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Abstract

We analyze the behavior of producers who compete through price competition in a
social environment from a sociological point of view. The standard model of Bertrand price
competition is enriched with producers who follow a ‘Win Cooperate, Lose Defect’ (WCLD)
strategy. This strategy is a behavioral rule, based on the notion of fairness or aspirations,
and can be regarded as a modified Tit-for-Tat strategy. By letting all producers follow the
WCLD strategy an evolutionary process is specified.

The model can explain the emergence of cooperative behavior. The model also shows
that occasionally local price wars may occur. At a price war, locally prices decrease, and

return to the old, higher price after a stochastic time.
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I. Introduction.

In this paper we consider the behavior of producers who are involved in price competition on a
specific market. We regard competition in a social environment. A social environment consists
of a number of agents who can socially interact with each other. According to this description
a lot of every-day-life situations can be described as occurring in a social environment. In fact
every act of interaction takes place in a social environment with at least two agents. In most
of the economic literature on this subject the behavior of agents in a social environment is
viewed from a purely economic perspective. Recently, attention has focused on the selection
of equilibria by means of following the biological concept of evolution consisting of fitness
selection in combination with random mutation (see e.g. Young (1993), Kandori, Mailath, and
Rob (1993) and Ellison (1993, 1995)). In the field of evolutionary economics this kind of fitness
selection is known as Darwinian dynamics with mutations.

In this paper we consider the problem from a different perspective by introducing agents
who adopt sociological reasoning. We specify adaptations on the level of the individual, instead
of considering an adjustment process for a group of individuals. We try to establish a link
between the individual’s behavior and the behavior of the group the individual belongs to
as a whole. This is known in psychology as the level of analysis problem (see Messick and
Liebrand (1995)), and it is addressed in economics by Schelling (1978) and Young (1998). It
is the combination of these features that makes our model fundamentally different from most
dynamics in evolutionary game theory.

We implement the adjustment process by introducing a decision heuristic or metastrategy
for all individual agents, according to which they adapt their action (pure strategy) after
having played a game. The rule we specify for the agents is a rule of procedural rationality !
as described by Simon (1976). It is therefore a behavioral rule 2, see e.g. Camerer (1997). This
specific rule is often used in the field of sociology (see e.g. Liebrand and Messick ()) and is
based on the idea of reciprocity between players. By specifying the metastrategy we prescribe
individual agents how to act in every situation in which they can change their action, and in

this way we specify a process by which the prevalence of actions in the population evolves.

! Procedural rationality means that people think about their choices before they come to a decision. Tt focusses
on the process or path leading to an outcome. Substantive rationality focusses on the outcome. It supposes that
people act as utility maximizers. The common approach in economics is substantive rationality.

% According to Camerer (1997), a behavioral rule aims to describe actual behavior, is driven by empirical
observations (mostly experiments), and charts a middle course between over-rational equilibrium analyses and
under-rational adpative analyses.



This we call a behavioral evolutionary process 3.

We are interested in the stable state of the population and in how this stable state is reached.
We define a stable state as a situation in which the percentages of agents in the population
that are playing a certain action is (almost) constant over time for all actions. Note that stable
does not mean that all agents stick to the actions they are playing, but is defined on the level
of the population as a whole. In the models considered in this paper a stable state always
emerges. In this state a lot of socially optimal 4 behavior is observed. However, when applying
the model to describe the price selling behavior of producers in an oligopolistic environment
with a large number of possible prices, we observe that in the stable state a price war may still
occur. When such a price war occurs, a substantial part of the producers in the population
lower their prices and the stable state is left. Profits for the producers decrease substantially
as a consequence. Within a finite stochastic time after a price war has started the population
will again converge towards the same stable state it was in before. Therefore we call the stable
state of this model quasi-stable. These results are very general, in the sense that a variation
of parameter values does not alter the qualitative results. These results can be seen as an
alternative explanation for the bubble-crash cycles, as observed by e.g. Smith, Suchanek, and
Williams (1988), suggesting that it might not be mere risk aversion that generates the cycles
observed by these authors.

The rest of this paper is organized as follows. In the next section we introduce the model and
explain the assumptions the model is based on. In section IIT we briefly discuss the simulation
parameters and report the simulation results for the case where there are two actions present
in the stage game. Next we look at the simulation results for stage games with more than two
possible actions in section IV. In this section we also elaborate on the stability of the results.
In section V we show how, in a quasi-stable state, a temporary move away from the stable
distribution occurs when coincidentally a trigger point is reached. Finally in section VI we

state the conclusions we draw from our analysis.
I1. The Model.

In this section we sequentially present the different components of the model.

3 A behavioral evolutionary process is an evolutionary process with the dynamics specified by a metastrategy
based on a behavioral rule.

*We consider social optimality on the level of the game. Social optimal thus means that the total payoff from
the game is maximal.



