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Frank Kleibergen®
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Abstract

We show that three convenient statistical properties that are known to hold for the
linear model with normal distributed errors that: (:.) when the variance is known, the
likelihood based test statistics, Wald, Likelihood Ratio and Score or Lagrange Multiplier,
coincide, (72.) when the variance is unknown, exact test statistics exist, (74¢.) the density
of the maximum likelihood estimator (mle) of the parameters of a nested model equals
the conditional density of the mle of the parameters of an encompassing model, also
apply to a larger class of models. This class contains models that are nested in a linear
model and allow for orthogonal parameters to span the difference with the encompassing
linear model. Next to linear models, an important set of models that belongs to this class
are the reduced rank regression models. An example of a reduced rank regression model
is the instrumental variables regression model. We use the three convenient statistical
properties to conduct exact inference in the instrumental variables regression model and
use them to construct both the density of the limited information maximum likelihood
estimator and novel exact statistics to test instrument validity, over-identification and
hypothezes on all or subsets of the structural form parameters.

1 Introduction

Maximum likelihood estimators (mles) in standard linear models with exogenous regressors and
(mixture of) normal disturbances have a number of appealing statistical properties. Two well-
known examples of these properties are that the likelihood based test statistics, i.e. the Wald,
Likelihood Ratio and Lagrange Multiplier or Score statistic, are identical when the variance is
a priori known, see e.g. Engle (1984), and that test statistics with an exact distribution exist
when the variance is unknown, i.e. the F-statistics. Another convenient property concerns
the density of the mle of the parameters of the linear model, which is the least squares
estimator. This density is equal to the conditional density of the mle of the parameters
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of an encompassing linear model given that the part of this mle that represents the difference
between the nested and encompassing model is equal to zero. The latter property results from
the normal distribution since the conditional densities of the elements of a bivariate normal
distributed random vector are also normal. As a consequence of these three properties, we can
both conduct tests on the parameters and construct the density of the mle in a straightforward
way.

We show that the aforementioned properties hold for a more general class of statistical
models than pure linear models which are also linear in the parameters. The convenient
statistical properties namely apply to any model that is nested in a pure linear model and for
which a set of orthogonal parameters, which concept we define lateron and implies amongst
others the global orthogonality as defined by Cox and Reid (1987), spans the difference with
the encompassing linear model.

Next to standard linear models, an important class of models that allow for the construc-
tion of orthogonal parameters are reduced rank regression models. Reduced rank regression
models are commonly used in econometrics and some well-known representants of this class
of models are, for example, the instrumental variables regression model, the error correction
cointegration model, the factor model and the simultaneous equations model. We show that
indeed the convenient statistical properties apply to these models, when they also satisfy
the other assumptions, by analyzing the instrumental variables regression model. For the
instrumental variables regression model, we construct the density of the mle, which is the
limited information maximum likelihood (liml) estimator, and exact test statistics by using
the convenient statistical properties that result from the orthogonal parameters.

The density of the liml estimator that we construct results from a different approach then
the one traditionally pursued in the literature, see e.g. Mariano and Sawa (1973), Phillips
(1983) and Anderson (1982). That approach constructs the density from a closed-form an-
alytical expression of the liml estimator while our approach is based on a property which
the liml estimator obeys, i.e. that it satisfies the first order condition. As a consequence, we
obtain a different expression for the density then the one obtained previously. We compared
our expression of the density with the sampling density of the liml estimator for a data gener-
ating process with strong endogeneity and for which we varied the quality of the instruments
and the degree of over-identification. For all of the simulated data generating processes, the
sampling and theoretical density of the liml estimator coincide. We also use the density of the
lim] estimator to illustrate the case of weak instruments, see e.g. Staiger and Stock (1997), for
which we show that it leads to coinciding small sample and limiting distributions. In case of
strong instruments, the density of the liml estimator converges to the density that corresponds
with the limiting distribution which is known from the literature, see e.g. Hausman (1983).

Next to the marginal density of the liml estimator, we also obtain the marginal density
of the mle of the orthogonal parameters. We use this mle to construct exact statistics with
distributions that do not depend on nuisance parameters and that can be used to test hy-
pothezes on the parameters of the instrumental variables regression model. This is remarkable
as the distribution of the liml estimator is non-standard and depends on unobserved nuisance
parameters. Because of these latter properties, the distributions of many statistics that test
hypothezes on the parameters of the instrumental variables regression model depend on unob-
served nuisance parameters, see e.g. Staiger and Stock (1997), Nelson and Startz (1990) and
Zivot, Nelson and Startz (1998). The hypothezes that can be tested using the exact test statis-
tics are: 7. the validity of the instruments, #:. over-identification, i7i. value of all the structural
form parameters, iv. value of some of the structural form parameters. The Anderson-Rubin
statistic, see Anderson and Rubin (1949), is one of the statistics that results (i.) but we also
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obtain novel exact statistics to conduct tests on (subsets of) the structural form parameters
(¢4i. and 4v.), whose distributions do not depend on the degree of over-identification. This is
a well-known problem when one uses the Anderson-Rubin statistic to conduct tests on the
structural form parameters. We also obtain a novel exact statistic to test for over-identification

The paper is organized as follows. In section 2, we discuss the framework for constructing
densities of mles and exact test statistics that results from the orthogonal parameters. Sec-
tions 3 and 4 apply the framework to the instrumental variables regression model. Section 3
constructs and discusses the distribution of the liml estimator while section 4 constructs and
discusses the exact test statistics. Finally, the fifth section concludes.

Throughout the whole paper, the vec operator stands for the stacked columns of a matrix
such that when A = (a1---an), vec(4) = (d}---d)y). Most of the time, we consider the
estimator of a parameter a, indicated by a, as a random variable and not as a function of the
data. For reasons of space, we do not explicitly distinguish these two cases. a then represents
the “true value”.

2 Distribution Maximum Likelihood Estimator and Test
Statistics

2.1 The First Order Condition

We construct the distribution of the maximum likelihood estimator (mle) for linear models,
that can be non-linear in the parameters, with normal disturbances and construct it from the
first order condition (foc) for a maximum of the likelihood. We thus consider the model

y=Xflp)+e, (1)

where y is a T x 1 vector that contains the T’ observations of the dependent variable, X
is a T x k matrix of (weakly) exogenous regressors, ¢ is a 1" x 1 vector that contains the
disturbances and is assumed to be distributed as € ~ N(0, 0%Ir), I is the T x T dimensional
identity matrix, f(¢) is a k x 1 vector function in the m X 1 vector ¢ that is continuous
differentiable except (maybe) for some lower dimensional manifolds of the space on which ¢
is defined, i.e. the R™, k > m. Examples of model (1) are the standard linear model and, in
case of more than one equation, the instrumental variables regression model.
The first order condition for a maximum of the (log-) likelihood reads

%(%)'X'@ @) =0e
% (3 ) X ((X'X)' Xy (7)) =
o) () b0t — (03} f(p)0)
(Z1:) (6-r(g)) =0
W)
(

((X’X

or | . oY _
((h0) (1)) (e
Y or -
(1) (1) (0
where 1 and $ are the mles of the respective parameters, & = (X'X )1 Xy; 6= (X'X )% Ci{ ,
r(1) is a k x 1 vector function in the m x 1 (random) variable ¢ which is such that r(¢) =
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(X'X )% f(®)o™! and an invertible relationship between v and ¢ exists such that agi is non-

singular for all {, {Z) We have also used the chain rule of differentiation, -2 o "l = ( ’w(w)) ( Ll S0) .
We make the assumption.

Assumption 1: ((%, ] 1/)) has full rank for all values of 7:[) except maybe on lower dimensional

manifolds of the space of ¥, i.e. the R™.

has full rank for all values of ¢ except
maybe for lower dimensional manifolds of the space of ©.

2.2 Orthogonal Parameters
The foc (2) can also directly be specified in terms of 1),

<%,y ¢) (6-r@) =0, (3)

such that we can solve for ¢ from the foc (3) and then obtain ¢ from ¢ as ¢ and 1) entertain
an invertible relationship. In foc (3), © is a k x 1 vector while d) is a m x 1 vector. © is
consequently over-identified and no unique solution of © given (1) to the foc (3) exists. To
express the solutions of © given (1)) to the foc (3) in a convenient way we make the following
assumption about the specification of ©.

Assumption 2: An invertible relationship between the k x 1 vector O and the m x 1 and
(k —m) x 1 vectors ¢ and A exists which reads

~

= () + q()A (4)
and where (1) results from definition 1.

Definition 1 q(ﬂ)) is a k X (k —m) matriz function of the m x 1 vector ¥ which satisfies

. ({b)’q(ﬁ)) =0
ii. w b)) =0 (5)
iii. (¢)'q(¢) =1

Assumption 2 essentially contains two conditions as it both implies that an invertible
relationship between © and (1, \) exists and that © is a linear function of \ as specified in
(4). Definition 1 also consists of more than one condition. Its second condition partly results
from the first condition such that models exist for which ¢(1)) satisfies all three conditions
jointly although the number of restrictions in (5) (k(k — m + 1)) exceeds the total number of
elements of q(¢) (k(k — m)). Examples of these models are linear models and reduced rank
regression models. For many other models it is not possible to construct ¢(¢) such that it
accords with all of the conditions in definition 1. These models then do not allow for the kind
of analysis that we conduct lateron.



q(d)) spans the space of solutions to the foc (3) since we can add q(¥)A to every solution
6 = r(¢), for every X that is an element of the R*~™, and still the foc (3) is satisfied. The
solutions to the foc (3) thus span a k —m dimensional mamfold in the space of ©, which is the
R¥, see Hillier and Armstrong (1998) and Tjur (1980). Values of O, like © = 7()) + q(1))A,
thus exist that satisfy the foc (3) but which essentially do not correspond with the analyzed

model (1) because no f(@) exists such that f(¢) = (X’X)_% Ao.

Since an invertible relationship exists between 6 and (4, ), we can construct the density
of (¢, ) from the density of 0. O results from the least squares estimator ®, 4.e. it consists
of the “t-values of ®”, which has a known distribution

d ~ N(®,0%(X'X)7Y), (6)
where ® = f(¢), such that the distribution of © reads
6 ~ N(©, L), (7)
where © = r(¢)) = (X’X)% f(p)o~t, with density
p(©) o exp {—% (@—@)/(@—@)] . (8)
The density of ({Z), 5\) then results after an appropriate transformation of random variables,
P, 3) x (O, 1) [1(6, (1, 4))|. ©)

where J(8, (1, \)) is the jacobian of the transformation from 6 to (1, A), and we obtain the
density of the mle by integrating (9) over A, see Hillier and Armstrong (1999) and Tjur (1980),

p0)= [ p Nk (10)
The density of the mle can, however, also be obtained by using the specification of © (4) and

¢(¥) (5). This specification implies a.0. a special structure for the jacobian that is stated in
theorem 2.

Theorem 2 The Jacobian of the transformation from © to (72), 5\) s characterized by
76,3, )|

(@ Gen ) (@ o () o )

() o) () () (o) ()| -

Proof.

2

1

(11)

@] =|( = %)
—1( (&) + (Vo r) (%52,) «b) )|




Definition 1 implies that ¢(1))'q(¥)) = Ir—m, such that

[(Ik—m ® Q({Z))I) T(—my + (Q(ﬁ))l ® Ik—m) Kk,(k—m)} Bvae;gq) ) =0«
[K(k—m),(k—m) + I(k—m)Q] (Ik—m ® Q(ﬁ))l) B’UeC(Q) ’1/; == 07

where Ky (x—m) is a k(k—m) x k(k—m) dimensional commutation matrix such that Ky (x_myvec(A’) =
vec(A) with A a k(k — m) x k(k —m) matrix, see Magnus and Neudecker (1988), and which

implies that
5 Ove
(fe-m @ a(Y) ( a;)(,q) yﬁ,) = 0.

Combining this with the definition, ( 7| w) ¢(¢) = 0, we obtain

(@) o) (500 ) -

These results imply that ‘J (10, N)) (O, (1, A)) : is equal to (11).

Theorem 2 shows that the random variables {Z) and )\ are globally orthogonal as defined
by Cox and Reid (1987). This results as the information matrix of (1), \), which equals
J(© (7,[), M) J(O, (1, X)), is block diagonal. As a consequence, the conditional density of VY
given A only mlnorly depends on A. The global orthogonality results only from conditions
(#.) and (i4i.) from definition 1 and condition (3.) is redundant for it. The orthogonality
that results from definition 1 is therefore stronger, and thus more restrictive, than the global
orthogonality defined by Cox and Reid.

2.3 The Density of the MLE and the Score Vector

In appendix A, we construct the marginal densities of the mle {Z) and the random variable X
which, is both orthogonal to ¥ and spans the difference with the encompassing linear model
and, is equal to the score vector. Theorem 3 states these marginal densities.

Theorem 3 When r(ﬁ)) and © satisfy assumptions 1, 2, the conditions from definition 1 and
O = r(v¢), the marginal density of 1 reads

ka m D d’: )
—p(W =0) 19

(&) (%rﬁ)%exp[ L (rd) - w))'(r@)—r(w)],

and the marginal density of the score vector X that results from assumption 2 and definition 1
reads

0.6

() o< exp [_%m} | (13)



Proof. see Appendix A.

The marginal density of ¥ (12) is proportional to the conditional density of (¢, A) given
that A =0,

p(#) = p(lA=0)
OCPW% )’A =0 o (14)
o< PO, M)sg |16, (9, M) 5|

and corresponds with the conditional densities given a conditioning statistic that are con-
structed in, e.g., Barndorf-Nielsen (1980,1983). Equation (14) therefore shows that, when the
analyzed model (1) allows for the orthogonal parameters stated in definition 1, the marginal
density of the mle is equal to the conditional density of the mle given the orthogonal condi-
tioning statistic evaluated at the parameter point where the orthogonal conditioning statistic
is equal to zero. Cox and Reid (1987) argue that in case 1 and X are globally orthogonal that
the conditional density of d) given A only minorly depends on X. As the orthogonality that
results from definition 1 is stronger than global orthogonality, since we added condition (3.),
we are also able to make a stronger statement, that the marginal density of {Z) is equal to the
conditional density given that A = 0. This results as, because of condition (i.), not only the
information matrix is block-diagonal, which resulted from conditions (é.)-(¢4¢.), but also no
products of r(d)) and ) in the exponent term of the density of @ appear. The only element of

the exponent term where ¢ and appear jointly is ©' g() X, as A q(d)) g(P)A = by )\, that solely
operates in the space orthogonal to r(1). It therefore does not interfere with r(d)) and the
marginal density of ). The orthogonality of ﬂ) and A comes close to stochastic independence
which implies that the marginal density of d) is equal to the conditional density given any
value of X while it is only equal to the conditional density given that )\ is equal to zero in case
of orthogonality.

