be given by the equation:

Ft;T = pFt+1;T;u + (1� p)Ft+1;T;d

or

Ft;T = qFt+1;T;u

�
p

q

�
+ (1� q)Ft+1;T;d

�
1� p

1 � q

�
: (23)

Equating (23) and (22) for the conditional expectation of the pricing kernel,

Et+1(�t;T),

�t+1;u =
p

q
; �t+1;d =

1� p

1 � q
:

in the up-states and down-states. Also, if j is the number of up movements

of the asset price over the n sub-periods from t to � ,

��;j = (�t+1;u)
j(�t+1;d)

n�j

We show now that ln(F�;T ) and ln�� are perfectly correlated. First, the

forward price, after j up-moves, is given by

F�;T;j = Ft;Tu
jdn�j

Hence, taking the logarithm of the pricing kernel expectation and of the

forward price, yields

ln��;j = jln�t+1;u + (n� j)ln�t+1;d
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and

lnF�;T;j = lnFt;T + jlnu+ (n� j)lnd

Thus, ln �� and ln F�;T are linear in j. It follows that we can write in general

ln�� = �� + �lnF�;T

for appropriate �� and �, and in particular:

ln�t;T = �T + �lnST (24)

Equation (24) establishes the perfect correlation of ln(ST ) and ln�t;T .

We can now investigate the elasticity of the pricing kernel. Equation (24)

is the key to understanding the restrictions imposed on the pricing kernel

by the assumption of the lognormal process for the asset price. It implies

that the pricing kernel has the same stochastic properties as the asset price

itself. In particular, in the limit as n!1, the unconditional pricing kernel

and the asset price are lognormally distributed, as in Rubinstein (1976) and

Brennan (1979).

Although for a �nite binomial process with n sub-periods, there exists

only a �nite number of ST values, we can think of a large n so that, approx-

imately, ST may be considered a variable which is continuous on the range

(0;1). Then di�erentiating equation (24) with respect to lnST yields the

elasticity of the pricing kernel,

@ ln�t;T

@ ln ST
= ��t;T = � (25)

Hence, a stationary multiplicative binomial process of F�;T implies a con-

stant and state-independent elasticity of the pricing kernel. This binomial

example illustrates the result in Theorem 2, where a geometric Brownian

motion for the asset forward price was shown to imply a constant, non-

state-dependent elasticity of the pricing kernel. Here, starting with a mul-

tiplicative binomial distribution for the forward price, we have also shown

that the pricing kernel is perfectly correlated with the asset price and has

constant, non-state-dependent elasticity.7 In the limit, both the asset price

and the pricing kernel are lognormal and the Black-Scholes model holds for

European-style claims on the asset.

7The results here relate closely to those in Stapleton and Subrahmanyam (1984b).

They showed that, if the forward price is multiplicative binomial, a risk-neutral valuation

relationship holds for the valuation of options on the asset, if the utility function of the

representative agent is a power function. The results here are analogous to those, but in

a multi-period setting.
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5 Declining Elasticity and Excess Volatility

So far, we have shown, in section 3, that options have higher prices when the

pricing kernel has declining elasticity than when it has constant elasticity.

We have then shown, assuming that the information process follows a ge-

ometric Brownian motion, that the asset forward price follows a geometric

Brownian motion if and only if the pricing kernel has constant elasticity.

It remains to be shown exactly how declining elasticity a�ects the forward

price process. We now derive the implications for the forward price process,

of relaxing the assumption of constant elasticity of the pricing kernel. We

show in the case of declining elasticity, that the variance of the forward

price, vart(F�;T ) increases relative to the constant elasticity case, and also

that returns exhibit negative autocorrelation.8

Theorem 3 Consider an economy for dates � 2 [t; T ]. Assume that the

information process for the asset price at date T follows a geometric Brow-

nian motion. Let F�;T;1 and F�;T;2 be the forward prices of the asset, at time

� , under the constant and declining elasticity pricing kernels respectively.

Then,

a) across states, the ratio of the two prices F�;T;2=F�;T;1 increases mono-

tonically in F�;T;1 8� 2 (t; T ),

b) there exists a F �

�;T;1, such that

F�;T;2 < [=] [>] F�;T;1 if

F�;T;1 < [=] [>] F �

�;T;1 8� 2 (t; T );

c) the variance of the forward price is higher under the declining elasticity

pricing kernel,

vart(F�;T;2) > vart(F�;T;1) 8� 2 (t; T ):

d) For dates � = t1; t2; :::; tj; :::; T , the price relatives (Ftj;T;2=Ftj�1;T;2)

exhibit negative autocorrelation.