I1.1. The Social Environment.

In a social environment of economic agents it is often the case that every agent interacts only
with a small subset of all agents in the environment. This subset may consist of colleagues,
friends, or in case the agents are firms, firms in the same region. The subsets of different
agents usually overlap each other. Because all agents can interact with a few other agents
and because there is an overlap in the subsets, the influence of agents with whom one does not
interact is indirectly present. In these kind of models evolutionary forces can play an important
role even in the relatively short term (Ellison (1993, 1995)). We model the social environment
and the set of agents with whom one can interact in a specific way in accordance with these
observations. Especially we assume interactions to take place sequentially and always to be
between two agents.

We model the social environment as a finite m x m torus in IN? consisting of m? economic
agents, being producers of heterogenous goods that are close substitutes, in the sense that the
location of the goods of different producers differs. A finite m x m torus is a structure on which
each player is uniquely determined by a location x = (z1,%2), with 2; € {1,...,m}, I = 1,2
and a player on location z has the 8 players on locations y = (y1,42) € {1,.. .,m}Q, with
yi = (@1 — 1)modm, z;, (x; + 1) modm, | = 1,2, except y = z as his direct neighbors. Each
player interacts only with these direct neighbors. A torus is chosen because it has no borders
and therefore all agents are in identical positions. Every agent has a fixed position on the
surface of the torus and on every position on the surface of the torus there is exactly one agent
located, so there is a one-to-one relation between the set of agents and the surface of the torus.
An illustration of this is given in figure I1.1.

Interaction between producers takes place in an oligopolistic setting. In the social environ-
ment a large number of sequential interactions takes place. A producer is selected from the
social environment at random. This producer is called the subject. Every interaction consists of
playing a game referred to as the stage game, which is characterized by oligopolistic price com-
petition. In the stage game, the subject competes for consumers against a fixed environment,

consisting of competitors that posted a price for their product. °

% Although this model is in discrete time, a continuous time version can easily be constructed as follows.
Attach a Poisson proces with the same parameter to every agent. Now let every agent be the subject and play
the stage game at the times given by her Poisson proces. The simulation model will be exactly the same as the
discrete time model presented here.
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Figure I1.1: An illustration of a part of the torus. Every circle represents a producer. The
neighbors of the producer indicated by the black circle are shaded.

I1.2. The Interaction Structure.

Each producer has a number of consumers who are located very near to her and who normally
buy her product. However these consumers compare prices in the neighborhood of the producer.
If the price of the subject (selected producer) is high in comparison to that of her neighbors, she
will have less customers buying her product. If her price is low in comparison to her neighbors,
she will have more customers buying her product. If a consumer chooses not to buy from the
subject, it is assumed that he will buy from the neighbor of the subject with the lowest price. If
more than one of the neighbors sells for the lowest price, one of them is chosen at random. The
rationale for this assumption is that if a consumer is to buy another product than he usually
does, he might as well buy the cheapest substitute. This way a producer constantly has to
face the competition of her cheapest neighbor. Thus the subject is matched to her cheapest
neighbor and plays the stage game. Note that this matching rule implies that a subject will be
matched to the most competitive playing producer present amongst her neighbors. After each
individual interaction, the subject has the possibility to change the price she set. The next
interaction she is involved in, will take place at her new price.

The real world situation we are thinking of when describing this kind of competition is one
in which each producer is located in a city. She is the only producer of the good in this city.
Inhabitants of this city will normally buy from their local producer. However, if the price of

the local producer is too high in comparison with the price of producers in other cities not too



far away, the inhabitants might travel to one of the other cities and buy the product there. We
assume travel costs back and forth to the local producer to be negligible compared to travel
costs to another city. Since (implicit) travel costs are different for all consumers (consumers
are heterogenous in travel costs), the decline in demand will be gradual when a producer raises
her price. Some of the consumers will buy at a producer in another city very often, other will
always buy at their local producer when they buy. This way we have implicitly specified a
model of consumer choice behavior, like those that can be found in the location theory in the
field of industrial organization (e.g. the linear city model of Hotelling (1929), see also Tirole
(1988), all be it that in our model consumers are not uniformly distributed along this interval,
but instead groups of consumers are located in the same points as the producers).

Each simulation starts by some random initialization of the environment. Each producer
is assigned a random action from the set of possible actions. Also each producer is assigned a
random last payoff. The model is ergodic, i.e. the initialization is unimportant. The results do
not alter when the initialization is done differently, unless a degenerate initialization like ‘all
producers initially play the fully cooperative action and get assigned the corresponding payoffs’

is chosen. After the initialization the interaction between producers starts.

I1.3. The Stage Game.