The specification of (1), \) from definition 1 satisfies the sufficient conditions for a unique
conditional density of © given that © = r(¢)), see Kleibergen (2000). The density (14) results
from this unique conditional density

P(é)’é:r(ﬁ,) OCP({Z)((:)) 5‘( D= =r(4) ((@:5‘):@)’@:7«@) J (15)

where p(1(6), \(6))|o_ (@) X p(1h, N)|5—o- So, although values of © exist that satisfy the foc
(3) but which essentially do not correspond with the analyzed model (1), when we integrate
over these values to obtain the density of the mle {Z), we obtain a density of the mle that can
be considered to consist of just those solutions to the foc that exactly correspond with the
analyzed model. Thus the solution of 6 to the foc (3) given r(¢)) is not uniquely defined
but we can construct the density of d) from the unique conditional density of © given that
6 = r(}).

The marginal density (13) of A can be used to construct statistics that test the restriction
imposed on ©, © = r(1)), that leads to the marginal density of ¢ (14). As a result of definition

1, ¢(¢) is both orthogonal to r(¢) and 31; As a consequence, in case of a known variance, A3
is equal to all three of the likelihood based test statistics, ¢.e. the Score, Wald and Likelihood
Ratio statistic. The equality of these three test statistics, in case of a known value of the
variance, thus holds when we can represent the difference between the null and alternative
hypothesis with orthogonal parameters, which occurs, for example, when we test in linear
models.




2.4 The Density of the MLE with known variance

The marginal density of the mle (12) is defined in terms of the parameters of the orthogonal
specification from definition 1. This density can be transformed into the density of the mle of
the parameters of the orginal model (1) which then becomes

A -2 af I / af

pe) o ‘U <390’ ) 2 <390’ )
The density (16) consists of the square root of the determinant of the observed information
matrix and the exponent term of a normal density. All these elements can directly be con-
structed once we have specified the model (1) as the orthogonal parameters, that are defined
in definition 1, are not directly present in (16). These orthogonal parameters are, however,
crucial for constructing (16) and (16) is not a valid reflection of the density of the mle when
we can not construct orthogonal parameters that satisfy all the conditions from assumption
2 and definition 1. Especially the first two conditions in definition 1 are important in this
respect as they both need to be satisfied. These two conditions imply that the number of
restrictions on ¢(1) exceeds the number of elements of ¢(1)). For many specifications of f()
we are therefore only able to construct (1)) such that just the second and third conditions
are satisfied. This shows that we explicitly have to verify the conditions from definition 1 and
that we can not apply (16) mechanically.

1
2

1
202

(f(@) = fl@) X'X (f(2) — f@)) |- (16)

exp {—

2.5 The Density of the MLE using a Variance Estimator

When o2 is unknown, we use the joint density of ({Z), 5\) and an unbiased variance estimator
that is stochastic independent from (1), \) to construct the density of the mle. A convenient
estimator of o2 for this purpose is based on the estimator that results from the least squares
regression of X on v,

, 1 1 . .

e | - _ / _

which is distributed as

(T = 1) (T 1), (19

and stochastic independent from ®. The convenient estimator 62 then results as
5% =o? (82)_1 o (19)
and is distributed as
&% ~ iAW (T — K)o, T — k), (20)
where {W stands for inverted-Wishart, with density

G L) T— /{3 O'2
2( + )eXp {—%} . (21)

p(6%) o |6*

Note that the estimator 6* defined in (19) depends on the unknown variance o2 and can

therefore not be constructed as such. We, however, only use 62 to construct the density of the
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mle ¢ as it leads to a more convenient expression of this densﬂ:y than s2. Since s? is stochastic
independent from the least squares estimator ® also 62 is stochastic independent of ®. The
resulting density of (¢, A, %) then becomes

Pl A, 6%) o p(O N)p(6?) | (6, (8, 1) (22)

where © = (X'X)3do! and is stochastlc independent from 4. Identical to (14), we obtain
the joint density of the mle 1) and 6> as the conditional density of (¢, 52) given that A = 0

p(lz):&z) OCP(d):)‘:&z)’S\:O‘ (23)

Instead of 02, we now use 42 to solve for ¢ from 1) to obtain the joint density of ({,5?),

p(@,6%) < p((@

. \ (éiff) XX (w) \ o [=g52 (F(0) = Flo) XX (F7) = £())] - 24

_l(7—
2(T—h+2) exp [—=(Tg:2)02} .

Although &% is stochastic independent from 1[), &% and ¢ are not stochastic mdependent since
we use &7 to solve ¢ from d) As a consequence, the marginal density of 6° that results from
(24) differs from (21). We show an example of this in section 3.3.

The joint density (24) shows why we use 4° instead of 2, as the estimator of o2, since
the exponent term of the joint density now only has 6% in the denominator. This allows us
to obtain some further analytical results as we show in section 3.3 for the limited information
maximum likelihood estimator.

2.6 The Distribution of Score, Wald and Likelihood Ratio Statistics

The score vector, who’s marginal density is (13), can be obtained from the second and third

condition from definition 1
1
! —1{ of -2
' (;D)J_ (X°X) (39‘" ’(;D)J_ ’
1
3

ali) =(XX)H(Flp) o <02 (#
a0 = (o (1) o (1), )

~

where we use the least squares estimator (g()’ q(¥))q(¥)'6 = q(1))'© to obtain A from O
as q(1) is orthogonal to (1), such that

of | 5 ( a7
9 (’D)J_ <U (39"'

— %y' {MX( of |¢) —MX] Y

(25)

VA =y X(X'X) (

-1
! -1 ! _
o) 0 (21),) (k) exxy

Xz(k - m)vag’/
(26)

where My = Ir = V(V'V)"V", V = X (25
Hy: ® = f(p) against Hy : ® # f(p).

ygo) .V = X, and which tests the null-hypothesis



We use the expression of the score vector to construct the statistic X' X. Because of the
1

orthogonality of () to both (X'X)~z ( a1 ) and (X'X)~2 f(¢), which results from defi-
nition 1, A s equal to all three of the likelihood based test statistics, ¢.e. Score, Wald and
Likelihood Ratio, when the variance is known. We only use the second and third condition of
definition 1 to construct the score in (25) but also the first condition has to hold for (26) to be
valid. This first condition is not automatically satisfied when the second and third condition
hold such that we have to verify it explicitly.

When the value of o2 is unknown, we use the estimator s? (17) in (26) and divide (26) by
both s> and k — m such that it becomes,

©
1 XA

ol oo

(T k)s )/(T k)
X2 (k=m)/(k—m)
x*(T—k)/(T—k)
~ F(k—m, T —k),

since (1), \) are stochastic independent from s2. Equation (27) is related to both the Likelihood
Ratio statistic, because it uses the mle under Hy, ¢, and the Wald statistic, since the covariance
matrix s? is computed under H;. It shows that we can construct an exact statistic to test the
null hypothesis of model (1) against the alternative hypothesis of an encompassing linear
model when we are able to construct a set of orthogonal parameters that satisfy all conditions
from definition 1.

The statistic in (27) tests the analyzed model (1) against an encompassing linear model.
The degrees of freedom of the F' distribution of the statistic, & — m, can then be quite large
which affects the power of the statistic. We can often also construct exact statistics that
test a nested model against an encompassing model, that both allow for the construction
of orthogonal parameters which satisfy the conditions from assumption 2 and definition 1,
where the encompassing model doesnot have to be linear. Examples of this in case of the
instrumental variables regression model are discussed in section 4.

In the next sections, we apply the above results to conduct exact inference in the instru-
mental variables regression model. We both construct the density of the limited information
maximum likelihood estimator, for which we show that the resulting density accurately rep-
resents the sampling density, and exact test statistics.

3 Density of the LIML Estimator

Next to standard linear models, an important class of models that allow for the construction
of the orthogonal parameters, that result from assumption 2 and definition 1, are the so-called
reduced rank regression models. Examples of reduced rank regression models in economet-
rics and time series analysis are cointegration, factor and simultaneous equation models. We
use the methodology developed in the previous section to construct the density of the mle
of the parameters of the instrumental variables regression model, i.e. the limited information
maximum likelihood (liml) estimator, which belongs to the latter class of reduced rank regres-
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sion models. In the next section, we also construct exact statistics to test hypothezes on the
parameters of this model.

3.1 Instrumental Variable Regression Model

The instrumental variables regression model in structural form can be represented as a limited
information simultaneous equation model, see e.g. Hausman (1983) and Kleibergen and Zivot
(1998),

p =Y+ 2Zy+e (28)
Yo = X114 ZT + Vs,

where y; and Ys are a T'x 1 and T x (m — 1) matrix of endogenous variables, respectively, Z is
a T X k; matrix of included exogenous variables, X is a T’ x ks matrix of excluded exogenous
variables (or instruments), €1 is a T x 1 vector of structural errors and V; is a T' x (m — 1)
matrix of reduced form errors. The (m — 1) x 1 and k; x 1 parameter vectors 5 and -y contain
the structural parameters. The variables in X and Z are assumed to be of full column rank,
uncorrelated with £; and V3, and weakly exogenous for the parameters § and II, see Engle et.
al. (1983). The error terms £ and Vo, where £, denotes the ¢-th observation on ¢; and Vi
is a column vector denoting the ¢-th row of V5, are assumed to be normally distributed with
zero mean, and to be serially uncorrelated and homoskedastic with m X m covariance matrix

€1t o1 212
Y =war = , 29
<v2t) <221 222) 29)
which is assumed to be unknown. The degree of endogeniety of Y5 in (28) is determined by
the vector of correlation coefficients defined by p = 22_21/ 2’22101_11/ ? and the quality of the
instruments is captured by II.
Substituting the reduced form equation for Y; into the structural equation for y, gives the

non-linearly restricted reduced form specification
Y = XTIB+ ZU +V, (30)

where Y = (51 Y3 ), B=(f In1 ), U=TB+(v 0),V=_v V2),m=c1+Wp
and, hence, (vy; V3;)' has covariance matrix

_ U1t o wir Qi o ell I ell
Q—’Uaﬂ“(‘/%)—<921 922)—<B)Z B | (31)

where e; : m X 1 is the first m dimensional unity vector. Note that W is a unrestricted k1 x m
matrix.

The unrestricted reduced form of the model expresses each endogenous variable as a linear
function of the exogenous variables and is given by

Y = X0+ ZU 4V, (32)

where ® : ky x m. Since the unrestricted reduced form is a multivariate linear regression model,
all of the reduced form parameters are identified. It is assumed that k3 > m — 1 so that the
structural parameter vector § is “apparently” identified by the order condition. We call the
model just-identified when ks = m—1 and the model over-identified when ks > m—1. ks—m—+1
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is therefore the degree of over-identification. [ is identified if and only if rank(II) = m—1. The
extreme case in which g is totally unidentified occurs when Il = 0 and, hence, rank(Il) = 0,
see Phillips (1989). The case of “weak instruments”, as discussed by Nelson and Startz (1990),
Staiger and Stock (1997), Wang and Zivot (1998), and Zivot, Nelson and Startz (1998), occurs
when II is close to zero or, as discussed by Kitamura (1994), Dufour and Khalaf (1997) and
Shea (1997) when II is close to having reduced rank.

The parameter 3 is typically the focus of the analysis. We can therefore simplify the
presentation of the results without changing their implications by setting vy = 0 and I' = 0
(¥ = 0) so that Z drops out of the model. In what follows, let & = ks denote the number
of instruments. We note that the form of the analytical results for § in this simplified case
carry over to the more general case where v # 0 and I' # 0 by interpreting all data matrices
as residuals from the projection on Z.

3.2 LIML estimator

The mle of 3, B, is obtained from the concentrated log-likelihood that results when we have
concentrated out II and ¥ from the log-likelihood of the parameters of the model (28), see e.g.
Hausman (1983),

log(L(B|X,Y)) = 3T log | =120 0l t20)

_1 _ (=B X(X' X)X (y1 —Y2P) 33
o 2Tlog 1 : 2(y1—Y2/3)’(y1—Y2/3)1 - ( )

=3Tlog|1 -7,

where n = (yl_YQé );fgg),x(gl_)% (g)l_.yﬁ ). Since the concentrated log-likelihood of (8 is a monotonic

decreasing function of 77, maximizing with respect to 3 is identical to finding the minimal value
of n

- Y58 X (X' X)X (y, - Vs
n= min (yl 2/6) ( I ) (yl 2/6):| 7 (34)
3 (y1 — Ya8) (y1 — Y2P3)
which is identical to solving the eigenvalue problem
Y'Y -YV'X(X'X)"'X'Y| =0

NI — (YY) 10X XD| =0,

where ® = (X’X)~1X'Y, and to use the smallest root of (35), see Anderson and Rubin (1949)
and Hood and Koopmans (1953). The liml estimator of 8, 3, is then contructed such that the

1

eigenvector associated with 1 equals a(1 —()’, where « is the first element of the eigenvector
associated with 7.

