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Abstract

ontemporary financial stochastic programs typically involve a trade-off
C between return and (downside)-risk. Using stochastic programming we
characterize analytically (rather than numerically) the optimal decisions that follow
from characteristic single-stage and multi-stage versions of such programs. The
solutions are presented in the form of decision rules with a clear-cut economic
interpretation. This facilitates transparency and ease of communication with
decision makers. The optimal decision rules exhibit switching behavior in terms of
relevant state variables like the assets to liabilities ratio. We find that the model can
be tuned easily using Value-at-Risk (VaR) related benchmarks. In the multi-stage
setting, we formally prove that the optimal solution consists of a sequence of
myopic (single-stage) decisions with risk-aversion increasing over time. The optimal
decision rules in the dynamic setting therefore exhibit identical features as in the

static context.
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1 Introduction

Over the past decade, we have witnessed a growing literature on financial planning models.
Such models can assist financial institutions like pension funds, insurance companies and
banks in their Asset/Liability Management (ALM), as illustrated in the book by Ziemba
and Mulvey (1998). The key component in these models concerns the trade-off between
risk and return. It is therefore of paramount importance which risk measure is put into the
model. Traditionally, the variance or standard deviation has been the prominent measure
of risk. Its main (and perhaps only) advantage is its computational simplicity. As argued
by Sortino and Van der Meer (1991) however, the variance is an inadequate measure of
risk in many practical circumstances. The main criticism to the use of the variance is
its symmetric nature, whereas risk is typically perceived as an asymmetric phenomenon,
see Kahneman and Tversky (1979). Asymmetric or downside risk measures are generally
more difficult to work with. Given the current state of computer technology, however,
their use in both theoretical and empirical financial planning models has increased rapidly.
Note that, just as the variance, down-side risk measures can be embedded in an expected
utility framework, see Fishburn (1977).

Downside-risk measures are currently used extensively in the area of Asset/Liability
Management (ALM). Recent research typically incorporates the down-side risk measure
in a multi-stage stochastic programming (MSP) approach, as in Consigli and Dempster
(1998), Mulvey and Thorlacius (1998), Carino et al. (1994), Boender (1997), and Dert
(1998). The main advantage of the MSP approach relative to the more traditional static
mean-variance oriented approach is that the explicit dynamic nature of financial decisions
can better be taken into account. For example, a decision now may be followed by
recourse actions in the future. Moreover, different preferences and (dynamic) constraints
can be modeled directly. As a result, the MSP approach generally produces significant
improvements over static mean-variance based decisions. These improvements can be
exploited when the MSP model is implemented in practice, as in Carifio et al. (1994).

The MSP-models used for ALM, however, also have two interrelated drawbacks: (i) the



models are computationally intensive and difficult to solve, and (ii) the resulting optimal
solution may be difficult to analyze and interpret. Generally, it is impossible to solve
an MSP analytically. As an alternative, most people seek for computational solutions
built around discretizations of the original MSP. Such discretizations typically involve the
construction of a scenario structure that adequately captures the original uncertainty in
the model. The MSP is then transformed into a deterministic equivalent program based
on the scenario structure and solved numerically. The numerical solution is taken as an
approximation to the solution of the original MSP. The computational effort needed to
solve the deterministic programming problem increases rapidly in the number of scenarios
used. Also, the numerical solution typically consists of optimal decisions at every point in
time and in every possible state of nature (as represented in the scenario tree). Even for
simple MSP models and realistically sized scenario structures, this gives an unwieldy set
of numbers that lacks transparency and clear-cut economic interpretation. Moreover, the
numerical solution is only optimal for the specific instance of the scenario tree, parameter
values and initial state variables for which the problem is solved. See also Dupacova et al.
(1998) who check the robustness of the optimal solution to a stochastic program with
respect to out-of-sample scenarios. Consigli and Dempster (1998) note on the complexity
of the solution to an MSP that “The solution to these very large and complex problems
needs to be followed by a detailed computer-based analysis of the results in order to supply

Y

conveniently represented information to the decision maker.” In other words, for these
models to be implemented and used by management or decision makers, there is a need
for a method to summarize optimal decisions in terms of decision rules, linking optimal
decisions in each state of nature to observed quantities like the assets to liabilities ratio,
the state of the economy, etc.

Some numerical attempts at optimizing over decision rules directly rather than over a
set of unconstrained control variables are Berger and Mulvey (1998) and Boender (1997).

Also Maranas et al. (1997) use a decision rule approach, but constrain the set of rules to

a fixed-mix.



In some continuous-time models, optimal parametric decision rules can be derived
analytically. Some examples are Merton (1969) and Sethi (1998) for the consump-
tion/investment problem and Ingersoll (1987) for the general portfolio optimization prob-
lem. In a recent paper, Basak and Shapiro (1999) optimize expected utility of terminal
wealth under a constraint on downside-risk. To derive analytic decision rules however,
they have to assume normality and complete markets, which is unrealistic in practice.