Proof:

8In the case of increasing elasticity of the pricing kernel, the variance declines relative

to the constant elasticity case, although the returns exhibit negative autocorrelation in

this case also.
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a) Constant elasticity and the lognormality of ST imply that the ex-

pected return E�(ST=F�;T;1) is independent of the state at time � . In the

case of declining elasticity, the rate of return in the high states (high F�;T;1),

is relatively low and the rate of return in the low states, is relatively high,

compared to the constant elasticity case. Therefore, the forward price at

time � , F�;T;2, for the declining elasticity case is relatively higher than F�;T;1
in the high states and relatively lower in the low states. Since elasticity

is monotonically declining, it follows that F�;T;2=F�;T;1 is monotonically in-

creasing in F�;T;1; 8� 2 (t; T ).

b) Given the same initial price F �

t;T , it must be that the forward prices

under the two pricing kernels do not dominate each other. Hence, given that

F�;T;1/ F�;T;2 increases monotonically in F�;T;1, there can be only one value

of F�;T;1 where F�;T;2 = F�;T;1. In other words, there is a F �

�;T;1, such that

F�;T;2 = F�;T;1 = F �

�;T;1, and the result b) follows.

c) From a) and b), it follows that

F�;T;2 = F�;T;1+ E[F�;T;2� F�;T;1] + � (26)

where E(�) = 0 and cov(�; F�;T;1) > 0 since F�;T;2 gets larger relative to

F�;T;1 as F�;T;1 increases. Hence,

var(F�;T;2) = var(F�;T;1) + var(�) + 2cov(�; F�;T;1) > var(F�;T;1): (27)

d) For the constant elasticity pricing kernel, the autocorrelation of re-

turns is zero, since the forward price process is generated by a geometric

Brownian motion. Now, assume non-constant elasticity of the pricing ker-

nel. Consider dates t, t1, T and the price relatives Ft1;T=Ft;T and ST =Ft1;T .

If the price relative in the period [t; t1] is lower [higher] under non-constant

elasticity, then the conditional expected price relative in the period [t1; T ]

must be higher [lower] implying negative autocorrelation. Second, we split

the period [t1; T ] into subperiods [t1; t2] and [t2; T ]. By the same argument

as before, given some state at t1, the price relatives Ft2;T=Ft1;T and ST=Ft2;T
must be negatively autocorrelated under non-constant elasticity. Similarly,

the period [t2; T ] can be split sequentially into arbitrarily many subperi-

ods so that, by induction, negative autocorrelation of the price relatives is

obtained for any number of subperiods. 2

Theorem 3 shows that a geometric random walk for the forward price

is ruled out by declining elasticity. Moreover, the forward price at any

intermediate date is more volatile under the declining elasticity than under

the constant elasticity pricing kernel.
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6 Option Pricing and the Elasticity of the Pricing

Kernel in a Representative Agent Economy

The analysis of option prices using the pricing kernel approach in a no-

arbitrage setting is quite general. However, it is useful to relate the analysis

to an equilibrium setting in order to interpret the pricing kernel in economic

terms. For example, what kind of equilibrium would lead to pricing ker-

nels with constant or declining elasticity? What restrictions on preferences

would lead to such pricing kernels? In order to answer these questions,

we now make the more traditional assumption of a representative investor

economy, where the agent has utility for end of period consumption. The

analysis below provides a set of restrictive, su�cient conditions, under which

the pricing kernel for an asset has the characteristics assumed in previous

sections of the paper.

We now assume that aggregate end-of-period consumption, CT , and the

spot price of the asset on the terminal date T , ST , have a constant elasticity

with respect to each other, but with an error.9 In other words the two

variables are log-linearly related with an independent error term as follows.10

lnCT = a+ blnST + �; (28)

where � is independent of ST . A special case is analysed by Rubinstein

(1976), and Brennan (1979), who show that the Black-Scholes model holds

in a single-period discrete-time economy where a representative investor ex-

ists with a utility that exhibits constant relative risk aversion, and where

aggregate wealth is lognormally distributed.11 The Rubinstein-Brennan as-

sumptions imply a pricing kernel with constant elasticity. Now denoting the

utility function of the representative investor as u(CT ) we can establish:

9CT can be literally interpreted as aggregate consumption or as aggregate wealth in a
single period setting. More generally, it can be thought of as a state variable which is the

argument in the pricing kernel function.
10We do not assume here that either the asset price or aggregate consumption is log-

normally distributed. Joint lognormality of the variables is su�cient, but not necessary

for the log-linear relationship to hold.
11Following up on a result in Merton (1973), Rubinstein (1976) and Brennan (1979),

showed that the Black-Scholes model holds under these assumptions. Brennan shows that

the constant relative risk aversion assumption is also a necessary condition. Stapleton
and Subrahmanyam [(1984a) and (1984b)] and Heston (1993) have extended this work in

various directions.
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Theorem 4 (Elasticity of the Pricing Kernel in a Representative Investor

Economy)

Consider an economy in which consumption takes place at time T . As-

sume that an asset with price ST and aggregate consumption CT are log-

linearly related as in equation (28) above and that a representative investor

exists with relative risk aversion R(CT). Then, at any date t, the pricing

kernel, �t;T (ST ) for the asset has elasticity

�t(ST ) = bR̂t(ST )

where

R̂t(ST ) = Et

�
R(CT )

u0(CT )

Et[u0(CT ) j ST ]
j ST

�

Proof:

In a representative investor economy the pricing kernel is

 t;T =
u0(CT )

Et[u0(CT ]
:

Since t and T are �xed, we denote the pricing kernel as  , where  =

 (CT); CT > 0. The asset-speci�c pricing kernel is

� = Et[ j ST ]

where we can write � = �(ST ).

The elasticity of the asset speci�c pricing kernel, �, is � = �@ln�=@lnST .

Using (28), and the fact that the partial derivative, @ =@ST = 0, we have

� =
�E [u00(CT)CTb j ST ]

E [u0(CT ) j ST ]
;

where for notational convenience we write Et(:) as E(:). Hence, we can write

� = b
E [R(CT )u

0(CT ) j ST ]

E [u0(CT ) j ST ]
= bR̂(ST )

where

R̂(ST ) = E

�
R(CT)

u0(CT )

E[u0(CT ) j ST ]
j ST

�

is the representative agent's asset speci�c relative risk aversion. 2
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Corollary 3 (Declining Elasticity)

Suppose that relative risk aversion of the representative investor, R(CT ),

is declining in CT , then if b 6= 0, the elasticity of the asset speci�c pricing

kernel, �t;T (ST ), declines in ST .

Proof

See Appendix C.

The signi�cance of Theorem 4 and Corollary 3 is as follows. In a rep-

resentative investor economy, the elasticity of the pricing kernel is closely

related to the relative risk aversion of the investor. However, for a speci�c

asset, the elasticity depends on a 'risk adjusted' relative risk aversion, which

accounts for the risk of aggregate consumption, given the asset price. In

Corollary 3, we �nd that this risk adjusted relative risk aversion declines

with the asset price, if the actual relative risk aversion declines with aggre-

gate consumption.

The results in Theorem 4 and Corollary 3 allow us to generalize the

conclusions of Brennan (1979) and Rubinstein (1976). They showed that

the Black-Scholes formula priced European-style options if the asset price

and aggregate consumption are joint-lognormally distributed and if a rep-

resentative investor exists with CPRA utility. In our Theorem 4, we �rst

show that lognormality of aggregate consumption is not required. In fact, if

we have CPRA and the log-linear relationship between the asset price and

consumption in equation (28), then the pricing kernel will have constant

elasticity, and from Theorem 2, the Black-Scholes model will hold. Further-

more, if the representative investor has declining proportional risk aversion

(DPRA), then this will translate into a declining elasticity pricing kernel.

The result, in that case, is that all options on the asset have higher prices

than those given by the Black-Scholes model.

7 Conclusions and Extensions

We have derived the main implications, for the asset price process and for

option prices, of declining elasticity of the pricing kernel. Firstly, under

declining elasticity, options have higher prices than under the more familiar

assumption of constant elasticity. Secondly, in the special case where the

information process of the asset price follows a geometric Brownian motion,

the Black-Scholes model underprices European-style options. Also, given the

terminal probability distribution of the asset price, the stochastic process of
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the asset forward price has higher volatility and exhibits negative autocorre-

lation under declining elasticity. Thirdly, declining elasticity is consistent, in

a representative investor economy, with declining proportional risk aversion

of the representative investor.

The model in which the asset (forward) price follows a geometric Brown-

ian motion is one of the standard work-horses of �nance. It has been useful in

deriving many empirically testable propositions, but its characteristics and

valuation implications are not always in line with the empirical evidence.