3.3 Reduced Rank Restriction on Random Matrix

The liml estimator constructed previously uses the likelihood of the structural form (28). The
foc (2), that we use to construct the density of the mle, is, however, specified on the linear
model (1). We therefore use the unrestricted and restricted reduced forms, (32) and (30), to
construct the density of the liml estimator. The distribution of the least squares estimator of
the unrestricted reduced form results from the assumption of normality of the disturbances
and the weak exogeneity of X for (3,1I)

d~N@® O (X'X)), (36)
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where ® = IIB contains the “true values” of the parameters ¢ and II. The density of the mle
in the previous section is constructed using the density of the “f-values” of the least squares
estimator

O =(X'X)2d0 2, (37)
whose distribution directly results from (36)
O~ N(®,I,%1L), (38)

where © = (X'X)2®Q 2, with density

p0) e |—yir{ (6-0) (6-0) }]. (39)

The crucial element for the construction of the density of the mle is the specification of the
parameters that are orthogonal to the parameters of the restricted reduced form. An elegant
representation for these orthogonal parameters results from specifying © as, see (4),

©6=ID+T,\D,, (40)
with D = (X'X)2 HBQ2 ( B I, ) , such that we, for example, can specify I : k X
(m—1),asT = (X'X)2 HBQQ, and D : (m—1)xm,with D= ( 6 I, ),6=(BQ) 'Buw,

where 272 = (w1 Q) withw; amx1 vector and Qg a mx (m—1) matrix. The (k—m+1)x1

vector A is such that when A = 0, (40) corresponds with the restricted reduced form. I, and
D, in (40) are specified such that I'isakx (kz m-+ 1) matrix and ', = 0, I’ Fl = Iy_ma1;
and D 1 isa 1 xm vector and DD’L =0, D D) =1 I L and D | can thus be constructed from

the elements of I and D as '} = ( F2F1 It ) (Iy—mi1 + | e ey 1T’2) E, where
I = (f’l I, )I with T, : (m —1)x (m —=1), Ty : (k—m+1) x (m—1); and D, =
(1+68)2 ( 1 & )1.

The specification of I', and D, satisfies all the conditions from definition 1. The first
condition is satisfied as

vee(©) = vee(I'D) + (D', @ I Jvec(N), (41)
and
(D', @ T )'vee(I'D) = vee(I', ' DD',) = 0. (42)
The second condition is satisfied as the derivative of vec(I'D) with respect to 6 and I

Byec(f‘ﬁ)
(Bvec(8) dvec(T))

:(61®f D'®Ik)

~ (@b (5 Iy ) oh) 9

ILet @ be an n X n symmetric matrix with spectral decomposition ) = PAP’ where P is an n xn orthogonal

matrilx of eig?nvectors and A is an n x n diagonal matrix of eigenvalues. The square root of @) is then defined
as Q2 = PAz P'.
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is orthogonal to (D', ® T'}),

dvec(I'D)
(Buec(d) Bvec(T))

(f?i®fl)'< ) — (D, ol (@l Dol )=0.  (44)

The third condition is satisfied by construction since
(DL @l ) (DL @l1) = (18 Liomi)- (45)

All conditions of definition 1 are thus satisfied.

The transformation from © to (6,I",\) is a proper transformation of random variables
which can be shown using a Singular Value Decomposition (SVD) of ©, see Golub and van
Loan (1989),

6=UsV, (46)

where U and V are k x k and m X m matrices such that U'U = I, and V'V = I,,,, and S is a
k x m rectangular matrix which contains the non-negative singular values in decreasing order
on its main diagonal (= (811...Smm)) and is equal to zero elsewhere. The representation (40)
of © can be shown to result from the singular value decomposition (46) when we specify U, S

and V as,
U11 U12 Sl 0 V11 V12
U= , S = dV = , 47
< Un U ) < 0 s ) Vo1 v2e (47)
where Uyq, S1, Va1 are (m — 1) x (m — 1) matrices; v12 is 1 X 1; v}, va2 are (m — 1) x 1 vectors,
Uz, Uz, and Usp are (m —1) X (k—m+1), (k—m+1) x (m—1) and (k—m+1) X (k—m+1)
matrices and s is a (kK —m + 1) x 1 vector. The explicit expressions for §, I' and A in terms

of the elements of U, S, and V' then read, for the construction of these we refer to Kleibergen
(2000) and Kleibergen and van Dijk (1998),

~ U ) B A B }
o < U; )SIVZIh 0= Vi i, A= (Unlzo) éU22821)12(v121)12) 3. (48)

The specification of X in (48) is such that A is an orthogonal transformation of the smallest

. . . 1 _1 )
singular value contained in ss as (UsUsj,) " 2Uss and v],(v12v]5) "2 are orthonormal matrices,
1

/ /

ie. ((Uggng)—%Ugg) ((Uggng)—%Um) — Ij_my1 and (vgz(mvgz)—%) (vgz(mvgz)—a) ~ 1.
The singular values are generalized eigenvalues of non-symmetric matrices and represent the
rank of a matrix. As X is an orthogonal transformation of the smallest singular value it thus
directly represents the rank of O, i.e. rank(©) =m —1< X = 0.

Both conditions of assumption 2 are thus satisfied as an invertible relationship between
© and (6,T',)) exists and (40) is identical to (4). Also the conditions from definition 1
are satisfied. Theorem 3 thus holds and we can consider the marginal density of (§,T) as
proportional to the conditional density of (§,T)) given that A = 0, see (14),

)s=o (49)
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The jacobian of the transformation from © to (8,1, \) evaluated in A = 0 reads, see Kleibergen
(2000), Kleibergen and van Dijk (1998) and Kleibergen and Zivot (1998),

A (T < YW, _ B'Uec(é) B'Uec(@) dvec(B)
’J(@’ (F’é’ )\))’A:O’ o ( B'Uec(l")’ B'Uec(&)’ BA'uec(j\)’A)‘j\:O‘
=(D&el esl D &l )
1
| DD'enL éel \|° (50)
I\ Fer 1er
= DT J3 |Tpuey + 883 =mtD),
and combining this with (39), the density (49) becomes
p(f,é) X (li SAS:)’%: . A
o p(OL, 8, M) sl (©, (8,8, 4) 5| 51)
- .. Pl
o DT |3 [Iney + 88'[3—m+D) excp { L <(FD—@) (FD—@))] .

To obtain the density of the liml estimators, we transform (T',8) to (IL, ) using the ex-
pression given below (40). The (invertible) functional dependence of (II, 3) on (I, 6) depends
on the unknown covariance matrix €. As discussed in the previous section, we can replace €}
in these expressions by an estimator of it that is stochastic independent from ©.

The covariance matrix estimator that is based on a least squares regression of X on Y,

1

1 . .
§ = V'MxY = o= (V = X&) (Y — X¥), (52)

is distributed as, see Muirhead (1982),
~ — QT -k 53
S~W < T ) (53)
where W stands for the Wishart distribution, with density

p(S) o |7 T+ exp {—%tr (T - k)SQ‘l)} . (54)

The covariance matrix estimator (52) is stochastic independent from the least squares estima-
tor ® and therefore also stochastic independent from ©. Instead of S, we use the covariance
matrix estimator

Q= 05710, (55)
which is distributed as
Q ~iW(T - E)Q, T — k), (56)
with density
p(Q) o |73 T—H+mtD) gy [—%tr ((T - K)Q—la)} . (57)
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Since S is stochastic independent from ©, so is ). The joint density of (3, I, () then reads

p(6,1',Q) OCPA(:F )’A op( ) R
o [EYE|# |-y + 88 [F-m4 D] ~HT k)

exp {——tr { (fD - @) (fD-8) +(T- K)Q‘@H .

We solve for (3,1I) from (8,1 using the estimator Q (Note that since Q) (55) depends on the
unknown €2, we cannot construct {2 in practice but we use Q instead of S (52) as it leads to a
more convenient expression of the density of the liml estimator)

(58)

I'D = (X'X)*1BO 5 = (X' X)1BQ, ( (BO,) ' Bay Iy ), (59)

where ()72 = (1 Qg), wi :m x 1, QQA: m X (m — 1). The joint density of (ﬁ, 11, Q) is then
obtained by transforming (I', 8) to (,1I), see appendix B,

p(B,11,€) o< p( (ﬁ,ﬂ,Q),S(ﬁ,ﬂ,ﬂ),ﬂ)!J((f,S),(B,ﬂ))!
’Q’ (T—k+2m)’ﬂ/X/Xﬂ’% ’BQ—lé/’%(k—m+1)’X/X’%(m—l)

exp {-%tr <Q—1 <(T B+ (ﬂB - HB)IX’X (ﬂB - HB)))} .

In case that m = 2, we can analytically integrate out II from (60) to obtain the joint density
of (6,12), see appendix B,

(60)

p(B,9) o< p(BI)q($2)
o QB T—RH2m) ey [—itr (Q (T - k)2 + B'H'X'XHB))}
1
A A N A N ki
O+ (i - 5) 0y (0 - ) (61)
zoo ’92_21"’(@12@2_21—5/)/@1_11.2(91292_21—[3/)’2H/X/XH ’ D(3(k+2j+1))
=0 2[5 + (€205 ') s (203, —F)| ITGER2)) | (7
such that
/ —5m
AL A A A A ~t A A A ~t

p(BI2) o« | + (91292_21 - ﬁ) Oy (91292_21 - ﬁ)

A—1 A AH—1 No=1 (6 =1 A\ Prrvr J
o [ 1922+(912922 —8') Oty (Cuattas —/3)! X'XT r(%(k+2j+1))-| (62)
Lot [ 200+ (1200 ~5) 01l (@120 ) J”F<%(k+2j>>J ’

Q) 0[O ETEEm exp [ty (01 (T - k)2 + B'H'X'XHB))} .

The density ¢({) is the density of the inverted-Wishart random matrix A, A ~ iW((T —
k)Q+ BT X' XTIB,T — k+ m — 1). This inverted-Wishart random matrix has a mean equal
to m((T k;)Q + BTI'X'XTIB) = 2+ B'I' (X/ )IIB and its variance is proportional

to 7. The inverted-Wishart density (), which is not the marginal density of €, is therefore
centered close around its mean for reasonably large values of T' (1" > 25). Hence, for moderate
values of T, we can consider ¢({2) as a point mass at  + B'TI' (32X) IIB such that p(8) =
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(B0 = Q+ BT (LTX) I1B), see appendix B for more details. This is the reason why we use

() instead of S since we can not decompose the joint density of (ﬁ, S) as the product of the
conditional density of ﬁ given S and a standard function of S that has convenient convergence
properties. Because ¢({2) becomes a point mass at ) = Q + B'TI' (X)) IIB, it shows that the

marginal density of Q) has _changed compared to (57). This results because of the dependence
of (B,11) on ) while (I',8) are stochastic independent from ). The marginal density of
therefore changes when we transform (', §) to (3, 1I).

3.4 Properties of the Density of the LIML estimator

The previous (sub)sections focussed on constructing the density of the liml estimator. In this
section we discuss the properties of the resulting expression of the density (61). We discuss
the density itself, its relationship with the already existing expressions in the literature, its
convergence properties when the sample size increases and how it relates to the sampling
density.

3.4.1 The Small Sample Density

The conditional density of 3 given  (62) consists of the product of a Cauchy kernel and a
single infinite sum. Since the first element of the infinite sum doesnot depend on f, the tail
behavior of the conditional density is identical to the tail behavior of the Cauchy density, i.e.
no finite integer moments besides the distribution exist. Furthermore, because, already for
moderate values of T, the marginal density of (3 is equal to the conditional density of i given
that Q = Q+ Bl (X' ) ILB), the tail behavior of the marginal density of 3 is identical to the

tail behavior of the conditional density of 3 given (2. Hence, also marginally no finite integer
moments of B besides the distribution exist. When II = 0, the only element that remains of
the infinite sum is a constant such that in that case the conditional densﬂ:y of 3 given () is
even equal to a Cauchy density. Another simplification occurs when 912922 = 3 since the
conditional density is symmetric in that case.

A convenient and elegant feature of the joint density of (ﬁ , Q) is that it can be decomposed
into a product of the conditional density of B given ) and a function of {2 that has convenient
convergence properties. This function of () is identical to the density of an inverted-Wishart
random matrix. We can therefore use the properties of the inverted-Wishart distribution in
our analysis. The mean of the inverted-Wishart random matrix is equal to W((T -
k)Q+ B'TI'X'XIIB) =~ Q4 7 B'TI' X' XIIB and its variance is proportional to =, see Muirhead
(1982). The mean is also equal to = times the expectation of the quadratic form of the
endogenous variables, E(Y'Y"). This result is not that surprising since Y'Y is used to construct
the liml estimator in (35). Because the variance of the inverted-Wishart random matrix is
proportional to %, the function of € quickly concentrates around the mean of the inverted-
Wishart random matrix when the sample size, T, increases. This convergence is quite fast
which can be concluded, for example, from the well-known result that a univariate ¢ density
with 25 degrees of freedom is almost identical to the normal density. It implies that already
for moderate sample sizes (T > 25), the joint density of (3,) consists of a ridge that depends
onBat Q=00+ %B’ I X' XTIB and is equal to zero elsewhere. Hence, we can then use that
p(B) = p(BIt = Q+ LB X' XIIB).

The density of (3, ?) reads as (61) when m = 2. For larger values of m there is no straight-
forward analytical expression of the conditional density. It is possible though to construct
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such an expression but we will not pursue such kind of an analysis here largely because the
resulting expressions are quite complicated in nature. This results as it involves the mo-
ments of the determinant of a non-central Wishart distributed random matrix. For details
on this, see Muirhead (1982). Since we do have the expression of the joint small sample den-
sity of (ﬁ, I, Q), however, we can sample from that density using Sampling Algorithms like
Importance Sampling, see e.g. Kloek and van Dijk (1978) and Geweke (1989), or Metropolis-
Hastings Sampling, see e.g. Metropolis et. al. (1953) and Hastings (1970). In Kleibergen
and Paap (1998) and Kleibergen and van Dijk (1998), these algorithms are used in Bayesian
analyzes of cointegration and simultaneous equation models where the posteriors are closely
related to the joint small sample density of (ﬁ, 11, Q), see Kleibergen and Zivot (1998). The
computed densities can then be compared with the sampling density to show the validity of
the approach.

3.4.2 Relationship with Existing Analytical Expressions

The density (60)-(62) results from a different approach then the one that is traditionally
pursued in the literature, see e.g. Mariano and Sawa (1972), Phillips (1983) and Anderson
(1982). It also has a different functional form then, for example, the density in Mariano and
Sawa (1972), which consists of a triple infinite sum while the density (62) consists of a single
infinite sum. One reason for this is that the density constructed by Mariano and Sawa is the
marginal density while (62) is the conditional density of 3 given €2. Another reason is that
these densities are constructed using different approaches. The density (62) results from the
use of orthogonal parameters such that the density of the mle is the conditional density of
the mle given that the orthogonal conditioning statistics are equal to zero. The traditional
approach constructs the density from a closed form expression of the liml estimator. Since we
already discussed the construction of the density (62) at length, we now briefly discuss the
traditional way of constructing the density of the liml estimator to show the differences and
similarities with the approach involving the orthogonal parameters.