The stage game consists of a (k 4+ 1) x (k + 1) payoff table, characterized by the subject’s payoff
when she is involved in oligopolistic competition with producers of close substitutes of her own
product. When a producer is chosen to play the stage game as subject, she faces a fixed
environment, consisting of the prices her neighbors have set. She engages in the game with her
own fixed price and observes her resulting payoff. She compares this payoff to the average payoft
the neighbors got the last time they played the game as subjects and subsequently updates her
action following the metastrategy described below.

Each producer can set k + 1 different prices, labelled as actions 4, ¢ = 0,...,k, located at
equal distance on the interval between the Bertrand-Nash price p, representing the best-reply,
given that the competitor will also react optimally, and the (local) monopoly or cartel price
p°. Thus an action i is setting a price equal to p™v + % (pc —pV ) . The price range is restricted
to the interval [pN ,pc}, since this is the interval where the most interesting features occur.
At prices below the lower bound p?, a producer who lowers his price will lower his profit.

Above the Nash price, reducing one’s price will increase profits. So, the interesting feature



that undercutting the price of one’s opponent pays off, only holds in the price range above the
Nash price. At prices below the upper bound p°, a price increase by both the subject and his
opponent results in a profit increase for both producers. In the price range above p© profits fall
as a result of simultaneous price increase by the subject and his competitor. Thus the range
of prices where cooperative behavior, i.e. setting high prices, pays off when the competitor
does the same is restricted by the upper bound p©. We restrict attention to this price range,
since this is the kind of reasoning implicit in the update rule ‘Win Cooperate, Lose Defect’
(WCLD, see below). Relatively high profits induce a tendency towards cooperative behavior
with the implicit assumption that when one plays more cooperatively and the competitor does
the same, this will result in a better outcome for both players.

The structure of the oligopolistic competition between two competing producers is as simple
as possible. From the location theoretic model described above, we have that the number of
potential consumers of each producer is equal to a constant o > 0, that less consumers will
actually buy the product from a producer when the producer’s price is higher and that more
consumers will buy the subject’s product if the price of her cheapest neighbor is higher. Thus
the demand function D; at subject ¢ originating from the consumers located at subject i’s

location (in the same city as subject ¢) can be expressed as

D;(pi, Pmin) = & — a1P; + a2Pmin, (1)

where p; is the price of the subject, pmin is the price of her neighbor with the lowest price and
a1, ag > 0 are parameters. So demand is linear in both prices. Each producer is assumed to
have a linear cost function C(q) = cg, which only depends on her own production ¢. In the
following we choose the parameters to be @ =20, a1 = 1, ag = % and c= 1.

Competitive behavior implies setting the price for one’s product equal to the Bertrand-Nash
price p"V being the best-reply of a producer when all producers react optimally on the actions
of the others and when they all set the same price. The reaction function p; = f(pmin) follows

from the profit maximization problem
arg II;&XWi(Pi,Pmin) = D;i(Pi, Pmin) * Pi — C(Di(Pi, Pmin))- (2)

Setting p;i = pmin = p and solving p = f(p) for p with the above parameter values gives the
Bertrand-Nash solution p?V = 14. The profit of the subject when both she and her competitor
set the Bertrand-Nash price is given by 7*(p", pV ) = 169.0.



Cooperative behavior implies that producers will collude instead of competing with each
other and thus that the producers are all local monopolists that set the cartel price p©. This

price follows from setting p; = p for all ¢ and solving the profit maximizing problem

argmax 7' (p, p) = Di(p,p) - p = C(Di(p, ), (3)

which yields p® = 20% for the above parameter values. The profit of the subject when both she
and her neighbor act as local monopolists and set the cartel price will be 7%(p°, p¢) = 190.1.
When a subject who has set the Nash price competes with a producer who has set the
cartel price she will earn a profit of 211.3, whereas a subject who has set the cartel price and
competes with a producer who has set the Nash price will earn a profit of 126.8. For a stage
game with only two actions, i.e. k+1 = 2, this results in the Prisoner’s Dilemma (PD) in table
I1.1, where the column represents the action of the competitor (C) and the row represents the

action the subject (S) is playing.

s\C| p° | PV
p° | 190.1 | 126.8
pV || 211.3 | 169.0

Table T1.1: The subject’s payoff table for the case k 4+ 1 = 2.

The payoff table is supermodular, as defined by Topkis (1979) and further explored in
Milgrom and Roberts (1990, 1995). In a supermodular payoff table, the two dimensions of the
problem (the actions of both players) are complementary, which, in this setting, implies that

total profits of the two players taken together is maximal when they both set the cartel price.

I1.4. The Metastrategy.