Our main contribution in the present paper is that we analytically characterize op-
timal decision rules for a typical financial planning problem modeled as an MSP model.
In contrast to the continuous-time approach of Basak and Shapiro (1999), we derive re-
sults in discrete time without using the assumptions of complete markets or normality.
Instead we work with incomplete markets and leave the distributional properties of the
model unspecified. We concentrate on a model where expected wealth is traded off against
expected loss (or shortfall) with respect to a certain benchmark level. As such, it is pro-
totypical for many financial planning models used in practice. Similar models have been
studied by Carifio et al. (1994), Hiller and Eckstein (1993) and Uryasev and Rockafellar
(1999) from a numerical rather than an analytical perspective. We study both a static
(one-period) and dynamic (multi-stage) version of the model. By specifying the solutions
in the form of decision rules, we provide insight into the crucial mechanisms driving the
optimal decisions.

For the one-period model we find that the optimal amount invested in the risky asset
increases linearly in the investor’s surplus, i.e. in the difference between current wealth
and the benchmark level, if the surplus is positive. A decreasing linear relation is found
for negative surplus values. This induces risk taking by the manager in both favorable
and unfavorable positions. In unfavorable situations (negative surplus) risk taking is the
only way in which recovery can be established. In favorable circumstances, investing in
the risky asset increases future expected wealth without unduely increasing downside-
risk. A straightforward implication of this result is that the fraction invested in the risky

asset is a non-monotonic and non-linear function of the wealth-to-benchmark (or assets



to liabilities) ratio.

The decision rule approach facilitates the adoption of MSP models by financial man-
agers. The only remaining difficulty is that the manager has to specify her trade-off
between expected wealth and expected loss/shortfall. To facilitate this trade-off, we link
our model parameters to the choice of a Value-at-Risk(VaR) percentage. VaR is the maxi-
mum loss over a given horizon for a given confidence level. Although Artzner et al. (1999)
argue that Value-at-Risk is not a coherent risk measure, it is nowadays widely used and
accepted in the financial industry. Therefore, whereas it may be difficult for managers to
formulate criteria for the expected amount of shortfall, it may be much easier to postulate
bounds on the acceptable probability of shortfall. In this way the popularity of VaR might
actually contribute to a further adoption of models that incorporate expected loss as a
risk measure, as in our model. Interestingly, the link with VaR further aligns the optimal
solution with economic common sense. In particular, the switch from safe to risky invest-
ments for (increasingly) low wealth can be made much more gradual in a natural way.
This is a desirable feature as highly risky investment strategies in unfavorable situations
are generally not accepted as a sound policy in an empirical context.

For the multi-stage version of our model we find the same typical shape of the optimal
decision rules as for the one-period model. Moreover, the multi-stage model can be solved
as a sequence of “almost” myopic one-period problems. As the risk aversion parameter
associated with these one-period problems decreases over time, we find that the steepness
of the decision rules increases in the time to maturity. This result corroborates the idea of
time-diversification, which states that investors will hold riskier portfolios whenever the
planning period is longer.

The remainder of the paper is set up as follows. For ease of exposition, we start with
a one-period model in Section 2. For this model, we derive the decision rules and give
the relation between Value-at-Risk preferences and model parameters. Section 3 gives
the multi-stage version of the same model and the corresponding optimal decision rules.

Concluding remarks are given in Section 4. The Appendix gathers the proofs.



2 The one-period model

2.1 Model setup

Consider an investor who has to decide on her investment strategy with initial wealth 1.
We assume that the investor maximizes expected wealth W7 at time 1. Risk is perceived as
the difference between terminal wealth and a certain benchmark level W.2. For example,
if WP = W,, terminal wealth is measured against initial wealth and interpreted in terms
of profits and losses. The target W,? can be interpreted as an internal target or as
an externally given benchmark. As a typical example, for a pension fund W2 can be
interpreted as the fund’s liabilities.

For simplicity, we only consider two assets. The first is a risk-free asset, yielding a
constant rate of return of r; (e.g. 1.04). The second is a risky asset with an uncertain
return u, e.g. the return on stocks. We assume that v has a known absolute-continuous*
distribution function G(-) with support (0, 00) and E[u] > r. Defining X, as the initial

amount invested in the risky asset, we have
W, :Won+X0(U—Tf). (1)

with W, denoting the value of assets at time 1. We postulate the following objective

function for the one-period optimization problem:
H;(aOXEG[WI)] —A- EG[WlB - W1]+ (2)

with A > 0, Eg (-) denoting expectation with respect to G, and [y]* denoting the maximum
of 0 and y. The first term in (2) gives expected final wealth and is increasing in X,. The
second term gives the measure of risk, namely expected shortfall. According to Artzner
et al. (1999) expected shortfall is a coherent risk measure, as opposed to the popular