The liml estimator results from the characteristic polynomial (35), see Mariano and Sawa
(1972),

Y'Y —Y'X(X'X)IX'Y| =0 63
n (Y MyY +Y'X(X'X)"1X'Y) - V'X(X'X)'X'Y| =0, (63)

and is defined such that the eigenvector associated with the smallest root of (63) is equal

to a(l —ﬁl)’ . When we assume independently normal distributed disturbances with mean
zero and identical covariance matrices, Y’ X (X'X) ' X'Y has a non-central Wishart distribu-
tion, Y'MxY has a standard Wishart distribution and these random matrices are stochastic
independent. Since the liml estimator results from an eigenvector of (63), it satisfies the
relationship

1

n (Y MxY +Y'X(X'X)1X'Y) < . ) = Y’X(X’X)‘lX’Y< L ) , (64)

where 7 is the smallest root of (63). The density of the liml estimator 3 can therefore be
constructed from the joint density of (Y'X(X'X)"'X'Y,Y'MxY), which is the product of
their marginal densities since they are stochastic independent, as it is a function of these
(random) matrices, see Mariano and Sawa (1972). The notation of the liml estimator as a
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k-class estimator, see e.g. Hausman (1983) and Phillips (1983),

B= 0y Iy, (65)

where § = Ly + 15 X (X'X) 7' X'y = {5 Mxys + X(X'X) ' X'yy, 7 is the smallest root of

(63), directly shows the functional relationship between 3 and (Y'X(X'X)"'X'Y,Y'MxY).
Note that 7 is also a function of (Y'X(X'X)™'X'Y,Y'MxY). The density of 3 can now be
constructed by performing a transformation of the random variables and integrating out the
remaining random variables besides 3, see Mariano and Sawa (1972) for details. In Mariano
and Sawa (1972), the resulting expression is given and it consists of a triple infinite sum.
Identical to the conditional density of ﬁ given Q, this expression has Cauchy tails such that no
finite integer moments besides the distribution exist. Anderson and Sawa (1979) constructed
the density of an estimator, to which they refer as the limlk estimator, that is closely related
to the liml estimator and results by replacing Y'Y in the characteristic polynomial (63) by
the estimated reduced form covariance matrix Y'MxY. They show that the density of this
limlk estimator is less complicated than the density of the liml estimator, as it consists of a
double infinite sum, and approximates the density of the liml estimator often quite well, see
Anderson et. al. (1983).

The liml estimator that results from the characteristic polynomial (63) is closely related
to the singular value decomposition that we used to construct the density (61). This can be
shown by specifying (63) as

‘nY’Y _¥X'Xb| =0
‘nIm—é’@ —0e
~ ! ! ~
D Im—l 0 ~ ~ / ~ ~ Im—l 0 D
I, — N A A N =0
m <DJ_)< 0 )‘)(FFL)(FFL)< 0 )‘)<DJ_)
~ ~ ! !
D DN Ina ON o o vipe o\ Ina 0|
nIm_<Dl)<ﬁl)< 0 X)(FH)(FH)( 0 5‘) —0e
D' 0 't o
I — A _
Ny < 0 1) 0 )\2 0
; DDT'T 0 .y
nm 0 5\2 —

(66)

0 A D,
(40). The liml estimator of g, B , results from the eigenvector associated with the smallest root

. . ) . L In_ )
where & = (X'X)"1X'Y, 6 = (X'X)2®(Y'Y)™5,0 = (' I,) < Y ) < " ),See

of (66) which is 3’. This eigenvector can be specified by aD’,, where a is a non-zero scalar.
Because of the specification of D, (=(1 + SIS)_%(l —Sl)), see (40), 8 and & then coincide.
When we then conditional on ( estimate II

= (X'X)'XY{Y'Y)'B(BY'Y)'B), (67)

where B = ( 3 I,,_; ), the estimated ILB that results is identical to the one that is obtained
when we specify © according to (40) and discard A. The liml estimation procedure therefore

19



amounts to imposing rank reduction and discards that part of © associated with its smallest
singular value. Hence, although 6 itself doesnot have a reduced rank value, the part of ©
where (3, II) are essentially solved from has a reduced rank value. The main difference between
the two approaches for constructing the density of the liml estimator is thus the stage in which
they impose the rank reduction. The approach using the orthogonal parameters imposes rank
reduction from the outset and then solves for the liml estimator while the approach using
the closed form expression of the liml estimator works exactly the other way around and first
constructs the liml estimator and then implicitly imposes the rank reduction. Note also that
we solve (IL, 3) from I'D and use the covariance matrix ) which has a mean, according to its
marginal density, equal to 7E(Y'Y), and that Y'Y is used in (66). Our approach therefore
does lead to the density of the liml estimator and not of the limlk estimator.

Besides being different from a constructional point of view, the densities (62) and the one
from Mariano and Sawa (1972) are also different in the sense that (62) is the conditional
density of i given ) while the density in Mariano and Sawa is the marginal density. Already
for moderate values of T', however, the marginal density of £ is equal to the conditional density
of 3 given that ) = Q + +B'II' X' XIIB.

A convenient feature of our approach for constructing the density of the liml estimator
is that we straightforwardly obtain the analytical expression of the joint density of (3,11, Q)
(60) without the involvement of the non-central Wishart density. This density is only involved
in the integration over II to obtain the joint density of (ﬁ, Q) The traditional approach for
constructing the density of the liml estimator uses the non-central Wishart density from the
outset, see previous discussion, and the joint density of (B , f[, Q) is therefore more complicated
to construct using that approach. Furthermore, given that we have an analytical expression
for the joint density of (3,1L,2), we can analyze its properties directly or by sampling from
it. In this way, we can compute and analyze the marginal densities also in case of more than
two endogenous variables. To sample from the joint density, we can use Sampling Algorithms
like Metropolis-Hastings sampling, see e.g. Metropolis et. al. (1953) and Hastings (1970),
and Importance Sampling, see e.g. Kloek and van Dijk (1978) and Geweke (1989), which
therefore enable us to compute the density of the liml estimator also in case of more than two
endogenous variables. Hence, we do not have to rely on complicated analytical integration
procedures in order to construct these densities. These simulation algorithms are primarily
used in Bayesian statistics but since the joint density of (8, II, ) (60) is identical in functional
form to the posterior of the parameters of an instrumental variable regression model using a
Jeffreys’ prior, see Kleibergen and Zivot (1998), these simulation techniques can as well be
used to compute and analyze the marginal densities of the liml estimator. In Kleibergen and
van Dijk (1998) and Kleibergen and Paap (1998), these simulation algorithms are used to
simulate from these kind of posteriors to obtain the marginal posteriors of the parameters of
instrumental variable regression and cointegration models.

3.4.3 Convergence of Distribution LIML estimator to Limiting Distribution
The density of 3 given ,

1
A A R " A AN A . | 2™
p(AIY) o< | + (223 = B) 05y (00 — )
. " o e at s J 68
zoo ’92_21"’(91292_21—5/) 91_11.2(91292_21—5)’2H/X/XH F(%(k+2j+1)) ( )
5=0 2’92_21"'(91292_21—3/)191_11.2(91292_21_[3/)’ I3 (b+29))
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can be used to analyze the limiting distribution of B for different values of II. Below we
discuss three different cases, [I = 0,11 =¥/ /T where W is a fixed full rank matrix, and II is a
fixed non-zero full rank matrix, that cover the main possibilities. Note that most other cases
can be considered as combinations of these and that the assumption of normally distributed
disturbances is made in order to construct (68). The results are therefore less general then
the ones obtained elsewhere in the literature, see e.g. Phillips (1989) and Staiger and Stock
(1997), but since the convergence properties result straightforwardly from the density of the
mle, they show the convergence issues for specific values of II in a rather illustrative way.

IT = 0: is known as the case of total non-identification. It implies that the conditional density
of (3 given Q (68) is a Cauchy density and remains that regardless of the sample size.
The liml estimator (3 thus has a Cauchy distribution regardless of the sample size and
converges to a random variable with a Cauchy distribution when the sample size T’ goes
to infinity, see also Phillips (1989).

I = ¥/+/T: is known as the case of weak identification, see e.g. Nelson and Startz (1990),
Staiger and Stock (1997), and Zivot, Nelson and Startz (1998), and implies that the
value of II decreases with sample size. It functionalizes the, in practice, often observed
combination of a large sample size and small but significant “t-values” of 3, see, for
example, Angrist and Krueger (1991). This results since, similar to the previous case,
the limiting distribution is identical to the distribution of the liml estimator and as the
distribution of the liml estimator is not a normal distribution, it can easily generate
“t-values” which seem significant when one mistakenly uses normal critical values but
are non-significant when one uses the correct ones. The similarity results because when

X'x

limr_. (T) = ( is a fixed full rank matrix,

!
limy_oo (IPX'XTL) = limy o <(%) X'X (%)

= limp_o, (¥ (£5) ¥) = ¥'QV,

(69)

and II'X' XTI remains a finite constant when the sample size goes to infinity. The
mapping theorem, see e.g. Billingsley (1986), then implies that
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which shows that the distribution and limiting distribution are identical, what also held
for the previous case. Hence, ﬁ remains a random variable when sample size increases
and does thus not converge to the fixed constant 5. Staiger and Stock (1997) analyzed
this case without the normality assumption on the disturbances. Their focus is also
esspecially on testing and we therefore discuss the testing implications in a later section.

IT fixed full rank: implies that IT' X’ XTI converges to infinity when the sample size increases.
To illustrate the convergence of the distribution of the liml estimator we now use the
joint density of (3,11,) (60). Since limr ., (5X) = Q is a fixed full rank matrix, it
follows from the mapping theorem, see e.g. Billingsley (1986), that,
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We can now divide X' X by T and multiply I1B —IIB by +/T without affecting the joint
density,
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Since II = II, B = [, and 1B = ( f[ﬁ 11 ) = ( g 1I ) , the mapping theorem
implies,
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By performing a transformation of the random variables from 3 to VT (ﬁ —f), and II to
VT (II — II), with jacobian |J((8,11), (VT (3 — B8), VT(Il - I)))| = T-3(:+Dm-1) e
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then obtain that
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which shows that
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~

Q= Q.

The limiting distributions in (74) are constructed under the assumption of normality of
the disturbances. The limiting distributions in (74) accord with the ones discussed in
the literature, see e.g. Hausman (1983).

The above results show that all convergence issues of the liml estimator can directly be
shown using its density. Hence, the density of the mle is a convenient tool using which all
convergence issues can be illustrated.

3.4.4 Theoretical Density versus Sampling Density

To show the validity of constructing the density of the liml estimator as the conditional
density of the liml estimator given that an orthogonal conditioning statistic is equal to zero,
we compare the resulting density with the sampling density for specific parameter values. We
therefore sampled one million datasets from the model

1 =By + &1

where y1, yo : T X1, X : T xk, (1 v2) ~ N(0,X® Ir); X ~ N(0,I, ® Ir), T =100, 7 : k x 1,
= (m..mg),Te=..=m =0 =1 %= < 0;9 ().199
(k,71) and compared the obtained sampling density with the marginal density of £ that is
equal to the conditional density of 3 given 2 (62) with @ = Q+ 7B’ X'X7B, B=( 3 1),
Q= (e B')'S(e B ).Wecan use the conditional density as a marginal density as T
is sufficiently large (7' = 100). Note that X is fixed over the datasets, and we also use it in
the conditional density p((3|(2), such that we only sample (¢; v2) one million times (it is not

) ; for a few different values of
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necessary to perform so many simulations but in this way we obtain an accurate and smooth
sampling density).

The model from which we simulate has strong endogeneity as p = 0.99 and Q55 wy; = 1.99.
Furthermore, when we increase k, we only add superfluous instruments to the model because
the elements of 7 associated with these additional instruments are equal to zero. In this way we
can analyze the sensitivity with respect to including too many instruments. We selected these
parameter values to have highly non-normal densities. A coinciding theoretical and sampling
density at these extreme parameter values is then a strong indication of the correctness of the
expression of the theoretical density and thus of the appropriateness of the concept of using
the conditional density of the mle given that an orthogonal conditioning statistic is equal to
zero as marginal density of the mle.

In figure 1, the theoretical and sampling densities in case of total non-identification, 7, = 0,
are shown and they are indistinguishable. We only show the exact identified case because
increasing the degree of overidentification doesnot affect the small sample or sampling density
at all (as was to be expected from (62)). Figure 2 shows the case of weak identification,
m = 0.1, for £ = 1 (exactly identified) and &k = 5 (4 degrees of overidentification). The
densities are again very similar and it is hard to distinguish them. The same holds for figures
3 and 4 where we show small sample and sampling densities for the properly identified case,
m = 1, with £ = 1, 5 (figure 3) and k& = 20 (figure 4). For all cases, the theoretical and
sampling densities are hard to distinguish from one another which is, given the extreme values
of the parameters of the data generating process, strong evidence in support of constructing
the theoretical density as a conditional density. Note also the peculiarity in the densities in
case of weak identification which are equal to zero in 3 = 1.99 (= Qg ws) at which point the
mode in case of no identification is located.

An interesting phenomenon, that is apparent from all figures, for which the approach using
the conditional density gives a straightforward explanation is the relative insensitivity of the
density of the liml estimator to adding superfluous instruments. The conditional density
approach namely shows that the density of the liml estimator results from imposing rank
reduction on the “t-values” of the least squares estimator of the encompassing linear model,
see (40). The “t-values” of the superfluous instruments are non-significant and close to zero.
The rank reduction is imposed by restricting the smallest singular value of the “t-values”
parameter matrix to zero and thus discards the eigenvector associated with this smallest
singular value. Since the “t-values” of the superfluous instruments are non-significant, they
are associated with the smallest singular value and the eigenvector associated with this singular
value therefore has non-zero elements at the positions of the superfluous instruments. Hence,
when we restrict the smallest singular value to zero and discard its eigenvector, we essentially
remove the superfluous instruments. As a consequence, the density of the liml estimator is
relatively insensitive to adding superfluous instruments. The densities of other instrumental
variable estimators, like for example two stage least squares, are quite sensitive to adding
superfluous instruments though, see e.g. Phillips (1983) and Kleibergen and Zivot (1998).