Examples of such empirical anomalies include the high volatility of stock re-

turns, their autocorrelation and the underpricing of contingent claims. The

question, therefore, is whether the implicit assumption of constant elasticity

of the pricing kernel can be modi�ed for the resultant models to better �t

the data. An alternative proposed and analyzed in this paper is to assume

a pricing kernel that exhibits declining elasticity with respect to the payo�

on the asset. This model could help explain a number of empirical anoma-

lies relating to the return generating process and the pricing of contingent

claims.

Several other directions of research can be pursued, based on the research

reported in this paper. First, the properties of the pricing kernel that lead

to a broader class of stochastic processes for returns than the standard

geometric Brownian motion could be explored. These properties could be

tested directly to assess their empirical validity as has been proposed in

the literature on the term structure of interest rates. Second, the further

implications of declining elasticity of the pricing kernel for option pricing,

such as for the "smile" e�ect, that relates implied volatilities to strike prices,

could be explored further. This could, in turn, provide a better theoretical

justi�cation for recent work on �tting binomial trees using observed option

prices.
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Appendix A: Proof that more than two intersec-

tions of the pricing kernel cannot exist

Suppose there are three or more intersections of the two pricing kernels.

Consider the �rst three intersections at forward prices SAT , S
B
T and SCT re-

spectively. Suppose that at SAT , �2 intersects �1 from above, i.e.,

�
@�1(S

A
T )

@ST
< �

@�2(S
A
T )

@ST

Since, at the �rst intersection,

�1(S
A
T ) = �2(S

A
T )

it follows that

�1(S
A
T ) = �

@�1(S
A
T )

@ST
�

SAT

�1(S
A
T )

< �2(S
A
T ) = �

@�2(S
A
T )

@ST
�

SAT

�2(S
A
T )

(29)

Similarly at SBT , �2 intersects �1 from below, it follows that

�1(S
B
T ) > �2(S

B
T ) (30)

Again, at SCT , since �2 intersects �1 from above, we must have

�1(S
C
T ) < �2(S

C
T ) (31)

However, this would contradict inequality (8). Thus, three or more inter-

sections of the two pricing kernels are not possible. In conclusion, the two

pricing kernels must intersect twice and, in order to satisfy �02 � 0, �2 must

intersect �1 from above at the �rst intersection, SAT , and from below at the

second intersection, SBT 2
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Appendix B: Proof that E� (dF���+d� ) = 0

To establish this result, we will �rst consider the discrete quantityE�(�F���+�� ),

where F�+�� = F� + �F� , and then take the limit. Consider the quantity

E�(F�+����+�� ) = E� [F�+��E�+�� (�t;T )]

= E� [E�+��(ST��+��;T )E�+��(�t;T )]

= E� [E�+��(ST��+��;T )�t;���;�+�� ]

= E� [ST��+��;T�t;���;�+�� ]

= E� [ST��;T ]�t;�

= F��t;� (32)

By de�nition

F�+�� = F� + �F� ;

hence

E� [F�+����+�� ] = E� [F���+�� ] +E� [�F���+�� ]

= E� [F�E�+��(�t;T )] +E� [�F���+�� ]

= F�E�(�t;T ) +E� [�F���+�� ]

= F��t;� +E� [�F���+�� ] (33)

Combining (32) and (33), it follows that

E� [�F���+�� ] = 0:

Hence, taking limits,

lim��!0E� [�F���+�� ] = E�(dF���+d� ) = 0:

2
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Appendix C: Proof of Corollary 3

From Theorem 4, the elasticity of the pricing kernel is

� = bE

�
R(CT)

u0(CT )

E [u0(CT ) j ST ]
j ST

�
:

Hence, for b 6= 0,

1

b2

@�

@lnST
= E

�
R0(CT)CT

u0(CT )

E [u0(CT ) j ST ]
j ST

�
�
EfR(CT)

2u0(CT)E[u
0(CT ) j ST ]g

E[u0(CT ) j ST ]2

+
E[R(CT)u

0(CT ) j ST ]
2

E[u0(CT ) j ST ]2

and therefore

1

b2

@�

@lnST
= E[R0(CT )CT

u0(CT)

E[u0(CT ) j ST ]
j ST ]�

E[R(CT)u
0(CT )fR(CT)� R̂(ST )g j ST ]

E[u0(CT ) j ST ]
:

(34)

As E[u0(CT )fR(CT)� R̂(ST )g j ST ] = 0, we can expand the second term to

�
E[fR(CT)� R̂(ST )gu

0(CT)fR(CT)� R̂(ST )g j ST ]

E[u0(CT) j ST ]
< 0: (35)

R0(CT ) � 0 means that the �rst term is negative. We have shown that

the second term in (34) is also negative. Therefore, � declines in lnST . 2
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