Value-at-Risk measure. Fishburn (1977) shows that with (2) as the utility function the

*Our results also extend to the case of discrete distribution functions G(-), but proving this requires

substantial additional mathematical effort without providing additional insights.



mean-risk utility model with risk defined by expected loss is congruent with the expected
utility model. Hiller and Eckstein (1993) use exactly the same objective function, and
propose this model as a stochastic dedication model for fixed-income portfolios. The risk
measure in (2) differs only with that of Carifo et al. (1994) in that they use a piecewise
linear penalty function in terms of the expected loss, where we have a linear one, as
determined by A. Carifio et al. (1994) also illustrate that in the context of banks and
insurance companies risk measures as in (2) can easily be justified. For these institutions
there are specific costs associated with the situation of cash reserves falling below a certain
critical level. Note that expected shortfall /loss is also used by Basak and Shapiro (1999)
who include it in a constraint in the context of a (Gaussian) continuous-time dynamic
portfolio optimization model.

The risk aversion parameter A in (2) determines the trade-off between risk and return.
Setting A = 0 implies risk neutrality, while increasing A induces increases in risk aversion.
For the moment, we assume A is determined directly by the decision maker. At the end
of this section though, we show that A can be set directly by specifying VaR preferences.

Finally, note that model (2) is a one-period optimization problem, while the MSP-
models found in the literature are multi-stage and dynamic. In Section 3 we show that
the optimal solution to (2) has exactly the same form as that of a dynamic multi-stage

model.

2.2 Solution to the one-period model

For ease of exposition we define the one period discounted benchmark wealth W as
W /r;. Furthermore, we define the time zero surplus Sy as Wy —W?, which is the amount
of current wealth exceeding the time zero required level W?. Note that in an asset-liability
management framework, W2 can be interpreted as the (discounted) liabilities such that

the surplus Sy = Wy — W2 has its natural interpretation as assets minus liabilities.



Lemma 2.1 Consider the special case Wy = W . If the following condition holds

/:)(rf —u)dG > w, (3)

then the optimal solution to (2) is X = 0. Otherwise, X is infinite.

Proof: See appendix

As we want to ensure that a finite solution to (2) exists in case Wy = W, we require
that condition (3) holds for any A. It puts a lower bound on the risk aversion A for a
given distribution G(-) and risk-free rate r;.

The main results for the one-period model follow from the following lemma

Lemma 2.2 The first order condition to (2) is given by

/Ou(rf —u)dG = EGi[u)\_ Tf], (4)

where U is defined as

WlB — W()Tf
X() + ’f’f. (5)

u=
Moreover, the optimal X is nonnegative.

Proof: See appendix

The consequence of lemma 2.2 is that solving (2) is equivalent to finding the return @
that solves (4). As there is a one-to-one correspondence between a value of @ and that of
Xo, the corresponding X then follows from relation (5) and the condition X§ > 0. Given
condition (3), it turns out that there are two distinct values u* that satisfy (4). This is
depicted in figure 1 for a lognormal distribution. The integral on the left-hand side of (4)
is drawn as a function of the upper bound . The right-hand side of (4) is drawn as the
horizontal line at E[u — 7]/ A.

The focus of this paper is on the optimal solution X§ in terms of the unknown u. The

next theorem presents the main results for the one-period model.
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Figure 1: In this figure the solid line represents the value of the integral of the left-hand side
of (4) as a function of @ with G lognormal. The horizontal dashed line shows the constant term

at the right hand side of (4)

Theorem 2.1 If condition (3) is satisfied, for the case Wy > W there is a 4™ < r; that

solves the first order condition (4), resulting in the following optimal decision rule for Xo:

* Ty B
Xg=——- — . 6
= e o= W) ©)

For the case Wy < W there is a u™ > r; that solves the first order condition (4), giving:

* Ty B
Xj=—— (W Wo). 7
0O T Wy 0) (7)

Proof: See appendix.

Theorem 2.1 shows that for a positive surplus Wy — W the decision X} has a positive
linear relation with the surplus. In case of a negative surplus the relationship is negative
and linear. The first remarkable consequence of Theorem 2.1 is that the piecewise linearity
in the optimal decision rule for Xy holds for any continuous distribution function G(-)

satisfying the conditions of Subsection 2.1. The distribution of the uncertain return u

9



only enters the optimal decision rule through the values of a2+ and @~, which follow from
equation (4). An economic interpretation for the optimal values of @ is presented in
Subsection 2.3, together with the issue of picking A in a practical situation. Also note
that condition (3) is needed again to ensure that the optimal Xj is finite, see the proof
in the appendix.