The figures of the densities of the liml estimators, figures 1-4, show that the shape of the
density changes quite strongly when the instrument quality deteriorates. First, in case of
good instruments the densities are unimodal, then they become bimodal when instruments
are weak, to become unimodal again when the instruments are invalid. Of course we have
specified the data generating processes such that the degree of endogeneity p is maximal and
the bimodality is therefore more pronounced. The density is, however, essentially always
bimodal except for the non-identified case. In the good instrument case, the local modes lie
that far apart, though, and differ that strongly in size that only one mode is visible. This can,
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Figure 1: Exact small sample density (-) and sampling density (- -), 71 = 0.

1.2- R

Figure 2: m = 0.1, £ = 1: Exact (-) and sampling density (- -); k¥ = 5 : exact (-.) and
sampling density (..)
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Figure 3: m; =1, k = 1: Exact (-) and sampling density (- -); k = 5 : exact (-.) and sampling
density (..)
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Figure 4: my =1, k = 20: Exact (-) and sampling density (- -)
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Figure 5: Density 3, 71 = 1 (), 0.5 (..), 0.25 (-), 0.1 (-.), 0.05 (..), 0.02 (-), 0.01 (-.), 0 (-).

for example, be concluded from the analytical expression of the conditional density of ﬁ given
Q) (62). When we use Q = Q + +B'TI' X' XTI B, this density is equal to the marginal density of
3. The density has local modes at 0,/ which results from the t-kernel in (62), and at the
location of the mode of £ Q_lni)él_)frffrlé " In the good instrument case, the latter mode strongly
dominates the first mode and the modes also lie far apart. As the quality of the instruments
deteriorates, however, two phenomena occur. First, the locations of both modes converge to
one another and second the difference in importance of the two modes decreases. Thus two
things occur in our simulation experiment when the quality of the instruments deteriorates,
t.e. if m; converges to zero:

(1). Q+7BTI'X'XTIB converges to 2 and therefore 01295, converges to (2),, ()5 = 1.99.

(¢7). II' X’ XTI converges to zero.

The above two phenomena imply that the two local modes of p(ﬁ ]Q), one at ngflz_zl and
one at the mode of the infinite sum, converge to one another and become equally important.
This can be shown by computing the density of 3 for different values of 7;. In figure 5, we use
the same data generating process as used previously with a fixed degree of over-identification
equal to 2. We then visualize the influence of a deterioration of the quality of the instruments
by letting 71 converge to zero in different steps. This is done by assigning values to m; equal
to 1, 0.5, 0.25, 0.1, 0.05, 0.02, 0.01 and 0. The resulting densities nicely show that when the
quality of the instruments deteriorates that the location of both local modes converges to 1.99
and that both modes become equally important.
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4 Testing in Instrumental Variable Regression Models

4.1 Test Statistics based on the Density of the LIML estimator

The density of the liml estimator (62) doesnot belong to a standard class of densities nor does
the joint density of (3,1L,€2) (60). The joint density of (8,1IL,2) can also not be factorized
such that the marginal or conditional density given {2 of the “t-value” of

1

7= (IX'XID (5 - A2, (76)
where (115 = Q13 —ngﬂz_zlﬂlg, can be constructed analytically. This results as the dependence
of ﬁ on II is more complicated than presumed by the relationship underlying the “t-value”
(76). The factorization is not possible because of the term |BQ 1Bz |2 5(k-m+1) in the joint
density (60) and consequently the transformation of (3,IL, ) to (#,1I,Q) leads to a joint
density of (#,11,Q) for which we can not construct the marginal and condltlonal density of 7
given () analytically. The density of 7 can therefore only be assessed numerically and depends
on nuisance parameters. The small sample distributions of “¢” and Wald statistics testing
hypothezes on ( are as a consequence non-standard and standard critical values are only
asymptotically valid when II is a fixed full rank matrix.

In case of weak instruments, where II = ¥/ VT, see section 3.4.3, the asymptotic dis-
tribution of A3 is identical to the small sample distribution and in that case the asymptotic
distribution of the “¢-statistic” is then also non-standard, see e.g. Staiger and Stock (1997),
Wang and Zivot (1998) and Zivot et. al. (1998).

So, test statistics that are based on the density of the mle have inconvenient properties.
This also holds for cases where m > 2, for which the analytical expression of the density of
the mle is even unknown.

4.2 Testing hypothezes using Orthogonal Parameters

Instead of using the density of the liml estimator to construct test statistics, we can also,
like in section 2.7, construct test statistics that are based on the specification of the reduced
rank regression model and its orthogonal parameters in (40)-(48). Using this approach we
construct four different statistics that can be used to test hypothezes on the parameters of
the instrumental variables regression model. The four hypothezes for which we construct
(exact!) test statistics are: the validity of all instruments, over-identification, the value of all
elements of the structural form parameter, and the value of some elements of the structural
form parameter.

4.2.1 Validity of all Instruments: Anderson-Rubin Statistic

The first statistic that we construct using orthogonal parameters tests the hypothesis that
all the instruments are invalid for the structural relationship. This hypothesis is tested in
the unrestricted reduced form (32). It is specified as, Ho; : ¢; = 0, where ® = (¢, @, ),
w1:kx1, ®y: kx (m—1), and is tested against the alternative hypothesis H; : ¢; # 0. To
reflect the parameters of hypothesis Hy; in terms of the orthogonal parameters of definition
1, we specify O (= (X'X)2d03) as

~

Q=19 (0 Iny)+he, (77)
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where e; is the first m dimensional unity vector and Z:Z) Dk x (m—1), Mo kX1 As ¢
is orthogonal to ( 0 I,_1 ), d.e. (0 In_1 )er =0, ¢ and A, satisfy the conditions from
definition 1. To show that we obtain the specification under Hy; when A\, = 0, we specify !
a.S,

-1 -1 -1 -1 -1 -1
0-1 — wip twig wiellspjwawy;  —wig wiflis g
- —Q_l -1 Q_l
22. 1W21W11 29.1 ,
1 1
-3 -1 -3
_ ( —wi1 W129221 ) ( Wi TWn W112922.1 ) (78)
-3 -3
Lob Q90 0 Q90
=320 5
Wil Wi2
where () = <w21 sz)’wn 1 X1, wyg, why : 1 x (m—=1), O : (m—1) x (m—1),

(go1 = Qo — w21w11 w12, such that

1. A _1
M= (XX, § = (X0} (82— propws) 0, (50)

and © = (X'X)30Q 2 = (0 O, ),

_1 .
where 0, = (X'X )§<I>2922?1, and which shows that A = 0 corresponds with the model under
Hy. Equation (80) also shows that an invertible relationship between (1, A) and (¢;, ®2) exists.
O has a standard normal distribution, see (7), such that under Hy;

M~ N(0, 1), 9 ~ N (O, Iny @ It), (81)

and \; and {Z) are stochastic independent. For a known value of €2, 5\;5\1 equals the likelihood
based test statistics, Wald, Likelihood ratio and Score, and is under Hy; distributed as

e 1 1
)‘Il)‘l = Wi 901(XIX)_%I(XIX)_%¢’1W112
Y X(X'X)"1 X!
- ( w13 o~ Xz(k)

(82)

Similar to section 2.7, when the value of ) is unknown, we use an estimator of {} that is
stochastic independent from ©, i.e. S (52), and then we obtain the exact test statistic,

, Y XX x)71x7y, k
AL @11

VX(X'X) " XNy

1 1
? 811 ?sll/wn - (T— k)sll/(T k) (83)

2(k)/k
~ st ~ P, T = k),

F(Hyn|H,) =

where sq; results from S = jn ;,12 (52)-(54), with s1; : 1 X 1, 8§19, 85 : 1 X (m — 1),
21 022

Sao : (m — 1) x (m — 1). Equation (83) is the Anderson-Rubin statistic, see Anderson and
Rubin (1949). The Anderson-Rubin statistic is known to have an exact distribution and the
above shows how we can derive this result using the orthogonal parameters. It therefore also
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shows how we in general can construct F' statistics in linear models and that linear models
belong to the class of models that allow for orthogonal parameters. The exact distribution of
the Anderson-Rubin statistic is confirmed by the simulations, that we conducted, which show
that the empirical distribution of the Anderson-Rubin statistic is identical to the theoretical
distribution.

4.2.2 Over-identification

The hypothesis of over-identification equates the unrestricted reduced form model (32) to
the restricted reduced form (30). It can therefore be reflected in terms of the parameters as
Hy : ® =1IB, and is tested against the alternative hypothesis H; : ® # II1B. To reflect the
hypothesis Hys in terms of orthogonal parameters, we use (40)

6=TD+T, \D,, (84)

where Ay : (E —m + 1) x 1, and the other elements are defined in (40). Over-identification
corresponds with Hpz : A, = 0 and A; is orthogonal to (6,T"), which is shown in section 3.3.
Under Hgy, As is then standard normal distributed, see (13),

Az ~ N(0, li_pms1)- (85)

We use the orthonormality of I'\, D, and the orthogonality of these matrices to I and D,
respectively, to construct A\, from O,

~

Xy =TV, 6D :F’ X'X):dQ 3D
1 1

86
=1 (X'X) 2 X'YQ 2D, (86)

In the previous section, we constructed the density of the liml estimator from the conditional
density of (§,T') given that A\, = 0. Using ©, we can obtain the specification of I'; and D, in
terms of the liml estimators contained in I and B as

D, =(B.QB,)":B,Q3 (87)
such that the expression for A reads
Ao = (I (X'X) ML) 21T, (X'X) 7' X'Y B (BLOB)) . (88)
The likelihood based test statistics for testing Hy, against H; then become
MAe = (BLOB)T1BLY'X(X' X)L (I, (X' X)) T (X' X)"1X'Y B, (89)

= (BLOB)'BLY'(Myy — Mx)Y B, ~x*(k—m+1).

For a known value of 2, (89) is equal to the Wald, Likelihood ratio and Score statistic for
testing Hyy against H;. In practice () is typically unknown and we then need to use an
estimator of it that is stochastic independent from the score vector. A convenient estimator
for this purpose is S (52). B is then also stochastic independent from S such that

B,SB

——— ~ T -k 90
Bap ~ @0 (90)

(T - K)
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which results as S has a Wishart distribution with scale matrix €2 and T'—k degrees of freedom,
see (53), and B is stochastic independent from S, see Muirhead (1982, theorem 3.2.8). We
can then construct the test statistic

_ 1 -1 —-1ppo-1pnN-1npg-1 / R
F(Ho|Hy) = sbmgtr (($71 = S7UB/(BSTB) 1 BS™) Y (Myq — Mx)Y)

1 B Y'XT (I (X'X)~'1,)~'I, X'Y B,
k—m—l—l o BJ_SBS_
— 1 Ao Ao

k—m+1 B, SB' /B, QB

B Y'XT) (i) (X'x)~ i) )~ X'y B/ (91)

EGEA (k—m+1)

(r-ziegt [ @-h
2> (b=t 1)/ (b—m+1)
=) [(T=F)
~F(k—m+1,T — k).

~o

We simulated the test statistic (91) using the data generating process from section 3.4.4 and
we compared the empirical distribution function with the theoretical distribution function for
various values of m; and k. Figures 6 and 7 contain the empirical and theoretical distribution
functions of the over-identification statistic (91) for values of 71 and k equal to 0.1 and 1,
for w1, and 5 and 20, for k. All other parameters in the data generating process are identical
to the ones used in section 3.4.4. The empirical and theoretical distribution functions are in
all cases identical which is quite surprising given the large differences of the densities of the
mles for the different values of w1 which are shown in figures 2, 3 and 4. This results as the
over-identification statistic (91) is an exact test statistic such that its distribution doesnot
depend on unobserved nuisance parameters.

Figure 8 shows the empirical and (asymptotic) theoretical distributions of the over-identifi-
cation statistic (91) and the likelihood ratio statistic divided by k — 2 for the data generating
process used for figure 6 with £ = 20 and m; = 0.1. The empirical distribution of the likelihood
ratio statistic differs from its asymptotic theoretical distribution which indicates that the
likelihood ratio statistic is not an exact test statistic and that its distribution in small samples
depends on nuisance parameters. The over-identification statistic (91) is an exact statistic,
however, and, as the figures show, its distribution doesnot depend on nuisance parameters.