We assume that every producer has (direct) information on her own action and profit and on
the last profits of her neighbors only. Note that this means that there is no common knowledge.
A producer’s current action is determined by her past action and the payoff resulting from her
past action relative to the payoffs of her neighbors the last time they played the stage game
ag subjects. The decision heuristic that is used to update the subject’s action is called a
metastrateqy or update rule. The metastrategy tells the subject to compare her payoff from
the game, 7ser, with the average payoff her neighbors got from the game the last time they
played it as subjects, mnps.8 If her payoff is higher than that of her neighbors, she is said to

®Note that we implicitly assume that different payoffs can be added up. This is justified in the case that
payoffs are profits and players are risk-neutral.



be in a win situation; if her payoff is lower than that of her neighbors she is in a lose situation
and if her payoff is exactly equal to the average payoff of her neighbors she is neither in a win
nor in a lose situation. This assessment of one’s own situation relative to that of others is
justified in the psychological and sociological literature by stating that people in general tend
to get a good (bad) feeling whenever they think they are doing better (worse) than the other
people they can observe. This setting is similar to people having certain aspiration levels or
comparison levels (see e.g. Thibaut and Kelley (1959)), which they want to achieve. Whenever
an agent gets at least (at most) her aspired payoff, she feels good (bad). Here the aspiration
level is not a fixed preset value, but instead it is endogenous in the model, as is the case in for
instance Palomino and Vega-Redondo (1996). The aspiration level of the subject is the average
payoff of her neighbors and it therefore varies.

The metastrategy we use prescribes the subject to change his action as follows. Whenever
Tself > Tnbs, the subject changes her action ¢ to ¢ + 1 < k, so in the next stage game she is
involved in, she will play action ¢ 4+ 1. When 7er > 7nps and the current action of the subject
is k, her action remains unchanged. When 7,y < 7pps, the subject updates her action 7 to
t—1 > 0. In case 7gef < Tnps and the subject’s current action is 0, the subject doesn’t change
her action. When both payoffs are exactly equal, the subject will stick to her current action.
This metastrategy is referred to as ‘Win Cooperate, Lose Defect’” (WCLD). Underlying this
metastrategy is the observation that a producer that observes she is doing well (in monetary
terms) will tend to be more cooperative than a producer that observes she is performing rather
poorly in comparison with her neighbors. This is an example in which the sociological content
of information is a key factor, as is the case in e.g. Roth and Murnighan (1982). It’s not about
getting a very high payoff, but about doing well compared to a reference group, consisting of
agents in a similar situation as one self. At least in the Prisoner’s Dilemma game doing well
is associated with playing cooperative and in such a game this metastrategy matches positive
outcomes with positive outcomes.” If a producer gets a bad (good) outcome, she figures her
opponent will have behaved badly (nicely) towards her and she will play less (more) cooperative
the next time. We therefore consider this metastrategy as a generalized version of Tit-for-
Tat, a strategy that turned out to do extremely well in a tournament organized by Axelrod

(1987). In Offerman, Sonnemans, and Schram (1996) and in van Lange, de Bruin, Otten, and

"For a more detailed treatment of the metastrategy ‘Win Cooperate, Lose Defect’ in the Prisoner’s Dilemma
see e.g. Messick and Liebrand (1995).



Joireman (1997) there is also experimental evidence suggesting that this metastrategy is used
by a substantial number of people in every-day-life situations. In real life, an agent’s actions
appear to be very heavily influenced by what she observes about her neighbors. If they are
being kind (cooperative), the agent herself will adapt a cooperative action and if they are being
nasty (competitive) the agent will adapt the competitive action defect. These kind of ‘fairness’
assumptions are often discussed and observed in the field of experimental economics (see e.g.
Rabin (1993) and the references therein) and sociology (see e.g. Glance and Huberman (1994)).

In short the metastrategy matches positive outcomes with positive outcomes. Being in a
win situation enhances pro-social tendencies, as described in Krebs and Miller (1985). They
also state that the social behavior of the subject is not restricted to the neighbor the subject last
played with. We stress again that this sort of decision heuristic on the level of the individual
differs substantially from the usual approach in evolutionary game theory, all be it that using
some kind of Tit-for-Tat-like strategy is rather common. We see our model as psychologically
driven evolutionary game theory and we will therefore speak of a behavioral evolutionary game

theoretic approach.

I1.5. The Stable States.

We are interested in the stable state(s) of the model. We define stability on the population
level, i.e. a state is stable when the fraction of the population playing a certain action is

(almost) constant.

Definition II.1. A population is in a stable state from time T on, when there exists a vector
of population fractions T = (%1, Ta,...,Tk), Yor—g T = 1, such that

|z (t) —Zi| <e, Vi, Vt > T,

where e > ( is a fixed small simulation constant and where  (t) = (1 (t) , 22 (1) , ..., zx (1)), 5,
x; (t) = 1, is the vector of population fractions at time t, with x; (t) the fraction of the popu-
lation playing action ¢, 1 =0,...,k, at time t.

Note that even when the population is stable, producers constantly change their actions ac-
cording to the metastrategy. Thus a stable state does not necessarily imply that every producer
sticks to her current action forever.