The second consequence of Theorem 2.1 follows from the two different decision rules for
X§. The amount invested in the risky asset is decreasing in the surplus when the surplus is
negative, and increasing in case it is positive. This typical behavior of the optimal decision
rule implies that in an unfavorable situation (negative surplus) the decision maker takes
more risk as the surplus decreases. In the favorable situation of a positive surplus, the
decision maker takes more risk when the surplus increases. The fact that the slope of the
decision rule is different for the two regimes is due to the different risk taking behavior.
In a situation of a negative surplus the decision maker must take more risk: the higher
return on the portfolio is needed to make the probability of recovering from the unfavorable
situation strictly positive. In the situation of a positive surplus risky investments allow
one to profit from the higher expected return, subject to having an acceptable trade-off
with downside-risk. Clearly, if the surplus is positive and wealth increases, more money
can be invested in the risky asset at the cost of a marginal increase only in downside risk.
This induces a positive relation between the surplus and the investment in the risky asset.

The third implication of Theorem 2.1 is obtained by switching from amounts to ratios.
The motivation for this change is that it is quite common to present investment policies
in terms of the fraction invested in stocks. It eases the comparison between different
investors (that might have different absolute wealth levels) and at the same time enhances
the communication with management. In our model, the transformation is established by
dividing the left-hand and right-hand side of (6) and (7) by Wy. The result is given by

the following corollary:

10



Corollary 2.1 The optimal fraction invested in the risky asset is given by

Xo *: i 1_W_OB (8)
Wo ’l_L*—Tf W() ’

where @* is equal to 4t or 4~ as in Theorem 2.1, depending on the sign of the surplus

Wy — WE.

The simple transformation from amounts to ratios gives a remarkable result. With
W() = Wy/W§, Figure 2 displays the typical shape of the relation between W() and the
fraction in the risky asset. As mentioned earlier, in an asset-liability management frame-
work /WO can be interpreted as the assets to liabilities or funding ratio, which is one of
the key variables in that context. We find that for low ratios W\O the relation is convex,
while for high Wo it is concave. The two regimes (low versus high funding ratio) follow
from the two different values a+ and @~ which solve (4). The typical shapes illustrate the
different risk taking behavior for a favorable versus an unfavorable situation, as discussed

above.

2.3 Choosing the preference parameter )\

We have now solved the one-period financial planning model for a given value of A\. As
argued earlier, it may not be easy for a decision maker to choose a specific value of A that
adequately reflects her risk-return profile. This is mainly due to the fact that A does not
have a direct interpretation in practical asset management. Decision makers rather have
an opinion on practical concepts like the tolerable Value-at-Risk (VaR) or loss probability
than on A. In this section, we show that A can be set unambiguously on the basis of VaR
related preferences.

We distinguish between two situations: (i) a positive surplus and (ii) a negative sur-
plus. First, we concentrate on case (i). From Figure 1 and the discussion in the previous
subsection we note that a given A (combined with a positive surplus) results in an op-
timal @t < 7;. This argument can be reversed: a given value of 4% < r; gives rise to

a corresponding value of A. So instead of picking A, we can also set the value of a*.

11



Fraction in risky asset

Wo/W3

Figure 2: The typical shape of the relation between the optimal fraction in the risky asset and
the funding ratio. The convex (left) part of the graph gives the decision rule in case of a negative

surplus. The concave (right) part of the graph is valid for a positive surplus.

The advantage setting @t rather than X is that @* has a more direct economic interpre-
tation. In particular, 2" gives a critical realization of the return on the risky asset: for
returns u; < u, a negative surplus results, whereas a positive surplus emerges for returns
u; > @"T. We now assume that the manager sets the maximum tolerable probability of a
negative surplus. This amounts to the manager choosing a specific a € (0,1), such that
Pr(Surplus< 0) = . Note again that it may be much easier for managers to set o than
to set ), as for given «, the level W can be interpreted as the a-level VaR. As a negative
surplus only occurs for u; < @*, we have « = G(a") or a* = G~!(«). Note that o must
be such that G™*(«) < r; in order to satisfy condition (3). From G~'(a) we can then
derive the corresponding value of A from (4). Note that setting « instead of A has the
additional advantage that we only have to solve the first order condition (4) if the precise
numerical value of )\ is required. Otherwise, we only have to invert the cdf G(-) and plug

the desired u* = G~!(«) into (5).

12



By relating surplus management as in (2) to VaR objectives, it thus appears that
managing expected loss (indirectly) leads to VaR management. Similar results can be

found in Uryasev and Rockafellar (1999) and Basak and Shapiro (1999).

The same approach can be followed if the surplus Wy — W is negative. In that case,
however, it is more natural to interpret « as a non-recovery probability rather than a VaR
probability. For example, in case of underfunding the manager might want a recovery
probability of 75%, meaning that she would like to end up with a positive surplus in 75%
of the cases. We then set @ = 0.25 = G(u~) and solve for the corresponding value of
u . Note again that « has to be chosen such that 4= = G '(«) > 7. The distinction
between positive and negative surplus and the corresponding use of VaR and recovery
probabilities, respectively, allows us to model different risk attitudes in different financial
circumstances. Such additional flexibility enhances the practical implementability of our
model. Moreover, tuning on VaR and recovery probabilities rather than on A results in
reduced computational complexity as well as better managerial interpretability.