4.2.3 Value of all elements of the structural form parameter

Likelihood Ratio Based Statistic Under the hypothesis Hys : 8 = 0, the reduced rank
regression model is identical to the model under the hypothesis Hy;. Testing Hps against
His : B # 0is thus identical to testing Hy against Hg. When 2 is known, the likelihood ratio
statistic for testing Hy; against Hyo, and therefore also the likelihood ratio statistic for testing
Hys against His, is equal to, see (82) and (89),

LR(Ho3|H13) = LR(Ho|Ho2) = LR(Hy1|H,) — LR(Hy|Hy)

Al A 2N

=M1 — A ) ) (92)
_ in(X/X)_lX/yl _ BJ_Y/(MXﬁ—Mx)YB/J_

o w11 BJ_QB’Q_

The statistic (92) is under Hys distributed as a x*(m — 1) random variable. Because of the
orthogonality, (92) is also equal to the Score and Wald statistic for testing Hos against His.
When we instead of €2 use the estimator S, which is stochastic independent from the other
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Figure 6: Distribution over-identification statistic, k = 5

k = 20 : empirical (..), theoretical (-.), 3 = 0.1.
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Figure 7: Distribution over-identification statistic, k = 5

k = 20 : empirical (..), theoretical (-.), m = 1.
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Figure 8: Distribution over-identification statistic, k¥ = 20, 71 = 0.1, empirical (-), theoretical
(..), LR/(k — 2) : empirical (-.-), asymptotic theoretical (- -).

elements of (92), and divide (92) by m — 1, we obtain,

F(H03’H13) _ 1 [ X (X' X)) 1 X"y — ((S—l _ S—lB/(BS—lé/)—léS—l) Y/(MXﬁ _ MX)Y)}

m—1 811
1 3\/1 3\1 5\/25\2 i|

m—1 |su/wnn B, SB| /B QB
r B T 1 et 1 —15 —1r7 i
¥ X (X' X)" X"y, B Y'xt) (I (xX'x)” ' )7 x YBJ_]

_ 1 w11 _ ABJ-QA]?/J_
m—1 _ 1) 511 _ B, SB
(T k)wn/(T k) (T—k) == J—/(T—k)

B Y
B aB'

(93)

Under Hys, the elements in the denominator of (93) are all x*(T — k) distributed random
variables that are divided by their degrees of freedom parameter, T — k. For reasonable large
T, the elements in the denominator are therefore approximately equal to one. We are then left
with the elements in the numerator of (93) which are, according to (92), x?(m — 1) distributed.
So, for reasonable large T', we obtain that under Hyg,

F(Hog Hig) = by [SXC00250 gy (571 = SUB(BST1 B BS ) V! (Mg — Mx)Y )|

m—1 s11
Y xX(xX' X)Xy EJ_Y/XﬁJ_(ﬁlJ_(XA/X)_AlﬁJ_)_lﬁ/J_X/YB’/J_
1 w11 _ BJ_QB’J_
- omel k)L [(T— B, SB
(T k)wn/(T k) (T—k)ﬁ/(T—k)

~ F(m—-1,T — k). 01

For the data generating process from section 3.4.4 with a value of 3 equal to zero, so
under Hys, we compared the empirical and (asymptotic) theoretical distribution of the test
statistic (94) for different values of mp; and k. In figure 9, for a value of m; equal to 0.1, the
(asymptotic) theoretical and empirical distribution function for values of k equal to 5 and 20
are shown. For k = 5, the empirical and (asymptotic) theoretical distribution function of the

33



Figure 9: Distribution test statistic 8 = 0, (asymptotic) theoretical (-), empirical: k =5 (- -),
k=20 (-), m =0.1

test statistic (94) are identical. For k£ = 20, which implies a large degree of (nonsense) over-
identification, there is a small difference between the empirical and (asymptotic) theoretical
distribution function of (94) which disappears when the number of observations increases. This
is shown in figure 10 where the empirical and (asymptotic) theoretical distribution function
are shown in case of 500 observations. m; equal to 0.1 implies a very weak instrument and
a highly non-standard density of the mle of (3, see figure 2. Figure 11 contains the empirical
and (asymptotic) theoretical distribution function of (94) in case that w1 = 1, for values of k
equal to 5 and 20. For both values of k, the empirical and (asymptotic) theoretical distribution
function coincide.

The statistic (94) can directly be used to conduct tests on 8 when it is a vector instead of
a scalar, so when m exceeds 2. In that case the analytical expression of the density of the mle
is even unknown. Simulation experiments show that the quality of the approximation of the
empirical distribution by the asymptotic theoretical distribution is less accurate in this case
compared to the univariate setting where m is equal to 2.

Exact Test Statistic The statistic (94) is not an exact test statistic such that its distri-
bution depends on nuisance parameters. We can also construct an exact test statistic for
conducting tests on the value of the structural form parameter. To construct this statistic we

use the specification of © (= (X'X)29Q2) (77),
é == 72) ( 0 Im—l ) + 5\163, (95)

that we also used to construct the Anderson-Rubin statistic (83). Hog : § = 0 corresponds
with Hy; : ¢, = 0 such that, see (80),

0= (X'X)7007=(0 ©;), (96)
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Figure 10: Distribution test statistic § = 0, (asymptotic) theoretical (-), empirical k = 20 (-
1), m = 0.1, T = 500.
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Figure 11: Distribution test statistic 8 = 0, (asymptotic) theoretical (-), empirical: k =5 (-
), k=20 (-.), m =1.
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1
where Oy = (X'X )%Cbgﬁzfl. For the test of the hypothesis of over-identification Hoz : ® = I1B,
which is identical to Hyz : 5 # 0, O is specified as (84)

& 1D +P D, (97)

AsD= (8 I, ), corresponds with I' and A€} corresponds with I' ( & 0 )+ A;D;.
Ao is normally diAstri]:)uted, see Q85), and reflects over-identification. We can then remove the
part of Aie] (= ' (& 0 )+T1A:D.) that is due to the over-identification by pre-multiplying

A€} by (ﬂ)lﬂ))_%{[)l and post-multiplying by e;

PB4 0) 4P D
o A[(& O)AAl L}e (98)
= ( (["1)36 0)er=(IT)26

such that ({Z)I{Z)) éﬂ)qu corresponds with (I"I)28 and we have used that €}e; = 1 and that
d) corresponds Wlth I'. We can therefore use (d/d))_id) )\1 to conduct inference on é and thus

also 3. As i (=) is stochastic independent from )y, (7,[) W)~ 21[) A1 has under Hgs a standard
normal distribution

o = (D) 2P A ~ N(O, L), (99)

and contains the elements of \; that reflect the significance of the structural parameters. We
can now construct an exact test statistic to test hypothezes on the structural parameters using

(99) as
Ndg ~ x2(m — 1). (100)
To construct this statistic, we use the specification of A\, and ¢ (80)
A= (X' X) ‘len ) ¢ (XIX)%((i)Z - 92’1“)1_11“}12)92_2%17 (101)
and that \; and {Z) are stochastic independent. Both A; and {Z) contain unknown parameters.

We replace these unknown parameters by estimators that are stochastic independent from o,
and ¢,. ¢, and ($y — P wiwis) are stochastic independent and distributed as

¢y o~ N(vall ® (XIX)_1)7

- P 102
Dy — Pwitwiz ~ N(Pa, Qa21 @ (X' X)71). (102)
Furthermore, see Muirhead (1982),
s11s12]811) ~ N(wiwis, Qs ® s717), (103)
such that we can replace wijwis by $i7's12 in (102) and obtain that
(= @usidons on ) ~ Nt 01 & (X)) +a (104

where a = @,(s7}'s12 — wijwiz) and a is the product of two independent normal random
variables that both have mean zero as ¢; ~ N(0,wi1(X'X)™1), (s]]s12 — wifwiz|s11) ~
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1
N(0, 201 ® s31). We can simplify a as a = (X'X)"2b¢02,,, where b ~ N(0,I;) (b = A1),
c|s11) ~ N (0, ‘;’1111 m—1) and b and ¢ are stochastic independent.

It also holds that

Saz1 = Sap — o157 S12 ~ W (21, T — k = 1), (105)
_1
where W stands for Wishart distributed and because of which we can specify S,,% as

_1 _1 1
Sooh = ("1 Q7 2, (106)

where Q ~ W(lp,_1,T — k — 1), see Muirhead (1982). We can therefore use S21 to correct
for the unknown variance €221 in (104),

A _1
[(X’X)%(cp2 — y571512)532% 1511, Q | ~ N(©:Q72,Q7 @ I) +b¢Q75. (107)

Both the conditioning random variables and the two random elements of (107) are stochastic
independent from A1. The first element is stochastic independent as it is equal to 7,[)62 3 and
d) and \; are stochastic independent. The second element is stochastic independent from )\1
(= b) as c is stochastic independent from A1. When we construct ¢ as equal to (107), it
conditional mean given s, and @) is equal to @gQ_%. The resulting specification of ﬂ),

~ ~ _1
b= (XX} (@2 — @rsi'sn ) S, (108)

is then such that Syy; cancels out of the expression ﬂ)({bl{[))_%l. The random variable () does

then not affect ﬂ)(ﬁ)lfb)_lﬁ)l such that we can consider the mean of ¢ as equal to ©,. This
specification of ¢ thus satisfies the two necessary conditions to be used in (99) and (100) as
it is a random variable that is stochastic independent from \; with a mean equal to ©,. The
exact test statistic for testing Hys against Hy3 then results as
F(Hos|His) = i X (X'X)7HXY (Yo — yisiy s1) [(Yo — sty s12) X (X' X)X

(Yz = yrsi'sia)] (Y — yaspssz) X (X'X) ' X'y

) tfo'lX’X(i’g—t,blsl_llslg)((&’2—@181_11slg)lX’X(i’g—tfolsl_llslg))_l(i’g—tfolsl_llslg)/X’thol
m—1

L SRR e, _ M) e D Ala/(m1)
m—1 st (TR (TR (T—k) 2L / (T—k)

w11 w11
2(m—1)/(m—1
~ XQ(T k;/(T k)l F(m — 1, T — k)

(109)

To illustrate that (109) is an exact test statistic, we computed its empirical distribution
for the data generating process for which the empirical distribution of the likelihood ratio
based statistic (94) was different from its (asymptotic) theoretical distribution, i.e. the data
generating process used for figure 9 with k£ = 20. Figure 12 contains this distribution jointly
with the theoretical distribution and the empirical distributions of the likelihood ratio and
likelihood ratio based statistics. As (109) is an exact test statistic, its empirical distribution
coincides with its theoretical distribution. Figure 12 also shows that the distributions of the
likelihood ratio and likelihood ratio based statistic (94) are identical but differ from their
(asymptotic) theoretical distribution as they depend on nuisance parameters.
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0.1+ .

Figure 12: Distribution test statistic § = 0, 71 = 0.1, k = 20, F(1,80) theo. dis. (..), exact
stat. (109) (-), LR based stat. (94) (- -), LR stat (-.-).

The statistic (109) can also be used to conduct tests on S when it has more than one
element. Also for these values of m it is an exact test statistic. To illustrate this, we computed
its empirical distribution for a data generating process with weak instruments, m = 3 and
k = 20 with 18 superfluous instruments. Figure 13 shows that the theoretical and empirical
distribution of the statistic (109) coincide as it is an exact statistic. Figure 13 also shows
the empirical distribution of the likelihood ratio based statistic (94) which differs from its
(asymptotic) theoretical distribution as it is not an exact statistic.

4.2.4 Value of some elements of the structural form parameter

The statistics (94) and (109) conduct a joint test on all of the elements of 5. We can also use
the orthogonal parameters to construct statistics that can be used to conduct tests on subsets
of the elements of 3. Consider, for example, the model,

. =YeB + Y30, + e,
Yy = XTI, + Vs, (110)
YZ’) == XH2 + ‘/Z’n

where y1, v1 : T X 1; Ys, Vo : T'X mo; Y3, Va : T' X m3g, m = ma+mz + 1, 3, : ma X 1,
By :mgx 1,11y : kxmg, Iy : kxXmg, Y = (y; Ys Y3), where we want to test the null hypothesis,
Hy, : B, = 0, against the alternative hypothesis Hyy : 8, # 0. The same assumptions hold
for (110) as for the instrumental variables regression model (28). We specify the covariance

matrix  and its estimator S (= =Y'MxY) of the reduced form as, 2 = 811 812 ) :
o1 (2
S = < g;i g;z )Where Qll; SH : (m2 + 1) X (mg + 1), ng, Ql217 Slg, Sél : (m2 + 1) X ms;

32, Sap : M3 X M3.
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Figure 13: Distribution test statistic § = 0, m = 3, weak instruments k = 20, F'(2,80) theo.
dis. (..), exact stat. (109) (-), LR based stat. (94) (-.-).

Likelihood Ratio Based Statistic Under Hy4, the degree of over-identification of (110)
is equal to & — ms 4+ 1. When () is known, the likelihood based test statistics for testing Hq
against the unrestricted reduced form result from (89)

Al A A A A A
(111)

where By, = (B Imy ), Yi= (w1 Yo) and (8,,11,) are the liml estimators which are
computed with Hys imposed, i.e. the liml estimators of the instrumental variables regression
model that only consists of the first (ms + 1) equations of (110). Similarly, for testing the
model under Hy4 against the unrestricted reduced form, the likelihood based test statistics
read

LR(Hy|Hy) = Myhis = (BLOB ) ' BLY (Mysy — Mx)Y B, ~ 3 (k—m+1),  (112)
where B = (3 I, ), 8 = (B; B). When © is known, the likelihood ratio statistic for
testing Hoq against Hi4 is equal to the difference between (111) and (112)

LR(HM]HM) = LIR(HM]H}) — LR(HM]Hl)
= )\Q4)\O4 - )114)\14 ) N
= (Boar 1By )7 Boar Y{(Myq, — Mx)Y1By,,
_(BJ_QBQ_)_lBJ_YI(MXﬁ — Mx)YBj_,

(113)

and is under Hy, distributed as a x?(ms) random variable. Similar to (90), we have that under
Ho,
Bos1S11Bjs,

(T — k)5 :
Bos1 Q211 B3,

~ AT~ ), (114)
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Su Sz ) (52), with S11 : (m2 + 1) X (ma + 1); S12, S5 ¢ (ma + 1) X mg;
521 522

522 :ms3 X mg, such that

where S =

F(HO4’H14) = mig [tr ((5'1_11 - 5111304(3045111304) 1BO45’11 ) (MXH MX)YI)
—tr ((5—1 — S'B(BS'B)'BS! ) (Myry — MX)Y)}

1 BO4J_Y1'(MXﬁ1—MX)Y1B’64J_ . BJ_Y'(MXﬁ—MX)YBﬁ_
m3 BOALJ_SllBéALJ_ BJ_SB/

L L (115)
[ BO4LY1SMxﬁ1_{\4X)YlBO4L ms BJ_Y/(M _MX)YBJ_ -|
. Boa1Q11Bj, | BJ_QB /m
- Boa1 S11Bh, |
{ e -k gEagt /(- J
~ F(m3, T— k’),

when T is sufficiently large. This results since both (T — kz)% / (T'—k)and (T — k) giég; /
4

(T — k) are x*(T — k) random variables divided by their degrees of freedom parameters. When
T is sufficiently large they are therefore approximately equal to one.