A stable state is present when for all possible actions the number of producers abandoning
that action to play another one (outflow) is equal to the number of producers starting to play

that particular action (inflow). Note that this criterion flow;,=flow,,; for all states, is the

10



stable state criterion of a Markov chain.® In the simulation computer program we use the
flow;,,=flow,,,; criterion on the level of a simulation run to detect a stable state. A simulation
run consists of a fixed number of plays, which is a multiple (the simulation run length) of the
number of players in the social environment (m x m) and therefore each player gets to play
a certain average number of times (the simulation run length) during one simulation run. An
entire simulation consists of a large number of simulation runs. The total number of plays in an
entire simulation is equal to number of simulation runs - simulation run length - number of
players in environment. Furthermore we implemented a check on the variation in the average
percentage of cooperation, 100% - + 3% o [x; () - ], between one simulation run and the next
simulation run, before the flow;,=flows,; criterion is checked. This extra criterion is added for
reasons of calculation, so the simulation program doesn’t check for the flow criterion unless

there is some chance the criterion will actually hold.
III. The Two Action Case.

In this section we report results for the case where the stage game has two actions, i.e. k+1 = 2.

In this case the payoff table looks like table I1.1, a Prisoner’s Dilemma.

IT1.1. Parameters.

We simulated the above model in a 30 x 30 social environment, consisting of 900 producers.
Furthermore, for each set of parameter values, we performed 300 simulation runs, each having
a simulation run length of 50 and we checked for stable states. We varied these parameters in
order to perform some comparative statics. Furthermore, we looked at the effect a variation
in the size of the neighborhood might have. Instead of picking the cheapest of the eight
neighboring producers we let a subject pick the cheapest of the 24 producers that can be
reached from the subject in either one or two steps, her two level neighbors. In this case the
set of neighbors of a producer in location z = (z1,2), 1 € {1,...,m}, [ = 1,2, consists of all
players on locations y = (y1,%2) € {1,...,m}?, withy; = (2;—2) mod m, (2;—1) mod m, zy, (;+
1)mod m, (z; + 2) mod m, | = 1,2, except y = x. The subject has information concerning last

payoffs and current actions of these 24 two level neighbors. We also look at a neighborhood

®In fact, the model we consider is a Markov chain, with as state space (A(t), B(t)), where A(%) is an m X m
matrix denoting the action of every player at every location at time ¢ and where B(t) is an m X m matrix
denoting the last payoff realized as subject of every player at every location at time ¢. The number of states
in this state space is much too large to calculate an invariant probability measure. Therefore, we focus on the
aggregate state space when we talk about stability.

11



consisting of all 48 three level neighbors, defined in a similar way.

IT1.2. Results.

The results are summarized in table III.1. In the first column of the table the possible actions

Action | % of population playing
0 49.8
1 50.2

Table I11.1: The simulation results for oligopolistic competition against the cheapest neighbor.

of the individual agents are denoted. In the second column the percentage of agents in the
population playing this action in the stable state is given.

We see that in a stable state, about half of the producers in the population set the coop-
erative (local monopoly) price, while the other half set the competitive (Nash) price, a result
strikingly different from the ‘normal’ Nash equilibrium outcome in a competitive environment.
In a population in stable state, on average there will be approximately the same number of
interactions taking place with (action subject, action competitor) = (0,1) as there are taking
place with (action subject, action competitor) = (1,0). The average payoff to the subjects
from all these encounters is larger than the payoff of pure competitive play (0,0). Furthermore,
around % of all interactions takes place with actions (1,1), resulting in a much higher payoff.
Thus we can conclude that the expected payoff realized in stable state will be larger than it
would have been in the standard outcome of the PD, where every agent plays competitive (sets
the Nash price). We conclude that the metastrategy WCLD enhances pro-social behavior. In
the next section we will see that the level of cooperation changes when agents are allowed to
use more actions than only the two mentioned above.

Varying the parameters did not result in qualitatively different results. Raising the size
of the torus m results in higher convergence times, i.e. it takes more time for the population
to reach a stable state. Enlarging the size of the neighborhood results in a higher speed
of convergence. Varying the length of a simulation run has no effect, when we take into
account that a shorter (longer) simulation run results in more (less) variation around the

stable distribution Z.constant e should be larger (smaller).
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IV. The Multi Action Case.

In this section we focus on stage games with more than two possible actions, i.e. &+ 1 > 3.
We simulate the model at the same parameter values as described in section I11.1. Except for
variations in these parameter values, we focus attention on the influence of varying the values
of the parameter k. In the simulation with k + 1 > 3 we encounter quasi-stable states.

Definition IV.1. The population is in a quasi-stable state, when it satisfies definition IL.1 of
a stable state, except for recurring small intervals [t1,t2], t1,t2 > T, of time.