To give some intuition for the different shapes of the decision rules, we plot the optimal
asset allocation X as a function of the wealth to benchmark ratio for varying VaR and
recovery probabilities. The results are in Figure 3.

We see that a higher VaR or recovery probability results in more aggressive strategies:
the optimal asset mix switches more rapidly from safe to risky assets for varying wealth
to benchmark ratios. Moreover, the aggressiveness of the resulting strategy can be linked
directly to the manager’s VaR and recovery preferences. We also note that by setting
the VaR probability different from the recovery probability, we can separately tune the
steepness of X as a function of Wy/WE for W, smaller and larger than W2, respectively.
So if the optimal strategy for a negative initial surplus is deemed too aggressive, the

recovery probability can be decreased until the solution becomes acceptable.

13



Fraction in risky asset

Figure 3: The decision rules for X for different recovery and shortfall probabilities. At the left
side of the graph, which represents the decision rule in case of a negative surplus, p represents
the recovery probability, i.e., the probability of attaining wealth above the benchmark level W.
At the right-hand side of the graph, p is the probability of shortfall, i.e. the probability of final
wealth falling below W 2.

14



3 The multi-stage model

We now turn to the multi-stage generalization of (2) and obtain four main results. First,
the dynamic model can be solved as a sequence of one-period models, each one of the same
form as that in Section 2. Second, as a the direct consequence, the decision rule for each
optimal decision at time 7 is of the same form as that for the one-period optimal decision
Xg. Third, we prove that the sensitivity of the decision rules to changes in (relative)
wealth increases when the horizon extends. Finally, we show that there is again a unique
VaR-quantile associated with a certain value of A. This allows for the same way of tuning
the model as discussed in Subsection 2.3 for the one-period model.

The n-stage model is optimized over a sequence of decisions Xy, X1,...,X,_1. The
model is dynamic in the sense that every X, is chosen contingent on the information at
time ¢. The objective function is defined in terms of shortfall and wealth at the end of

the final period,

max EW,] — A-Eg[W2 —W,]", (9)
X0, 3 Xn—1
s.t. Lpi—l—l = Wsz'i'Xz(uz—i—l —’f'f), 1= 1, , 1, (10)

with w; 1 the return on the risky asset over period ¢ + 1 and A > 0. The returns are
assumed to be independent, though not necessarily identically distributed.
We define W/ = W2/ r?_j as the riskfree discounted value of benchmark wealth at

time j. The main results for the multistage model follow from the following theorem.

Theorem 3.1 In the multi-stage model with n stages, the first order condition with re-

spect to X;_1 1S

p; - /Oui(rf — u;)dGy(u;) + p; - /_Oo(rf — u;)dGi(u;) — Elu; —rf]/A =0, (11)

where the u; are defined as

W~B - I/Vz'_lT’f

[

12
X, ., (12)

ﬂi:Tf'f‘

15



and the p} and p; are recursively defined by

i = Py Gila) + pha (1 - Gila))), (13)
andpﬁ - 1, p'r—iz_ =0.

Proof: See appendix.

We can rewrite the first order condition in (11) as

/ (ry — u)dGi(uw;) = A\t - Elu; — 7], (15)
0
where
1/ + pf
A;lzp/__%;i, i=1,....n, (16)

By comparing (15) with (4), we find that the first order condition with respect to X;_; in
the n-stage model is of the same form as the first order condition in the one-period model.
Hence, the decision rule will be the same, differing only because A in the one-period model
is replaced by A; and G(-) is replaced by G;(-).

Before we present the decision rule, note that in line with condition (3) in Subsec-

tion 2.1 we require
T
/ (ry —w)dG; < A7t -Elu; —ry], i=1,...,n, (17)
0

in order to ensure a finite optimal solution. Condition (17) at the same time ensures that
the optimal decision for W; = W is X} = 0.

We have the following corollary.

Corollary 3.1 Subject to (17) the solution to the optimization problem in (9) and (10)

can be characterized as

X;=—" _wWP-w), i=0,...,n—1, (18)
Uiy —Tf

16



where uj,, is either equal to ﬂ;&l <1y ori,, >ry for S; >0 orS; <0, respectively.

Moreover, the uj,,, 1 =1,...,n, are fived constants.

Proof: See appendix.

Corollary 3.1 shows that the optimal decision rules are the same as the typical piecewise

linear optimal rules for the one-period model.