Exact Test Statistic The statistic (115) is not an exact test statistic such that its dis-
tribution depends on nuisance parameters. In a similar way as for the joint test statis-
tic on all the structural form parameters, we can also construct an exact test statistic to
test hypothezes on subsets of the structural form parameters such as Hyy : 8, = 0 against

Hyy: By, #0. To construct the exact test statistic for this hypothesis we use the specifications
of O (= (X ’X)z(I)Q )

6=TD+T,\MD,, (116)

Wheref:(fl fg),flszmg,fgzk:xmg,ﬁ_<gl I’(’)"Q IO ):(Pl),glzmgxl,
2 ms

62:m3><1,5\4:(k:—m2—m3)><1,(kz—mg— 3)>0,and
O=(6, 6,), 6= CGE+CLAE, (117)

where 6, : /{:x(mg-l—)ég /{;Xmg,E’—(El ImQ),Elzmgxlé’ k X ms, and

As : (k—ma) X 1. As 6 is identical in both specifications, ', I's, and 6; from (116) correspond
with @, ©, and &, from (117) resp.. This then implies that

PO 0 00 PN
(I Ty) < 5, 0 0 ) +T Dy (118)
from (116) corresponds with ( G xE, 0 ) from (117). We can pre-multiply (118) by I, and
Y . A
post-multiply by (Dl)L , which corresponds with ( £, 0 ), and obtain that I', ( 6, 0 0 )

1
2

~ ! A A oa A A A
(Dl)l corresponds with ©,(7, As. This shows that we can use (@'QGLG'L@Q) 8,1 A to

conduct inference on 32 and thus also ﬁz. We therefore analyze the different elements of this
expression to obtain an exact test statistic for conducting tests on 3, only.
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X5 is normally distributed

As ~ N(0, Ty_pm,), (119)

l\’:l»—t

from which it results that \g = ((:)’QG’ J_éﬁ_ég) @ G | s is distributed as

Ag ~ N (0, In,), (120)

since both G L and @2 are stochastic independent from 5\5 and k& — my — ms > 0. We can use
(120) to construct an exact test statistic to test Hyy against Hyy as

Al o~

AgAs ~ X*(ms). (121)

To construct the exact test statistic for testing Hos against His, we first construct the
different elements of Ag. O results from (80)

. . . _1
@2 - (X/X)% (@2 - @191_11912) 922?1 (122)
_1
= (X'X)3X (Yo - (mn Yo ) Q) Qo
where &1 = (X'X)7'X" (g Y2 ), & = (X'X)"'X'Y;, while A5 and G result from the
decomposition of ©; (117) and (86)-(88)

As = (ﬁ'u(X'f{)_lﬁu)_%ﬁh(X:'X)_llX' (v Y2 ) BlL(BuQuB)? (123)
G, = (XIX)_EHU_(HIU_(XIX)_IHM_)_E,

where IT; and 3, which is used in B; = ( 3, I, ), are the liml estimators of the parameters
of the instrumental variables regression model that only consists of the first (ms+1) equations
of (110). Combining these expressions, we obtain that

1

A, oA 1 A o ~
GG = 0 (%2 — B105002) T (114 (X X)) 2, (124)

[

such that
A A N N _1 N N [N A A A ~ ~ _1
LG 1G 0 =0y (‘I’z - @191—11912) I (T (X' X)) I, (‘I’z - @191—11912) Qo07

- 92_2%{ (Y3 B ( ZERE ) QIllle)l [Mxﬁl - MX] (Y3 - ( h Ys ) 91_11912) 92_2%1:
(125)

and

A A A _1 A A A
LG 1A = (‘I’z - @19;11912) I (T4 (X7 X)) 7,
(X'X)7'X' (31 Y2 ) By (BuSmB )™

—3/

=0 (Ya— (11 Y2 ) Q) [Myg, —Mx| (1 Y2 ) By (B By ).
(126)
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~l A

As a consequence, we can express A\g\g as

5‘2;5‘6 = Buﬂ=1n]§,uéu( y1 Yo )I [(Myg, —Mx] (Ys— (1 Yz ) Q7 ) 1
(0= (w ¥2) 2510) Mg, = M) (= (w1 ¥o ) 2500))
(Ys— (1 Yo ) Q') [Myy, — Mx] (1 Y2 ) B,
~ g ~ ~ g -1 .
=tr { <Ql_11 - Ql_llBl (3191_1131) BlQl_ll) ( Yo )I [Mxﬁl - MX]
(V= (m Y2)9500) (5= (91 Y2 )0l 0u) [Myg, — Mx]

(Vo= (Y2 )000)] " (- (m Y2) /) [Myq, - Mx] (12 Y2)}
(197)

The expression of 5\&5\6 in (127) contains the parameters {);; and €15 which are typically
unobserved. We replace these parameters by estimators that are stochastic independent from
O, to obtain the exact test statistic. Using (90), it results that

- !
B:.SuBi |

(T - K)
By, 1By

~ T - ), (128)

as S7; has a Wishart distribution with scale matrix ;; and Bl 1 is stochastic independent
from S1;. As explained for the exact test statistic for testing all the elements of 3, we can
also replace Q;'Q1s by Si'Si2. The resulting expression of the exact statistic for testing

Hy, : B, =0 against Hy4 @ 85 # 0 that results from 5\&5\6 then becomes,
F(Hou|Hi4)
— 1y { <S;11 AT AR BlSﬁl) (9 %) [Myn — Mx] (Ya— (91 Y2 ) SiiSu0)
(= (Yo Siisi) My, —Mx] (Y= (w0 %2 ) SiiSus)|
(Vo= (3 Y2)Si'S) [Myq, —Mx] (12 Y2)}
- ((T—k)B’U_SnBh/lé’u_ﬂllé’u_)/(T—k) {m%méli (0 Y2 (Mg, — Mx]
(B (%) 050m) (5= (3 15 ) 056) [Myg, — M)
(Vo= (%) 9'0w)] " (5= (n Y2 )O050n) [Myn, - Mx] (01 Y2 ) B}

% (ms3) /m,
~ sty ~ Flms T — k).

(129)

For a data generating process with 7' = 100, m = 3, m3 = 1, weak instruments, strong
endogeneity and a large degree of over-identification (18), we computed the empirical distri-
butions of the exact test statistic (129) and the likelihood ratio based statistic (115). Both of
these empirical distributions and the theoretical distribution of the exact statistic (129), which
is a F(1,80) distribution, are shown in figure 14. The theoretical distribution of (129) can
be considered as the asymptotic distribution of (115). Figure 14 shows that the test statistic
(129) is indeed an exact statistic as its empirical and theoretical distributions are identical.
The distribution of the likelihood ratio based statistic (115) differs from its asymptotic distri-
bution which shows that it is not an exact statistic and that its distribution in small samples
depends on nuisance parameters.
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Figure 14: Empirical distribution exact stat. (129) (-), Ir based stat. (115) (- -) and F(1, 80)
theoretical distribution (..).

4.3 Confidence Regions

Instead of testing for zero values of the structural form parameters the statistics in section 4.2
can also be used to test for other values. In that case we replace the endogenous variable ;
by yi = y1 — Y28, when the hypothesis of interest is Hy or Hys and the hypothesized value
for B is B, or yi = y1 — Y3By in case Hy, is the hypothesis of interest and the hypothesized
value for (3, is (B4,. Except for y; the whole analysis conducted in the previous sections then
remains unchanged.

We can invert an observed test statistic using its distribution under the hypothesis of
interest to obtain the p-value of the hypothesis. Using this procedure for different hypothesized
values of 3, or (35, enables us to construct a (100 — )% confidence region for 5 or 3,. Since the
statistics from the previous section are exact we can thus construct exact confidence regions
even though the density of the mle depends on unobserved nuisance parameters. Note that
the confidence regions of the parameters of the instrumental variables regression model can
be unbounded, discontinuous or empty, see e.g. Dufour (1997) and Zivot et. al. (1998).

5 Conclusions

We showed that the convenient statistical properties that hold in linear models also apply to
a more general class of models. This allows us to analyze these models in a novel manner.
We therefore conducted such an analysis of the instrumental variables regression model and in
this way obtained new insights into the statistical properties of this model. We constructed,
for example, a novel expression for the density of the liml estimator and exact test statistics.
Especially the latter are important for practitioners given the common appearance of weak
instruments in applied work, see e.g. Angrist and Krueger (1991), and the robustness of these
test statistics to this phenomenon. An important area for future research is therefore to apply
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our test statistics to real data-sets and to study their power properties. This will also show
how important our initial assumptions, like, for example, the normality of the disturbances,
are. The assumption of normality of the disturbances can at least be relaxed to normality of
the least squares estimator but some of our results probably also apply for mixtures of normal
disturbances.

Another area of future research is to apply the analysis to other models that satisfy the
orthogonality condition.
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Appendix

A. Proof of Theorem 3: The marginal densities of the MLE and the Score
Vector

The joint density of (¢, A) can be specified as
p($,A) o< (B, A))|J (8, (¢, )|

6
o (G + (o) (2525 ((B01s) = (4o 1) (#525))
)

=g -6) () + DA -0)|.

M1

The orthogonality conditions (5) imply that we can also directly solve ¥ from © without the
involvement of X\ since

(Z1) 0= (1) i +aim = (2o1,) i = (21, 666

As a consequence, we can solve for ¢ from © by using (3)

or " or .
(ails) = (k)
which, given a value of ©, are m equations with the m elements of ¢ as the only unknown
elements such that d) is exactly identified. We can solve for d) as it results from the first

@) = (&) o)
with g(?,[)) a m-dimensional continuous differentiable function of 1[)2 S}lcb that a unique so-
lution ¢ exists. When we solve for ¢ from ©(¢), \), we first map ©(y, A) onto @(7,[), M5z
which is equal to 7(1), and then solve for ¢ from ©(1), A)|5_,. The projection of @(7,[), ) onto
(1, )]s, is an orthogonal projection as the difference between @(7,[), A) and (b, \)|5_y, i-e-

q(¢)A, is orthogonal to ©(1, \)|5_,- Only the projection onto ©(), A)|;_, is an orthogonal
projection as projections onto other values of A, say Ag # 0, do not have the property that the
difference between the original value and the projected value is orthogonal to the projected
value, (O(1), A) — O, A)|52y,) O, A)|52y, 7 0- When we have obtained the value of ¢ from
@, we can construct \ as

two orthogonality conditions from (5) that r(¢) is spanned by 2 e

A= q()e.

Since A is not involved when we solve d) from ©, we can construct the marginal density of
9 directly from the marginal density of ©. This is also reflected in the equatlon for A as that

/
equation shows that, by construction,  is stochastic independent, of ( 57| 1/;) , since ( 57| 1/;)
and ¢(¢)) are orthogonal and O has a normal distribution with an identity covariance matrix,

while ( 507
O(1), A) thus lead to the same value of ¥ when we solve for ¢. This shows that A operates in

) O is the random variable from which we obtain 7,[) All implicit values of A in

the space orthogonal to (a% ]w) and doesnot influence the solution of ¢). When we solve for 1
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we therefore (implicitly) conduct an orthogonal projection of O(th, \) onto O(4h, A)|5_ o= = r(¢)
for all values of A since (O(1), \) — @( D, M) 520) O, A5 = 0. Afterwards, given ¥, we can
then obtain the value of A from ©(1), ). Integrating the joint density of (1), ) over \ to obtain
the marginal density of ¥ is then identical to conditioning on the value of X where all values
of \ are mapped on using the orthogonal projection that we use to solve for ¢, i.e. A\ =0. The
marginal density of d) is therefore equal to the conditional density of d) given that )\ is equal
to zero

~

p({/)) X ka m P 7{’:%‘) )
% Jusen DO, A)II(O, (5, ) 1A
X Jsmwn [P, )50l T(O, (8, A))lsol| PAID)IA
o [PO@W ADlscol JO, (B, Mlscol| fermm p(AIE)IA
x E <A)ﬁ>>u Lol (O, (%, ) 520
= p(h|A=0).

Since we can solve for ¥ from O in a way that doesnot involve A, and therefore obtain the
marginal density of ¥, we can also construct the conditional density of A given 1. Because

o ~ oA < .
(a%’ 1/,) O is stochastic independent from ¢(¢))'0, the conditional density of A given 1 then
results as

POI) o exp | =2 (3 = M@ = A@) |

where A(1) = q(1)'©, and is a normal density
M) ~ N(a($)'O, Iy—m)-

. A o
The random variable A is essentially stochastic independent from v as v results from (a%, ] 1/,) C]

which is stochastic independent of . ﬂ) is therefore only reflected in the mean of the conditional
(normal) density of A and not in the variance. To construct the marginal density of X, we have
to take the expectation of the mean of the conditional density of A with respect to d) In order
to construct this expectation, we first construct the moment generating function of r(d)). The
marginal density of {Z) reads

p(¥) =pH|A=0)

/ 3
or |, i,A
(%1s) (3515)

where we have assumed that Eg(0) = r(1). We construct the moment generating function of
(1) using

0.6

exp =4 () = r(0)) (v = 1) |

such that




The moment generating function of (1)) then results as
M(u) = E, [exp (u'r(ﬂ)))}

= Jom exp (u'r() ) p()d

= fane|(Z13) (215)| e |=5 (r@) = r@) (r@) = r()) + u'r(zb)] a9

= exp [r(¢)'u+ Ju'u]

Jee|(205) (215)| e | =3 (r®) = ) + ) (+() = () +u))] i

= exp [r(¥)u+ 3u'u]

(%15) (39)
oy’ Y oy’ 1Y

[T

NI

M1

where ¢! =[5,

Because Eg(0) = (1) and Ey(r(y)) = r(¥),

it results that

. N A . ’
As explained before, A results from ¢(1)'© and ¥ results from ( 52;,) © which are stochastic

independent. Furthermore, ﬂ) is independently obtained of X Asa consequence,

~

Es,3)(a()A) = By Egs(a())) = ExEy (a($)A) = Ey(a(9) Es(N)

and combining this with E 5 1/))( q(¥)A\) = 0 implies that E;(\) = 0.
The marginal density of ) results by integrating the product of the conditional density of A
and the marginal density of ¢ over 9. ¢ is only present in the mean of the conditional density

of \ such that we only need to consider the expectation of the mean of the conditional density
with respect to 1. As E(A) =0, it then results that

B3 = By (Eyg) = By (a)r() = By (a() r(@)

and the marginal density of ) is therefore standard normal

A~ N0, I_m).
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B. Density LIML estimator

The density of the liml estimator ﬁ is constructed in four steps:

1. Construct the densities of the “t-values” of the least squares estimator and the covariance
matrix estimator.

2. Construct conditional density of “¢t—values” given that they have reduced rank.

3. Solve for the limlA estimator from the “t—values” under reduced rank and construct the
joint density of (5,II) and the covariance matrix estimator.