A population in a quasi-stable state thus has a vector of population fractions Z, where the
state z (t) is very close to most of the time. However, every once in while there are relatively

short periods of time when the state z () is further than e away from the vector z.°

IV.1. Results.

In the model with k& + 1 > 3 stable states occur only for values 3 < k + 1 < 6. For these
parameter values the features the model exhibits are as described below, except for the fact
that the population converges to a stable instead of a quasi-stable state.

For parameter values k + 1 > 7, we find convergence to quasi-stable states. In this case,
the results may depend on the size of the neighborhood. For small neighborhoods (m < 6
approximately), local effects can easily spread out over the whole population and thus cause
global instability. To avoid these effects, we chose to simulate with much larger environment,
mostly with m = 30. It turns out that the simulation results are not dependent on the parameter
value of m, as long as it is not taken too small.

When the number of possible actions producers can take is small, convergence to a quasi-
stable state is fast. We will illustrate this by describing the case k = 10. When k = 10 there
is very quick convergence towards a state in which most producers play the actions 8 and 9.
Some producers play actions 7 or 10 and only a few producers play an action ¢ < 6. There are
no producers left who play the Nash action 0. When this state is reached, convergence towards
the ultimate reported quasi-stable state slows down. This ultimate quasi-stable state consists
solely of producers who play actions 6,7,8,9 or 10. The respective percentages of population

playing one of these actions is shown in table IV.1. In small populations (e.g. 10 x 10) often

YEvaluated with the max norm
2(t) = Zl oo = max|z: (t) — Zi| -
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Action | % of population playing
6 0.4
7 8.7
8 28.2
9 38.5
10 24.2

Table IV.1: The simulation results for oligopolistic competition against the cheapest neighbor
with k£ = 10 in a 30 x 30 torus.

only the actions 8 and 9 are played in the quasi-stable state. This whole convergence process
takes only a short time. Within a few simulation runs the population is in the quasi-stable
state.

After the quasi-stable state is reached the population stays near the state Z for a stochastic
period, after which there is a move away from state Z. The rare state of the population z (¢)
that causes this phenomenon is called a trigger point. In section V we elaborate further on
the trigger point phenomenon. When the state T is left, there suddenly appears a lot more
competitive behavior in the population. After a little while however, the state of the population
starts to converge again and to the same state T as before. The behavior of the population
immediately after the trigger event has occurred can be regarded as a price war. A producer
feels forced to lower his price below the ‘stable’ level. As a reaction more consumers will buy
his product and other producers will more frequently be in a lose situation when they play
the stage game with this producer. As a consequence, they will also lower their price, thereby
starting a downward spiral of the prices in a subset of the population. These effects are very
clearly visible in small populations, where the entire population is affected by such a price
war. In larger populations, the effects of a price war are only local. After a price war has
lasted for a stochastic time (longer in a small population, shorter in a large population) the
affected producers all get a lower profit than they used to have and by playing against similar
producers with low profits, they will more often realize a higher profit than the average profit
of their neighbors. Direct result of this is that these producers will again begin to display more
cooperative behavior. The convergence process towards the state T has started again. Note
that the state with low prices, which occurs at a price war, is not stable.

Although the stable state depends on the parameter k, the features described above do not
change for the intermediate range of k’s, i.e. k not too small and not too large. Ascan be seen in

section IT1.2, for k = 1 the average percentage of cooperation in the population is approximately
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50%. In this case price-wars do not occur. The average percentage of cooperation in the
population in the quasi-stable state, rises monotonous with &, up to about 97% when k = 35.
An illustration of how this rise takes place is given for 1 < k < 35 in figure IV.1 and a few
typical encountered stable states are reported in appendix A. Since higher values of k can be
interpreted as a weaker response of the agents to satisfaction or dissatisfaction, we see that a

weaker response of an agent that updates leads to a higher ultimate degree of cooperation in

the population.

10 +
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Figure IV.1: Graph of the relation between k and the average percentage of cooperation in the
population in the quasi-stable state.

For parameter values above k = 5 we observe price wars taking place.!? Interesting with
respect to the parameter k is furthermore that for increasing & (but still k£ < 35), convergence
towards the quasi-stable state of the population still evolves essentially according to the same
pattern we observed in a setup with k small. Still there is first convergence to a state in which
most producers play one of the higher labelled actions (but this state is not the quasi-stable
state yet) and after this initial, relatively fast convergence, a slower process towards a quasi-

stable state starts. In all observed quasi-stable states, almost all producers play a high labelled

'"When k becomes larger than 35, the average percentage of cooperation in the population does not increase
further. More strikingly, there may arise equilibria in which a lot of competitive behavior is observed (defect
equilibria). The sudden appearance of defect equilibria for values k > 35 is very surprising. The more because it
seems only to be present in a setting where producers have only a small number of neighbors they can interact
with. We will work on the explanation of this phenomenon in future research.
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action, corresponding to setting a price in the upper quarter of the interval [pN , pc].