Another remarkable implication of Theorem 3.1 is that the n-stage model can be
solved by solving a sequence of one-period problems. Using (15) for ¢ = n gives @, and
u;. Substituting these in (13), (14) and (16) gives %, , and @, _, from (15) again. The
optimal policies are given by (18) and the algorithm continues until we have found the
decision rule for X. In fact, we have found a decomposition which makes it possible to
solve the MSP quite easily. We only have to solve (2xn) one-period models to characterize
the complete solution in terms of the optimal decision rules instead of having to solve
one large multi-stage model. Moreover, as (15) is easily solved numerically for given \;
and G;(-), it is possible to numerically solve the dynamic program without resorting to
scenarios and deterministic equivalents of the original MSP.

The following corollaries give an important property of the );’s and its implication for

the optimal investment strategies, respectively.

Corollary 3.2 The values of \; ' are increasing in the time to maturity n — i.

Proof: See appendix.

Corollary 3.3 If the u; are identically distributed, the absolute slope r/|uf — 1| of the

optimal decision rules in (18) is monotonically increasing in the time to maturity n — i.

Proof: See appendix.
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As the \; 's are the inverse of the degree of risk aversion, Corollary 3.2 states that the
degree of risk aversion (});) in the multi-stage setting decreases with the time to maturity.
As a direct result, Corollary 3.3 concludes that the optimal policies are more sensitive to
changes in surplus if the planning horizon is further away. As for a zero initial surplus the
investment in the risky asset is zero, independent of the length of the planning period,
the increaseing slope of the decision rules implies riskier intial asset allocations for longer
planning periods and given surplus.

Interestingly, Corollaries 3.2 and 3.3 also have implications in the area of time diversi-
fication theory. Proponents of time diversification argue that investors will hold a riskier
asset allocation whenever the investment horizon is further away. This is based on the
observation that in the long run stock returns almost certainly outperform bond returns.
However, it is argued by Samuelson (1994), Kritzman and Rich (1998) and Merton and
Samuelson (1974) that the spread of the distribution of terminal wealth also widens with
the time horizon. Consequently, the potential magnitude of the loss increases accordingly
if riskier investments are held. This is used as an argument to prove that it could well
be that an investor chooses a less aggressive portfolio if the investment horizon increases.
Corollary 3.3 proves, however, that if wealth is measured against a benchmark level, and
the magnitude of a loss is taken into account, under a dynamic policy risk averse investors
will hold a riskier asset allocation whenever the horizon is longer. Note that if we take
W2B =0, time-diversification also holds for the absolute wealth level W;.

Finally, the following corollary ensures that the multi-stage model can also be tuned

appropriately by relating the model parameters to VaR related benchmarks.

Corollary 3.4 In initial surplus is positive, there is a unique N1 associated with the
choice of a VaR-quantile. For a negative surplus, there is a unique N\~ associated with a

recovery probability.

Proof: See appendix.
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Corolloray (3.4) implies that the decision maker does not have to pick A in the multi-
stage model directly. As the probabilities of a positive and a negative final surplus are
uniquely determined by a choice of A\, the manager only has to specify her VaR-preferences
and a value for A follows immediately. Of course the choice for a VaR-quantile is again

limited by condition (17), ensuring that the optimal decisions X are finite.

4 Conclusions and discussion

In this paper we analytically solved a typical financial planning model involving a trade-
off between return and downside-risk. Our model shares the same basic characteristics
of more elaborate empirical models like that of Carifio et al. (1994). Downside-risk was
used because of its widespread popularity in the financial industry and its use in related
academic work. Risk was measured with respect to a benchmark wealth level, which can
be interpreted as a liabilitity level in case of Asset/Liability Management (ALM) problems.
Using analytic Stochastic Programming (SP) techniques, we were able to formulate the
optimal solutions in feedback form, i.e., as decision rules. This form has a clear-cut
economic interpretation, which constitutes a valuable addition to the existing literature
where solutions are often derived numerically rather than analytically.

One of the salient findings of the present paper is that the optimal decision rule is both
non-linear and non-monotonic in either the surplus (assets minus discounted benchmark
level) or the funding (wealth-to-benchmark) ratio. The amount invested in the risky
asset is piece-wise linear in the surplus, and piece-wise non-linear (convexo-concave) in
the funding ratio. Surprisingly, this result does not hinge on the distribution of the risky
asset. The distribution only determines the relative steepness of the decision rule for
positive and negative values of the surplus.

In contrast to many traditional continuous-time analyses involving utility functions,
our model results in additional risk taking behavior both in situations of under-funding

and over-funding. In case of under-funding, taking risk is the only way in which the
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probability on a positive final surplus can be made positive. In case of over-funding (i.e.,
a positive surplus), making risky investments increases expected return without unduely
affecting downside-risk measures.

We also gave some practical guidelines concerning the return/downside-risk trade-off
to be made in the model. By linking the model parameters to practical concepts like Value-
at-Risk and recovery probabilities, we were able to simultaneously enhance managerial
interpretability and reduce computational complexity.