4. Integrate out II and obtain density of the liml estimator B given the covariance matrix
estimator.

In the following we discuss each of the four different steps:

1. To construct the density of the LIML estimator of f, B, we use that the OLS estimator,
¢ = (X'X)"1X'Y, is distributed as,

d~N@Q® (X' X)),

where ® = IIB B = ( 8 In_1 ). The “t—values” of & are defined by 6 = (X'X)39Q3,
and are distributed as,

where © = (X'X)2®Q 2. The density function of these “t—values” therefore reads,

nO) e |5 ((6-0) (0-0) )|

The covariance matrix estimator S = =Y’ MyY is distributed as,

S~ W (70T — k),

and is stochastically independent of ®. The expectation of this random variable is {2. Instead
of the covariance matrix estimator S, we use the covariance matrix estimator 0 = Q571Q
which is distributed as,

Q ~iW(T - E)Q, T — k),

sAince Q1 ~ iW((T — k)Q~1, T — k), and has expectation 7——=—0. The density function of
) reads,

A A 1 A
p(€2) o ]Q]_%(T_’H'mﬂ) exp {—Etr ((T - /{;)Q_lﬁ)} ,

and ) is also stochastically independent of & and ©.
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2. To construct the conditional density of the “t—values” given that they have reduced
rank, we specify O as,

©=TID+T,\D,,
where I' : k x (m 1) ﬁ:(m—l)xm,ﬁ:(g Im_1),Sz(k—m—i-l)xl,andfifz(),

F I, =1 a1 D, D= 0, D lﬁl = 1, which results from a singular value decomposition of
©. The density of the liml estimators results from the density of (I, ) given that A = 0,

~

( (fvg)‘ ’)\ O’J( ( 875‘))’5\:0’
DD'®I, 69T
X / A A
®

Sl el ) oy {_%tr <(f[7 ~o) (fh- @))}
(s 1) = 68 & 3) [ exp |40 ((£D - @) (D - 0) )]

A é ) %(k—m—i—l) 1 A AV
o [P | 1y + 86 exp |~itr ( (PD-@) (TD-0) ).

3. The liml estimators can be solved from I'D by using an estimator for the unknown
covariance matrix ). This estimator is also a random variable and needs to have a mean
proportional to © and to be stochastically independent from ©. Instead of S we use ) as
estimator /random variable to represent €2 as it leads to a more convenient expression of the
density of the liml estimator. Because of the rank reduction imposed on @, we can exactly
solve for the liml estimators from I'D,

J
1
2

-1
Bin Int ),

NI

D = (X'X)*TIBO % = (X'X)%ﬂf}fzg( (BQQ)
where )73 = (&1 Qo) with @1 a m x 1 vector and Q) a m x (m — 1) matrix such that
§ = (BQ2)"'Biy and T' = (X'X)311BQ,. o o -

To construct the Jacobian of the transformation from (I, 6) to (IL, 8), J((T', ), (IL, 8)),
§ = (BQy)"'Bay, I' = (X'X)211BSy, we use the following results:

61}60({5) _ A V—1 Bvec(?)
dvec(B) (Wl ® A(BQQ) ) B'Uec(Aﬂ)A’ . i
(s ) (10 50 (o5 1)
— (0re, ® (BQQ)—l) - (wlé'(éﬂz)—vﬂgel ® (BS))™!
= (& (Im . B'(BQQ)—NQQ) 1 ® (BQQ)—l) ,

Bvec(l’ A L
B'UeC((ﬁ))/ = QQBI ® (XIX)Q) !
where e; is the first m dimensional unity vector. Because %‘Egg, = 0, the jacobian then
becomes
SIS 7 Hvec(d dvec(l"
J((F7 6)7 (H’ /6)) ‘ - B’UEC((B))/ B'Uec((f[))’

= | (Im—B'(BQQ)—NQQ) © (BOy)~ H (B © (X'X)3)
(m-1)
(Im — B'(BQ,)" 1'92) er

N oA k-1
= |BO| XXV oy
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The joint density of (f[, B) and ) then reads,
(ﬁ,)AAAAAA S
p(D (I, 3,9, 8(11, 5,9) |I(£,8), (0, 3)| ()
R R NET oA N—1 . o oA v|zk=m+l) L
~ ‘QQB’H’X’XHBQQ‘ ‘Im_l + BQQ) Binin B (BQQ) Q3T —ktm1)
SN A A [ A A ! A A
‘J ((F, 8), (H, ﬁ)) ‘ exp —%tr <Q—1 {(HB _TB) X'X (HB _ HB) (T -
~ |—(k—m) | . (k m+1)
o< ‘BQQ‘ ‘H’X | BB + Boin B yQy—% (T—ktmt1)
7 (0.8). (11.5)) | exp |30 (g {(ﬂf} ~n5) x'x 1B) + (T -
—(k—m 1 L(k—m
x ‘BQQ‘ (k—m) ﬂ/X 12 BQ—lBI 3 (k=m+1) ’Q’_%(T—k—l—m-l—l)
A A s i R A A ’ A
‘J ((F, 8), (H, ﬁ)) ‘ exp [—1tr <Q—1 {(HB — HB) X'X (HB - HB) (T -

since QQQQ + (,{A)l(j}l = Q_l

In the following we use that = < A

Qggi(m—l)X(m

\QQBI

(B In).

since B =

and B(2, is a square matrix.

o
922

Qll ), Qll 1 x 1, le, Qllz :

o)

QQBI
~ /
61 B ) ‘
)I =162,

QO

- 1), Qe = — Q1292_21(221, and that

~ -1 .
o <Im _B (QQB’) 92) e

wiey

Q261

(

The density p(f[, B, Q) then becomes,

—(k—m)

p(1L, 3,9)

‘BQQ‘ XX 2 |,

Rt

1
(T—k+2m) ‘ﬁ/ ' Xﬂ‘ 2 ‘ BO-1R

exp

1

o< ]2

exp

2(k—m—I—l) R

2~
(zm - B (B0) " Q) e
5 - HB)IX’X (1B - B) + (T - k)
o

‘H/X/ lBl %(T—k—i—m—I—l)

(m—1)

1 ’X/X’%(m—l)

X (1B —1B) + (T - k)

(m—1) x 1;

/)

:—%tr <Q—1 {(ﬁB - HB)IX’ }) :

4. To construct the conditional density of ﬁ given Q, we first decompose the trace com-
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’:|>
\Q>
€>

ponent of the density p(Il,

tr <Q—1 (ﬂB — HB)IX’X (ﬂB — HB))

o~

r (Q— (B X' X118 — ( B X' XILB + B’H’X’XﬁB) +B H’X’XHB
-1

o ((g _ 0B (BO- B BQ) B’H’X’XHB) o <BQ—1B' (f-w) x'x )

A A A AN\ 1 " A
where ¥ = I1BQ~1 B/ (BQ_lB’ ) . To obtain the conditional density of 3 given {2, we con-
struct the integral of the joint density of (f[, B, Q) over I,
p(53,9)

I(k—m
o ’Q’—%(T—k—l—Zm) X’ O-1p! 2 (h=m+) ’X/X’%(m—l)

N N A A A A St B N
exp {—%tr ( Ot - 0B (BOTBY) BQ—l) B’H’X’XHB) (T — k;)Q—lﬁ]

J[frxexaf e {_%tr <BQ—1B' (ﬂ —w) xx (1 - \p))} il

2 (k—m+1) ., —2(k+1)

x ’Q’ (T k+2m) BQ 1B/

A A A -1 .. A
exp {—%tr ( 01— OB (BOB) Bﬂ—l) BI'X'XTIB + (T - k:)Q—lﬁ)]

J e esp {—%tr <(T —x)' (T - r))' at

o |G HT R | o1

1
2

1 1
where T = (X" X)31I (Bﬂ—lé')2 T = (X'X)30 (BQ—lB’)2 (X'X)31BO-1 B’ (Bﬂ—lf}') ,
1
2

NI

since |J(TL, )| = |x'x |2V | B8/ * and \ﬂfoxﬂ\ \r T1” [BO18| . The in-
tegral in the above expression is a non-central moment of a matrix normal random matrix.
We construct this expression for the case that T is a vector which implies that m = 2.

When T ~ n(Y, I,), it holds that w = Y'T ~ x2(k, ), where 1 = Y'Y is the non-centrality
parameter of the non-central y? distribution and k the degrees of freedom parameter. The
density function of a non-central x? reads, see Johnson and Kotz (1970) and Muirhead (1982),

o 1,\7
Pl 1
Przti (W) = 3 <(2]—,) exp {‘5#]) Pr2ot25) (W),

=0

where p,2(k125) (w) is the density function of a standard x? random variable with k+2; degrees
of freedom. Notelthat the weights, which correspond with a Poisson density, sum to one. The
expectation of w2 when w ~ x?(k + 2j) reads,

Nik+25j+1
EXQ(k—i—Zj) [w%} = 2% (2( J ))




The expectation of w? over the non-central x? distribution therefore reads,
Byt [wh] =532 (%Tﬁf)jexp (—31] ) By [w}]
=5y (Y exp [~ 1) ) 227G
The integral needed to obtain the conditional density of B given () thus reads,
[T exp {_%tr <(T e r))} a7
o By [w%

s [ (371) 1 1 T(E (k+25+1)
x> g | 5 exp [—37'Y] 22 =r( 2
x z;io - 5!

(2018 (Bo-18) ' Ba-1 B X' XTIB)’
exp {—%Q*B' (BQ—lf}') BO'B H’X’XHB] 23 Mo (bt2+)) (’““J“)))

L —

(5 (k+25))

such that the joint density of 3 and € becomes,
(B3, )

|~ 5 (T—k+2m) 1

R m A -1 . .
BO1B| " exp —% B (BOB) BQ—lB'H'X'XHB]

l\’:l

exp [—%tr ((T —k)Q1Q

7!

( 1 —1B/(BO~1B)” BQ—lB’H’X’XHB)J

~ A Nt
21%)} exp {——tr <<Q OB (BQ—lB') BQ—l) B’H’X’XHB)}

o |~ 3 (T—k42m) . N )
~ exp [—%tr (9—1 (T - k)2 + B'H'X'XHB})} BOB
w [ (307 B(BOB) T BO- 1B’H’X’XHB) r(L (k+251)
2520 7! T3 (27))
|~ (T—k+2m) . A A oA AN/
& exp |—4tr (@ H{(T - B2 + B'H'X'XHB})} O + (el - )
A1 (a..o-1_ 2\ 2" oo (BB X' XTI ! (3 (k+2j+1))
i, (912922 - 5) 2 =0 (( 2505) AL hr)
~ |~ 5 (T—k+2m) .
~ exp [—%tr (Q—l (T - k)2 + B'H'X'XHB})}
R R R AR " " ~N |2
Oz + (a0 — ) Oty (a0 — )
3 . A1 ge alq J
p [ |05 + (01203 —8') Ol (12023, -5 )FH'X'XH F(%(k+2j+1))-|
=0 [ 2(05 + Qo055 —B) 075 (203 -5) | j!l“(%(k—i—Zj))J
since

~ oA ~ ~ ~ ~ ~1 ~ ~ ~ ~ 1
BOT'B| = [Q5 + Q1282 — 8) Q15205 — 6)],
!

and [BQ'B'| = Qg + (QuaQy — B) Q5 (Que55 — B)] .
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and

~

p(B3, Q) o p(BI2)q()
such that
1
A A N Aoa AN A A oAl N | TE™
p(BI) Qg + (9129221 - ﬁ) Oy (9129221 - ﬁ)
. oA /o . iy J
zoo [ ’92_21"'(91292_21_5/) Q1_11.2(91292_21_5 )FHIX/XH F(%(k+2j+1))-|
N el (e ) B (R0 ) ST k+27)

g(Q) o [Q3TR2m) expy [—%tr (Q—l (T - k)2 + B'H'X'XHB))} .

The function ¢({) is the density that belongs to an inverted-Wishart distributed random
matrix A, A ~ W (T — k)2 + BTN X'XIIB,T — k +m — 2). This inverted-Wishart random
matrix has a mean equal to 7= (T — k)2 + BTV X' XTIB) ~ Q+ BT’ (XX)I1B and its
variance is proportional to =, see Muirhead (1982). The inverted-Wishart density ¢(€2), which
is not the marginal density of €, is therefore centered close around its mean for reasonably

large values of T' (T' > 25). Hence, already for moderate values of T', we can consider q(Q) as
a point mass at @ + B'II' (£) IIB. The marginal density of 3 then results as

p(B) o [ p(B, Q)
oc [p(B,I(Q,Q+ BT (37) 1B)d)
o< p(8, Q)’Q:Q+B'H'()"TX)HB
=p(B|t = Q+ B'II' (2X) IB).

where I(,Q + BT (XX)1IB) = 1 when Q = Q + BII' (XX)1IB and is equal to zero
elsewhere. This is the reason why we use () instead of S since we can not decompose the
joint density of (ﬁ, S) as the product of the conditional density of 3 given S and a standard
function of S that has convenient convergence properties.

When II = 0, the conditional density of B simplifies to,

1
—5m

AL A A A A AN\ A A A ~l
P(BIY o< |0 + (Qua0 — ') ity (00203 — )

i

which is a Cauchy density. Another simplification occurs when 8 = 31 as in that case
the term BQ 1B’ is equal to Q5! and p(3]€) is a symmetric density then.

We note that the density p(3|2) has a simpler functional form than the density derived in
Mariano and Sawa (1971), which involves a triplicate infinite series whereas p(3|Q2) constructed
above only involves a single infinite series. The density constructed by Mariano and Sawa is
the marginal density though while the density constructed above is the conditional density
given, Q. As the joint density p(3, ) quickly converges, when T increases, to the den81ty

p(B,Q)1(2,Q+ BT (£X)1IB) « p(B|Q2 = Q+ BT (LX) HB)I(Q Q+ B (ZX)IIB), w
can use the latter conditional density as the marginal density of ﬁ
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