Again, we also varied the neighborhoodsize when the stage game has more than two actions.
We looked at the effects of extending the set of neighbors to incorporate all 24 two level
neighbors and to the effect of further extending the neighborhood to incorporate all 48 three
level neighbors. In general, for most values of k the quasi-stable state that is reached with large
neighborhoods does not differ much from the quasi-stable state that is reached with smaller
neighborhoods. What does differ is the variation across the observations. This turns out to
be less when the neighborhood becomes larger. A result that is intuitively appealing, since
a wider scope for the individual makes the persistence of small areas with different behavior
much more difficult and therefore should guarantee that there is less variation in actions across
the population.

It turns out that when the neighborhood becomes larger, the speed of convergence rises.
This result seems to be in contrast with Ellison’s (1993, 1995) result on convergence rates
in models with local interaction and Darwinian dynamics. He concludes that convergence
gets slower when the size of the neighborhood increases. A possible explanation might be
given by the following. The main effect in Ellison’s model with Darwinian dynamics is that
a larger neighborhood size implies that it is harder for a mutant action to gain foothold in a
population in equilibrium. This effect is of lesser importance in our model, since the essential
mechanism behind our result has nothing to do with the presence of mutants. The effect
described above, that a larger neighborhood causes a tendency towards more homogeneous
actions in the population seems to be more important in our model. This effect causes the
initial convergence towards a state nearby the quasi-stable state to be swift, thus resulting in

faster convergence altogether.
V. The Trigger Points.

We already mentioned the existence of trigger points when the population is in a quasi-stable
state. In this section we want to give some insight in how a trigger state x(¢) may evolve.
We will illustrate this by means of five figures of the same 3 x 4 subsection of the population
for the parameter value k = 10. As we already mentioned in section IV.1, a combination of
a small population and a parameter value of &k = 10 can result in a stable state consisting
solely of producers who play the actions 8 or 9. In the subsequent analysis such a situation will

be our point of departure. We show that a specific outcome of the random process selecting
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producers, induces one of the producers to lower her price below any price that is played in her
neighborhood. This can be viewed as a spontaneous mutation that arises endogenous in the
model, which is different from the models by Young (1993), Young and Foster (1991), Kandori,
Mailath, and Rob (1993) and Ellison (1993, 1995) where spontaneous mutations are exogenous
features that change the outcome of the models in an essential way.

The subject’s payoffs of the interaction between the subject (S) and a competitor (C), when

they are both playing one of the actions 8 or 9 are given by !

s\c| s 9

8 | 189.28 | 195.20 -

9 || 183.79 | 189.91

Figure V.1 gives the initial state of a small part of the social environment in which all producers
play either the action 8 or 9. Each box represents a producer and we label the producers as
(4,7), 1 =1,2,3, j = 1,...,4, where the label (1,1) indicates the upper-left producer. Every
producer’s last played action is denoted in the upper-left corner of the box, while in the bottom-

right corner the last realized payoff is denoted.!? The situation as depicted, in which 11 out of

9 19 |9 |9
189 189] 189| 189
9 (9 (8 |9
189 189] 184] 189
9 19 19 |9
189[ 189] 189| 189

Figure V.1: A part of the social environment: The initial situation.

the 12 producers have a last payoff of 189.28, can arise when they all played action 8 in their
last game as a subject and that their competitors were also producers playing action 8. The
producers who were in a win situation changed their action into 9 after having played. The
producer at position (2,3) has been playing 9 against an 8 playing opponent, realized a payoff
of 183.79, which was lower than the average payoff of her neighbors and therefore changed her

UNote that this is a part of the full 11 x 11 payoff table.
12T the picture we present only rounded values of the last payoffs. The mathematics however are done with
the unrounded values of the last payoffs.
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action into 8. We will now describe one particular series of random events that leads producer
(2,2) to adapt action 7, which is at the moment not present in (this part of) the population.
We let the random mechanism select producer (2,3). All neighbors of this subject are
identical with respect to the price they set. The subject plays against one of these neighbors
and realizes a payoff of 195.20. The subject is clearly in a win situation with this payoff and
therefore she updates her action to 9. We are now in the situation depicted in figure V.2, which

is the trigger point. Suppose producer (2,2) is selected. Since all her neighbors play action 9,

9 (9 (9 |9
189 189] 189| 189
9 9 (9 |9
189] 189] 195 189
9 19 |19 |9
189| 189] 189] 189

Figure V.2: A part of the social environment: Step 1.

she will play against an arbitrary neighbor of hers and realize a payoff equal to 189.91, which
is lower than the average payoff of her neighbors. Subsequently she will change her action to

8 and the situation in figure V.3 arises. Now suppose the random mechanism selects producer

9 19 (9 |9
189 189] 189| 189
9 8 19 |9
189] 190] 195]| 189
9 19 |19 |9
189] 189] 189| 189

Figure V.3: A part of the social environment: Step 2.