The multi-stage version of our model results in “almost” myopic decisions. The model
can be solved as a sequence of one-period models and the typical shape of the decision
rules is constant over time. Its steepness, however, increases because the appropriate risk
aversion parameter decreases over time. The decrease is brought about by the possible
future recourse actions and leads directly to the paradigm of time diversification: asset
allocations are riskier if the planning period is longer.

On the computational side, our analytic results also give rise to some interesting di-
rections for future research. As the piece-wise linear structure of the optimal decision
rules does not depend on the initial level of surplus nor on the precise form of the return
distribution, optimal solutions to dynamic versions of our model can be found by an easy
decomposition of the dynamic model in repeated one-period models. Such a decompo-
sition allows for a considerable reduction in computational burden without affecting the
optimality of the solution found.

Our results also have direct implications for more elaborate empirical financial plan-
ning models. Such models typically produce optimal solutions in the form of a decision
(e.g., asset allocation or contribution policy) at each point in time and in every state
of nature. This results in a large set of numbers that is often difficult to interpret and
analyze. Presenting the optimal solutions in terms of decision rules that depend on key

financial variables appears a good strategy.
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Appendix: Proofs

Proof of Lemma 2.1:

If Wy = W& the objective function simplifies to
n;(axWorf—}—Xo-Eg[u—rf]—)\-]Eg[—XO-(u—rf)]+. (A1)
0

Clearly, as A > 0, if X7 < 0 then it is optimal to set X§ = 0.
If X5 > 0 then (Al) is equal to

Wory + X§ -Eglu—rs] — AXg -Egry —u]t. (A2)

If condition (3) does not hold, (A2) is maximized for X = oo. Otherwise, X§ = 0. L]

Proof of Lemma 2.2:
Substituting (1) in (2), we define the value of the objective function (2) for a certain X by F'(Xg). Then
for a fixed X,

F(Xo) = Eq[Wory + Xo(u—7)] = A~ /Ou (WE —Wory — Xo(u —ry)) dG, (A3)

where G is the distribution function of u and @ is defined as

B _

i=r;+ WITOWW (A4)

Differentiating (A3) with respect to Xy gives the first and second order conditions
F U

(;9—% lEg[u—rf]—/\-/O (ry — u)dG =0, (A5)

62F (WIB —Wo'f‘f)2

22— )M O (X A

ox2 A X3 g9(a(Xo)) <0, (A6)
respectively. As A > 0, from (A6) it follows that X is positive at the optimum. [

Proof of Theorem 2.1:

Consider the value of the integral in (A5), see also Figure 1. As the integrand ry — u is positive for
0 < @ < ry, it is clear that (A3) is increasing in @ for @ < ry. Similarly, (A3) decreases in @ for @ > ry.
Using condition (3) and the fact that the expectation of the risky asset is larger than ry, it follows that
F'(Xo) = 0 solves for two distinct values , aM < ry and a® > ¢, corresponding to the two points of
intersection of the integral as a function of @ with the horizontal line E[u — r¢]/\, as in Figure 1. Note

that 2(!) and @(® do not depend on X,. Inverting (A4), we obtain the optimal decision

B _
xg = 21— Wors (A7)

a{® — rf
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for i either equal to 1 or 2. From Lemma 2.2, X; > 0. Therefore, a) < ry can only be optimal if

WE — Wory < 0, i.e., there is a positive surplus Wy — WE. Otherwise, X§ would be negative. Also, a®»

can only be optimal if WP — Wory > 0. As the @) correspond to a positive and a negative surplus,

respectively, we can write @t for a(Y) and @~ for @(®. This gives the desired result as
T—f__'_(W(F—Wo) if Wy >WOB,

Xo=4""" (A8)
L (WE —Wy) if Wo < WE.

U —rys

Proof of Theorem 3.1:

The first order condition for X, _; follows directly from Lemma 2.2 and is

/0 " (7 = un)dG (1) — Blus — 17]/A = 0, (A9)

where 4, is defined as in (12). Clearly, this is consistent with expression (11) with p,, =1 and p} = 0.
To prove the theorem for i < n we introduce the following sequence of value functions for the

optimization problem in (9),

Vi(Wz’_1) = maX]Ei_l[Vi_;,_l(Wi_le +Xi_1(u,- —’I‘f))], i1=1,...,n, (AIO)
i—1
Vari (W) =W, —X-[WE —W,]* (A11)
where E;_; is defined as the conditional expectation given u; 1,u; »,...,u;. Using (A10), the first order

condition with respect to X;_; is

Vi1 (Wi) — L Vipr (W) OW; —0
0X; 1 Haw axia|

Ei—1 [ (A12)

where OW;/0X; 1 = u; —ry. Let Wi, = rpW;+ X7 (W) - (uig1 —ry), with X7 (W;) the optimal decision
at time 7. We have

OVip1 (W5)
oW;

WViga(Wig1) OWia ] _ v E
Wi oW !

=...= r;‘*i]Ei [1-X-Is, <0} 5

-

OViga(Wit1) ]

OWip1 (A13)

where I4 is the indicator function of the event A. In this case it is equal to 1 if S,, < 0 and 0 otherwise.

Using (A13), (A12) becomes

Vi1 (W5)

Fit [ 0X;_1

] =Eia [} (ui — )] = X -Eia [r} (rp — wi) (s, <0y] = 0. (Al4)
Partitioning based on the sign of S; gives

Ei_1[(ry —wi)l(s, <oyngsi<oy] + Bic1[(r7 — ui)[{s, <0ynis;>0}] — Bim1[(ui —7rf)]/A=0.  (Al5)
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Note that for W;_; given, X , is fixed and as the u; are independent, .S; only varies monotonically
with the realization of u;. By absolute continuity of G;(-), we do not have to consider the case S; = 0, so

we can define a u; such that S; > 0 for u; > @; and S; < 0 for u; < @;. This reduces (A15) to

/Ui (Tf — u,') PI‘(Sn < 0|S,)dG,(u,) + /_oo(Tf — Ui) PI‘(Sn < 0|S,)dG,(u,)
0 Ui (A].G)

—Eu; —rf]/A=0

Assume

pi+ if S; >0,
Pr(S, < 0|S;) = (A17)

p; if §; <O0.
The above assumption states that the probability of ending up with a negative terminal surplus only
depends on the sign of the time i surplus S; and not on its the value. This clearly holds for ¢ = n with

pr =0 and p;, = 1. This implies that equation (A16) can be rewritten as

0=pr- / (rs — us)dGi(us) + p - / (ry — u)dGi(ui) — Elui — 7]/ (A18)
0 Us
which simplifies to
Ui /\71 +
/ (ry —ui)dGs = T PL Ry, — 1] (A19)
0 b, —p;

Parallel to the analysis for the one-period model, if condition (17) holds this equation solves for two
distinct u;, depending on the sign of the surplus S;_; only. Moreover, the corresponding optimal X;_; is

such that the next period’s surplus is positive for u; > u; and negative for u; < u;. Therefore,
Pr(S, <0]Si—1) = Pr(S, <0]S; <0)-Pr(S; <0]Si—1) (A20)
+ Pr(S, <0|S>0) Pr(S; > 0]S;-1)
_ / 4G (us) + po - / 4G (A21)

where @; = @ for S;_1 >0 and @; = @; for S;_1 < 0. As 4 and @; are constant, (A21) clearly shows

that Pr(S, < 0|S;_1) also satisfies (A17). The proof now follows by induction. m

Proof of Corollary 3.1:
The first order condition (15) is exactly the same as in the one-period model, except that A is replaced

by A;. The result follows directly from applying Theorem 2.1. [

Proof of Corollary 3.2:
Define G; and G} by G;(u; ) and G;(u]), respectively. From Theorem 3.1 it is clear that u; > u},
such that G; > G} for any i.
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Using (13) and (14), we can write
pi =0 = W1 —P5) - (G —GH), =0, ,n -1 (A22)
As p; > pt and (G;,, — Gf.;) < 1for all i, this clearly implies that
Py —pf <P P, =0, -1 (A23)

ie., {p; — pj}g is a strictly positive and increasing sequence in 4. Moreover, as p;” > pi*, it follows
from (14) that p > pf, . Using this and (A23), it is easy to see that the numerator in (16) is decreasing
in i, while the denominator is increasing in ¢. Hence )\z-_l is decreasing in ¢, and thus increasing in the

time to maturity n — i. ]

T -
B P gh (1 -Gh)>1, =0, ,n—1, (A24)
Piv1 Pina

Proof of Corollary 3.3:

The rewritten first order condition in (15) shows that the first order condition for any X; has the same
structure as in the one-period model. In the one-period model, the value of A determines the values
u; and @. As can be observed from Figure 1, a larger value of X lowers the horizontal line at level
Elu — rf]/A. As the \;' are the equivalent of A~ in the one-period model and the u; are identically
distributed, Corollary 3.2 implies that the distance |a} — rf| is increasing in 4. Hence, the absolute slope
rr/|af —ry| is decreasing in . "
Proof of Corollary 3.4:

Define G = G;(@]) and G; = G;(@; ). Given a value of ), for the decision problem at time n—1 @} and
@,, are uniquely determined. They determine G and G, , which determine p}_, and p,_,. Repeating
this procedure for all previous subproblems finally gives a unique p{ or p, , depending on whether Sp > 0
or Sy < 0, respectively. This implies that if a certain po+ or p, is chosen, there will be either no feasible

solution, or a unique A associated with it. [
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