(1,3), although any of the neighbors of producer (2,2), except producer (2, 3), would do. This
subject will play against a competitor using action 8 (not necessarily producer (2,2)) and gets
a payoff of 183.79. We assert she loses and updates to action 8. We have now arrived in the
situation of figure V.4.

Now the random mechanism again selects producer (2,2). This producer competes with
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9 19 |8 |9
189 189] 184| 189
9 8 |9 |9
189] 190] 195 189
9 19 |9 |9
189| 189] 189] 189

Figure V.4: A part of the social environment: Step 3.

her neighbor (1,3) who plays action 8 and therefore producer (2,2) will get a payoff of 189.28.
This again puts her in a lose situation and therefore she changes her action to 7 as depicted in

figure V.5.

9 19 |8 |9
189 189] 184| 189
9 (7T (9 |9
189 189] 195] 189
9 19 |19 |9
189[ 189] 189] 189

Figure V.5: A part of the social environment: Final state.

Now the population is no longer in a stable situation, instead it has entered one of the
small intervals [¢1, 2] , mentioned in definition IV.1 of a quasi-stable state. Since there is one 7
playing producer in the population, other producers who play against this producer will be in
the lose situation and will therefore be forced to lower their prices. The population as a whole
will move in the direction away from the state Z.

After some stochastic time however, there will be enough producers with a low last payoff
to ensure that some producers will realize a payoff higher than the average payoff of their
neighbors and thus will be in win situations again. The trend away from the state T is reversed
and there is again convergence towards the same state Z as before.

The essential feature of the example of a trigger point is that one producer gets to play
twice in very short succession, i.e. before any of his neighbors has played more than once. The

events as described above have a very small probability of happening, but since there are many
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situations alike in which a trigger point is reached, the overall probability of reaching a trigger

point is large enough to observe the effects very clearly.
VI. Conclusions.

In this paper we have shown that cooperative behavior can evolve in a social environment con-
sisting of producers who play Bertrand price competition, when the producers follow behavioral
rules that stem from sociology and when interaction is local. Cooperative behavior evolves for
a wide range of parameter values we considered, so we can state that this result is robust. The
average percentage of cooperative behavior in the population that emerges is fairly high. The
weaker the response (the price adjustment) when a player updates, the higher the ultimate
degree of cooperation that emerges. The percentage of cooperative behavior varies, but stays
within the bounds of [90%,95%]. Therefore we conclude that our behavioral model offers an
explanation for the emergence of highly cooperative behavior in a population. This kind of
behavior is regularly observed in experiments.

In an environment with a high degree of cooperative behavior, we observe the emergence of
price wars. These wars cause a temporary fall in prices and have global (in small environments)
or local (in large environments) effects. The behavioral evolutionary model can therefore be

useful to explain the emergence of the phenomenon ‘price war’ or price crash-bubble cycles.
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A. Stable States.

Here some quasi-stable states of model in section IV.1 are reported to in detail for different
values of k+1, the number of actions in the stage game. In the top row are the possible actions.
Remember that an action i, i = 0,..., k, is setting a price p/v + % (pc — pN) . In the bottom
row are for every action the percentage of the population playing that particular action. In
the last column the average percentage of cooperation in the population is reported. This is
simply the average of the actions weighted by the percentage of the agents playing that action
in the stable state.
k+1=10:

action o |1 2] s a]s]s| 7] s |0 |avnc
%Playing H 0.0‘0.0‘0.0‘0.0‘0.0‘0.2‘7.6‘28.6‘39.7‘23.9‘ 86.6

k+1=20:

Action 0 1 2 3 4 ) 6‘7‘8‘9‘10
%Playing || 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 ‘ 0.0 ‘ 0.0 ‘ 0.0 ‘ 0.0

Action 11|12 (13 | 14 | 15 | 16 | 17 ‘ 18 19 ‘Av %C
%Playing || 0.0 | 0.0 | 0.0 0.0 | 0.8 | 9.1 28.6‘38.3 23.2‘ 93.4

k+1=30:

Action 0 1 2 3 4 ) 6 7 8 8 |10

%Playing | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 0.0 |0.0|0.0]0.0

Action 11 112 (13 (14 | 15| 16 | 17 | 18 | 19 | 20 | 21

%Playing || 0.0 | 0.0 [ 0.0 | 0.0 { 0.0 | 0.0 0.0 0.0|0.0|0.0]0.0

Action 22 123 |1 24|25 | 26 | 27 ‘ 28 ‘ 29 ‘AV%C
%Playing || 0.0 | 0.0 [ 0.0 | 0.6 | 9.0 28.2‘38.2‘24.0‘ 95.7
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